1
|
Fardan AAA, Koestler BJ. FhlA is a Formate Binding Protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604796. [PMID: 39091852 PMCID: PMC11291172 DOI: 10.1101/2024.07.24.604796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Escherichia coli uses glycolysis and mixed acid fermentation and produces formate as by product. One system E. coli uses for formate oxidation is formate hydrogen lyase complex (FHL). The expression of the FHL complex is dependent on formate and regulated by the transcriptional regulator FhlA. The structure of FhlA is composed of three domains. The N-terminal domain is putatively responsible for formate binding and FhlA oligomerization as a tetramer, the central portion of FhlA contains a AAA+ domain that hydrolyzes ATP, and the C-terminal domain binds DNA. Formate enhances FhlA-mediated expression of FHL; however, FhlA direct interaction with formate has never been demonstrated. Formate-protein interactions are challenging to assess, due to the small and ubiquitous nature of the molecule. Here, we have developed three techniques to assess formate-protein interaction. We use these techniques to confirm that FhlA binds formate in the N-terminal domain in vitro, and that this interaction is partially dependent on residues E183 and E363, consistent with previous reports. This study is a proof of concept that these techniques can be used to assess other formate-protein interactions.
Collapse
|
2
|
Abstract
Shigella is an intracellular pathogen that invades the human host cell cytosol and exploits intracellular nutrients for growth, enabling the bacterium to create its own metabolic niche. For Shigella to effectively invade and replicate within the host cytoplasm, it must sense and adapt to changing environmental conditions; however, the mechanisms and signals sensed by S. flexneri are largely unknown. We have found that the secreted Shigella metabolism by-product formate regulates Shigella intracellular virulence gene expression and its ability to spread among epithelial cells. We propose that Shigella senses formate accumulation in the host cytosol as a way to determine intracellular Shigella density and regulate secreted virulence factors accordingly, enabling spatiotemporal regulation of effectors important for dampening the host immune response. The intracellular human pathogen Shigella flexneri invades the colon epithelium, replicates to high cell density within the host cell, and then spreads to adjacent epithelial cells. When S. flexneri gains access to the host cytosol, the bacteria metabolize host cytosolic carbon using glycolysis and mixed acid fermentation, producing formate as a by-product. We show that S. flexneri infection results in the accumulation of formate within the host cell. Loss of pyruvate formate lyase (PFL; ΔpflB), which converts pyruvate to acetyl coenzyme A (CoA) and formate, eliminates S. flexneri formate production and reduces the ability of S. flexneri to form plaques in epithelial cell monolayers. This defect in PFL does not decrease the intracellular growth rate of S. flexneri; rather, it affects cell-to-cell spread. The S. flexneri ΔpflB mutant plaque defect is complemented by supplying exogenous formate; conversely, deletion of the S. flexneri formate dehydrogenase gene fdnG increases host cell formate accumulation and S. flexneri plaque size. Furthermore, exogenous formate increases plaque size of the wild-type (WT) S. flexneri strain and promotes S. flexneri cell-to-cell spread. We also demonstrate that formate increases the expression of S. flexneri virulence genes icsA and ipaJ. Intracellular S. flexneriicsA and ipaJ expression is dependent on the presence of formate, and ipaJ expression correlates with S. flexneri intracellular density during infection. Finally, consistent with elevated ipaJ, we show that formate alters S. flexneri-infected host interferon- and tumor necrosis factor (TNF)-stimulated gene expression. We propose that Shigella-derived formate is an intracellular signal that modulates virulence in response to bacterial metabolism.
Collapse
|
3
|
Gößringer M, Lechner M, Brillante N, Weber C, Rossmanith W, Hartmann RK. Protein-only RNase P function in Escherichia coli: viability, processing defects and differences between PRORP isoenzymes. Nucleic Acids Res 2017; 45:7441-7454. [PMID: 28499021 PMCID: PMC5499578 DOI: 10.1093/nar/gkx405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 11/12/2022] Open
Abstract
The RNase P family comprises structurally diverse endoribonucleases ranging from complex ribonucleoproteins to single polypeptides. We show that the organellar (AtPRORP1) and the two nuclear (AtPRORP2,3) single-polypeptide RNase P isoenzymes from Arabidopsis thaliana confer viability to Escherichia coli cells with a lethal knockdown of its endogenous RNA-based RNase P. RNA-Seq revealed that AtPRORP1, compared with bacterial RNase P or AtPRORP3, cleaves several precursor tRNAs (pre-tRNAs) aberrantly in E. coli. Aberrant cleavage by AtPRORP1 was mainly observed for pre-tRNAs that can form short acceptor-stem extensions involving G:C base pairs, including tRNAAsp(GUC), tRNASer(CGA) and tRNAHis. However, both AtPRORP1 and 3 were defective in processing of E. coli pre-tRNASec carrying an acceptor stem expanded by three G:C base pairs. Instead, pre-tRNASec was degraded, suggesting that tRNASec is dispensable for E. coli under laboratory conditions. AtPRORP1, 2 and 3 are also essentially unable to process the primary transcript of 4.5S RNA, a hairpin-like non-tRNA substrate processed by E. coli RNase P, indicating that PRORP enzymes have a narrower, more tRNA-centric substrate spectrum than bacterial RNA-based RNase P enzymes. The cells' viability also suggests that the essential function of the signal recognition particle can be maintained with a 5΄-extended 4.5S RNA.
Collapse
Affiliation(s)
- Markus Gößringer
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Marcus Lechner
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Nadia Brillante
- Center for Anatomy & Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Christoph Weber
- Center for Anatomy & Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| |
Collapse
|
4
|
Wang J, Vine CE, Balasiny BK, Rizk J, Bradley CL, Tinajero-Trejo M, Poole RK, Bergaust LL, Bakken LR, Cole JA. The roles of the hybrid cluster protein, Hcp and its reductase, Hcr, in high affinity nitric oxide reduction that protects anaerobic cultures ofEscherichia coliagainst nitrosative stress. Mol Microbiol 2016; 100:877-92. [DOI: 10.1111/mmi.13356] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Jing Wang
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham; Birmingham B15 2TT UK
| | - Claire E. Vine
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham; Birmingham B15 2TT UK
| | - Basema K. Balasiny
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham; Birmingham B15 2TT UK
| | - John Rizk
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham; Birmingham B15 2TT UK
| | - Charlene L. Bradley
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham; Birmingham B15 2TT UK
| | - Mariana Tinajero-Trejo
- Department of Molecular Biology & Biotechnology; University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | - Robert K. Poole
- Department of Molecular Biology & Biotechnology; University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | | | - Lars R. Bakken
- Norwegian University of Life Science; PO box 5003 N-1432 Ås Norway
| | - Jeffrey A. Cole
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham; Birmingham B15 2TT UK
| |
Collapse
|
5
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 6. [PMID: 26442941 DOI: 10.1128/ecosalplus.esp-0005-2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Escherichia coli contains a versatile respiratory chain that oxidizes 10 different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. A large number of respiratory pathways can be established by combining different electron donors and acceptors. The respiratory dehydrogenases use quinones as the electron acceptors that are oxidized by the terminal reductase and oxidases. The enzymes vary largely with respect to their composition, architecture, membrane topology, and the mode of energy conservation. Most of the energy-conserving dehydrogenases (FdnGHI, HyaABC, HybCOAB, and others) and the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox-loop mechanism. Two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases and terminal reductases do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known or can be predicted. The H+/2e- ratios for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and the respiratory chains is described and related to the H+/2e- ratios.
Collapse
|
6
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 3. [PMID: 26443736 DOI: 10.1128/ecosalplus.3.2.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Escherichia coli contains a versatile respiratory chain which oxidizes ten different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use even two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. Various respiratory pathways can be established by combining the oxidation of different electron donors and acceptors which are linked by respiratory quinones. The enzymes vary largely with respect to architecture, membrane topology, and mode of energy conservation. Most of the energy-conserving dehydrogenases (e.g., FdnGHI, HyaABC, and HybCOAB) and of the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox loop mechanism. Only two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases (e.g., Ndh, SdhABCD, and GlpD) and of terminal reductases (e.g., FrdABCD and DmsABC) do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known from structural and biochemical studies or can be predicted from sequence information. The H+/2e- ratios of proton translocation for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and of the respiratory chains is described. In contrast to the knowledge on enzyme function are physiological aspects of respiration such as organization and coordination of the electron transport and the use of alternative respiratory enzymes, not well characterized.
