1
|
Calhoun JC, Damania B, Griffith JD, Costantini LM. Electron microscopy mapping of the DNA-binding sites of monomeric, dimeric, and multimeric KSHV RTA protein. J Virol 2023; 97:e0063723. [PMID: 37750723 PMCID: PMC10617422 DOI: 10.1128/jvi.00637-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/19/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a human herpesvirus associated with several human cancers, typically in patients with compromised immune systems. Herpesviruses establish lifelong infections in hosts in part due to the two phases of infection: the dormant and active phases. Effective antiviral treatments to prevent the production of new viruses are needed to treat KSHV. A detailed microscopy-based investigation of the molecular interactions between viral protein and viral DNA revealed how protein-protein interactions play a role in DNA-binding specificity. This analysis will lead to a more in-depth understanding of KSHV DNA replication and serve as the basis for anti-viral therapies that disrupt and prevent the protein-DNA interactions, thereby decreasing spread to new hosts.
Collapse
Affiliation(s)
- Jayla C. Calhoun
- Biological and Biomedical Sciences Department, North Carolina Central University, Durham, North Carolina, USA
| | - Blossom Damania
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jack D. Griffith
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lindsey M. Costantini
- Biological and Biomedical Sciences Department, North Carolina Central University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Calhoun JC, Damania B, Griffith JD, Costantini LM. Electron microscopy mapping of the DNA-binding sites of monomeric, dimeric, and multimeric KSHV RTA protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538939. [PMID: 37205529 PMCID: PMC10187201 DOI: 10.1101/2023.05.01.538939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Molecular interactions between viral DNA and viral-encoded protein are a prerequisite for successful herpesvirus replication and production of new infectious virions. Here, we examined how the essential Kaposi's sarcoma-associated herpesvirus (KSHV) protein, RTA, binds to viral DNA using transmission electron microscopy (TEM). Previous studies using gel-based approaches to characterize RTA binding are important for studying the predominant form(s) of RTA within a population and identifying the DNA sequences that RTA binds with high affinity. However, using TEM we were able to examine individual protein-DNA complexes and capture the various oligomeric states of RTA when bound to DNA. Hundreds of images of individual DNA and protein molecules were collected and then quantified to map the DNA binding positions of RTA bound to the two KSHV lytic origins of replication encoded within the KSHV genome. The relative size of RTA or RTA bound to DNA were then compared to protein standards to determine whether RTA complexed with DNA was monomeric, dimeric, or formed larger oligomeric structures. We successfully analyzed a highly heterogenous dataset and identified new binding sites for RTA. This provides direct evidence that RTA forms dimers and high order multimers when bound to KSHV origin of replication DNA sequences. This work expands our understanding of RTA binding, and demonstrates the importance of employing methodologies that can characterize highly heterogenic populations of proteins. Importance Kaposi's sarcoma-associated herpesvirus (KSHV) is a human herpesvirus associated with several human cancers, typically in patients with compromised immune systems. Herpesviruses establish lifelong infections in hosts in part due to the two phases of infection: the dormant and active phases. Effective antiviral treatments to prevent the production of new viruses are needed to treat KSHV. A detailed microscopy-based investigation of the molecular interactions between viral protein and viral DNA revealed how protein-protein interactions play a role in DNA binding specificity. This analysis will lead to a more in depth understanding of KSHV DNA replication and serve as the basis for anti-viral therapies that disrupt and prevent the protein-DNA interactions, thereby decreasing spread to new hosts.
Collapse
Affiliation(s)
- Jayla C. Calhoun
- Biological and Biomedical Sciences Department, North Carolina Central University, Durham, North Carolina, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lindsey M. Costantini
- Biological and Biomedical Sciences Department, North Carolina Central University, Durham, North Carolina, USA
| |
Collapse
|
3
|
Gabaev I, Williamson JC, Crozier TW, Schulz TF, Lehner PJ. Quantitative Proteomics Analysis of Lytic KSHV Infection in Human Endothelial Cells Reveals Targets of Viral Immune Modulation. Cell Rep 2020; 33:108249. [PMID: 33053346 PMCID: PMC7567700 DOI: 10.1016/j.celrep.2020.108249] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/13/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is an oncogenic human virus and the leading cause of mortality in HIV infection. KSHV reactivation from latent- to lytic-stage infection initiates a cascade of viral gene expression. Here we show how these changes remodel the host cell proteome to enable viral replication. By undertaking a systematic and unbiased analysis of changes to the endothelial cell proteome following KSHV reactivation, we quantify >7,000 cellular proteins and 71 viral proteins and provide a temporal profile of protein changes during the course of lytic KSHV infection. Lytic KSHV induces >2-fold downregulation of 291 cellular proteins, including PKR, the key cellular sensor of double-stranded RNA. Despite the multiple episomes per cell, CRISPR-Cas9 efficiently targets KSHV genomes. A complementary KSHV genome-wide CRISPR genetic screen identifies K5 as the viral gene responsible for the downregulation of two KSHV targets, Nectin-2 and CD155, ligands of the NK cell DNAM-1 receptor.
Collapse
Affiliation(s)
- Ildar Gabaev
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK; Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK.
| | - James C. Williamson
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thomas W.M. Crozier
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany,German Center for Infection Research, Hannover-Braunschweig, Germany
| | - Paul J. Lehner
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK,Corresponding author
| |
Collapse
|
4
|
Wei X, Bai L, Dong L, Liu H, Xing P, Zhou Z, Wu S, Lan K. NCOA2 promotes lytic reactivation of Kaposi's sarcoma-associated herpesvirus by enhancing the expression of the master switch protein RTA. PLoS Pathog 2019; 15:e1008160. [PMID: 31751430 PMCID: PMC6894885 DOI: 10.1371/journal.ppat.1008160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/05/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
Reactivation of Kaposi’s sarcoma-associated herpesvirus (KSHV) is important for persistent infection in the host as well as viral oncogenesis. The replication and transcription activator (RTA) encoded by KSHV ORF50 plays a central role in the switch from viral latency to lytic replication. Given that RTA is a transcriptional activator and RTA expression is sufficient to activate complete lytic replication, RTA must possess an elaborate mechanism for regulating its protein abundance. Previous studies have demonstrated that RTA could be degraded through the ubiquitin-proteasome pathway. A protein abundance regulatory signal (PARS), which consists of PARS I and PARS II, at the C-terminal region of RTA modulates its protein abundance. In the present study, we identified a host protein named Nuclear receptor coactivator 2 (NCOA2), which can interact with RTA in vitro and in vivo. We further showed that NCOA2 binds to the PARS II domain of RTA. We demonstrated that NCOA2 enhances RTA stability and prevents the proteasome-mediated degradation of RTA by competing with MDM2, an E3 ubiquitin ligase of RTA that interacts with the PARS II domain. Moreover, overexpression of NCOA2 in KSHV-infected cells significantly enhanced the expression level of RTA, which promotes the expression of RTA downstream viral lytic genes and lytic replication. In contrast, silencing of endogenous NCOA2 downregulated the expression of viral lytic genes and impaired viral lytic replication. Interestingly, we also found that RTA upregulates the expression of NCOA2 during lytic reactivation. Taken together, our data support the conclusion that NCOA2 is a novel RTA-binding protein that promotes RTA-driven lytic reactivation by increasing the stability of RTA, and the RTA-NCOA2 positive feedback regulatory loop plays an important role in KSHV reactivation. Reactivation of KSHV from latency to lytic replication plays an important role in viral spread, establishment of lifelong latent infection and disease progression. RTA, the lytic switch protein, is essential and sufficient for triggering the full viral lytic program. Here, we report a host protein named NCOA2 as a novel RTA-binding protein. Direct interaction of NCOA2 with RTA increased the expression level of RTA. Further study revealed that NCOA2 competes with the E3 ubiquitin ligase of RTA, MDM2, to interact with the PARS II domain of RTA, which inhibits RTA degradation and enhances the stability of RTA. In the context of KSHV-infected cells, we showed that NCOA2 plays an important role in promoting RTA-driven lytic reactivation.
Collapse
Affiliation(s)
- Xiaoqin Wei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lianghui Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huimei Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peidong Xing
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhiyao Zhou
- University College London, Gower Street, London, United Kingdom
| | - Shuwen Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
5
|
Koch S, Damas M, Freise A, Hage E, Dhingra A, Rückert J, Gallo A, Kremmer E, Tegge W, Brönstrup M, Brune W, Schulz TF. Kaposi's sarcoma-associated herpesvirus vIRF2 protein utilizes an IFN-dependent pathway to regulate viral early gene expression. PLoS Pathog 2019; 15:e1007743. [PMID: 31059555 PMCID: PMC6522069 DOI: 10.1371/journal.ppat.1007743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 05/16/2019] [Accepted: 03/31/2019] [Indexed: 12/14/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) belongs to the subfamily of Gammaherpesvirinae and is the etiological agent of Kaposi’s sarcoma as well as of two lymphoproliferative diseases: primary effusion lymphoma and multicentric Castleman disease. The KSHV life cycle is divided into a latent and a lytic phase and is highly regulated by viral immunomodulatory proteins which control the host antiviral immune response. Among them is a group of proteins with homology to cellular interferon regulatory factors, the viral interferon regulatory factors 1–4. The KSHV vIRFs are known as inhibitors of cellular interferon signaling and are involved in different oncogenic pathways. Here we characterized the role of the second vIRF protein, vIRF2, during the KSHV life cycle. We found the vIRF2 protein to be expressed in different KSHV positive cells with early lytic kinetics. Importantly, we observed that vIRF2 suppresses the expression of viral early lytic genes in both newly infected and reactivated persistently infected endothelial cells. This vIRF2-dependent regulation of the KSHV life cycle might involve the increased expression of cellular interferon-induced genes such as the IFIT proteins 1, 2 and 3, which antagonize the expression of early KSHV lytic proteins. Our findings suggest a model in which the viral protein vIRF2 allows KSHV to harness an IFN-dependent pathway to regulate KSHV early gene expression. The life cycle of Kaposi Sarcoma herpesvirus involves both persistence in a latent form and productive replication to generate new viral particles. How the virus switches between latency and productive (‘lytic’) replication is only partially understood. Here we show that a viral homologue of interferon regulatory factors, vIRF2, antagonizes lytic protein expression in endothelial cells. It does this by inducing the expression of cellular interferon-regulated genes such as IFIT 1–3, which in turn dampens early viral gene expression. This observation suggests that vIRF2 allows KSHV to harness the interferon pathway to regulate early viral gene expression in endothelial cells.
