1
|
Afroz T, Biliouris K, Kaznessis Y, Beisel CL. Bacterial sugar utilization gives rise to distinct single-cell behaviours. Mol Microbiol 2014; 93:1093-1103. [PMID: 24976172 DOI: 10.1111/mmi.12695] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2014] [Indexed: 12/15/2022]
Abstract
Inducible utilization pathways reflect widespread microbial strategies to uptake and consume sugars from the environment. Despite their broad importance and extensive characterization, little is known how these pathways naturally respond to their inducing sugar in individual cells. Here, we performed single-cell analyses to probe the behaviour of representative pathways in the model bacterium Escherichia coli. We observed diverse single-cell behaviours, including uniform responses (d-lactose, d-galactose, N-acetylglucosamine, N-acetylneuraminic acid), 'all-or-none' responses (d-xylose, l-rhamnose) and complex combinations thereof (l-arabinose, d-gluconate). Mathematical modelling and probing of genetically modified pathways revealed that the simple framework underlying these pathways - inducible transport and inducible catabolism - could give rise to most of these behaviours. Sugar catabolism was also an important feature, as disruption of catabolism eliminated tunable induction as well as enhanced memory of previous conditions. For instance, disruption of catabolism in pathways that respond to endogenously synthesized sugars led to full pathway induction even in the absence of exogenous sugar. Our findings demonstrate the remarkable flexibility of this simple biological framework, with direct implications for environmental adaptation and the engineering of synthetic utilization pathways as titratable expression systems and for metabolic engineering.
Collapse
Affiliation(s)
- Taliman Afroz
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Konstantinos Biliouris
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yiannis Kaznessis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Pradel E, Lemaître N, Merchez M, Ricard I, Reboul A, Dewitte A, Sebbane F. New insights into how Yersinia pestis adapts to its mammalian host during bubonic plague. PLoS Pathog 2014; 10:e1004029. [PMID: 24675805 PMCID: PMC3968184 DOI: 10.1371/journal.ppat.1004029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 02/11/2014] [Indexed: 12/22/2022] Open
Abstract
Bubonic plague (a fatal, flea-transmitted disease) remains an international public health concern. Although our understanding of the pathogenesis of bubonic plague has improved significantly over the last few decades, researchers have still not been able to define the complete set of Y. pestis genes needed for disease or to characterize the mechanisms that enable infection. Here, we generated a library of Y. pestis mutants, each lacking one or more of the genes previously identified as being up-regulated in vivo. We then screened the library for attenuated virulence in rodent models of bubonic plague. Importantly, we tested mutants both individually and using a novel, “per-pool” screening method that we have developed. Our data showed that in addition to genes involved in physiological adaption and resistance to the stress generated by the host, several previously uncharacterized genes are required for virulence. One of these genes (ympt1.66c, which encodes a putative helicase) has been acquired by horizontal gene transfer. Deletion of ympt1.66c reduced Y. pestis' ability to spread to the lymph nodes draining the dermal inoculation site – probably because loss of this gene decreased the bacteria's ability to survive inside macrophages. Our results suggest that (i) intracellular survival during the early stage of infection is important for plague and (ii) horizontal gene transfer was crucial in the acquisition of this ability. In order to understand and combat infectious diseases, it is essential to characterize the full set of genes required by pathogenic bacteria to overcome the many immunological and physiological challenges encountered during infection. Here, we used a genome-scale approach to identify genes required by the bacterium Yersinia pestis in the production of bubonic plague (a fatal, flea-borne zoonosis). Our results suggest that when colonizing the mammalian host, the bacterium (i) relies on carbohydrates as its carbon source, (ii) shifts to anaerobic respiration or fermentation and (iii) experiences and resists several (but not all) types of stress generated by the host's innate immune system. Strikingly, only a small set of genes (including horizontally acquired and uncharacterized sequences) are required for these infectious processes. Further investigations of the ypmt1,66c gene provided evidence to suggest that accretion of genetic material via horizontal transfer has played a key role in Yersinia pestis' ability to successfully initiate infection after the dermal fleabite. Lastly, we believe that (i) application of our approach to other pathogens and (ii) additional studies of selected Yersinia pestis genes important for plague pathogenesis (some of which are shared with other pathogens) will provide a better understanding of bacterial pathogenesis in general.