Collapse
|
7
|
Zhang H, Lu H, Wang J, Zhang T, Liu G, Zhou J. Transcriptional analysis of Escherichia coli during Acid Red 18 decolorization. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Mania D, Heylen K, van Spanning RJM, Frostegård Å. The nitrate-ammonifying andnosZ-carrying bacteriumBacillus viretiis a potent source and sink for nitric and nitrous oxide under high nitrate conditions. Environ Microbiol 2014; 16:3196-210. [DOI: 10.1111/1462-2920.12478] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/13/2014] [Accepted: 03/24/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Mania
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Science; Ås Norway
| | - Kim Heylen
- Laboratory of Microbiology; Department of Biochemistry and Microbiology; University of Ghent; Gent Belgium
| | - Rob J. M. van Spanning
- Department of Molecular Cell Biology; Faculty of Earth and Life Science; VU University; Amsterdam The Netherlands
| | - Åsa Frostegård
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Science; Ås Norway
| |
Collapse
|
9
|
Pinske C, Bönn M, Krüger S, Lindenstrauß U, Sawers RG. Metabolic deficiences revealed in the biotechnologically important model bacterium Escherichia coli BL21(DE3). PLoS One 2011; 6:e22830. [PMID: 21826210 PMCID: PMC3149613 DOI: 10.1371/journal.pone.0022830] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/01/2011] [Indexed: 11/26/2022] Open
Abstract
The Escherichia coli B strain BL21(DE3) has had a profound impact on biotechnology through its use in the production of recombinant proteins. Little is understood, however, regarding the physiology of this important E. coli strain. We show here that BL21(DE3) totally lacks activity of the four [NiFe]-hydrogenases, the three molybdenum- and selenium-containing formate dehydrogenases and molybdenum-dependent nitrate reductase. Nevertheless, all of the structural genes necessary for the synthesis of the respective anaerobic metalloenzymes are present in the genome. However, the genes encoding the high-affinity molybdate transport system and the molybdenum-responsive transcriptional regulator ModE are absent from the genome. Moreover, BL21(DE3) has a nonsense mutation in the gene encoding the global oxygen-responsive transcriptional regulator FNR. The activities of the two hydrogen-oxidizing hydrogenases, therefore, could be restored to BL21(DE3) by supplementing the growth medium with high concentrations of Ni²⁺ (Ni²⁺-transport is FNR-dependent) or by introducing a wild-type copy of the fnr gene. Only combined addition of plasmid-encoded fnr and high concentrations of MoO₄²⁻ ions could restore hydrogen production to BL21(DE3); however, to only 25-30% of a K-12 wildtype. We could show that limited hydrogen production from the enzyme complex responsible for formate-dependent hydrogen evolution was due solely to reduced activity of the formate dehydrogenase (FDH-H), not the hydrogenase component. The activity of the FNR-dependent formate dehydrogenase, FDH-N, could not be restored, even when the fnr gene and MoO₄²⁻ were supplied; however, nitrate reductase activity could be recovered by combined addition of MoO₄²⁻ and the fnr gene. This suggested that a further component specific for biosynthesis or activity of formate dehydrogenases H and N was missing. Re-introduction of the gene encoding ModE could only partially restore the activities of both enzymes. Taken together these results demonstrate that BL21(DE3) has major defects in anaerobic metabolism, metal ion transport and metalloprotein biosynthesis.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Bönn
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sara Krüger
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ute Lindenstrauß
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - R. Gary Sawers
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
10
|
Production of 3-nitrosoindole derivatives by Escherichia coli during anaerobic growth. J Bacteriol 2009; 191:5369-76. [PMID: 19561128 DOI: 10.1128/jb.00586-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When Escherichia coli K-12 is grown anaerobically in medium containing tryptophan and sodium nitrate, it produces red compounds. The reaction requires functional genes for trytophanase (tnaA), a tryptophan permease (tnaB), and a nitrate reductase (narG), as well as a natural drop in the pH of the culture. Mass spectrometry revealed that the purified chromophores had mass/charge ratios that closely match those for indole red, indoxyl red, and an indole trimer. These compounds are known products of chemical reactions between indole and nitrous acid. They are derived from an initial reaction of 3-nitrosoindole with indole. Apparently, nitrite that is produced from the metabolic reduction of nitrate is converted in the acid medium to nitrous acid, which leads to the nitrosation of the indole that is generated by tryptophanase. An nfi (endonuclease V) mutant and a recA mutant were selectively killed during the period of chromophore production, and a uvrA strain displayed reduced growth. These effects depended on the addition of nitrate to the medium and on tryptophanase activity in the cells. Unexpectedly, the killing of a tnaA(+) nfi mutant was not accompanied by marked increases in mutation frequencies for several traits tested. The vulnerability of three DNA repair mutants indicates that a nitrosoindole or a derivative of a nitrosoindole produces lethal DNA damage.
Collapse
|
11
|
Abstract
To infect an animal host, Salmonella enterica serovar Typhimurium must penetrate the intestinal epithelial barrier. This process of invasion requires a type III secretion system encoded within Salmonella pathogenicity island I (SPI1). We found that a mutant with deletions of the acetate kinase and phosphotransacetylase genes (ackA-pta) was deficient in invasion and SPI1 expression but that invasion gene expression was completely restored by supplying medium conditioned by growth of the wild-type strain, suggesting that a signal produced by the wild type, but not by the ackA-pta mutant, was required for invasion. This mutant also excreted 68-fold-less formate into the culture medium, and the addition of sodium formate to cultures restored both the expression of SPI1 and the invasion of cultured epithelial cells by the mutant. The effect of formate was pH dependent, requiring a pH below neutrality, and studies in mice showed that the distal ileum, the preferred site of Salmonella invasion in this species, had the appropriate formate concentration and pH to elicit invasion, while the cecum contained no detectable formate. Furthermore, we found that formate affected the major regulators of SPI1, hilA and hilD, but that the primary routes of formate metabolism played no role in its activity as a signal.
Collapse
|
12
|
Abstract
In Escherichia coli, nitrosative mutagenesis may occur during nitrate or nitrite respiration. The endogenous nitrosating agent N2O3 (dinitrogen trioxide, nitrous anhydride) may be formed either by the condensation of nitrous acid or by the autooxidation of nitric oxide, both of which are metabolic by-products. The purpose of this study was to determine which of these two agents is more responsible for endogenous nitrosative mutagenesis. An nfi (endonuclease V) mutant was grown anaerobically with nitrate or nitrite, conditions under which it has a high frequency of A:T-to-G:C transition mutations because of a defect in the repair of hypoxanthine (nitrosatively deaminated adenine) in DNA. These mutations could be greatly reduced by two means: (i) introduction of an nirB mutation, which affects the inducible cytoplasmic nitrite reductase, the major source of nitric oxide during nitrate or nitrite metabolism, or (ii) flushing the anaerobic culture with argon (which should purge it of nitric oxide) before it was exposed to air. The results suggest that nitrosative mutagenesis occurs during a shift from nitrate/nitrite-dependent respiration under hypoxic conditions to aerobic respiration, when accumulated nitric oxide reacts with oxygen to form endogenous nitrosating agents such as N2O3. In contrast, mutagenesis of nongrowing cells by nitrous acid was unaffected by an nirB mutation, suggesting that this mutagenesis is mediated by N2O3 that is formed directly by the condensation of nitrous acid.
Collapse
Affiliation(s)
- Bernard Weiss
- Department of Pathology and Laboratory Medicine, Emory University, Whitehead Bldg., Rm. 141, 615 Michael St., Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Beliaev AS, Klingeman DM, Klappenbach JA, Wu L, Romine MF, Tiedje JM, Nealson KH, Fredrickson JK, Zhou J. Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J Bacteriol 2005; 187:7138-45. [PMID: 16199584 PMCID: PMC1251602 DOI: 10.1128/jb.187.20.7138-7145.2005] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To gain insight into the complex structure of the energy-generating networks in the dissimilatory metal reducer Shewanella oneidensis MR-1, global mRNA patterns were examined in cells exposed to a wide range of metal and non-metal electron acceptors. Gene expression patterns were similar irrespective of which metal ion was used as electron acceptor, with 60% of the differentially expressed genes showing similar induction or repression relative to fumarate-respiring conditions. Several groups of genes exhibited elevated expression levels in the presence of metals, including those encoding putative multidrug efflux transporters, detoxification proteins, extracytoplasmic sigma factors and PAS-domain regulators. Only one of the 42 predicted c-type cytochromes in MR-1, SO3300, displayed significantly elevated transcript levels across all metal-reducing conditions. Genes encoding decaheme cytochromes MtrC and MtrA that were previously linked to the reduction of different forms of Fe(III) and Mn(IV), exhibited only slight decreases in relative mRNA abundances under metal-reducing conditions. In contrast, specific transcriptome responses were displayed to individual non-metal electron acceptors resulting in the identification of unique groups of nitrate-, thiosulfate- and TMAO-induced genes including previously uncharacterized multi-cytochrome gene clusters. Collectively, the gene expression results reflect the fundamental differences between metal and non-metal respiratory pathways of S. oneidensis MR-1, where the coordinate induction of detoxification and stress response genes play a key role in adaptation of this organism under metal-reducing conditions. Moreover, the relative paucity and/or the constitutive nature of genes involved in electron transfer to metals is likely due to the low-specificity and the opportunistic nature of the metal-reducing electron transport pathways.