Collapse
Affiliation(s)
- Sandra Koch
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Modester Damas
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Anika Freise
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Elias Hage
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Akshay Dhingra
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Jessica Rückert
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Antonio Gallo
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Centre for Infection Research, Hamburg Site, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Centre Munich, German Research Center for Environmental Health, Munich, Germany
| | - Werner Tegge
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mark Brönstrup
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wolfram Brune
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Centre for Infection Research, Hamburg Site, Germany
| | - Thomas F. Schulz
- Hannover Medical School, Institute of Virology, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
- * E-mail:
| |
Collapse
|
6
|
Yan L, Majerciak V, Zheng ZM, Lan K. Towards Better Understanding of KSHV Life Cycle: from Transcription and Posttranscriptional Regulations to Pathogenesis. Virol Sin 2019; 34:135-161. [PMID: 31025296 PMCID: PMC6513836 DOI: 10.1007/s12250-019-00114-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8 (HHV-8), is etiologically linked to the development of Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. These malignancies often occur in immunosuppressed individuals, making KSHV infection-associated diseases an increasing global health concern with persistence of the AIDS epidemic. KSHV exhibits biphasic life cycles between latent and lytic infection and extensive transcriptional and posttranscriptional regulation of gene expression. As a member of the herpesvirus family, KSHV has evolved many strategies to evade the host immune response, which help the virus establish a successful lifelong infection. In this review, we summarize the current research status on the biology of latent and lytic viral infection, the regulation of viral life cycles and the related pathogenesis.
Collapse
Affiliation(s)
- Lijun Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Vladimir Majerciak
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Zhi-Ming Zheng
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Chandrasekharan JA, Sharma-Walia N. Arachidonic Acid Derived Lipid Mediators Influence Kaposi's Sarcoma-Associated Herpesvirus Infection and Pathogenesis. Front Microbiol 2019; 10:358. [PMID: 30915039 PMCID: PMC6422901 DOI: 10.3389/fmicb.2019.00358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/11/2019] [Indexed: 12/30/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) infection, particularly latent infection is often associated with inflammation. The arachidonic acid pathway, the home of several inflammation and resolution associated lipid mediators, is widely altered upon viral infections. Several in vitro studies show that these lipid mediators help in the progression of viral pathogenesis. This review summarizes the findings related to human herpesvirus KSHV infection and arachidonic acid pathway metabolites. KSHV infection has been shown to promote inflammation by upregulating cyclooxygenase-2 (COX-2), 5 lipoxygenase (5LO), and their respective metabolites prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) to promote latency and an inflammatory microenvironment. Interestingly, the anti-inflammatory lipid mediator lipoxin is downregulated during KSHV infection to facilitate infected cell survival. These studies aid in understanding the role of arachidonic acid pathway metabolites in the progression of viral infection, the host inflammatory response, and pathogenesis. With limited therapeutic options to treat KSHV infection, use of inhibitors to these inflammatory metabolites and their synthetic pathways or supplementing anti-inflammatory lipid mediators could be an effective alternative therapeutic.
Collapse
Affiliation(s)
- Jayashree A Chandrasekharan
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Neelam Sharma-Walia
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
8
|
Wei X, Lan K. Activation and counteraction of antiviral innate immunity by KSHV: an Update. Sci Bull (Beijing) 2018; 63:1223-1234. [PMID: 30906617 PMCID: PMC6426151 DOI: 10.1016/j.scib.2018.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The innate immune responses triggering production of type I interferons and inflammatory cytokines constitute a nonspecific innate resistance that eliminates invading pathogens including viruses. The activation of innate immune signaling through pattern recognition receptors (PRRs) is by sensing pathogen-associated molecular patterns derived from viruses. According to their distribution within cells, PRRs are classified into three types of receptors: membrane, cytoplasmic, and nuclear. Kaposi's sarcoma-associated herpesvirus (KSHV), a large DNA virus, replicates in the nucleus. Its genome is protected by capsid proteins during transport in the cytosol. Multiple PRRs are involved in KSHV recognition. To successfully establish latent infection, KSHV has evolved to manipulate different aspects of the host antiviral innate immune responses. This review presents recent advances in our understanding about the activation of the innate immune signaling in response to infection of KSHV. It also reviews the evasion strategies used by KSHV to subvert host innate immune detection for establishing a persistent infection.
Collapse
Affiliation(s)
| | - Ke Lan
- Corresponding author. (K. Lan)
| |
Collapse
|
9
|
Kaposi's Sarcoma-Associated Herpesvirus Utilizes and Manipulates RNA N 6-Adenosine Methylation To Promote Lytic Replication. J Virol 2017; 91:JVI.00466-17. [PMID: 28592530 DOI: 10.1128/jvi.00466-17] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/26/2017] [Indexed: 12/20/2022] Open
Abstract
N6-adenosine methylation (m6A) is the most common posttranscriptional RNA modification in mammalian cells. We found that most transcripts encoded by the Kaposi's sarcoma-associated herpesvirus (KSHV) genome undergo m6A modification. The levels of m6A-modified mRNAs increased substantially upon stimulation for lytic replication. The blockage of m6A inhibited splicing of the pre-mRNA encoding the replication transcription activator (RTA), a key KSHV lytic switch protein, and halted viral lytic replication. We identified several m6A sites in RTA pre-mRNA crucial for splicing through interactions with YTH domain containing 1 (YTHDC1), an m6A nuclear reader protein, in conjunction with serine/arginine-rich splicing factor 3 (SRSF3) and SRSF10. Interestingly, RTA induced m6A and enhanced its own pre-mRNA splicing. Our results not only demonstrate an essential role of m6A in regulating RTA pre-mRNA splicing but also suggest that KSHV has evolved a mechanism to manipulate the host m6A machinery to its advantage in promoting lytic replication.IMPORTANCE KSHV productive lytic replication plays a pivotal role in the initiation and progression of Kaposi's sarcoma tumors. Previous studies suggested that the KSHV switch from latency to lytic replication is primarily controlled at the chromatin level through histone and DNA modifications. The present work reports for the first time that KSHV genome-encoded mRNAs undergo m6A modification, which represents a new mechanism at the posttranscriptional level in the control of viral replication.
Collapse
|
10
|
Strahan RC, McDowell-Sargent M, Uppal T, Purushothaman P, Verma SC. KSHV encoded ORF59 modulates histone arginine methylation of the viral genome to promote viral reactivation. PLoS Pathog 2017; 13:e1006482. [PMID: 28678843 PMCID: PMC5513536 DOI: 10.1371/journal.ppat.1006482] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/17/2017] [Accepted: 06/20/2017] [Indexed: 01/24/2023] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV) persists in a highly-ordered chromatin structure inside latently infected cells with the majority of the viral genome having repressive marks. However, upon reactivation the viral chromatin landscape changes into 'open' chromatin through the involvement of lysine demethylases and methyltransferases. Besides methylation of lysine residues of histone H3, arginine methylation of histone H4 plays an important role in controlling the compactness of the chromatin. Symmetric methylation of histone H4 at arginine 3 (H4R3me2s) negatively affects the methylation of histone H3 at lysine 4 (H3K4me3), an active epigenetic mark deposited on the viral chromatin during reactivation. We identified a novel binding partner to KSHV viral DNA processivity factor, ORF59-a protein arginine methyl transferase 5 (PRMT5). PRMT5 is an arginine methyltransferase that dimethylates arginine 3 (R3) of histone H4 in a symmetric manner, one hallmark of condensed chromatin. Our ChIP-seq data of symmetrically methylated H4 arginine 3 showed a significant decrease in H4R3me2s on the viral genome of reactivated cells as compared to the latent cells. Reduction in arginine methylation correlated with the binding of ORF59 on the viral chromatin and disruption of PRMT5 from its adapter protein, COPR5 (cooperator of PRMT5). Binding of PRMT5 through COPR5 is important for symmetric methylation of H4R3 and the expression of ORF59 competitively reduces the association of PRMT5 with COPR5, leading to a reduction in PRMT5 mediated arginine methylation. This ultimately resulted in a reduced level of symmetrically methylated H4R3 and increased levels of H3K4me3 marks, contributing to the formation of an open chromatin for transcription and DNA replication. Depletion of PRMT5 levels led to a decrease in symmetric methylation and increase in viral gene transcription confirming the role of PRMT5 in viral reactivation. In conclusion, ORF59 modulates histone-modifying enzymes to alter the chromatin structure during lytic reactivation.
Collapse
Affiliation(s)
- Roxanne C. Strahan
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Maria McDowell-Sargent
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Pravinkumar Purushothaman
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
- * E-mail:
| |
Collapse
|
11
|
Wang J, Guo Y, Wang X, Zhao R, Wang Y. Modulation of global SUMOylation by Kaposi's sarcoma-associated herpesvirus and its effects on viral gene expression. J Med Virol 2017. [PMID: 28639696 DOI: 10.1002/jmv.24882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Some viruses have evolved to exploit the host SUMOylation system to regulate their own replication. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes K-bZIP, a SUMO E3 ligase catalyzing the SUMOylation of viral and host proteins. KSHV also encodes replication and transcriptional activator (RTA), a SUMO-targeted ubiquitin ligase catalyzing the ubiquitination of SUMOylated proteins and targeting them for degradation. Using chronic KSHV-infected TRE × BCBL-1 RTA cells, the expression kinetics of K-bZIP and RTA, and the global SUMOylation level were detected. The endogenous K-bZIP protein increased dramatically after the induction of the RTA gene that is tetracycline responsive, but then decreased rapidly after peaking at 8 h post tetracycline treatment. Consistently, the global SUMO-conjugated proteins increased and remained at high levels until 8 h, and decreased afterward, correlating with the expression kinetics of RTA and K-bZIP. In luciferase reporter assays, transfection of 293T cells with SUMO2 expression plasmid reduced the RTA transactivations of immediate-early genes k8, orf45, and orf50, but enhanced the RTA transactivations of other viral genes including orf57, pan, k2, orf8, and orf73. These results indicated that KSHV might regulate gene expression and viral replication schedule through modulation of the global SUMOylation level, probably via RTA, and RTA-regulated K-bZIP.
Collapse
Affiliation(s)
- Jinzhong Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| | - Yuying Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Xu Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Rui Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Ying Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
12
|
Zhong C, Xu M, Wang Y, Xu J, Yuan Y. An APE1 inhibitor reveals critical roles of the redox function of APE1 in KSHV replication and pathogenic phenotypes. PLoS Pathog 2017; 13:e1006289. [PMID: 28380040 PMCID: PMC5381946 DOI: 10.1371/journal.ppat.1006289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/11/2017] [Indexed: 01/04/2023] Open
Abstract
APE1 is a multifunctional protein with a DNA base excision repair function in its C-terminal domain and a redox activity in its N-terminal domain. The redox function of APE1 converts certain transcription factors from inactive oxidized to active reduced forms. Given that among the APE1-regulated transcription factors many are critical for KSHV replication and pathogenesis, we investigated whether inhibition of APE1 redox function blocks KSHV replication and Kaposi’s sarcoma (KS) phenotypes. With an shRNA-mediated silencing approach and a known APE-1 redox inhibitor, we demonstrated that APE1 redox function is indeed required for KSHV replication as well as KSHV-induced angiogenesis, validating APE1 as a therapeutic target for KSHV-associated diseases. A ligand-based virtual screening yielded a small molecular compound, C10, which is proven to bind to APE1. C10 exhibits low cytotoxicity but efficiently inhibits KSHV lytic replication (EC50 of 0.16 μM and selective index of 165) and KSHV-mediated pathogenic phenotypes including cytokine production, angiogenesis and cell invasion, demonstrating its potential to become an effective drug for treatment of KS. As a major AIDS-associated malignancy, Kaposi’s sarcoma (KS) is caused by Kaposi’s sarcoma-associated herpesvirus (KSHV). Currently there is no definitive cure for KS. In this study, we identified a cellular protein, namely APE1, as an effective therapeutic target for blocking KSHV replication and inhibiting the development of KS phenotypes. We showed that the redox function of APE1 is absolutely required for KSHV replication, virally induced cytokine secretion and angiogenesis. Blockade of APE1 expression or inhibition of APE1 redox activity led to inhibition of KSHV replication and reduction of cytokine release and angiogenesis. Furthermore, we identified a novel small molecular compound, C10, which exhibited specific inhibitory activity on APE1 redox function and was demonstrated to efficiently inhibit KSHV replication and paracrine-mediated KS phenotypes such as angiogenesis and cell invasion. As a potent inhibitor of APE1 redox, C10 not only has value in development of a novel therapeutics for KS, but also may be used in therapies for other human diseases such as leukemia, pancreatic cancer and macular degeneration.