Collapse
Affiliation(s)
- Elizabeth Pradel
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Nadine Lemaître
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
- CHU Lille, Lille, France
| | - Maud Merchez
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Isabelle Ricard
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Angéline Reboul
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Amélie Dewitte
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Florent Sebbane
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
- * E-mail:
| |
Collapse
|
3
|
Letek M, Valbuena N, Ramos A, Ordóñez E, Gil JA, Mateos LM. Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J Bacteriol 2006; 188:409-23. [PMID: 16385030 PMCID: PMC1347311 DOI: 10.1128/jb.188.2.409-423.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes involved in gluconate catabolism (gntP and gntK) in Corynebacterium glutamicum are scattered in the chromosome, and no regulatory genes are apparently associated with them, in contrast with the organization of the gnt operon in Escherichia coli and Bacillus subtilis. In C. glutamicum, gntP and gntK are essential genes when gluconate is the only carbon and energy source. Both genes contain upstream regulatory regions consisting of a typical promoter and a hypothetical cyclic AMP (cAMP) receptor protein (CRP) binding region but lack the expected consensus operator region for binding of the GntR repressor protein. Expression analysis by Northern blotting showed monocistronic transcripts for both genes. The expression of gntP and gntK is not induced by gluconate, and the gnt genes are subject to catabolite repression by sugars, such as glucose, fructose, and sucrose, as was detected by quantitative reverse transcription-PCR (qRT-PCR). Specific analysis of the DNA promoter sequences (PgntK and PgntP) was performed using bifunctional promoter probe vectors containing mel (involved in melanin production) or egfp2 (encoding a green fluorescent protein derivative) as the reporter gene. Using this approach, we obtained results parallel to those from qRT-PCR. An applied example of in vivo gene expression modulation of the divIVA gene in C. glutamicum is shown, corroborating the possible use of the gnt promoters to control gene expression. glxR (which encodes GlxR, the hypothetical CRP protein) was subcloned from the C. glutamicum chromosomal DNA and overexpressed in corynebacteria; we found that the level of gnt expression was slightly decreased compared to that of the control strains. The purified GlxR protein was used in gel shift mobility assays, and a specific interaction of GlxR with sequences present on PgntP and PgntK fragments was detected only in the presence of cAMP.
Collapse
Affiliation(s)
- Michal Letek
- Area de Microbiología, Dpto. Ecología, Genética y Microbiología, Universidad de León, 24071 León, Spain
| | | | | | | | | | | |
Collapse
|
4
|
Bausch C, Ramsey M, Conway T. Transcriptional organization and regulation of the L-idonic acid pathway (GntII system) in Escherichia coli. J Bacteriol 2004; 186:1388-97. [PMID: 14973046 PMCID: PMC344402 DOI: 10.1128/jb.186.5.1388-1397.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic organization of the idn genes that encode the pathway for L-idonate catabolism was characterized. The monocistronic idnK gene is transcribed divergently from the idnDOTR genes, which were shown to form an operon. The 215-bp regulatory region between the idnK and idnD genes contains promoters in opposite orientation with transcription start sites that mapped to positions -26 and -29 with respect to the start codons. The regulatory region also contains a single putative IdnR/GntR binding site centered between the two promoters, a CRP binding site upstream of idnD, and an UP element upstream of idnK. The genes of the L-idonate pathway were shown to be under catabolite repression control. Analysis of idnD- and idnK-lacZ fusions in a nonpolar idnD mutant that is unable to interconvert L-idonate and 5-ketogluconate indicated that either compound could induce the pathway. The L-idonate pathway was first characterized as a subsidiary pathway for D-gluconate catabolism (GntII), which is induced by D-gluconate in a GntI (primary gluconate system) mutant. Here we showed that the idnK and idnD operons are induced by D-gluconate in a GntI system mutant, presumably by endogenous formation of 5-ketogluconate from D-gluconate. Thus, the regulation of the GntII system is appropriate for this pathway, which is primarily involved in L-idonate catabolism; the GntII system can be induced by D-gluconate under conditions that block the GntI system.