Collapse
Affiliation(s)
- A S Beliaev
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MS P7-50, Richland, Washington 99352, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Coppi MV. The hydrogenases of Geobacter sulfurreducens: a comparative genomic perspective. MICROBIOLOGY-SGM 2005; 151:1239-1254. [PMID: 15817791 DOI: 10.1099/mic.0.27535-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hydrogenase content of the genome of Geobacter sulfurreducens, a member of the family Geobacteraceae within the delta-subdivision of the Proteobacteria, was examined and found to be distinct from that of Desulfovibrio species, another family of delta-Proteobacteria on which extensive research concerning hydrogen metabolism has been conducted. Four [NiFe]-hydrogenases are encoded in the G. sulfurreducens genome: two periplasmically oriented, membrane-bound hydrogenases, Hya and Hyb, and two cytoplasmic hydrogenases, Mvh and Hox. None of these [NiFe]-hydrogenases has a counterpart in Desulfovibrio species. Furthermore, the large and small subunits of Mvh and Hox appear to be related to archaeal and cyanobacterial hydrogenases, respectively. Clusters encoding [Fe]-hydrogenases and periplasmic [NiFeSe]-hydrogenases, which are commonly found in the genomes of Desulfovibrio species, are not present in the genome of G. sulfurreducens. Hydrogen-evolving Ech hydrogenases, which are present in the genomes of at least two Desulfovibrio species, were also absent from the G. sulfurreducens genome, despite the fact that G. sulfurreducens is capable of hydrogen production. Instead, the G. sulfurreducens genome contained a cluster encoding a multimeric Ech hydrogenase related (Ehr) complex that was similar in content to operons encoding Ech hydrogenases, but did not appear to encode a hydrogenase. Phylogenetic analysis revealed that the G. sulfurreducens ehr cluster is part of a family of related clusters found in both the Archaea and Bacteria.
Collapse
Affiliation(s)
- Maddalena V Coppi
- Department of Microbiology, 203N Morrill Science Center IVN, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| |
Collapse
|
15
|
Wang H, Gunsalus RP. Coordinate regulation of the Escherichia coli formate dehydrogenase fdnGHI and fdhF genes in response to nitrate, nitrite, and formate: roles for NarL and NarP. J Bacteriol 2003; 185:5076-85. [PMID: 12923080 PMCID: PMC180993 DOI: 10.1128/jb.185.17.5076-5085.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli possesses three distinct formate dehydrogenase enzymes encoded by the fdnGHI, fdhF, and fdoGHI operons. To examine how two of the formate dehyrogenase operons (fdnGHI and fdhF) are expressed anaerobically in the presence of low, intermediate, and high levels of nitrate, nitrite, and formate, chemostat culture techniques were employed with fdnG-lacZ and fdhF-lacZ reporter fusions. Complementary patterns of gene expression were seen. Optimal fdhF-lacZ expression occurred only at low to intermediate levels of nitrate, while high nitrate levels caused up to 10-fold inhibition of gene expression. In contrast, fdnG-lacZ expression was induced 25-fold in the presence of intermediate to high nitrate concentrations. Consistent with prior reports, NarL was able to induce fdnG-lacZ expression. However, NarP could not induce expression; rather, it functioned as an antagonist of fdnG-lacZ expression under low-nitrate conditions (i.e., it was a negative regulator). Nitrite, a reported signal for the Nar sensory system, was unable to stimulate or suppress expression of either formate dehydrogenase operon via NarL and NarP. The different gene expression profiles of the alternative formate dehydrogenase operons suggest that the two enzymes have complementary physiological roles under environmental conditions when nitrate and formate levels are changing. Revised regulatory schemes for NarL- and NarP-dependent nitrate control are presented for each operon.
Collapse
Affiliation(s)
- Henian Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, 1602 Molecular Sciences Building, Los Angeles, CA 90095, USA
| | | |
Collapse
|
16
|
Bébien M, Kirsch J, Méjean V, Verméglio A. Involvement of a putative molybdenum enzyme in the reduction of selenate by Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3865-3872. [PMID: 12480890 DOI: 10.1099/00221287-148-12-3865] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Selenium oxyanions, particularly selenite, can be highly toxic to living organisms. Few bacteria reduce both selenate and selenite into the less toxic elemental selenium. Insights into the mechanisms of the transport and the reduction of selenium oxyanions in Escherichia coli were provided by a genetic analysis based on transposon mutagenesis. Ten mutants impaired in selenate reduction were analysed. Three of them were altered in genes encoding transport proteins including a porin, an inner-membrane protein and a sulfate carrier. Two mutants were altered in genes required for molybdopterin biosynthesis, strongly suggesting that the selenate reductase of E. coli is a molybdoenzyme. However, mutants deleted in various oxomolybdenum enzymes described so far in this species still reduced selenate. Finally, a mutant in the gene ygfK encoding a putative oxidoreductase was obtained. This gene is located upstream of ygfN and ygfM in the ygfKLMN putative operon. YgfN and YgfM code for a molybdopterin-containing enzyme and a polypeptide carrying a FAD domain, respectively. It is therefore proposed that the selenate reductase of E. coli is a structural complex including the proteins YgfK, YgfM and YgfN. In addition, all the various mutants were still able to reduce selenite into elemental selenium. This implies that the transport and reduction of this compound are clearly distinct from those of selenate.
Collapse
Affiliation(s)
- Magali Bébien
- CEA/Cadarache-DSV-DEVM-Laboratoire de Bioénergétique Cellulaire, Université de la Méditerranée CEA 1000, 13108 Saint-Paul-lez-Durance Cedex, France1
| | - Julia Kirsch
- CEA/Cadarache-DSV-DEVM-Laboratoire de Bioénergétique Cellulaire, Université de la Méditerranée CEA 1000, 13108 Saint-Paul-lez-Durance Cedex, France1
| | - Vincent Méjean
- Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et Microbiologie, CNRS, 31 Chemin Joseph Aiguier, BP 71, 13402 Marseille Cedex 20, France2
| | - André Verméglio
- CEA/Cadarache-DSV-DEVM-Laboratoire de Bioénergétique Cellulaire, Université de la Méditerranée CEA 1000, 13108 Saint-Paul-lez-Durance Cedex, France1
| |
Collapse
|
17
|
Abstract
Nitrite is widely used by bacteria as an electron acceptor under anaerobic conditions. In respiratory nitrite ammonification an electrochemical proton potential across the membrane is generated by electron transport from a non-fermentable substrate like formate or H(2) to nitrite. The corresponding electron transport chain minimally comprises formate dehydrogenase or hydrogenase, a respiratory quinone and cytochrome c nitrite reductase. The catalytic subunit of the latter enzyme (NrfA) catalyzes nitrite reduction to ammonia without liberating intermediate products. This review focuses on recent progress that has been made in understanding the enzymology and bioenergetics of respiratory nitrite ammonification. High-resolution structures of NrfA proteins from different bacteria have been determined, and many nrf operons sequenced, leading to the prediction of electron transfer pathways from the quinone pool to NrfA. Furthermore, the coupled electron transport chain from formate to nitrite of Wolinella succinogenes has been reconstituted by incorporating the purified enzymes into liposomes. The NrfH protein of W. succinogenes, a tetraheme c-type cytochrome of the NapC/NirT family, forms a stable complex with NrfA in the membrane and serves in passing electrons from menaquinol to NrfA. Proteins similar to NrfH are predicted by open reading frames of several bacterial nrf gene clusters. In gamma-proteobacteria, however, NrfH is thought to be replaced by the nrfBCD gene products. The active site heme c group of NrfA proteins from different bacteria is covalently bound via the cysteine residues of a unique CXXCK motif. The lysine residue of this motif serves as an axial ligand to the heme iron thus replacing the conventional histidine residue. The attachment of the lysine-ligated heme group requires specialized proteins in W. succinogenes and Escherichia coli that are encoded by accessory nrf genes. The proteins predicted by these genes are unrelated in the two bacteria but similar to proteins of the respective conventional cytochrome c biogenesis systems.
Collapse
Affiliation(s)
- Jörg Simon
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität, Biozentrum N240, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Poock SR, Leach ER, Moir JWB, Cole JA, Richardson DJ. Respiratory detoxification of nitric oxide by the cytochrome c nitrite reductase of Escherichia coli. J Biol Chem 2002; 277:23664-9. [PMID: 11960983 DOI: 10.1074/jbc.m200731200] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide is a key element in host defense against invasive pathogens. The periplasmic cytochrome c nitrite reductase (NrfA) of Escherichia coli catalyzes the respiratory reduction of nitrite, but in vitro studies have shown that it can also reduce nitric oxide. The physiological significance of the latter reaction in vivo has never been assessed. In this study the reduction of nitric oxide by Escherichia coli was measured in strains active or deficient in periplasmic nitrite reduction. Nrf(+) cells, harvested from cultures grown anaerobically, possessed a nitric-oxide reductase activity with physiological electron donation of 60 nmol min(-1) x mg dry wt(-1), and an in vivo turnover number of NrfA of 390 NO* s(-1) was calculated. Nitric-oxide reductase activity could not be detected in Nrf(-) strains. Comparison of the anaerobic growth of Nrf(+) and Nrf(-) strains revealed a higher sensitivity to nitric oxide in the NrfA(-) strains. A higher sensitivity to the nitrosating agent S-nitroso-N-acetyl penicillamine (SNAP) was also observed in agar plate disk-diffusion assays. Oxygen respiration by E. coli was also more sensitive to nitric oxide in the Nrf(-) strains compared with the Nrf(+) parent strain. The results demonstrate that active periplasmic cytochrome c nitrite reductase can confer the capacity for nitric oxide reduction and detoxification on E. coli. Genomic analysis of many pathogenic enteric bacteria reveals the presence of nrf genes. The present study raises the possibility that this reflects an important role for the cytochrome c nitrite reductase in nitric oxide management in oxygen-limited environments.