Collapse
Affiliation(s)
- Canrong Zhong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mengyang Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yan Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
- * E-mail: (YY); (JX)
| | - Yan Yuan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (YY); (JX)
| |
Collapse
|
13
|
Li S, Bai L, Dong J, Sun R, Lan K. Kaposi's Sarcoma-Associated Herpesvirus: Epidemiology and Molecular Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:91-127. [PMID: 29052134 DOI: 10.1007/978-981-10-5765-6_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), also known as Human herpesvirus 8 (HHV-8), is a member of the lymphotropic gammaherpesvirus subfamily and a human oncogenic virus. Since its discovery in AIDS-associated KS tissues by Drs. Yuan Chang and Patrick Moore, much progress has been made in the past two decades. There are four types of KS including classic KS, endemic KS, immunosuppressive therapy-related KS, and AIDS-associated KS. In addition to KS, KSHV is also involved in the development of primary effusion lymphoma (PEL) and certain types of multicentric Castleman's disease. KSHV manipulates numerous viral proteins to promote the progression of angiogenesis and tumorigenesis. In this chapter, we review the epidemiology and molecular biology of KSHV and the mechanisms underlying KSHV-induced diseases.
Collapse
Affiliation(s)
- Shasha Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Lei Bai
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Jiazhen Dong
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Rui Sun
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
14
|
Identification of Novel Kaposi's Sarcoma-Associated Herpesvirus Orf50 Transcripts: Discovery of New RTA Isoforms with Variable Transactivation Potential. J Virol 2016; 91:JVI.01434-16. [PMID: 27795414 DOI: 10.1128/jvi.01434-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that has been associated with primary effusion lymphoma and multicentric Castleman's disease, as well as its namesake Kaposi's sarcoma. As a gammaherpesvirus, KSHV is able to acutely replicate, enter latency, and reactivate from this latent state. A key protein involved in both acute replication and reactivation from latency is the replication and transcriptional activator (RTA) encoded by the gene Orf50 RTA is a known transactivator of multiple viral genes, allowing it to control the switch between latency and virus replication. We report here the identification of six alternatively spliced Orf50 transcripts that are generated from four distinct promoters. These newly identified promoters are shown to be transcriptionally active in 293T (embryonic kidney), Vero (African-green monkey kidney epithelial), 3T12 (mouse fibroblast), and RAW 264.7 (mouse macrophage) cell lines. Notably, the newly identified Orf50 transcripts are predicted to encode four different isoforms of the RTA which differ by 6 to 10 residues at the amino terminus of the protein. We show the global viral transactivation potential of all four RTA isoforms and demonstrate that all isoforms can transcriptionally activate an array of KSHV promoters to various levels. The pattern of transcriptional activation appears to support a transcriptional interference model within the Orf50 region, where silencing of previously expressed isoforms by transcription initiation from upstream Orf50 promoters has the potential to modulate the pattern of viral gene activation. IMPORTANCE Gammaherpesviruses are associated with the development of lymphomas and lymphoproliferative diseases, as well as several other types of cancer. The human gammaherpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is tightly associated with the development of Kaposi's sarcoma and multicentric Castleman's disease, as well as a rare form of B cell lymphoma (primary effusion lymphoma) primarily observed in HIV-infected individuals. RTA is an essential viral gene product involved in the initiation of gammaherpesvirus replication and is conserved among all known gammaherpesviruses. We show here for KSHV that transcription of the gene encoding RTA is complex and leads to the expression of several isoforms of RTA with distinct functions. This observed complexity in KSHV RTA expression and function likely plays a critical role in the regulation of downstream viral and cellular gene expression, leading to the efficient production of mature virions.
Collapse
|
15
|
Kim Y, Cha S, Seo T. Activation of the phosphatidylinositol 3-kinase/Akt pathway by viral interferon regulatory factor 2 of Kaposi's sarcoma-associated herpesvirus. Biochem Biophys Res Commun 2016; 470:650-656. [DOI: 10.1016/j.bbrc.2016.01.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/14/2016] [Indexed: 12/22/2022]
|
16
|
Baquero-Pérez B, Whitehouse A. Hsp70 Isoforms Are Essential for the Formation of Kaposi's Sarcoma-Associated Herpesvirus Replication and Transcription Compartments. PLoS Pathog 2015; 11:e1005274. [PMID: 26587836 PMCID: PMC4654589 DOI: 10.1371/journal.ppat.1005274] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus associated with various AIDS-related malignancies. Like other herpesviruses, multiple processes required for KSHV lytic replication, including viral transcription, viral DNA synthesis and capsid assembly occur in virus-induced intranuclear structures, termed replication and transcription compartments (RTCs). Here we utilised a novel methodology, combining subcellular fractionation and quantitative proteomics, to identify cellular proteins which are recruited to KSHV-induced RTCs and thus play a key role in KSHV lytic replication. We show that several isoforms of the HSP70 chaperone family, Hsc70 and iHsp70, are redistributed from the cytoplasm into the nucleus coinciding with the initial formation of KSHV-induced RTCs. We demonstrate that nuclear chaperone foci are dynamic, initially forming adjacent to newly formed KSHV RTCs, however during later time points the chaperones move within KSHV RTCs and completely co-localise with actively replicating viral DNA. The functional significance of Hsp70 isoforms recruitment into KSHV RTCs was also examined using the specific Hsp70 isoform small molecule inhibitor, VER-155008. Intriguingly, results highlight an essential role of Hsp70 isoforms in the KSHV replication cycle independent of protein stability and maturation. Notably, inhibition of Hsp70 isoforms precluded KSHV RTC formation and RNA polymerase II (RNAPII) relocalisation to the viral genome leading to the abolishment of global KSHV transcription and subsequent viral protein synthesis and DNA replication. These new findings have revealed novel mechanisms that regulate KSHV lytic replication and highlight the potential of HSP70 inhibitors as novel antiviral agents.
Collapse
Affiliation(s)
- Belinda Baquero-Pérez
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
17
|
Kang H, Song J, Choi K, Kim H, Choi M, Lee SY, Kim C, Lee SJ, Song MJ, Kang H, Back SH, Han SB, Cho S. Efficient lytic induction of Kaposi's sarcoma-associated herpesvirus (KSHV) by the anthracyclines. Oncotarget 2015; 5:8515-27. [PMID: 25237786 PMCID: PMC4226701 DOI: 10.18632/oncotarget.2335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lytic induction of latent Kaposi's sarcoma-associated herpesvirus (KSHV) has been considered as a therapeutic option for efficient treatment of several KSHV-associated malignancies. Here, we developed a robust high-throughput screening system that allows an easy and quantitative measurement of lytic induction of latent KSHV and discovered three anthracyclines as potent inducers from screen of FDA-approved drugs. Lytic induction of latent KSHV by three compounds was verified by the significant induction of lytic genes and subsequent production of infectious KSHV. Importantly, lytic induction by three compounds was much more efficient than that by sodium butyrate, a well-characterized inducer of KSHV lytic cycle. Mechanistically, the anthracyclines caused lytic induction of KSHV through apoptosis induced by their DNA intercalation rather than topoisomerase II inhibition. Consequently, our results clearly demonstrated a role of anthracyclines as effective lytic inducers of KSHV and also provided a molecular basis of their use for efficient treatment of diseases associated with KSHV infection.
Collapse
Affiliation(s)
- Hyunju Kang
- Targeted Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Chungbuk, Republic of Korea. College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jaehyung Song
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Kwangman Choi
- Targeted Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Chungbuk, Republic of Korea. Department of Medical Biotechnology, Soonchunhyang University, Asan, Republic of Korea
| | - Hyeongki Kim
- Targeted Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Chungbuk, Republic of Korea. Department of Biomolecular Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Miri Choi
- Targeted Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Chungbuk, Republic of Korea
| | - So-Young Lee
- International Cooperation Office, Ministry of Food and Drug Safety, Cheongwon, Chungbuk, Republic of Korea
| | - Chonsaeng Kim
- Virus Research and Testing Group, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Sang Jun Lee
- Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Moon Jung Song
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyojeung Kang
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, and Institute for Microorganisms, Kyungpook National University, Daegu, Republic of Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sungchan Cho
- Targeted Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Chungbuk, Republic of Korea. Department of Biomolecular Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
18
|
Fan W, Tang Q, Shen C, Qin D, Lu C, Yan Q. Preparation and characterization of polyclonal antibody against Kaposi's sarcoma-associated herpesvirus lytic gene encoding RTA. Folia Microbiol (Praha) 2015; 60:473-81. [PMID: 25832009 DOI: 10.1007/s12223-015-0387-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/15/2015] [Indexed: 12/30/2022]
Abstract
Replication and transcription activator (RTA) is a critical lytic protein encoded by Kaposi's sarcoma-associated herpesvirus (KSHV). To prepare rabbit polyclonal antibody against RTA, three antigenic polypeptides of KSHV RTA were initially synthesized. The fragment of RTA was cloned into p3FlagBsd to construct the recombinant plasmid, pRTA-Flag. 293 T and EA.hy926 cells were transfected with pRTA-Flag to obtain RTA-Flag fusion protein, which was detected using anti-Flag antibody. Next, New Zealand white rabbits were immunized with keyhole limpet hemocyanin-conjugated peptides to generate polyclonal antibodies against RTA. Enzyme-linked immunosorbent assays were performed to characterize the polyclonal antibodies, and the titers of the polyclonal antibodies against RTA were greater than 1:11,000. Western blotting and immunofluorescence assay revealed that the prepared antibody reacted specifically with the RTA-Flag fusion protein as well as the native viral protein in KSHV-infected primary effusion lymphoma cells. Collectively, our work successfully constructed the recombinant expression vector, pRTA-Flag, and prepared the polyclonal antibody against RTA, which was valuable for investigating the biochemical and biological functions of the critical KSHV lytic gene.