Collapse
Affiliation(s)
- Christoph Bausch
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019
| | | | | |
Collapse
|
5
|
Tsunedomi R, Izu H, Kawai T, Matsushita K, Ferenci T, Yamada M. The activator of GntII genes for gluconate metabolism, GntH, exerts negative control of GntR-regulated GntI genes in Escherichia coli. J Bacteriol 2003; 185:1783-95. [PMID: 12618441 PMCID: PMC150117 DOI: 10.1128/jb.185.6.1783-1795.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gluconate is one of the preferred carbon sources of Escherichia coli, and two sets of gnt genes (encoding the GntI and GntII systems) are involved in its transport and metabolism. GntR represses the GntI genes gntKU and gntT, whereas GntH was previously suggested to be an activator for the GntII genes gntV and idnDO-gntWH. The helix-turn-helix residues of the two regulators GntR and GntH exhibit extensive homologies. The similarity between the two regulators prompted analysis of the cross-regulation of the GntI genes by GntH. Repression of gntKU and gntT by GntH, as well as GntR, was indeed observed using transcriptional fusions and RNA analysis. High GntH expression, from cloned gntH or induced through 5-ketogluconate, was required to observe repression of GntI genes. Two GntR-binding elements were identified in the promoter-operator region of gntKU and were also shown to be the target sites of GntH by mutational analysis. However, the GntI genes were not induced by gluconate in the presence of enhanced amounts of GntH, whereas repression by GntR was relieved by gluconate. The repression of GntI genes by GntH is thus unusual in that it is not relieved by the availability of substrate. These results led us to propose that GntH activates GntII and represses the GntI genes in the presence of metabolites derived from gluconate, allowing the organism to switch from the GntI to the GntII system. This cross-regulation may explain the progressive changes in gnt gene expression along with phases of cell growth in the presence of gluconate.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Bausch C, Peekhaus N, Utz C, Blais T, Murray E, Lowary T, Conway T. Sequence analysis of the GntII (subsidiary) system for gluconate metabolism reveals a novel pathway for L-idonic acid catabolism in Escherichia coli. J Bacteriol 1998; 180:3704-10. [PMID: 9658018 PMCID: PMC107343 DOI: 10.1128/jb.180.14.3704-3710.1998] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The presence of two systems in Escherichia coli for gluconate transport and phosphorylation is puzzling. The main system, GntI, is well characterized, while the subsidiary system, GntII, is poorly understood. Genomic sequence analysis of the region known to contain genes of the GntII system led to a hypothesis which was tested biochemically and confirmed: the GntII system encodes a pathway for catabolism of L-idonic acid in which D-gluconate is an intermediate. The genes have been named accordingly: the idnK gene, encoding a thermosensitive gluconate kinase, is monocistronic and transcribed divergently from the idnD-idnO-idnT-idnR operon, which encodes L-idonate 5-dehydrogenase, 5-keto-D-gluconate 5-reductase, an L-idonate transporter, and an L-idonate regulatory protein, respectively. The metabolic sequence is as follows: IdnT allows uptake of L-idonate; IdnD catalyzes a reversible oxidation of L-idonate to form 5-ketogluconate; IdnO catalyzes a reversible reduction of 5-ketogluconate to form D-gluconate; IdnK catalyzes an ATP-dependent phosphorylation of D-gluconate to form 6-phosphogluconate, which is metabolized further via the Entner-Doudoroff pathway; and IdnR appears to act as a positive regulator of the IdnR regulon, with L-idonate or 5-ketogluconate serving as the true inducer of the pathway. The L-idonate 5-dehydrogenase and 5-keto-D-gluconate 5-reductase reactions were characterized both chemically and biochemically by using crude cell extracts, and it was firmly established that these two enzymes allow for the redox-coupled interconversion of L-idonate and D-gluconate via the intermediate 5-ketogluconate. E. coli K-12 strains are able to utilize L-idonate as the sole carbon and energy source, and as predicted, the ability of idnD, idnK, idnR, and edd mutants to grow on L-idonate is altered.