Collapse
Affiliation(s)
- Susannah R Poock
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Potter L, Angove H, Richardson D, Cole J. Nitrate reduction in the periplasm of gram-negative bacteria. Adv Microb Physiol 2002; 45:51-112. [PMID: 11450112 DOI: 10.1016/s0065-2911(01)45002-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In contrast to the bacterial assimilatory and membrane-associated, respiratory nitrate reductases that have been studied for many years, it is only recently that periplasmic nitrate reductases have attracted growing interest. Recent research has shown that these soluble proteins are widely distributed, but vary greatly between species. All of those so far studied include four essential components: the periplasmic molybdoprotein, NapA, which is associated with a small, di-haem cytochrome, NapB; a putative quinol oxidase, NapC; and a possible pathway-specific chaperone, NapD. At least five other components have been found in different species. Other variations between species include the location of the nap genes on chromosomal or extrachromosomal DNA, and the environmental factors that regulate their expression. Despite the relatively small number of bacteria so far screened, striking correlations are beginning to emerge between the organization of the nap genes, the physiology of the host, the conditions under which the nap genes are expressed, and even the fate of nitrite, the product of Nap activity. Evidence is emerging that Nap fulfills a novel role in nitrate scavenging by some pathogenic bacteria.
Collapse
Affiliation(s)
- L Potter
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | |
Collapse
|
20
|
Brigé A, Cole JA, Hagen WR, Guisez Y, Van Beeumen JJ. Overproduction, purification and novel redox properties of the dihaem cytochrome c, NapB, from Haemophilus influenzae. Biochem J 2001; 356:851-8. [PMID: 11389694 PMCID: PMC1221913 DOI: 10.1042/0264-6021:3560851] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The napB gene of the pathogenic bacterium Haemophilus influenzae encodes a dihaem cytochrome c, the small subunit of a heterodimeric periplasmic nitrate reductase similar to those found in other bacteria. In order to obtain sufficient protein for biophysical studies, we aimed to overproduce the recombinant dihaem protein in Escherichia coli. Initial expression experiments indicated that the NapB signal peptide was not cleaved by the leader peptidase of the host organism. Apocytochrome was formed under aerobic, semi-aerobic and anaerobic growth conditions in either Luria--Bertani or minimal salts medium. The highest amounts of apo-NapB were produced in the latter medium, and the bulk was inserted into the cytoplasmic membrane. The two haem groups were covalently attached to the pre-apocytochrome only under anaerobic growth conditions, and with 2.5 mM nitrite or at least 10 mM nitrate supplemented to the minimal salts growth medium. In order to obtain holocytochrome, the gene sequence encoding mature NapB was cloned in-frame with the E. coli ompA (outer membrane protein A) signal sequence. Under anaerobic conditions, NapB was secreted into the periplasmic space, with the OmpA signal peptide being correctly processed and with both haem c groups attached covalently. Unless expressed in the DegP-protease-deficient strain HM125, some of the recombinant NapB polypeptides were N-terminally truncated as a result of proteolytic activity. Under aerobic growth conditions, co-expression with the E. coli ccm (cytochrome c maturation) genes resulted in a higher yield of holocytochrome c. The pure recombinant NapB protein showed absorption maxima at 419, 522 and 550 nm in the reduced form. The midpoint reduction potentials of the two haem groups were determined to be -25 mV and -175 mV. These results support our hypothesis that the Nap system fulfils a nitrate-scavenging role in H. influenzae.
Collapse
Affiliation(s)
- A Brigé
- Department of Biochemistry, Physiology and Microbiology, Laboratory of Protein Biochemistry and Protein Engineering, University of Gent, Gent 9000, Belgium
| | | | | | | | | |
Collapse
|
21
|
Stanley NR, Findlay K, Berks BC, Palmer T. Escherichia coli strains blocked in Tat-dependent protein export exhibit pleiotropic defects in the cell envelope. J Bacteriol 2001; 183:139-44. [PMID: 11114910 PMCID: PMC94859 DOI: 10.1128/jb.183.1.139-144.2001] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Tat system is a recently discovered protein export pathway that serves to translocate folded proteins, often containing redox cofactors, across the bacterial cytoplasmic membrane. Here we report that tat strains are associated with a mutant cell septation phenotype, where chains of up to 10 cells are evident. Mutant strains are also hypersensitive to hydrophobic drugs and to lysis by lysozyme in the absence of EDTA, and they leak periplasmic enzymes, characteristics that are consistent with an outer membrane defect. Both phenotypes are similar to those displayed by strains carrying point mutations in the lpxC (envA) gene. The phenotype was not replicated by mutations affecting synthesis and/or activity of all known or predicted Tat substrates.
Collapse
Affiliation(s)
- N R Stanley
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | |
Collapse
|
22
|
Gordon EH, Page MD, Willis AC, Ferguson SJ. Escherichia coli DipZ: anatomy of a transmembrane protein disulphide reductase in which three pairs of cysteine residues, one in each of three domains, contribute differentially to function. Mol Microbiol 2000; 35:1360-74. [PMID: 10760137 DOI: 10.1046/j.1365-2958.2000.01796.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DipZ is a bacterial cytoplasmic membrane protein that transfers reducing power from the cytoplasm to the periplasm so as to facilitate the formation of correct disulphide bonds and c-type cytochromes in the latter compartment. Topological analysis using gene fusions between the Escherichia coli dipZ and either E. coli phoA or lacZ shows that DipZ has a highly hydrophobic central domain comprising eight transmembrane alpha-helices plus periplasmic globular N-terminal and C-terminal domains. The previously assigned translational start codon for the E. coli DipZ was shown to be incorrect and the protein to be larger than previously thought. The experimentally determined translational start position indicates that an additional alpha-helix at the N-terminus acts as a cleavable signal peptide so that the N-terminus of the mature protein is located in the periplasm. The newly assigned 5' end of the dipZ gene was shown to be preceded by a functional ribosome-binding site. The hydrophobic central domain and both of the periplasmic globular domains each have a pair of highly conserved cysteine residues, and it was shown by site directed mutagenesis that all six conserved cysteine residues contribute to DipZ function.
Collapse
Affiliation(s)
- E H Gordon
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
23
|
Parham NJ, Gibson GR. Microbes involved in dissimilatory nitrate reduction in the human large intestine. FEMS Microbiol Ecol 2000; 31:21-28. [PMID: 10620715 DOI: 10.1111/j.1574-6941.2000.tb00667.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Nitrate-limited batch cultures, incorporating 20 different fermentation substrates and inoculated with human faeces, mainly selected for the growth of enterobacteria. The microbial diversity involved was determined by a combination of phenotypic and genotypic procedures. Continuous culture with lactate as the sole electron donor selected for similar micro-organisms, but when antibiotics were incorporated to inhibit Escherichia coli and lactate was replaced with choline, there was a wider microbial diversity recovered. Clostridium ramosum and Bacteroides vulgatus were then isolated as well as enterobacteriaceae.
Collapse
Affiliation(s)
- NJ Parham
- Microbiology Department, Institute of Food Research, Earley Gate, Reading, UK
| | | |
Collapse
|
24
|
Hasegawa J, Shimahara H, Mizutani M, Uchiyama S, Arai H, Ishii M, Kobayashi Y, Ferguson SJ, Sambongi Y, Igarashi Y. Stabilization of Pseudomonas aeruginosa cytochrome c(551) by systematic amino acid substitutions based on the structure of thermophilic Hydrogenobacter thermophilus cytochrome c(552). J Biol Chem 1999; 274:37533-7. [PMID: 10608805 DOI: 10.1074/jbc.274.53.37533] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A heterologous overexpression system for mesophilic Pseudomonas aeruginosa holocytochrome c(551) (PA c(551)) was established using Escherichia coli as a host organism. Amino acid residues were systematically substituted in three regions of PA c(551) with the corresponding residues from thermophilic Hydrogenobacter thermophilus cytochrome c(552) (HT c(552)), which has similar main chain folding to PA c(551), but is more stable to heat. Thermodynamic properties of PA c(551) with one of three single mutations (Phe-7 to Ala, Phe-34 to Tyr, or Val-78 to Ile) showed that these mutants had increased thermostability compared with that of the wild-type. Ala-7 and Ile-78 may contribute to the thermostability by tighter hydrophobic packing, which is indicated by the three dimensional structure comparison of PA c(551) with HT c(552). In the Phe-34 to Tyr mutant, the hydroxyl group of the Tyr residue and the guanidyl base of Arg-47 formed a hydrogen bond, which did not exist between the corresponding residues in HT c(552). We also found that stability of mutant proteins to denaturation by guanidine hydrochloride correlated with that against the thermal denaturation. These results and others described here suggest that significant stabilization of PA c(551) can be achieved through a few amino acid substitutions determined by molecular modeling with reference to the structure of HT c(552). The higher stability of HT c(552) may in part be attributed to some of these substitutions.
Collapse
Affiliation(s)
- J Hasegawa
- Daiichi Pharmaceutical Co., Ltd., Edogawa-ku, Tokyo 134-8630, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
26
|
Weiner JH, Bilous PT, Shaw GM, Lubitz SP, Frost L, Thomas GH, Cole JA, Turner RJ. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 1998; 93:93-101. [PMID: 9546395 DOI: 10.1016/s0092-8674(00)81149-6] [Citation(s) in RCA: 361] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report the identification of the proteins encoded by the mttABC operon (formerly yigTUW), which mediate a novel Sec-independent membrane targeting and translocation system in Escherichia coli that interacts with cofactor-containing redox proteins having a S/TRRXFLK "twin arginine" leader motif. A pleiotropic-negative mutant in mttA prevents the periplasmic localization of twin arginine redox enzymes, including nitrate reductase (NapA) and trimethylamine N-oxide reductase (TorA). The mutation also prevents the correct localization of the integral membrane molybdoenzyme dimethylsulfoxide reductase (DmsABC). The DmsA subunit has a twin arginine leader. Proteins with a Sec-dependent leader or which assemble spontaneously in the membrane are not affected by this mutation. MttA, B, and C are members of a large family of related sequences extending from archaebacteria to higher eukaryotes.