Collapse
Affiliation(s)
- Weifei Fan
- Department of Oncology, Jiangsu Province Official Hospital, 65 Jiangsu Road, Nanjing, 210024, People's Republic of China
| | - Qiao Tang
- Department of Clinical Laboratory, The Affiliated Nanjing First Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Chenyou Shen
- Department of Microbiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Di Qin
- Department of Microbiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China.
| |
Collapse
|
19
|
Wang Y, Yu K, Pei X, Zhang T, Guo Y, Wood C, Wang J. Activation and degradation of open reading frame 45 by the replication and transcription activator of Kaposi's sarcoma-associated herpesvirus. J Gen Virol 2015; 96:1883-9. [PMID: 25783474 DOI: 10.1099/vir.0.000125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The open reading frame 45 (ORF45) of the Kaposi's sarcoma-associated herpesvirus (KSHV) is an immediate-early phosphorylated tegument protein critical for viral escape from host immune surveillance. Its expression is upregulated by the viral replication and transcription activator (RTA), a key protein that controls the switch from latency to lytic replication. We report here that ORF45 expression was not only upregulated by RTA, but ORF45 could also be degraded by RTA in a proteasome-dependent manner. The ORF45 was activated by RTA via activation of the ORF45 promoter, and the promoter region from nt 69 271 to nt 69 026 was involved. In chronic KSHV infected TRE-BCBL-1 RTA cells, the endogenous ORF45 protein increased dramatically after the induction of RTA expression, but then decreased rapidly after 8 h post-induction. Our study suggests that RTA might control the kinetics of viral replication through fine-tuning of the level of ORF45 and other viral/host proteins.
Collapse
Affiliation(s)
- Ying Wang
- 1TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China 2Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, PR China 3Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | - Kai Yu
- 1TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | - Xiuzhi Pei
- 1TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | - Tianzheng Zhang
- 1TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | - Yuying Guo
- 1TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | - Charles Wood
- 4Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Jinzhong Wang
- 1TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China 2Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, PR China 3Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| |
Collapse
|
20
|
Murine Gammaherpesvirus 68 ORF48 Is an RTA-Responsive Gene Product and Functions in both Viral Lytic Replication and Latency during In Vivo Infection. J Virol 2015; 89:5788-800. [PMID: 25762743 DOI: 10.1128/jvi.00406-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/08/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Replication and transcription activator (RTA) of gammaherpesvirus is an immediate early gene product and regulates the expression of many downstream viral lytic genes. ORF48 is also conserved among gammaherpesviruses; however, its expression regulation and function remained largely unknown. In this study, we characterized the transcription unit of ORF48 from murine gammaherpesvirus 68 (MHV-68) and analyzed its transcriptional regulation. We showed that RTA activates the ORF48 promoter via an RTA-responsive element (48pRRE). RTA binds to 48pRRE directly in vitro and also associates with ORF48 promoter in vivo. Mutagenesis of 48pRRE in the context of the viral genome demonstrated that the expression of ORF48 is activated by RTA through 48pRRE during de novo infection. Through site-specific mutagenesis, we generated an ORF48-null virus and examined the function of ORF48 in vitro and in vivo. The ORF48-null mutation remarkably reduced the viral replication efficiency in cell culture. Moreover, through intranasal or intraperitoneal infection of laboratory mice, we showed that ORF48 is important for viral lytic replication in the lung and establishment of latency in the spleen, as well as viral reactivation from latency. Collectively, our study identified ORF48 as an RTA-responsive gene and showed that ORF48 is important for MHV-68 replication both in vitro and in vivo. IMPORTANCE The replication and transcription activator (RTA), conserved among gammaherpesviruses, serves as a molecular switch for the virus life cycle. It works as a transcriptional regulator to activate the expression of many viral lytic genes. However, only a limited number of such downstream genes have been uncovered for MHV-68. In this study, we identified ORF48 as an RTA-responsive gene of MHV-68 and mapped the cis element involved. By constructing a mutant virus that is deficient in ORF48 expression and through infection of laboratory mice, we showed that ORF48 plays important roles in different stages of viral infection in vivo. Our study provides insights into the transcriptional regulation and protein function of MHV-68, a desired model for studying gammaherpesviruses.
Collapse
|
21
|
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) primarily persists as a latent episome in infected cells. During latent infection, only a limited number of viral genes are expressed that help to maintain the viral episome and prevent lytic reactivation. The latent KSHV genome persists as a highly ordered chromatin structure with bivalent chromatin marks at the promoter-regulatory region of the major immediate-early gene promoter. Various stimuli can induce chromatin modifications to an active euchromatic epigenetic mark, leading to the expression of genes required for the transition from the latent to the lytic phase of KSHV life cycle. Enhanced replication and transcription activator (RTA) gene expression triggers a cascade of events, resulting in the modulation of various cellular pathways to support viral DNA synthesis. RTA also binds to the origin of lytic DNA replication to recruit viral, as well as cellular, proteins for the initiation of the lytic DNA replication of KSHV. In this review we will discuss some of the pivotal genetic and epigenetic factors that control KSHV reactivation from the transcriptionally restricted latent program.
Collapse
|
22
|
Uppal T, Banerjee S, Sun Z, Verma SC, Robertson ES. KSHV LANA--the master regulator of KSHV latency. Viruses 2014; 6:4961-98. [PMID: 25514370 PMCID: PMC4276939 DOI: 10.3390/v6124961] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/16/2022] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV), like other human herpes viruses, establishes a biphasic life cycle referred to as dormant or latent, and productive or lytic phases. The latent phase is characterized by the persistence of viral episomes in a highly ordered chromatin structure and with the expression of a limited number of viral genes. Latency Associated Nuclear Antigen (LANA) is among the most abundantly expressed proteins during latency and is required for various nuclear functions including the recruitment of cellular machineries for viral DNA replication and segregation of the replicated genomes to daughter cells. LANA achieves these functions by recruiting cellular proteins including replication factors, chromatin modifying enzymes and cellular mitotic apparatus assembly. LANA directly binds to the terminal repeat region of the viral genome and associates with nucleosomal proteins to tether to the host chromosome. Binding of LANA to TR recruits the replication machinery, thereby initiating DNA replication within the TR. However, other regions of the viral genome can also initiate replication as determined by Single Molecule Analysis of the Replicated DNA (SMARD) approach. Recent, next generation sequence analysis of the viral transcriptome shows the expression of additional genes during latent phase. Here, we discuss the newly annotated latent genes and the role of major latent proteins in KSHV biology.
Collapse
Affiliation(s)
- Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Sagarika Banerjee
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Zhiguo Sun
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Erle S Robertson
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Activation of Kaposi's sarcoma-associated herpesvirus (KSHV) by inhibitors of class III histone deacetylases: identification of sirtuin 1 as a regulator of the KSHV life cycle. J Virol 2014; 88:6355-67. [PMID: 24672028 DOI: 10.1128/jvi.00219-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) establishes persistent latent infection in immunocompetent hosts. Disruption of KSHV latency results in viral lytic replication, which promotes the development of KSHV-related malignancies in immunocompromised individuals. While inhibitors of classes I and II histone deacetylases (HDACs) potently reactivate KSHV from latency, the role of class III HDAC sirtuins (SIRTs) in KSHV latency remains unclear. Here, we examined the effects of inhibitors of SIRTs, nicotinamide (NAM) and sirtinol, on KSHV reactivation from latency. Treatment of latently KSHV-infected cells with NAM or sirtinol induced transcripts and proteins of the master lytic transactivator RTA (ORF50), early lytic genes ORF57 and ORF59, and late lytic gene ORF65 and increased the production of infectious virions. NAM increased the acetylation of histones H3 and H4 as well as the level of the active histone H3 trimethyl Lys4 (H3K4me3) mark but decreased the level of the repressive histone H3 trimethyl Lys27 (H3K27me3) mark in the RTA promoter. Consistent with these results, we detected SIRT1 binding to the RTA promoter. Importantly, knockdown of SIRT1 was sufficient to increase the expression of KSHV lytic genes. Accordingly, the level of the H3K4me3 mark in the RTA promoter was increased following SIRT1 knockdown, while that of the H3K27me3 mark was decreased. Furthermore, SIRT1 interacted with RTA and inhibited RTA transactivation of its own promoter and that of its downstream target, the viral interleukin-6 gene. These results indicate that SIRT1 regulates KSHV latency by inhibiting different stages of viral lytic replication and link the cellular metabolic state with the KSHV life cycle. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the causal agent of several malignancies, including Kaposi's sarcoma, commonly found in immunocompromised patients. While latent infection is required for the development of KSHV-induced malignancies, viral lytic replication also promotes disease progression. However, the mechanism controlling KSHV latent versus lytic replication remains unclear. In this study, we found that class III histone deacetylases (HDACs), also known as SIRTs, whose activities are linked to the cellular metabolic state, mediate KSHV replication. Inhibitors of SIRTs can reactivate KSHV from latency. SIRTs mediate KSHV latency by epigenetically silencing a key KSHV lytic replication activator, RTA. We found that one of the SIRTs, SIRT1, binds to the RTA promoter to mediate KSHV latency. Knockdown of SIRT1 is sufficient to induce epigenetic remodeling and KSHV lytic replication. SIRT1 also interacts with RTA and inhibits RTA's transactivation function, preventing the expression of its downstream genes. Our results indicate that SIRTs regulate KSHV latency by inhibiting different stages of viral lytic replication and link the cellular metabolic state with the KSHV life cycle.
Collapse
|
24
|
Kaposi's sarcoma-associated herpesvirus transactivator Rta induces cell cycle arrest in G0/G1 phase by stabilizing and promoting nuclear localization of p27kip. J Virol 2013; 87:13226-38. [PMID: 24067984 DOI: 10.1128/jvi.02540-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) immediate-early gene, replication, and transcription activator (K-Rta) is a key viral protein that serves as the master regulator for viral lytic replication. In this study, we investigated the role of K-Rta in cell cycle regulation and found that the expression of K-Rta in doxycycline (Dox)-inducible BJAB cells induced cell cycle arrest in G0/G1 phase. Western blot analysis of key cell cycle regulators revealed that K-Rta-mediated cell cycle arrest was associated with a decrease in cyclin A and phosphorylated Rb (pS807/pS811) protein levels, both markers of S phase progression, and an increase in protein levels for p27, a cyclin-dependent kinase inhibitor. Further, we found that K-Rta does not affect the transcription of p27 but regulates p27 at the posttranslational level by inhibiting its proteosomal degradation. Immunofluorescence staining and cell fractionation experiments revealed largely nuclear compartmentalization of p27 in K-Rta-expressing cells, demonstrating that K-Rta not only stabilizes p27 but also modulates its cellular localization. Finally, short hairpin RNA knockdown of p27 significantly abrogates cell cycle arrest in K-Rta-expressing cells, supporting its key role in K-Rta-mediated cell cycle arrest. Our findings are consistent with previous studies which showed that expression of immediate-early genes of several herpesviruses, including herpes simplex virus, Epstein-Barr virus, and cytomegalovirus, results in cell cycle arrest at the G0/G1 phase, possibly to avoid competition for resources needed for host cell replication during the S phase.