Collapse
Affiliation(s)
- C Bausch
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- N Peekhaus
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
8
|
Porco A, Peekhaus N, Bausch C, Tong S, Isturiz T, Conway T. Molecular genetic characterization of the Escherichia coli gntT gene of GntI, the main system for gluconate metabolism. J Bacteriol 1997; 179:1584-90. [PMID: 9045817 PMCID: PMC178870 DOI: 10.1128/jb.179.5.1584-1590.1997] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Escherichia coli gntT gene was subcloned from the Kohara library, and its expression was characterized. The cloned gntT gene genetically complemented mutant E. coli strains with defects in gluconate transport and directed the formation of a high-affinity gluconate transporter with a measured apparent Km of 6 microM for gluconate. Primer extension analysis indicated two transcriptional start sites for gntT, which are separated by 66 bp and which give rise to what appears on a Northern blot to be a single, gluconate-inducible, 1.42-kb gntT transcript. Thus, it was concluded that gntT is monocistronic and is regulated by two promoters. Both of the promoters have - 10 and -35 sequence elements typical of sigma70 promoters and catabolite gene activator protein binding sites in appropriate locations to exert glucose catabolite repression. In addition, two putative gnt operator sites were identified in the gntT regulatory region. A search revealed the presence of nearly identical palindromic sequences in the regulatory regions of all known gluconate-inducible genes, and these seven putative gnt operators were used to derive a consensus gnt operator sequence. A gntT::lacZ operon fusion was constructed and used to examine gntT expression. The results indicated that gntT is maximally induced by 500 microM gluconate, modestly induced by very low levels of gluconate (4 microM), and partially catabolite repressed by glucose. The results also showed a pronounced peak of gntT expression very early in the logarithmic phase, a pattern of expression similar to that of the Fis protein. Thus, it is concluded that GntT is important for growth on low concentrations of gluconate, for entry into the logarithmic phase, and for cometabolism of gluconate and glucose.
Collapse
Affiliation(s)
- A Porco
- School of Biological Sciences, University of Nebraska-Lincoln, 68588-0118, USA
| | | | | | | | | | | |
Collapse
|
9
|
Tong S, Porco A, Isturiz T, Conway T. Cloning and molecular genetic characterization of the Escherichia coli gntR, gntK, and gntU genes of GntI, the main system for gluconate metabolism. J Bacteriol 1996; 178:3260-9. [PMID: 8655507 PMCID: PMC178079 DOI: 10.1128/jb.178.11.3260-3269.1996] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Three genes involved in gluconate metabolism, gntR, gntK, and gntU, which code for a regulatory protein, a gluconate kinase, and a gluconate transporter, respectively, were cloned from Escherichia coli K-12 on the basis of their known locations on the genomic restriction map. The gene order is gntU, gntK, and gntR, which are immediately adjacent to asd at 77.0 min, and all three genes are transcribed in the counterclockwise direction. The gntR product is 331 amino acids long, with a helix-turn-helix motif typical of a regulatory protein. The gntK gene encodes a 175-amino-acid polypeptide that has an ATP-binding motif similar to those found in other sugar kinases. While GntK does not show significant sequence similarity to any known sugar kinases, it is 45% identical to a second putative gluconate kinase from E. coli,gntV. The 445-amino-acid sequence encoded by gntU has a secondary structure typical of membrane-spanning transport proteins and is 37% identical to the gntP product from Bacillus subtilis. Kinetic analysis of GntU indicates an apparent Km for gluconate of 212 microM, indicating that this is a low-affinity transporter. Studies demonstrate that the gntR gene is monocistronic, while the gntU and gntK genes, which are separated by only 3 bp, form an operon. Expression of gntR is essentially constitutive, while expression of gntKU is induced by gluconate and is subject to fourfold glucose catabolite repression. These results confirm that gntK and gntU, together with another gluconate transport gene, gntT, constitute the GntI system for gluconate utilization, under control of the gntR gene product, which is also responsible for induction of the edd and eda genes of the Entner-Doudoroff pathway.