Collapse
Affiliation(s)
- J H Weiner
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sinha N, Ferguson SJ. An Escherichia coli ccm (cytochrome c maturation) deletion strain substantially expresses Hydrogenobacter thermophilus cytochrome c552 in the cytoplasm: availability of haem influences cytochrome c552 maturation. FEMS Microbiol Lett 1998; 161:1-6. [PMID: 9561726 DOI: 10.1111/j.1574-6968.1998.tb12921.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The maturation of Hydrogenobacter thermophilus cytochrome c552 in the cytoplasm of Escherichia coli is unique among bacterial c-type cytochromes. It is now shown to be matured in a strain lacking the whole set of ccm (cytochrome c maturation) genes that are normally required for c-type cytochrome biogenesis in E. coli. As this cytochrome is thermostable we propose that the apocytochrome c552 has sufficient tertiary structure to allow the haem to slot into its binding pocket, which in turn triggers the spontaneous covalent attachment between apocytochrome c552 and haem. The ccm deletion strain of E. coli, derived from a strain that synthesizes elevated levels of endogenous c-type cytochromes, also produces larger amounts of cytoplasmic H. thermophilus cytochrome c552 than a reference strain. This implies that elevated production of c-type cytochromes is not a consequence of high activity of ccm genes but rather an enhanced ability to supply haem, a view that is supported by the increase in thermophilic cytochrome c552 biogenesis that occurs in a reference strain following supplementation of growth media with delta-aminolevulinic acid.
Collapse
Affiliation(s)
- N Sinha
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
28
|
Cole J, Crooke H. Oxygen Toxicity, Oxygen Starvation and the Assembly of Cytochrome c-Dependent Electron Transfer Chains in Escherichia coli. Mol Microbiol 1998. [DOI: 10.1007/978-3-642-72071-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Andrews SC, Berks BC, McClay J, Ambler A, Quail MA, Golby P, Guest JR. A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 11):3633-3647. [PMID: 9387241 DOI: 10.1099/00221287-143-11-3633] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nucleotide sequence has been determined for a twelve-gene operon of Escherichia coli designated the hyf operon (hyfABCDEFGHIR-focB). The hyf operon is located at 55.8-56.0 min and encodes a putative nine-subunit hydrogenase complex (hydrogenase four or Hyf), a potential formate- and sigma 54-dependent transcriptional activator, HyfR (related to FhlA), and a possible formate transporter, FocB (related to FocA). Five of the nine Hyf-complex subunits are related to subunits of both the E. coli hydrogenase-3 complex (Hyc) and the proton-translocating NADH:quinone oxidoreductases (complex I and Nuo), whereas two Hyf subunits are related solely to NADH:quinone oxidoreductase subunits. The Hyf components include a predicted 523 residue [Ni-Fe] hydrogenase (large subunit) with an N-terminus (residues 1-170) homologous to the 30 kDa or NuoC subunit of complex I. It is proposed that Hyf, in conjunction with formate dehydrogenase H (Fdh-H), forms a hitherto unrecognized respiration-linked proton-translocating formate hydrogenlyase (FHL-2). It is likely that HyfR acts as a formate-dependent regulator of the hyf operon and that FocB provides the Hyf complex with external formate as substrate.
Collapse
Affiliation(s)
- Simon C Andrews
- The Krebs Institute, Department of Molecular Biology & Biotechnology, Western Bank, Firth Court, University of Sheffield, Sheffield S10 2TN, UK
| | - Ben C Berks
- The Centre for Metalloprotein Spectroscopy & Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Joseph McClay
- The Sanger Centre, Hinxton Hall, Hinxton, Cambridge CB10 1SB, UK
| | - Andrew Ambler
- The Sanger Centre, Hinxton Hall, Hinxton, Cambridge CB10 1SB, UK
| | - Michael A Quail
- The Krebs Institute, Department of Molecular Biology & Biotechnology, Western Bank, Firth Court, University of Sheffield, Sheffield S10 2TN, UK
| | - Paul Golby
- The Krebs Institute, Department of Molecular Biology & Biotechnology, Western Bank, Firth Court, University of Sheffield, Sheffield S10 2TN, UK
| | - John R Guest
- The Krebs Institute, Department of Molecular Biology & Biotechnology, Western Bank, Firth Court, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
30
|
Metheringham R, Cole JA. A reassessment of the genetic determinants, the effect of growth conditions and the availability of an electron donor on the nitrosating activity of Escherichia coli K-12. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 8):2647-2656. [PMID: 9274018 DOI: 10.1099/00221287-143-8-2647] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Anaerobic, but not aerobic, cultures of Escherichia coli K-12 catalysed the rapid nitrosation of the model substrate 2,3-diaminonaphthalene when incubated with nitrite. Formate and lactate were effective electron donors for the nitrosation reaction, which was inhibited by nitrate. Optimal growth conditions for the expression of nitrosation activity by various strains and mutants were determined. Highest activities were found with bacteria that had been grown anaerobically in a minimal medium rather than in Lennox broth, with glycerol and fumarate rather than glucose as the main carbon and energy source, and in the presence of a low concentration of nitrate. Bacteria harvested in the early exponential phase were more active than those harvested in later stages of growth. Well-characterized mutants defective in the synthesis of one or more anaerobically induced electron transfer chains were screened for nitrosation activity under these optimal growth conditions: only the respiratory nitrate reductase encoded by the narGHJI operon was implicated as a major contributor to nitrosation activity. Due to the limited sensitivity of the assays currently available, a minor contribution from the two alternative nitrate reductases or even other molybdoproteins could not be excluded. The role of formate in nitrosation was complex and was clearly not limited simply to that of an electron donor in the bacterial reduction of nitrite to nitric oxide: at least two further, chemical roles were inferred. This extensive study of more than 400 independent cultures of E. coli K-12 and its derivatives resolved some, but not all, of the apparently conflicting data in the literature concerning nitrosation catalysed by enteric bacteria.
Collapse
Affiliation(s)
| | - Jeff A Cole
- School of Biochemistry, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
31
|
Abaibou H, Giordano G, Mandrand-Berthelot MA. Suppression of Escherichia coli formate hydrogenlyase activity by trimethylamine N-oxide is due to drainage of the inducer formate. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 8):2657-2664. [PMID: 9274019 DOI: 10.1099/00221287-143-8-2657] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of the addition of trimethylamine N-oxide (TMAO) in the growth medium on Escherichia coli anaerobic fermentative and respiratory pathways was examined. Formate dehydrogenase H (FDH-H) activity was totally repressed by the addition of 40 mM TMAO, whereas the overall hydrogenase (HYD) activity was reduced by 25%. Accordingly, expression of lacZ operon fusions with the fdhF and hycB structural genes specifying FDH-H and HYD3 was reduced sevenfold and eightfold, respectively, leading to suppression of an active formate hydrogenlyase system. In contrast, global respiratory formate-dependent phenazine methosulphate reductase (FDH-PMS) activity, which consists of both the major anaerobic FDH-N enzyme and the aerobic FDH-Z isoenzyme, was increased approximately twofold. This was corroborated by a 2.5-fold stimulation of the sole fdoG-uidA transcriptional fusion which reflects the synthesis of the respiratory aerobic FDH-Z enzyme. In fdhD, fdhE or torA mutants lacking either FDH-PMS activity or TMAO reductase (TOR) activity, the formate hydrogenlyase pathway was no longer inhibited by TMAO. In addition, introduction of 30 mM formate in the growth medium was found to relieve the repressive effect of TMAO in the wild-type strain. When TMAO was added as terminal electron acceptor a significant enhancement of anaerobic growth was observed with the wild-type strain and the fdoG mutant. It was associated with the concomitant suppression of the formate hydrogenlyase enzymes. This was in contrast to the fdnG and torA mutants whose growth pattern and fermentative enzymes remained unaffected. Taken together, these results strongly suggest that formate-dependent reduction of TMAO via FDH-N and TOR reduces the amount of formate available for induction of the formate hydrogenlyase pathway.