Collapse
|
25
|
Darst RP, Haecker I, Pardo CE, Renne R, Kladde MP. Epigenetic diversity of Kaposi's sarcoma-associated herpesvirus. Nucleic Acids Res 2013; 41:2993-3009. [PMID: 23361465 PMCID: PMC3597696 DOI: 10.1093/nar/gkt033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spontaneous lytic reactivation of Kaposi’s sarcoma–associated herpesvirus (KSHV) occurs at a low rate in latently infected cells in disease and culture. This suggests imperfect epigenetic maintenance of viral transcription programs, perhaps due to variability in chromatin structure at specific loci across the population of KSHV episomal genomes. To characterize this locus-specific chromatin structural diversity, we used MAPit single-molecule footprinting, which simultaneously maps endogenous CG methylation and accessibility to M.CviPI at GC sites. Diverse chromatin structures were detected at the LANA, RTA and vIL6 promoters. At each locus, chromatin ranged from fully closed to fully open across the population. This diversity has not previously been reported in a virus. Phorbol ester and RTA transgene induction were used to identify chromatin conformations associated with reactivation of lytic transcription, which only a fraction of episomes had. Moreover, certain chromatin conformations correlated with CG methylation patterns at the RTA and vIL6 promoters. This indicated that some of the diverse chromatin conformations at these loci were epigenetically distinct. Finally, by comparing chromatin structures from a cell line infected with constitutively latent virus, we identified products of lytic replication. Our findings show that epigenetic drift can restrict viral propagation by chromatin compaction at latent and lytic promoters.
Collapse
Affiliation(s)
- Russell P Darst
- Department of Biochemistry and Molecular Biology, 2033 Mowry Road, Box 103633, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | | | | | | | | |
Collapse
|
26
|
Knowlton ER, Lepone LM, Li J, Rappocciolo G, Jenkins FJ, Rinaldo CR. Professional antigen presenting cells in human herpesvirus 8 infection. Front Immunol 2013; 3:427. [PMID: 23346088 PMCID: PMC3549500 DOI: 10.3389/fimmu.2012.00427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/24/2012] [Indexed: 12/18/2022] Open
Abstract
Professional antigen presenting cells (APC), i.e., dendritic cells (DC), monocytes/macrophages, and B lymphocytes, are critically important in the recognition of an invading pathogen and presentation of antigens to the T cell-mediated arm of immunity. Human herpesvirus 8 (HHV-8) is one of the few human viruses that primarily targets these APC for infection, altering their cytokine profiles, manipulating their surface expression of MHC molecules, and altering their ability to activate HHV-8-specific T cells. This could be why T cell responses to HHV-8 antigens are not very robust. Of these APC, only B cells support complete, lytic HHV-8 infection. However, both complete and abortive virus replication cycles in APC could directly affect viral pathogenesis and progression to Kaposi's sarcoma (KS) and HHV-8-associated B cell cancers. In this review, we discuss the effects of HHV-8 infection on professional APC and their relationship to the development of KS and B cell lymphomas.
Collapse
Affiliation(s)
- Emilee R Knowlton
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
27
|
Activation of the unfolded protein response by 2-deoxy-D-glucose inhibits Kaposi's sarcoma-associated herpesvirus replication and gene expression. Antimicrob Agents Chemother 2012; 56:5794-803. [PMID: 22926574 DOI: 10.1128/aac.01126-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lytic replication of the Kaposi's sarcoma-associated herpesvirus (KSHV) is essential for the maintenance of both the infected state and characteristic angiogenic phenotype of Kaposi's sarcoma and thus represents a desirable therapeutic target. During the peak of herpesvirus lytic replication, viral glycoproteins are mass produced in the endoplasmic reticulum (ER). Normally, this leads to ER stress which, through an unfolded protein response (UPR), triggers phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α), resulting in inhibition of protein synthesis to maintain ER and cellular homeostasis. However, in order to replicate, herpesviruses have acquired the ability to prevent eIF2α phosphorylation. Here we show that clinically achievable nontoxic doses of the glucose analog 2-deoxy-d-glucose (2-DG) stimulate ER stress, thereby shutting down eIF2α and inhibiting KSHV and murine herpesvirus 68 replication and KSHV reactivation from latency. Viral cascade genes that are involved in reactivation, including the master transactivator (RTA) gene, glycoprotein B, K8.1, and angiogenesis-regulating genes are markedly decreased with 2-DG treatment. Overall, our data suggest that activation of UPR by 2-DG elicits an early antiviral response via eIF2α inactivation, which impairs protein synthesis required to drive viral replication and oncogenesis. Thus, induction of ER stress by 2-DG provides a new antiherpesviral strategy that may be applicable to other viruses.
Collapse
|
28
|
Wang SS, Chang PJ, Chen LW, Chen LY, Hung CH, Liou JY, Yen JB. Positive and negative regulation in the promoter of the ORF46 gene of Kaposi's sarcoma-associated herpesvirus. Virus Res 2012; 165:157-69. [PMID: 22366521 DOI: 10.1016/j.virusres.2012.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/11/2012] [Accepted: 02/12/2012] [Indexed: 12/24/2022]
Abstract
The ORF46 gene of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes uracil DNA glycosylase, an enzyme involved in DNA repair. In this study, we show that the transcriptional start site of the ORF46 gene is located at nucleotide 69,425 of the viral genome and ORF50 protein, a latent-lytic switch transactivator, activates the ORF46 promoter via RBP-Jκ protein. Three consensus RBP-Jκ-binding sites found in the ORF46 promoter are critical for the binding of RBP-Jκ protein and conferring the ORF50 responsiveness. In addition, a negative regulatory region has been determined in the ORF46 promoter, which mediates the suppression of the ORF50 responsiveness. The functional negative region of the ORF46 promoter is mainly composed of the Sp1-binding sites. Like the negative region of the ORF46 promoter, addition of Sp1-binding sequences alone in an ORF50-responsive promoter efficiently confers the suppression of the ORF50 responsiveness. Furthermore, sodium butyrate, a pleiotropic inducing agent for the KSHV lytic cycle, is able to relieve the negative regulation of the ORF46 promoter in the latently KSHV-infected cells. The identification of multiple positive and negative cis-acting regulatory elements in the viral promoters emphasizes the elaborate controls in the KSHV lytic cycle, which ensure the adequate expression of each viral lytic gene.
Collapse
Affiliation(s)
- Shie-Shan Wang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan; Departments of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi, Taiwan
| | | | | | | | | | | | | |
Collapse
|
29
|
Guito J, Lukac DM. KSHV Rta Promoter Specification and Viral Reactivation. Front Microbiol 2012; 3:30. [PMID: 22347875 PMCID: PMC3278982 DOI: 10.3389/fmicb.2012.00030] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/18/2012] [Indexed: 11/27/2022] Open
Abstract
Viruses are obligate intracellular pathogens whose biological success depends upon replication and packaging of viral genomes, and transmission of progeny viruses to new hosts. The biological success of herpesviruses is enhanced by their ability to reproduce their genomes without producing progeny viruses or killing the host cells, a process called latency. Latency permits a herpesvirus to remain undetected in its animal host for decades while maintaining the potential to reactivate, or switch, to a productive life cycle when host conditions are conducive to generating viral progeny. Direct interactions between many host and viral molecules are implicated in controlling herpesviral reactivation, suggesting complex biological networks that control the decision. One viral protein that is necessary and sufficient to switch latent Kaposi’s sarcoma-associated herpesvirus (KSHV) into the lytic infection cycle is called K-Rta. K-Rta is a transcriptional activator that specifies promoters by binding DNA directly and interacting with cellular proteins. Among these cellular proteins, binding of K-Rta to RBP-Jk is essential for viral reactivation. In contrast to the canonical model for Notch signaling, RBP-Jk is not uniformly and constitutively bound to the latent KSHV genome, but rather is recruited to DNA by interactions with K-Rta. Stimulation of RBP-Jk DNA binding requires high affinity binding of Rta to repetitive and palindromic “CANT DNA repeats” in promoters, and formation of ternary complexes with RBP-Jk. However, while K-Rta expression is necessary for initiating KSHV reactivation, K-Rta’s role as the switch is inefficient. Many factors modulate K-Rta’s function, suggesting that KSHV reactivation can be significantly regulated post-Rta expression and challenging the notion that herpesviral reactivation is bistable. This review analyzes rapidly evolving research on KSHV K-Rta to consider the role of K-Rta promoter specification in regulating the progression of KSHV reactivation.
Collapse
Affiliation(s)
- Jonathan Guito
- Graduate School of Biomedical Sciences, New Jersey Medical School, University of Medicine and Dentistry of New Jersey Newark, NJ, USA
| | | |
Collapse
|
30
|
Ko YC, Tsai WH, Wang PW, Wu IL, Lin SY, Chen YL, Chen JY, Lin SF. Suppressive regulation of KSHV RTA with O-GlcNAcylation. J Biomed Sci 2012; 19:12. [PMID: 22300411 PMCID: PMC3395832 DOI: 10.1186/1423-0127-19-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/02/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The replication and transcription activator (RTA) of Kaposi's sarcoma-associated herpesvirus (KSHV) is a molecular switch that initiates a productive replication of latent KSHV genomes. KSHV RTA (K-RTA) is composed of 691 amino acids with high Ser and Thr content (17.7%), but to what extent these Ser and Thr are modified in vivo has not been explored. METHODS By using tandem mass spectrometric analysis of affinity-purified FLAG tagged K-RTA, we sought to identify Ser and Thr residues that are post-translationally modified in K-RTA. RESULTS We found that K-RTA is an O-GlcNAcylated protein and Thr-366/Thr-367 is the primary motif with O-GlcNAcylation in vivo. The biological significance of O-GlcNAc modified Thr-366 and Thr-367 was assessed by site-specific amino acid substitution. Replacement of Thr with Ala at amino acid 366 or 367 caused a modest enhancement of K-RTA transactivation activity in a luciferase reporter assay and a cell model for KSHV reactivation. By using co-immunoprecipitation coupled with western blot analysis, we showed that the capacity of K-RTA in associating with endogenous PARP1 was significantly reduced in the Thr-366/Thr-367 O-GlcNAc mutants. PARP1 is a documented negative regulator of K-RTA that can be ascribed by the attachment of large negatively charged polymer onto K-RTA via PARP1's poly (ADP-ribose) polymerase activity. In agreement, shRNA-mediated depletion of O-GlcNAc transferase (OGT) in KSHV infected cells augmented viral reactivation and virus production that was accompanied by diminished K-RTA and PARP1 complexes. CONCLUSIONS KSHV latent-lytic switch K-RTA is modified by cellular O-GlcNAcylation, which imposes a negative effect on K-RTA transactivation activity. This inhibitory effect involves OGT and PARP1, two nutritional sensors recently emerging as chromatin modifiers. Thus, we speculate that the activity of K-RTA on its target genes is continuously checked and modulated by OGT and PARP1 in response to cellular metabolic state.