Collapse
Affiliation(s)
- S Tong
- Department of Food Science and Technology, University of Nebraska-Lincoln, 68588-0919, USA
| | | | | | | |
Collapse
|
10
|
Klemm P, Tong S, Nielsen H, Conway T. The gntP gene of Escherichia coli involved in gluconate uptake. J Bacteriol 1996; 178:61-7. [PMID: 8550444 PMCID: PMC177621 DOI: 10.1128/jb.178.1.61-67.1996] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The gntP gene, located between the fim and uxu loci in Escherichia coli K-12, has been cloned and characterized. Nucleotide sequencing of a region encompassing the gntP gene revealed an open reading frame of 447 codons with significant homology to the Bacillus subtilis gluconate permease. Northern (RNA) blotting indicated that the gntP gene was monocistronic and was transcribed as an mRNA with an apparent molecular size of 1.54 kb. The transcriptional start point was determined by primer extension analysis. The gntP gene was found to be under catabolite repression and was not induced by gluconate. Also, expression seemed to be stringently controlled. Several observations indicated that the GntP protein is an inner membrane protein; it contains characteristic membrane-spanning regions and was isolated predominantly from the inner-membrane fraction of fractionated host cells. A topology analysis predicted a protein with 14 membrane-spanning segments. The inability of a mutant strain to grow on gluconate minimal medium could be relieved by introduction of a plasmid encoding the gntP gene. Finally, the kinetics of GntP-mediated gluconate uptake were investigated, indicating an apparent Km for gluconate of 25 microM.
Collapse
Affiliation(s)
- P Klemm
- Department of Microbiology, Technical University of Denmark, Lyngby, Denmark
| | | | | | | |
Collapse
|
11
|
Burland V, Plunkett G, Sofia HJ, Daniels DL, Blattner FR. Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res 1995; 23:2105-19. [PMID: 7610040 PMCID: PMC306997 DOI: 10.1093/nar/23.12.2105] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The 338.5 kb of the Escherichia coli genome described here together with previously described segments bring the total of contiguous finished sequence of this genome to > 1 Mb. Of 319 open reading frames (ORFs) found in this 338.5 kb segment, 147 (46%) are potential new genes. The positions of several genes which had been previously located here by mapping or partial sequencing have been confirmed. Several ORFs have functions suggested by similarities to other characterised genes but cannot be assigned with certainty. Fifteen of the ORFs of unknown function had been previously sequenced. Eight transfer RNAs are encoded in the region and there are two grey holes in which no features were found. The attachment site for phage P4 and three insertion sequences were located. The region was also analysed for chi sites, bend sites, REP elements and other repeats. A computer search identified potential promoters and tentative transcription units were assigned. The occurrence of the rare tetramer CTAG was analysed in 1.6 Mb of contiguous E.coli sequence. Hypotheses addressing the rarity and distribution of CTAG are discussed.
Collapse
Affiliation(s)
- V Burland
- Laboratory of Genetics, University of Wisconsin, Madison 53706, USA
| | | | | | | | | |
Collapse
|
12
|
Kanemori M, Mori H, Yura T. Effects of reduced levels of GroE chaperones on protein metabolism: enhanced synthesis of heat shock proteins during steady-state growth of Escherichia coli. J Bacteriol 1994; 176:4235-42. [PMID: 7912695 PMCID: PMC205634 DOI: 10.1128/jb.176.14.4235-4242.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The GroE heat shock proteins (GroEL and GroES) of Escherichia coli represent major molecular chaperones that participate in folding (and assembly) of a variety of proteins and are essential for cell growth at all temperatures. We have examined the effects of reducing the cellular content of GroE on the synthesis and stability of proteins during steady-state growth with near-normal rates. The GroE protein level was manipulated by placing groE under the control of lacUV5 promoter on a multicopy plasmid in a strain lacking the chromosomal groE operon. When this strain was grown with a limited concentration (40 microM) of inducer (IPTG [isopropyl-beta-D-thiogalactopyranoside]) at 37 degrees C, the GroE level and growth rate were comparable to those of the wild type. When cells were depleted of IPTG, they continued to grow at or below 37 degrees C albeit at reduced rates, despite the much-reduced GroE level (ca. 25% of that of wild type). Under these conditions, the cellular contents of at least 13 polypeptides were affected. Among the most striking effects was the enhanced synthesis of a set of heat shock proteins which resulted from the increased level of sigma 32 which is required for transcription of heat shock genes. This increase in the sigma 32 level was brought about by both stabilization and increased synthesis of sigma 32. Other proteins affected by the reduced GroE level included two proteins (enzymes of the Entner-Doudoroff pathway) encoded by the edd-eda operon and the ribosomal protein S6, suggesting that the GroE chaperones are involved in regulating expression of genes for carbohydrate metabolism and in modulating biogenesis or function of the ribosome.