Collapse
Affiliation(s)
- Hafid Abaibou
- Laboratoire de Génétique Moléculaire des Micro-organismes et des Interactions Cellulaires CNRS UMR 5577, Institut National des Sciences Appliquées, 20 avenue A. Einstein, 69621 Villeurbanne Cedex, France
| | - Gérard Giordano
- Laboratoire de Chimie Bactérienne, CNRS UPR 9043, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Marie-Andrée Mandrand-Berthelot
- Laboratoire de Génétique Moléculaire des Micro-organismes et des Interactions Cellulaires CNRS UMR 5577, Institut National des Sciences Appliquées, 20 avenue A. Einstein, 69621 Villeurbanne Cedex, France
| |
Collapse
|
32
|
Lloyd JR, Cole JA, Macaskie LE. Reduction and removal of heptavalent technetium from solution by Escherichia coli. J Bacteriol 1997; 179:2014-21. [PMID: 9068649 PMCID: PMC178927 DOI: 10.1128/jb.179.6.2014-2021.1997] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Anaerobic, but not aerobic, cultures of Escherichia coli accumulated Tc(VII) and reduced it to a black insoluble precipitate. Tc was the predominant element detected when the precipitate was analyzed by proton-induced X-ray emission. Electron microscopy in combination with energy-dispersive X-ray analysis showed that the site of Tc deposition was intracellular. It is proposed that Tc precipitation was a result of enzymatically mediated reduction of Tc(VII) to an insoluble oxide. Formate was an effective electron donor for Tc(VII) reduction which could be replaced by pyruvate, glucose, or glycerol but not by acetate, lactate, succinate, or ethanol. Mutants defective in the synthesis of the transcription factor FNR, in molybdenum cofactor (molybdopterin guanine dinucleotide [MGD]) synthesis, or in formate dehydrogenase H synthesis were all defective in Tc(VII) reduction, implicating a role for the formate hydrogenlyase complex in Tc(VII) reduction. The following observations confirmed that the hydrogenase III (Hyc) component of formate hydrogenlyase in both essential and sufficient for Tc(VII) reduction: (i) dihydrogen could replace formate as an effective electron donor for Tc(VII) reduction by wild-type bacteria and mutants defective in MGD synthesis; (ii) the inability of fnr mutants to reduce Tc(VII) can be suppressed phenotypically by growth with 250 microM Ni2+ and formate; (iii) Tc(VII) reduction is defective in a hyc mutant; (iv) the ability to reduce Tc(VII) was repressed during anaerobic growth in the presence of nitrate, but this repression was counteracted by the addition of formate to the growth medium; (v) H2, but not formate, was an effective electron donor for a Sel- mutant which is unable to incorporate selenocysteine into any of the three known formate dehydrogenases of E. coli. This appears to be the first report of Hyc functioning as an H2-oxidizing hydrogenase or as a dissimilatory metal ion reductase in enteric bacteria.
Collapse
Affiliation(s)
- J R Lloyd
- School of Biological Sciences, University of Birmingham, Edgbaston, United Kingdom.
| | | | | |
Collapse
|
33
|
Sambongi Y, Ferguson SJ. Mutants of Escherichia coli lacking disulphide oxidoreductases DsbA and DsbB cannot synthesise an exogenous monohaem c-type cytochrome except in the presence of disulphide compounds. FEBS Lett 1996; 398:265-8. [PMID: 8977120 DOI: 10.1016/s0014-5793(96)01256-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Absence through mutation of two proteins involved in periplasmic disulphide bond formation, DsbA and DsbB, results in failure of anaerobically grown Escherichia coli to synthesise the holo forms of either its endogenous c-type cytochrome nitrite reductase or exogenous cytochrome c550 from Paracoccus denitrificans. The synthesis of both cytochromes can be restored to the mutants by inclusion in the growth media of compounds containing disulphide bonds, e.g., the oxidised form of glutathione. The results suggest that the attachment of haem to the CXXCH motif of a periplasmic c-type cytochrome may be preceeded by the formation of one or more intra- or intermolecular disulphide bonds involving the cysteine residues of this motif.
Collapse
Affiliation(s)
- Y Sambongi
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
34
|
Grovc J, Busby S, Cole J. The role of the genes nrf EFG and ccmFH in cytochrome c biosynthesis in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:332-41. [PMID: 8842153 DOI: 10.1007/bf02173779] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has been suggested that two groups of Escherichia coli genes, the ccm genes located in the 47-min region and the nrfEFG genes in the 92-min region of the chromosome, are involved in cytochrome c biosynthesis during anaerobic growth. The involvement of the products of these genes in cytochrome c synthesis, assembly and secretion has now been investigated. Despite their similarity to other bacterial cytochrome c assembly proteins, NrfE, F and G were found not to be required for the biosynthesis of any of the c-type cytochromes in E. coli. Furthermore, these proteins were not required for the secretion of the periplasmic cytochromes, cytochrome C550 and cytochrome C552, or for the correct targeting of the NapC and NrfB cytochromes to the cytoplasmic membrane. NrfE and NrfG are required for formate-dependent nitrite reduction (the Nrf pathway), which involves at least two c-type cytochromes, cytochrome C552 and NrfB, but NrfF is not essential for this pathway. Genes similar to nrfE, nrfF and nrfG are present in the E. coli nap-ccm locus at minute 47. CcmF is similar to NrfE, the N-terminal region of CcmH is similar to NrfF and the C-terminal portion of CcmH is similar to NrfG. In contrast to NrfF, the N-terminal, NrfF-like portion of CcmH is essential for the synthesis of all c-type cytochromes. Conversely, the NrfG-like C-terminal region of CcmH is not essential for cytochrome c biosynthesis. The data are consistent with proposals from this and other laboratories that CcmF and CcmH form part of a haem lyase complex required to attach haem c to C-X-X-C-H haem-binding domains. In contrast, NrfE and NrfG are proposed to fulfill a more specialised role in the assembly of the formate-dependent nitrite reductase.
Collapse
Affiliation(s)
- J Grovc
- School of Biochemistry, University of Birmingham, UK
| | | | | |
Collapse
|
35
|
Sambongi Y, Stoll R, Ferguson SJ. Alteration of haem-attachment and signal-cleavage sites for Paracoccus denitrificans cytochrome C550 probes pathway of c-type cytochrome biogenesis in Escherichia coli. Mol Microbiol 1996; 19:1193-204. [PMID: 8730862 DOI: 10.1111/j.1365-2958.1996.tb02465.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Paracoccus denitrificans cytochrome C550 is expressed as a periplasmic holo-protein in Escherichia coli; amino acid substitutions of cysteine residues in the haem-binding motif (Cys-X-X-Cys-His), either together or singly, prevented covalent attachment of haem but not polypeptide translocation into the periplasm. When the three alanine residues at positions -3 to -1 in the native signal-cleavage site were deleted, or alanine at -1 was changed to glutamine, signal cleavage was at alternative sites (after only ten residues in the latter case), but haem attachment still occurred. When the same three alanines were changed to Asp-Glu-Asp, a membrane-associated apo product that had retained the complete signal sequence was detected. These and other results presented here indicate that (i) haem attachment is not required for the apo-cytochrome C550 export to the periplasm; (ii) haem cannot attach to apo-cytochrome C550 when attached to the cytoplasmic membrane, suggesting that signal-sequence cleavage precedes periplasmic haem attachment, which can occur at as few as six residues from the mature N-terminus; and (iii) two cysteines are required for haem attachment, possibly because a disulphide bond is an intermediate. The gene for Saccharomyces cerevisiae mitochondrial iso-1-cytochrome c was expressed as a holo-protein in E. coli when fused with the signal sequence plus the first 10 residues of the mature cytochrome C550, indicating that the E. coli cellular apparatus for the c-type cytochrome biogenesis has a broad substrate specificity.
Collapse
Affiliation(s)
- Y Sambongi
- Department of Biochemistry, University of Oxford, UK
| | | | | |
Collapse
|
36
|
Cole J. Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol Lett 1996; 136:1-11. [PMID: 8919448 DOI: 10.1111/j.1574-6968.1996.tb08017.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Anaerobic metabolism of the simplest, best understood enteric bacteria such as Escherichia coli is unexpectedly complex. Recent studies of the biochemistry and genetics of nitrate reduction via nitrite to ammonia by enteric bacteria have provided insights into the reasons for this complexity. An NADH-dependent nitrite reductase in the cytoplasm works in partnership with the respiratory nitrate reductase on the cytoplasmic side of the membrane when nitrate is abundant. There is also an electrogenic, formate-dependent nitrite reductase ready to work in partnership with a periplasmic nitrate reductase when nitrite is available but nitrate is scarce. A third E. coli nitrate reductase, NarZYWV, and the poorly expressed formate dehydrogenase O possibly facilitate rapid adaptation to oxygen starvation pending the synthesis of the major respiratory formate-nitrate oxidoreductase. Although most anaerobically expressed genes are subject to transcription control, none of them are totally switched off. This enables the bacteria to be ready for a change in fortune: when growing anaerobically with nitrate, they can respond equally rapidly whether times get better with the arrival of oxygen, or get worse when the nitrate is depleted. Far from being redundant, the complexity is essential for survival in a changing environment.