Collapse
Affiliation(s)
- Ying-Chieh Ko
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lu J, Verma SC, Cai Q, Saha A, Dzeng RK, Robertson ES. The RBP-Jκ binding sites within the RTA promoter regulate KSHV latent infection and cell proliferation. PLoS Pathog 2012; 8:e1002479. [PMID: 22253595 PMCID: PMC3257303 DOI: 10.1371/journal.ppat.1002479] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/27/2011] [Indexed: 01/10/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is tightly linked to at least two lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). However, the development of KSHV-mediated lymphoproliferative disease is not fully understood. Here, we generated two recombinant KSHV viruses deleted for the first RBP-Jκ binding site (RTA1st) and all three RBP-Jκ binding sites (RTAall) within the RTA promoter. Our results showed that RTA1st and RTAall recombinant viruses possess increased viral latency and a decreased capability for lytic replication in HEK 293 cells, enhancing colony formation and proliferation of infected cells. Furthermore, recombinant RTA1st and RTAall viruses showed greater infectivity in human peripheral blood mononuclear cells (PBMCs) relative to wt KSHV. Interestingly, KSHV BAC36 wt, RTA1st and RTAall recombinant viruses infected both T and B cells and all three viruses efficiently infected T and B cells in a time-dependent manner early after infection. Also, the capability of both RTA1st and RTAall recombinant viruses to infect CD19+ B cells was significantly enhanced. Surprisingly, RTA1st and RTAall recombinant viruses showed greater infectivity for CD3+ T cells up to 7 days. Furthermore, studies in Telomerase-immortalized human umbilical vein endothelial (TIVE) cells infected with KSHV corroborated our data that RTA1st and RTAall recombinant viruses have enhanced ability to persist in latently infected cells with increased proliferation. These recombinant viruses now provide a model to explore early stages of primary infection in human PBMCs and development of KSHV-associated lymphoproliferative diseases. Kaposi's sarcoma-associated herpesvirus (KSHV) is tightly linked to at least two lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). The life cycle of KSHV consists of latent and lytic phase. RTA is the master switch for viral lytic replication. In this study, we first show that recombinant viruses deleted for the RBP-Jκ sites within the RTA promoter have a decreased capability for lytic replication, and thus enhanced colony formation and proliferation of infected cells. Interestingly, the recombinant viruses show greater infectivity in human peripheral blood mononuclear cells (PBMCs). The recombinant viruses also infected CD19+ B cells and CD3+ T cells with increased efficiency in a time-dependent manner and now provide a model which can be used to explore the early stages of primary infection in human PBMCs, as well as the development of KSHV-associated lymphoproliferative diseases.
Collapse
Affiliation(s)
- Jie Lu
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Subhash C. Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, Nevada, United States of America
| | - Qiliang Cai
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abhik Saha
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard Kuo Dzeng
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
32
|
Gao J, Cai Q, Lu J, Jha HC, Robertson ES. Upregulation of cellular Bcl-2 by the KSHV encoded RTA promotes virion production. PLoS One 2011; 6:e23892. [PMID: 21901143 PMCID: PMC3162012 DOI: 10.1371/journal.pone.0023892] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 07/27/2011] [Indexed: 11/18/2022] Open
Abstract
Apoptosis of virus infected cells can restrict or dampen full blown virus propagation and this can serve as a protective mechanism against virus infection. Consequently, viruses can also delay programmed cell death by enhancing the expression of anti-apoptotic proteins. Human Bcl-2 is expressed on the surface of the mitochondrial membrane and functions as the regulator of the delicate balance between cell survival and apoptosis. In this report, we showed that the replication and transcription activator (RTA) encoded by KSHV ORF 50, a key regulator for KSHV reactivation from latent to lytic infection, upregulates the mRNA and protein levels of Bcl-2 in 293 cells, and TPA-induced KSHV-infected cells. Further analysis revealed that upregulation of the cellular Bcl-2 promoter by RTA is dose-dependent and acts through targeting of the CCN9GG motifs within the Bcl-2 promoter. The Bcl-2 P2 but not the P1 promoter is primarily responsive to RTA. The results of ChIP confirmed the direct interaction of RTA protein with the CCN9GG motifs. Knockdown of cellular Bcl-2 by lentivirus-delivered small hairpin RNA (shRNA) resulted in increased cell apoptosis and decreased virion production in KSHV-infected cells. These findings provide an insight into another mechanism by which KSHV utilizes the intrinsic apoptosis signaling pathways for prolonging the survival of lytically infected host cells to allow for maximum production of virus progeny.
Collapse
Affiliation(s)
- Jianming Gao
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | | | | | | |
Collapse
|
33
|
Replication and transcription activator (RTA) of murine gammaherpesvirus 68 binds to an RTA-responsive element and activates the expression of ORF18. J Virol 2011; 85:11338-50. [PMID: 21849436 DOI: 10.1128/jvi.00561-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The replication and transcription activator (RTA), mainly encoded by open reading frame 50, is an immediate-early gene product that is conserved among all characterized gammaherpesviruses. Previous studies have demonstrated that RTA proteins of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) can activate the promoter of many viral early lytic genes through direct or indirect mechanisms. Murine gammaherpesvirus 68 (MHV-68) is genetically related to KSHV and EBV, and the RTA homologue from MHV-68 also initiates the lytic cycle of gene expression. Although two RTA-dependent promoters had been identified in MHV-68, the mechanism of the interaction between RTA and the promoters was not characterized. In this study, we first identified an RTA-responsive promoter in the left origin of lytic replication region of MHV-68 through a reporter assay and mapped a 27-bp RTA-responsive element (RRE) through systematic deletions. Interestingly, sequence analysis identified a second RRE in this region. An electrophoretic mobility shift assay (EMSA) and a chromatin immunoprecipitation (ChIP) assay showed that RTA can bind directly to these two RREs in vitro or in vivo. Mutagenesis studies have further characterized the nucleotides important for mediating RTA binding by an EMSA. Moreover, we engineered RRE-deleted viruses and demonstrated in the context of the viral genome that one of the RREs mediates the RTA-dependent activation of an essential lytic gene, ORF18, during de novo infection. To our knowledge, this is the first time that RTA binding sites in MHV-68 have been identified. Since ORF18 regulates viral late gene expression, our study has also contributed to the delineation of the expression cascade of gammaherpesvirus lytic genes.
Collapse
|
34
|
Abstract
The life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV) consists of latent and lytic replication phases. During latent infection, only a limited number of KSHV genes are expressed. However, this phase of replication is essential for persistent infection, evasion of host immune response, and induction of KSHV-related malignancies. KSHV reactivation from latency produces a wide range of viral products and infectious virions. The resulting de novo infection and viral lytic products modulate diverse cellular pathways and stromal microenvironment, which promote the development of Kaposi's sarcoma (KS). The mechanisms controlling KSHV latency and reactivation are complex, involving both viral and host factors, and are modulated by diverse environmental factors. Here, we review the cellular and molecular basis of KSHV latency and reactivation with a focus on the most recent advancements in the field.
Collapse
|
35
|
Oxidative stress induces reactivation of Kaposi's sarcoma-associated herpesvirus and death of primary effusion lymphoma cells. J Virol 2010; 85:715-24. [PMID: 21068240 DOI: 10.1128/jvi.01742-10] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL) cells are predominantly infected with latent Kaposi's sarcoma-associated herpesvirus (KSHV), presenting a barrier to the destruction of tumor cells. Latent KSHV can be reactivated to undergo lytic replication. Here we report that in PEL cells, oxidative stress induced by upregulated reactive oxygen species (ROS) can lead to KSHV reactivation or cell death. ROS are upregulated by NF-κB inhibition and are required for subsequent KSHV reactivation. Disruption of the intracellular redox balance through depletion of the antioxidant glutathione or inhibition of the antioxidant enzyme catalase also induces KSHV reactivation, suggesting that hydrogen peroxide induces reactivation. In addition, p38 signaling is required for KSHV reactivation induced by ROS. Furthermore, treatment of PEL cells with a higher concentration of the NF-κB inhibitor than that used for inducing KSHV reactivation further upregulates ROS and induces massive cell death. ROS, but not p38 signaling, are required for PEL cell death induced by NF-κB inhibition as well as by glutathione depletion. Importantly, anticancer drugs, such as cisplatin and arsenic trioxide, also induce KSHV reactivation and PEL cell death in a ROS-dependent manner. Our study thus establishes a critical role for ROS and oxidative stress in the regulation of KSHV reactivation and PEL cell death. Disrupting the cellular redox balance may be a potential strategy for treating KSHV-associated lymphoma.
Collapse
|
36
|
Dyson OF, Traylen CM, Akula SM. Cell membrane-bound Kaposi's sarcoma-associated herpesvirus-encoded glycoprotein B promotes virus latency by regulating expression of cellular Egr-1. J Biol Chem 2010; 285:37491-502. [PMID: 20864524 DOI: 10.1074/jbc.m110.159103] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
One of the important questions in the field of virus research is about the balance between latent and lytic cycles of replication. Kaposi's sarcoma-associated herpesvirus (KSHV) remains predominantly in a latent state, with only 1-3% of cells supporting a lytic replication at any time. KSHV glycoprotein B (gB) is expressed not only on the virus envelope but also on the surfaces of the few cells supporting lytic replication. Using co-culture experiments, we determined that expression of KSHV gB on as few as 1-2% of human dermal microvascular endothelial cells resulted in a 10-fold inhibition of expression of ORF50, a viral gene critical for the onset of lytic replication. Also, we demonstrate that such a profound inhibitory effect of gB on the lytic cycle of virus replication is by repressing the ability of Egr-1 (early growth response-1) to bind and activate the ORF50 promoter. In general, virus-encoded late stage structural proteins, such as gB, are said to play major roles in virus entry and egress. The present report provides initial evidence supporting a role for membrane-associated gB expressed in a minimal number of cells to promote virus latency. These findings may have ramifications leading to a better understanding of the role of virus-encoded structural proteins not only in KSHV-related diseases but also in other viruses causing latent infections.
Collapse
Affiliation(s)
- Ossie F Dyson
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, USA
| | | | | |
Collapse
|
37
|
MicroRNAs encoded by Kaposi's sarcoma-associated herpesvirus regulate viral life cycle. EMBO Rep 2010; 11:784-90. [PMID: 20847741 DOI: 10.1038/embor.2010.132] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 07/26/2010] [Indexed: 12/26/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with Kaposi's sarcoma and lymphomas. The pathogenesis of KSHV depends on the balance between two phases of the viral cycle: latency and lytic replication. In this study, we report that KSHV-encoded microRNAs (miRNAs) function as regulators by maintaining viral latency and inhibiting viral lytic replication. MiRNAs are short, noncoding, small RNAs that post-transcriptionally regulate the expression of messenger RNAs. Of the 12 viral miRNAs expressed in latent KSHV-infected cells, we observed that expression of miR-K3 can suppress both viral lytic replication and gene expression. Further experiments indicate that miR-K3 can regulate viral latency by targeting nuclear factor I/B. Nuclear factor I/B can activate the promoter of the viral immediate-early transactivator replication and transcription activator (RTA), and depletion of nuclear factor I/B by short hairpin RNAs had similar effects on the viral life cycle to those of miR-K3. Our results suggest a role for KSHV miRNAs in regulating the viral life cycle.