Collapse
Affiliation(s)
- M Kanemori
- Institute for Virus Research, Kyoto University, Japan
| | | | | |
Collapse
|
13
|
Egan SE, Fliege R, Tong S, Shibata A, Wolf RE, Conway T. Molecular characterization of the Entner-Doudoroff pathway in Escherichia coli: sequence analysis and localization of promoters for the edd-eda operon. J Bacteriol 1992; 174:4638-46. [PMID: 1624451 PMCID: PMC206259 DOI: 10.1128/jb.174.14.4638-4646.1992] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The nucleotide sequence of the entire Escherichia coli edd-eda region that encodes the enzymes of the Entner-Doudoroff pathway was determined. The edd structural gene begins 236 bases downstream of zwf. The eda structural gene begins 34 bases downstream of edd. The edd reading frame is 1,809 bases long and encodes the 602-amino-acid, 64,446-Da protein 6-phosphogluconate dehydratase. The deduced primary amino acid sequences of the E. coli and Zymomonas mobilis dehydratase enzymes are highly conserved. The eda reading frame is 642 bases long and encodes the 213-amino-acid, 22,283-Da protein 2-keto-3-deoxy-6-phosphogluconate aldolase. This enzyme had been previously purified and sequenced by others on the basis of its related enzyme activity, 2-keto-4-hydroxyglutarate aldolase. The data presented here provide proof that the two enzymes are identical. The primary amino acid sequences of the E. coli, Z. mobilis, and Pseudomonas putida aldolase enzymes are highly conserved. When E. coli is grown on gluconate, the edd and eda genes are cotranscribed. Four putative promoters within the edd-eda region were identified by transcript mapping and computer analysis. P1, located upstream of edd, appears to be the primary gluconate-responsive promoter of the edd-eda operon, responsible for induction of the Entner-Doudoroff pathway, as mediated by the gntR product. High basal expression of eda is explained by constitutive transcription from P2, P3, and/or P4 but not P1.
Collapse
Affiliation(s)
- S E Egan
- School of Biological Sciences, University of Nebraska, Lincoln 68588-0118
| | | | | | | | | | | |
Collapse
|
14
|
Adamowicz M, Conway T, Nickerson KW. Nutritional complementation of oxidative glucose metabolism in Escherichia coli via pyrroloquinoline quinone-dependent glucose dehydrogenase and the Entner-Doudoroff pathway. Appl Environ Microbiol 1991; 57:2012-5. [PMID: 1654044 PMCID: PMC183513 DOI: 10.1128/aem.57.7.2012-2015.1991] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Two glucose-negative Escherichia coli mutants (ZSC113 and DF214) were unable to grow on glucose as the sole carbon source unless supplemented with pyrroloquinoline quinone (PQQ). PQQ is the cofactor for the periplasmic enzyme glucose dehydrogenase, which converts glucose to gluconate. Aerobically, E. coli ZSC113 grew on glucose plus PQQ with a generation time of 65 min, a generation time about the same as that for wild-type E. coli in a defined glucose-salts medium. Thus, for E. coli ZSC113 the Enter-Doudoroff pathway was fully able to replace the Embden-Meyerhof-Parnas pathway. In the presence of 5% sodium dodecyl sulfate, PQQ no longer acted as a growth factor. Sodium dodecyl sulfate inhibited the formation of gluconate from glucose but not gluconate metabolism. Adaptation to PQQ-dependent growth exhibited long lag periods, except under low-phosphate conditions, in which the PhoE porin would be expressed. We suggest that E. coli has maintained the apoenzyme for glucose dehydrogenase and the Entner-Doudoroff pathway as adaptations to an aerobic, low-phosphate, and low-detergent aquatic environment.
Collapse
Affiliation(s)
- M Adamowicz
- School of Biological Sciences, University of Nebraska, Lincoln 68588
| | | | | |
Collapse
|