Collapse
Affiliation(s)
- J Cole
- School of Biochemistry, University of Birmingham, UK
| |
Collapse
|
37
|
Berks BC, Ferguson SJ, Moir JW, Richardson DJ. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1232:97-173. [PMID: 8534676 DOI: 10.1016/0005-2728(95)00092-5] [Citation(s) in RCA: 398] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- B C Berks
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | | | |
Collapse
|
38
|
Abaibou H, Pommier J, Benoit S, Giordano G, Mandrand-Berthelot MA. Expression and characterization of the Escherichia coli fdo locus and a possible physiological role for aerobic formate dehydrogenase. J Bacteriol 1995; 177:7141-9. [PMID: 8522521 PMCID: PMC177593 DOI: 10.1128/jb.177.24.7141-7149.1995] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In the presence of nitrate, the major anaerobic respiratory pathway includes formate dehydrogenase (FDH-N) and nitrate reductase (NAR-A), which catalyze formate oxidation coupled to nitrate reduction. Two aerobically expressed isoenzymes, FDH-Z and NAR-Z, have been recently characterized. Enzymatic analysis of plasmid subclones carrying min 88 of the Escherichia coli chromosome was consistent with the location of the fdo locus encoding FDH-Z between the fdhD and fdhE genes which are necessary for the formation of both formate dehydrogenases. The fdo locus produced three proteins (107, 34, and 22 kDa) with sizes similar to those of the subunits of the purified FDH-N. In support to their structural role, these polypeptides were recognized by antibodies specific to FDH-N. Expression of a chromosomal fdo-uidA operon fusion was induced threefold by aerobic growth and about twofold by anaerobic growth in the presence of nitrate. However, it was independent of the two global regulatory proteins FNR and ArcA, which control genes for anaerobic and aerobic functions, respectively, and of the nitrate response regulator protein NARL. In contrast, a mutation affecting either the nucleoid-associated H-NS protein or the CRP protein abolished the aerobic expression. A possible role for FDH-Z during the transition from aerobic to anaerobic conditions was examined. Synthesis of FDH-Z was maximal at the end of the aerobic growth and remained stable after a shift to anaerobiosis, whereas FDH-N production developed only under anaerobiosis. Furthermore, in an fnr strain deprived of both FDH-N and NAR-A activities, aerobically expressed FDH-Z and NAR-Z enzymes were shown to reduce nitrate at the expense of formate under anaerobic conditions, suggesting that this pathway would allow the cell to respond quickly to anaerobiosis.
Collapse
Affiliation(s)
- H Abaibou
- Laboratoire de Génétique Moléculaire des Microorganismes et des Interactions Cellulaires, Institut National des Sciences Appliquées, Centre National de la Recherche Scientifique URA 1486, Villeurbanne, France
| | | | | | | | | |
Collapse
|
39
|
Metheringham R, Griffiths L, Crooke H, Forsythe S, Cole J. An essential role for DsbA in cytochrome c synthesis and formate-dependent nitrite reduction by Escherichia coli K-12. Arch Microbiol 1995; 164:301-7. [PMID: 7487336 DOI: 10.1007/bf02529965] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An Escherichia coli K-12 mutant, isolated on the basis of its inability to catalyze formate-dependent nitrite reduction, was characterized. The mutant was defective in the synthesis of all known c-type cytochromes during anaerobic growth. The mutation was localized by conjugation, transduction, and Southern blotting experiments to the dsbA gene at minute 87 on the E. coli chromosome and was complemented by the wild-type allele. Both DsbA and the recently described DipZ protein were shown to be essential for cytochrome c synthesis, suggesting that they act sequentially in a pathway for cytochrome c assembly in the E. coli periplasm.
Collapse
|
40
|
Ritz D, Thöny-Meyer L, Hennecke H. The cycHJKL gene cluster plays an essential role in the biogenesis of c-type cytochromes in Bradyrhizobium japonicum. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:27-38. [PMID: 7715601 DOI: 10.1007/bf00425818] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We present an extended genetic analysis of the previously identified cycH locus in Bradyrhizobium japonicum. Three new open reading frames found in an operon-like structure immediately adjacent to the 3' end of cycH were termed cycJ, cycK and cycL. A deletion mutant (delta cycHJKL) and biochemical analysis of its phenotype showed that the genes of the cluster are essential for the biogenesis of cellular c-type cytochromes. Mutations in discrete regions of each of the genes were also constructed and shown to affect anaerobic respiration with nitrate and the ability to elicit an effective symbiosis with soybean, both phenotypes being a consequence of defects in cytochrome c formation. The CycK and CycL proteins share up to 53% identity in amino acid sequence with the Rhodobacter capsulatus Cc11 and Cc12 proteins, respectively, which have been shown previously to be essential for cytochrome c biogenesis, whereas cycJ codes for a novel protein of 169 amino acids with an M(r) of 17857. Localisation studies revealed that CycJ is located in the periplasmic space; it is probably anchored to the cytoplasmic membrane via an N-terminal hydrophobic domain. Based on several considerations discussed here, we suggest that the proteins encoded by the cycHJKL-cluster may be part of a cytochrome c-haem lyase complex whose active site faces the periplasm.
Collapse
Affiliation(s)
- D Ritz
- Mikrobiologisches Institut, Eidgenössiche Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | | | |
Collapse
|
41
|
Crooke H, Cole J. The biogenesis of c-type cytochromes in Escherichia coli requires a membrane-bound protein, DipZ, with a protein disulphide isomerase-like domain. Mol Microbiol 1995; 15:1139-50. [PMID: 7623667 DOI: 10.1111/j.1365-2958.1995.tb02287.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A mutant of Escherichia coli K-12, JCB606, which lacks all five c-type cytochromes synthesized during anaerobic growth in the presence of nitrite or trimethylamine-N-oxide (TMAO), was totally defective in Nrf activity and also partially defective in TMAO reductase activity. The mutation in strain JCB606 was shown to affect expression of the tor operon, which contributes almost equally with the products of the dms operon to the rate of TMAO reduction by bacteria during anaerobic growth in the presence of TMAO. The mutation in strain JCB606, dipZ, was mapped by P1 transduction close to the mel operon at co-ordinate 4425 on the E. coli chromosome, the gene order being nrf-fdhF-mel-dipZ-ampC. Recombinant plasmids that restored Nrf activity to test-tube cultures of the mutant were isolated from a cosmid library. A 2.7 kb EcoRV-SmaI fragment (co-ordinates 4443 to 4446 kb on the physical map of the E. coli chromosome) was found potentially to encode three genes arranged in at least two operons. The second gene, dipZ, was sufficient to complement the JCB606 mutation. The translated DNA sequence predicts that DipZ is a 53 kDa integral membrane protein with a 37 kDa N-terminal domain including at least six membrane-spanning helices and a 16 kDa carboxy-terminal hydrophilic domain which includes a protein disulphide isomerase-like motif. It is suggested that DipZ is essential for maintaining cytochrome c apoproteins in the correct conformations for the covalent attachment of haem groups to the appropriate pairs of cysteine residues.
Collapse
Affiliation(s)
- H Crooke
- School of Biochemistry, University of Birmingham, UK
| | | |
Collapse
|
42
|
Beck R, Crooke H, Jarsch M, Cole J, Burtscher H. Mutation in dipZ leads to reduced production of active human placental alkaline phosphatase in Escherichia coli. FEMS Microbiol Lett 1994. [DOI: 10.1111/j.1574-6968.1994.tb07286.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
43
|
Sambongi Y, Ferguson SJ. Specific thiol compounds complement deficiency in c-type cytochrome biogenesis in Escherichia coli carrying a mutation in a membrane-bound disulphide isomerase-like protein. FEBS Lett 1994; 353:235-8. [PMID: 7957865 DOI: 10.1016/0014-5793(94)01053-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Escherichia coli JCB606 carries a mutation in the dipZ gene, known to code for a disulphide isomerase-like protein, with the consequence that holo forms of neither exogenous nor endogenous c-type cytochromes are synthesised. This failure has been overcome by adding compounds containing thiol groups to the growth medium. Only L-cysteine and 2-mercaptoethane sulphonic acid were effective, suggesting a (stereo)specific binding site that could be occupied by these compounds in the absence of the catalytic domain of DipZ.
Collapse
Affiliation(s)
- Y Sambongi
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
44
|
Iobbi-Nivol C, Crooke H, Griffiths L, Grove J, Hussain H, Pommier J, Mejean V, Cole JA. A reassessment of the range of c-type cytochromes synthesized by Escherichia coli K-12. FEMS Microbiol Lett 1994; 119:89-94. [PMID: 8039676 DOI: 10.1111/j.1574-6968.1994.tb06872.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Five different c-type cytochromes have been detected during anaerobic growth of various Escherichia coli strains in different media. None of these cytochromes was detectable in aerobically-grown cultures. Only a single, 43 kDa cytochrome was synthesized in response to the presence of trimethylamine-N-oxide: synthesis of this cytochrome was unaffected by the presence of nitrate or nitrite, was repressed by oxygen, but was dependent upon a functional tor operon located at minute 22 (coordinate 1070 kb) on the E. coli chromosome. The other four cytochromes, masses 16, 18, 24 and 50 kDa, were induced by nitrite coordinately with formate-dependent nitrite reductase activity, but repressed by oxygen and nitrate. As only the 18 kDa and 50 kDa cytochromes are encoded by the nrf operon located at minute 92 (coordinate 4366 kb), there must be other loci, possibly essential for formate-dependent nitrite reduction, encoding the 16 kDa and 24 kDa cytochromes. No other c-type cytochrome was detected under any growth condition tested.
Collapse
Affiliation(s)
- C Iobbi-Nivol
- Laboratoire de Chimie Bacterienne, CNRS, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sambongi Y, Crooke H, Cole JA, Ferguson SJ. A mutation blocking the formation of membrane or periplasmic endogenous and exogenous c-type cytochromes in Escherichia coli permits the cytoplasmic formation of Hydrogenobacter thermophilus holo cytochrome c552. FEBS Lett 1994; 344:207-10. [PMID: 8187885 DOI: 10.1016/0014-5793(94)00399-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A mutant of Escherichia coli, JCB606, shown to be pleiotropically deficient in the formation of endogenous membrane and periplasmic c-type cytochromes, synthesised the apo form of the exogenous cytochrome c550 from Paracoccus denitrificans, but not the holo form. In contrast, a cytoplasmically located holo form of Hydrogenobacter thermophilus cytochrome c552 was found in E. coli JCB606. These findings support the proposition that the formation of the cytoplasmic H. thermophilus cytochrome c552 in E. coli does not involve the physiological pathway of c-type cytochrome biosynthesis in E. coli and that the haem insertion may be catalysed.