Collapse
|
38
|
Zhang T, Wang Y, Zhang L, Liu B, Xie J, Wood C, Wang J. Lysine residues of interferon regulatory factor 7 affect the replication and transcription activator-mediated lytic replication of Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J Gen Virol 2010; 92:181-7. [PMID: 20844090 PMCID: PMC3052531 DOI: 10.1099/vir.0.021816-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) infection goes through latent and lytic phases, which are controlled by the viral replication and transcription activator (RTA). Upon KSHV infection, the host responds by suppressing RTA-activated lytic gene expression through interferon regulatory factor 7 (IRF-7), a key regulator of host innate immune response. Lysine residues are potential sites for post-translational modification of IRF-7, and were suggested to be critical for its activity. In this study, we analysed the 15 lysine residues for their effects on IRF-7 function by site-directed mutagenesis. We found that some mutations affect the ability of IRF-7 to activate interferon (IFN)-α1 and IFN-β promoters, to suppress RTA-mediated lytic gene expression and to repress KSHV reactivation and lytic replication. However, other mutations affect only a subset of these four functions. These findings demonstrate that the lysine residues of IRF-7 play important roles in mediating IFN synthesis and modulating viral lytic replication.
Collapse
Affiliation(s)
- Tianzheng Zhang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | | | | | | | | | | | | |
Collapse
|
39
|
Enhancement of autophagy during lytic replication by the Kaposi's sarcoma-associated herpesvirus replication and transcription activator. J Virol 2010; 84:7448-58. [PMID: 20484505 DOI: 10.1128/jvi.00024-10] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is one of two major degradation systems in eukaryotic cells. The degradation mechanism of autophagy is required to maintain the balance between the biosynthetic and catabolic processes and also contributes to defense against invading pathogens. Recent studies suggest that a number of viruses can evade or subvert the host cell autophagic pathway to enhance their own replication. Here, we investigated the effect of autophagy on the KSHV (Kaposi's sarcoma-associated herpesvirus) life cycle. We found that the inhibition of autophagy reduces KSHV lytic reactivation from latency, and an enhancement of autophagy can be detected during KSHV lytic replication. In addition, RTA (replication and transcription activator), an essential viral protein for KSHV lytic reactivation, is able to enhance the autophagic process, leading to an increase in the number of autophagic vacuoles, an increase in the level of the lipidated LC3 protein, and the formation of autolysosomes. Moreover, the inhibition of autophagy affects RTA-mediated lytic gene expression and viral DNA replication. These results suggest that RTA increases autophagy activation to facilitate KSHV lytic replication. This is the first report demonstrating that autophagy is involved in the lytic reactivation of KSHV.
Collapse
|
40
|
Wang SS, Chen LW, Chen LY, Tsai HH, Shih YC, Yang CT, Chang PJ. Transcriptional regulation of the ORF61 and ORF60 genes of Kaposi's sarcoma-associated herpesvirus. Virology 2010; 397:311-21. [DOI: 10.1016/j.virol.2009.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/16/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
|
41
|
Cai Q, Verma SC, Lu J, Robertson ES. Molecular biology of Kaposi's sarcoma-associated herpesvirus and related oncogenesis. Adv Virus Res 2010; 78:87-142. [PMID: 21040832 PMCID: PMC3142360 DOI: 10.1016/b978-0-12-385032-4.00003-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Kaposi's Sarcoma-associated Herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is the most recently identified human tumor virus,and is associated with the pathogenesis of Kaposi's sarcoma and two lymphoproliferative disorders known to occur frequently in AIDS patients-primary effusion lymphoma and multicentric Castleman disease. In the 15 years since its discovery, intense studies have demonstrated an etiologic role for KSHV in the development of these malignancies. Here, we review the recent advances linked to understanding KSHV latent and lytic life cycle and the molecular mechanisms of KSHV-mediated oncogenesis in terms of transformation, cell signaling, cell growth and survival, angiogenesis, immune invasion and response to microenvironmental stress, and highlight the potential therapeutic targets for blocking KSHV tumorigenesis.
Collapse
Affiliation(s)
- Qiliang Cai
- Department of Microbiology, Abramson, Comprehensive Cancer Center, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
42
|
Chang PJ, Boonsiri J, Wang SS, Chen LY, Miller G. Binding of RBP-Jkappa (CSL) protein to the promoter of the Kaposi's sarcoma-associated herpesvirus ORF47 (gL) gene is a critical but not sufficient determinant of transactivation by ORF50 protein. Virology 2009; 398:38-48. [PMID: 20006367 DOI: 10.1016/j.virol.2009.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/24/2009] [Accepted: 11/10/2009] [Indexed: 12/21/2022]
Abstract
ORF50 protein activates the KSHV lytic cycle. The promoter of an early lytic-cycle gene ORF47, encoding envelope protein gL, is activated by an interaction between ORF50 protein and RBP-Jkappa. In ORF47p only one of two sequences fitting the consensus RBP-Jkappa recognition site strongly binds RBP-Jkappa and confers a response to ORF50 protein. Flanking sequences 5' to the RBP-Jkappa binding site are required to confer a maximal response to ORF50 protein. Not all mutant ORF50 response elements in the ORF47p that are bound by RBP-Jkappa are sufficient to confer maximal ORF50 responsiveness. Four sequences containing an RBP-Jkappa site and flanking sequences characteristic of the ORF50 response element in ORF47p were identified in human DNA. All bound RBP-Jkappa, but only one responded robustly to ORF50 protein. We propose models for the possible function of ancillary sequences flanking the RBP-Jkappa-binding element which are crucial for mediating ORF50 transactivation.
Collapse
Affiliation(s)
- Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
43
|
Cellular corepressor TLE2 inhibits replication-and-transcription- activator-mediated transactivation and lytic reactivation of Kaposi's sarcoma-associated herpesvirus. J Virol 2009; 84:2047-62. [PMID: 19939918 DOI: 10.1128/jvi.01984-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Replication and transcription activator (RTA) encoded by open reading frame 50 (ORF50) of Kaposi's sarcoma-associated herpesvirus (KSHV) is essential and sufficient to initiate lytic reactivation. RTA activates its target genes through direct binding with high affinity to its responsive elements or by interaction with cellular factors, such as RBP-Jkappa, Ap-1, C/EBP-alpha, and Oct-1. In this study, we identified transducin-like enhancer of split 2 (TLE2) as a novel RTA binding protein by using yeast two-hybrid screening of a human spleen cDNA library. The interaction between TLE2 and RTA was confirmed by glutathione S-transferase (GST) binding and coimmunoprecipitation assays. Immunofluorescence analysis showed that TLE2 and RTA were colocalized in the same nuclear compartment in KSHV-infected cells. This interaction recruited TLE2 to RTA bound to its recognition sites on DNA and repressed RTA auto-activation and transactivation activity. Moreover, TLE2 also inhibited the induction of lytic replication and virion production driven by RTA. We further showed that the Q (Gln-rich), SP (Ser-Pro-rich), and WDR (Trp-Asp repeat) domains of TLE2 and the Pro-rich domain of RTA were essential for this interaction. RBP-Jkappa has been shown previously to bind to the same Pro-rich domain of RTA, and this binding can be subject to competition by TLE2. In addition, TLE2 can form a complex with RTA to access the cognate DNA sequence of the RTA-responsive element at different promoters. Intriguingly, the transcription level of TLE2 could be upregulated by RTA during the lytic reactivation process. In conclusion, we identified a new RTA binding protein, TLE2, and demonstrated that TLE2 inhibited replication and transactivation mediated by RTA. This provides another potentially important mechanism for maintenance of KSHV viral latency through interaction with a host protein.
Collapse
|
44
|
Kaposi sarcoma-associated herpes virus (KSHV) G protein-coupled receptor (vGPCR) activates the ORF50 lytic switch promoter: a potential positive feedback loop for sustained ORF50 gene expression. Virology 2009; 392:34-51. [PMID: 19640558 DOI: 10.1016/j.virol.2009.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/15/2009] [Accepted: 07/03/2009] [Indexed: 11/23/2022]
Abstract
KSHV vGPCR, a lytic cycle associated protein, induces several signaling pathways leading to the activation of various transcription factors and consequently the expression of cellular and viral genes. Though the role of vGPCR in KSHV tumorigenicity has been well studied, its function related to the viral life cycle is poorly understood. Reduction in vGPCR by RNA interference also resulted in the reduction in KSHV lytic switch ORF50 gene and protein expression. Induction of vGPCR by doxycycline in BC3.14 cells also resulted in more KSHV production. When this was explored, induction of the ORF50 promoter by vGPCR expression was observed. Further examination of the molecular mechanisms by which vGPCR regulates the ORF50 promoter, using various ORF50 promoter constructs, revealed that induction of ORF50 promoter by vGPCR did not involve AP1 but was dependent on Sp1 and Sp3 transcription factors. vGPCR signaling led to an increase in Sp1 and Sp3 DNA binding activity and a decrease in histone deacetylase (HDAC) activity. These activities were pertussis toxin independent, did not involve Rho and Rac-GTPases and involved the heterotrimeric G protein subunits Galpha12 and Galphaq. Studies using pharmacologic inhibitors and dominant-negative proteins identified phospholipase C, the novel protein kinase C (novel PKC) family and protein kinase D (PKD) as part of the signaling initiated by vGPCR leading to ORF50 promoter activation. Taken together, this study suggests a role for vGPCR in the sustained expression of ORF50 which could lead to a continued activation of lytic cycle genes and ultimately to successful viral progeny formation.
Collapse
|
45
|
Chen J, Ye F, Xie J, Kuhne K, Gao SJ. Genome-wide identification of binding sites for Kaposi's sarcoma-associated herpesvirus lytic switch protein, RTA. Virology 2009; 386:290-302. [PMID: 19233445 PMCID: PMC2663009 DOI: 10.1016/j.virol.2009.01.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/27/2008] [Accepted: 01/22/2009] [Indexed: 12/22/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) replication and transcription activator (RTA) encoded by ORF50 is a lytic switch protein for viral reactivation from latency. The expression of RTA activates the expression of downstream viral genes, and is necessary for triggering the full viral lytic program. Using chromatin immunoprecipitation assay coupled with a KSHV whole-genome tiling microarray (ChIP-on-chip) approach, we identified a set of 19 RTA binding sites in the KSHV genome in a KSHV-infected cell line BCBL-1. These binding sites are located in the regions of promoters, introns, or exons of KSHV genes including ORF8, ORFK4.1, ORFK5, PAN, ORF16, ORF29, ORF45, ORF50, ORFK8, ORFK10.1, ORF59, ORFK12, ORF71/72, ORFK14/ORF74, and ORFK15, the two origins of lytic replication OriLyt-L and OriLyt-R, and the microRNA cluster. We confirmed these RTA binding sites by ChIP and quantitative real-time PCR. We further mapped the RTA binding site in the first intron of the ORFK15 gene, and determined that it is RTA-responsive. The ORFK15 RTA binding sequence TTCCAGGAA TTCCTGGAA consists of a palindromic structure of two tandem repeats, of which each itself is also an imperfect inverted repeat. Reporter assay and electrophoretic mobility shift assay confirmed the binding of the RTA protein to this sequence in vitro. Sequence alignment with other RTA binding sites identified the RTA consensus binding motif as TTCCAGGAT(N)(0-16)TTCCTGGGA. Interestingly, most of the identified RTA binding sites contain only half or part of this RTA binding motif. These results suggest the complexity of RTA binding in vivo, and the involvement of other cellular or viral transcription factors during RTA transactivation of target genes.