Collapse
Affiliation(s)
- Y Sambongi
- Department of Biochemistry, University of Oxford, UK
| | | | | | | |
Collapse
|
46
|
Hussain H, Grove J, Griffiths L, Busby S, Cole J. A seven-gene operon essential for formate-dependent nitrite reduction to ammonia by enteric bacteria. Mol Microbiol 1994; 12:153-63. [PMID: 8057835 DOI: 10.1111/j.1365-2958.1994.tb01004.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The DNA sequence of the regulatory region and the structural gene, nrfA, for cytochrome c552 of Escherichia coli K-12 have been reported. We have now established that nrfA is the first gene in a seven-gene operon, designated the nrf operon, at least five of which are essential for formate-dependent nitrite reduction to ammonia. This operon terminates just upstream of the previously sequenced gltP gene encoding a sodium-independent, glutamate and aspartate transporter. Expression of lac fused to nrfA, nrfE or nrfG is regulated by oxygen repression, FNR-dependent anaerobic induction, nitrite induction and nitrate repression during anaerobic growth, exactly as previously reported for the nrfA promoter. In contrast, expression of the gltP-lac fusion was FNR-independent. The open reading frame immediately downstream of nrfA encodes NrfB, a hydrophilic, penta-haem cytochrome c with an M(r) of 20,714. The structure of the N-terminal region is typical of a signal peptide for a periplasmic protein: cleavage at the putative signal peptide cleavage site, Ala-26, would result in a periplasmic cytochrome with a molecular mass of 18 kDa. The NrfC polypeptide, M(r) 24,567, contains 16 cysteine residues arranged in four clusters typical of the CooF super-family of non-haem iron-sulphur proteins. The NrfD sequence predicts a 318-residue hydrophobic protein with a distribution of acidic and basic amino acids which suggests that NrfD is an integral transmembrane protein with loops in both the periplasm and the cytoplasm. Proteins most similar to NrfD include the PsrC subunit of polysulphide reductase from Wolinella, but, as seven of the 10 most similar proteins are NADH-ubiquinone oxidoreductases, we propose that NrfD participates in the transfer of electrons from the quinone pool into the terminal components of the Nrf pathway. NrfE, M(r) 60,851, is predicted to be another hydrophobic, integral membrane protein homologous to the CdI1 protein of Rhodobacter capsulatus, which has been implicated in the assembly of periplasmic c-type cytochromes. The sequence of the 127 residue NrfF polypeptide, M(r) 14,522, is strikingly similar to the CcI2 protein of R. capsulatus, especially in the putative haem-binding motif, RCPQCQNQN.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- H Hussain
- School of Biochemistry, University of Birmingham, UK
| | | | | | | | | |
Collapse
|
47
|
Sambongi Y, Ferguson SJ. Synthesis of holo Paracoccus denitrificans cytochrome c550 requires targeting to the periplasm whereas that of holo Hydrogenobacter thermophilus cytochrome c552 does not. Implications for c-type cytochrome biogenesis. FEBS Lett 1994; 340:65-70. [PMID: 8119410 DOI: 10.1016/0014-5793(94)80174-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Expression from a plasmid of the complete gene, including the codons for the N-terminal periplasmic targeting signal, for cytochrome c550 of Paracoccus denitrificans led to the formation of the holo protein in the periplasms of both P. denitrificans and Escherichia coli. Expression of the gene from which the region coding for the targeting signal had been specifically deleted resulted in formation of apo-protein in the cytoplasms of both organisms. These findings are consistent with haem attachment occurring in the periplasm. In contrast, the formation of holo cytochrome c552 from Hydrogenobacter thermophilus following expression of the gene lacking the periplasmic targeting sequence in either P. denitrificans or E. coli is attributed to spontaneous cytoplasmic attachment of haem to the thermostable protein.
Collapse
Affiliation(s)
- Y Sambongi
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
48
|
Stewart V. Regulation of nitrate and nitrite reductase synthesis in enterobacteria. Antonie Van Leeuwenhoek 1994; 66:37-45. [PMID: 7747939 DOI: 10.1007/bf00871631] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Enterobacteria use nitrate and nitrite both as electron acceptors and as sources of nitrogen for biosynthesis. Nitrate is reduced through nitrite to ammonium in both cases. The enzymes and structural genes for nitrate/nitrite respiration and assimilation are distinct, and are subject to different patterns of regulation. Respiratory enzyme synthesis is indifferent to the availability of ammonium, and is induced by anaerobiosis via the FNR protein. Respiratory enzyme synthesis is further induced by nitrate or nitrite via the NARL and NARP proteins, which are response regulators of two-component regulatory systems. The cognate sensor proteins NARX and NARQ monitor the availability of nitrate and nitrite, and control the activity of the NARL and NARP DNA-binding proteins accordingly. Additionally, nitrate represses the synthesis of respiratory nitrite reductase, and this control is mediated by the NARL protein. Assimilatory enzyme synthesis is indifferent to the availability of oxygen, and is induced by ammonium limitation via the NTRC protein. Assimilatory enzyme synthesis is further induced by nitrate or nitrite via the NASR protein, which may act as a transcription antiterminator. Even though the respiratory and assimilatory enzyme systems are genetically distinct and subject to different forms of regulation, the structural and regulatory genes are closely linked on the Klebsiella pneumoniae chromosome.
Collapse
Affiliation(s)
- V Stewart
- Section of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| |
Collapse
|
49
|
Abstract
Escherichia coli has the capacity to synthesise three distinct formate dehydrogenase isoenzymes and three hydrogenase isoenzymes. All six are multisubunit, membrane-associated proteins that are functional in the anaerobic metabolism of the organism. One of the formate dehydrogenase isoenzymes is also synthesised in aerobic cells. Two of the formate dehydrogenase enzymes and two hydrogenases have a respiratory function while the formate dehydrogenase and hydrogenase associated with the formate hydrogenlyase pathway are not involved in energy conservation. The three formate dehydrogenases are molybdo-selenoproteins while the three hydrogenases are nickel enzymes; all six enzymes have an abundance of iron-sulfur clusters. These metal requirements alone invoke the necessity for a profusion of ancillary enzymes which are involved in the preparation and incorporation of these cofactors. The characterisation of a large number of pleiotropic mutants unable to synthesise either functionally active formate dehydrogenases or hydrogenases has led to the identification of a number of these enzymes. However, it is apparent that there are many more accessory proteins involved in the biosynthesis of these isoenzymes than originally anticipated. The biochemical function of the vast majority of these enzymes is not understood. Nevertheless, through the construction and study of defined mutants, together with sequence comparisons with homologous proteins from other organisms, it has been possible at least to categorise them with regard to a general requirement for the biosynthesis of all three isoenzymes or whether they have a specific function in the assembly of a particular enzyme. The identification of the structural genes encoding the formate dehydrogenase and hydrogenase isoenzymes has enabled a detailed dissection of how their expression is coordinated to the metabolic requirement for their products. Slowly, a picture is emerging of the extremely complex and involved path of events leading to the regulated synthesis, processing and assembly of catalytically active formate dehydrogenase and hydrogenase isoenzymes. This article aims to review the current state of knowledge regarding the biochemistry, genetics, molecular biology and physiology of these enzymes.
Collapse
Affiliation(s)
- G Sawers
- Lehrstuhl für Mikrobiologie der Universität München, Germany
| |
Collapse
|
50
|
Abstract
Synthesis of most anaerobic respiratory pathways is subject to dual regulation by anaerobiosis and nitrate. Anaerobic induction is mediated by the FNR protein. Dual interacting two-component regulatory systems mediate nitrate induction and repression. The response regulator protein NARL binds DNA to control nitrate induction and repression of genes encoding nitrate respiration enzymes and alternate anaerobic respiratory enzymes, respectively. The homologous protein NARP controls nitrite induction of at least two operons. Nitrate and nitrite signalling are both mediated by the homologous sensor proteins NARX and NARQ. Recent mutational analyses have defined a heptamer sequence necessary for specific DNA binding by the NARL protein. These heptamers are located at different positions in the control regions of different operons. The NARL protein-binding sites in the narG (nitrate reductase) and narK (nitrate-nitrite antiporter) operon control regions are located approximately 200bp upstream of the transcription initiation site. The integration host factor (IHF) greatly stimulates nitrate induction of these operons, indicating that a specific DNA loop brings NARL protein, bound at the upstream region, into the proximity of the promoter for transcription activation. Other NARL protein-dependent opersons do not require IHF for nitrate induction, and the arrangement of NARL heptamer sequences in these control regions is quite different. This complexity of signal transduction pathways, coupled with the diversity of control region architecture, combine to provide many interesting areas for future investigation. An additional challenge is to determine how or if the FNR and NARL proteins interact to mediate dual positive control of transcription initiation.
Collapse
Affiliation(s)
- V Stewart
- Section of Microbiology, Cornell University, Ithaca, New York 14853-8101
| |
Collapse
|