Collapse
Affiliation(s)
- Jiguo Chen
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Fengchun Ye
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Jianping Xie
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Kurt Kuhne
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Shou-Jiang Gao
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Tumor Virology Group, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuhan, China
| |
Collapse
|
46
|
Qin Y, Liu Z, Zhang T, Wang Y, Li X, Wang J. Generation and application of polyclonal antibody against replication and transcription activator of Kaposi's sarcoma-associated herpesvirus. Appl Biochem Biotechnol 2009; 160:1217-26. [PMID: 19333559 DOI: 10.1007/s12010-009-8604-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/03/2009] [Indexed: 10/20/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma, the most common neoplasm in untreated HIV-1-infected individuals, and several B cell disorders. KSHV infection goes through lytic and latent phases, and the switch from latency to lytic replication is governed by viral replication and transcription activator (RTA). RTA consists of 691 amino acids, containing an N-terminal DNA-binding and a C-terminal activation domain. In the present study, polyclonal antibody against RTA was generated and evaluated. The C-terminal region of RTA (E482 approximately D691) was expressed in Escherichia coli, purified by affinity chromatography, and utilized to raise polyclonal antibody in BALB/c mice. High-affinity antisera were obtained, which successfully detected the antigen at a dilution of 1:13,500 for ELISA and 1:20,000 for Western blot analysis. The antibody can specifically recognize full-length RTA expressed in both E. coli and mammalian cells. Furthermore, endogenous RTA can be detected with the antibody in TPA-induced BCBL-1 cells under various conditions. These results suggested that the antibody is valuable for the investigation of biochemical properties and biological functions of RTA.
Collapse
Affiliation(s)
- Yu Qin
- College of Basic Medical Science, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
Arias C, Walsh D, Harbell J, Wilson AC, Mohr I. Activation of host translational control pathways by a viral developmental switch. PLoS Pathog 2009; 5:e1000334. [PMID: 19300492 PMCID: PMC2652079 DOI: 10.1371/journal.ppat.1000334] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 02/10/2009] [Indexed: 12/29/2022] Open
Abstract
In response to numerous signals, latent herpesvirus genomes abruptly switch their developmental program, aborting stable host–cell colonization in favor of productive viral replication that ultimately destroys the cell. To achieve a rapid gene expression transition, newly minted capped, polyadenylated viral mRNAs must engage and reprogram the cellular translational apparatus. While transcriptional responses of viral genomes undergoing lytic reactivation have been amply documented, roles for cellular translational control pathways in enabling the latent-lytic switch have not been described. Using PEL-derived B-cells naturally infected with KSHV as a model, we define efficient reactivation conditions and demonstrate that reactivation substantially changes the protein synthesis profile. New polypeptide synthesis correlates with 4E-BP1 translational repressor inactivation, nuclear PABP accumulation, eIF4F assembly, and phosphorylation of the cap-binding protein eIF4E by Mnk1. Significantly, inhibiting Mnk1 reduces accumulation of the critical viral transactivator RTA through a post-transcriptional mechanism, limiting downstream lytic protein production, and impairs reactivation efficiency. Thus, herpesvirus reactivation from latency activates the host cap-dependent translation machinery, illustrating the importance of translational regulation in implementing new developmental instructions that drastically alter cell fate. Kaposi's sarcoma-associated herpesvirus (KSHV) is an important human pathogen and, like all herpesviruses, establishes a state of permanent residency in the infected host called latency. Major sites of KSHV latency are cells of the immune system and cells lining blood vessels. In individuals with weakened immunity, inappropriate growth of these cells driven by the resident virus can give rise to primary effusion lymphoma and Kaposi's sarcoma, respectively. These life-threatening cancers are most common in patients with HIV/AIDS and have become a major source of mortality in parts of sub-Saharan Africa. Under appropriate stimuli, herpesviruses change their relationship with the host cell and begin to manufacture proteins required to assemble new infectious virus particles that can be released and spread. To achieve this, the virus hijacks key processes within the cell and conscripts them into producing viral proteins. In this study, we describe for the first time how KSHV carefully manipulates the host protein synthesis machinery during the switch from latency to this specialized infectious virus production mode. Our results show that although overall protein synthesis is diminished, key components of the host's protein manufacturing machinery are actually stimulated, presumably to accelerate viral protein production.
Collapse
Affiliation(s)
- Carolina Arias
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| | - Derek Walsh
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York, United States of America
- National Institute For Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Jack Harbell
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York, United States of America
| | - Angus C. Wilson
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York, United States of America
- * E-mail: (ACW); (IM)
| | - Ian Mohr
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York, United States of America
- * E-mail: (ACW); (IM)
| |
Collapse
|
48
|
Cheng F, Weidner-Glunde M, Varjosalo M, Rainio EM, Lehtonen A, Schulz TF, Koskinen PJ, Taipale J, Ojala PM. KSHV reactivation from latency requires Pim-1 and Pim-3 kinases to inactivate the latency-associated nuclear antigen LANA. PLoS Pathog 2009; 5:e1000324. [PMID: 19266083 PMCID: PMC2648312 DOI: 10.1371/journal.ppat.1000324] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 02/03/2009] [Indexed: 12/21/2022] Open
Abstract
Host signal-transduction pathways are intimately involved in the switch between latency and productive infection of herpes viruses. As with other herpes viruses, infection by Kaposi's sarcoma herpesvirus (KSHV) displays these two phases. During latency only few viral genes are expressed, while in the productive infection the virus is reactivated with initiation of extensive viral DNA replication and gene expression, resulting in production of new viral particles. Viral reactivation is crucial for KSHV pathogenesis and contributes to the progression of KS. We have recently identified Pim-1 as a kinase reactivating KSHV upon over-expression. Here we show that another Pim family kinase, Pim-3, also induces viral reactivation. We demonstrate that expression of both Pim-1 and Pim-3 is induced in response to physiological and chemical reactivation in naturally KSHV-infected cells, and we show that they are required for KSHV reactivation under these conditions. Furthermore, our data indicate that Pim-1 and Pim-3 contribute to viral reactivation by phosphorylating the KSHV latency-associated nuclear antigen (LANA) on serine residues 205 and 206. This counteracts the LANA–mediated repression of the KSHV lytic gene transcription. The identification of Pim family kinases as novel cellular regulators of the gammaherpesvirus life cycle facilitates a deeper understanding of virus–host interactions during reactivation and may represent potential novel targets for therapeutic intervention. The switch from latency to productive viral replication (reactivation) is a crucial decision in the viral life cycle, and recent clinico-epidemiological studies support the importance of lytic replication in the development and progression of Kaposi's sarcoma. Hence, cellular signaling pathways operative during viral reactivation could represent potential novel targets for therapeutic intervention. Our work identifies Pim-1 and Pim-3 kinases as essential key regulators of the gammaherpesvirus life cycle. These kinases target the hallmark of KSHV latency, the LANA protein, by phosphorylation, which abolishes its ability to act as a transcriptional suppressor of viral lytic replication. This study facilitates a deeper understanding of virus–host interactions during reactivation and provides novel opportunities for pharmacological control and intervention also in virus-associated cancers.
Collapse
Affiliation(s)
- Fang Cheng
- Genome-Scale Biology Program, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | | | - Markku Varjosalo
- Genome-Scale Biology Program, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine, National Public Health Institute (KTL), Helsinki, Finland
| | - Eeva-Marja Rainio
- Turku Centre for Biotechnology, BioCity, Turku, Finland
- Department of Biology, University of Turku, Turku, Finland
| | - Anne Lehtonen
- Genome-Scale Biology Program, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Päivi J. Koskinen
- Turku Centre for Biotechnology, BioCity, Turku, Finland
- Department of Biology, University of Turku, Turku, Finland
| | - Jussi Taipale
- Genome-Scale Biology Program, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine, National Public Health Institute (KTL), Helsinki, Finland
| | - Päivi M. Ojala
- Genome-Scale Biology Program, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- The Foundation for the Finnish Cancer Institute, Finland
- * E-mail:
| |
Collapse
|
49
|
Role of defective Oct-2 and OCA-B expression in immunoglobulin production and Kaposi's sarcoma-associated herpesvirus lytic reactivation in primary effusion lymphoma. J Virol 2009; 83:4308-15. [PMID: 19224997 DOI: 10.1128/jvi.02196-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Primary effusion lymphoma (PEL) is a distinct type of B-cell non-Hodgkin lymphoma characterized by the presence of Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8). Despite having a genotype and gene expression signature of highly differentiated B cells, PEL does not usually express surface or cytoplasmic immunoglobulin (Ig). We show the lack of Oct-2 and OCA-B transcription factors to be responsible, at least in part, for this defect in Ig production. Like Ig genes, ORF50, the key regulator of the switch from latency to lytic reactivation, contains an octamer motif within its promoter. We therefore examined the impact of Oct-2 and OCA-B on ORF50 activation. The binding of Oct-1 to the ORF50 promoter has been shown to significantly enhance ORF50 transactivation. We found that Oct-2, on the other hand, inhibited ORF50 expression and consequently lytic reactivation by competing with Oct-1 for the octamer motif in the ORF50 promoter. Our data suggest that Oct-2 downregulation in infected cells would be favorable to KSHV in allowing for efficient viral reactivation.
Collapse
|
50
|
Wen HJ, Minhas V, Wood C. Identification and characterization of a new Kaposi's sarcoma-associated herpesvirus replication and transcription activator (RTA)-responsive element involved in RTA-mediated transactivation. J Gen Virol 2009; 90:944-953. [PMID: 19223488 DOI: 10.1099/vir.2008.006817-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) replication and transcription activator (RTA) is well established as a key transcriptional activator that regulates the KSHV life cycle from latency to lytic replication. It is expressed immediately after infection and activates a number of viral genes leading to virus replication. The RTA-responsive element (RRE) in the RTA target gene promoters is critical for RTA to mediate this transactivation. A number of non-conserved RREs have been identified in various RTA-responsive promoters, and AT-rich sequences have been proposed to serve as RTA targets, but no consensus RRE sequence has been identified so far. Two non-conserved RREs (RRE1 and RRE2) containing AT-rich sequences have been identified previously in the promoter of one of the KSHV lytic genes, ORF57, which can be strongly activated by RTA. Based on homology with the consensus sequence of the Epstein-Barr virus Rta RRE, this study identified a third RTA-responsive element (RRE3) in the ORF57 promoter. This RRE comprised a GC-rich sequence that could bind RTA both in vitro and in vivo, and plays a role in RTA-mediated transactivation of the ORF57 promoter. The presence of two of the three RREs in close proximity to each other was required for optimal RTA-mediated transactivation of the ORF57 promoter, even though the presence of only one RRE is needed for RTA binding. These results suggest that the ability of RTA to mediate transcriptional activation is distinct from its ability to bind to its target elements.
Collapse
Affiliation(s)
- Hui-Ju Wen
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Veenu Minhas
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Charles Wood
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|