1
|
Arahal D, Bisgaard M, Christensen H, Clermont D, Dijkshoorn L, Duim B, Emler S, Figge M, Göker M, Moore ERB, Nemec A, Nørskov-Lauritsen N, Nübel U, On SLW, Vandamme P, Ventosa A. The best of both worlds: a proposal for further integration of Candidatus names into the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2024; 74. [PMID: 38180015 DOI: 10.1099/ijsem.0.006188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
The naming of prokaryotes is governed by the International Code of Nomenclature of Prokaryotes (ICNP) and partially by the International Code of Nomenclature for Algae, Fungi and Plants (ICN). Such codes must be able to determine names of taxa in a universal and unambiguous manner, thus serving as a common language across different fields and activities. This unity is undermined when a new code of nomenclature emerges that overlaps in scope with an established, time-tested code and uses the same format of names but assigns different nomenclatural status values to the names. The resulting nomenclatural confusion is not beneficial to the wider scientific community. Such ambiguity is expected to result from the establishment of the 'Code of Nomenclature of Prokaryotes Described from DNA Sequence Data' ('SeqCode'), which is in general and specific conflict with the ICNP and the ICN. Shortcomings in the interpretation of the ICNP may have exacerbated the incompatibility between the codes. It is reiterated as to why proposals to accept sequences as nomenclatural types of species and subspecies with validly published names, now implemented in the SeqCode, have not been implemented by the International Committee on Systematics of Prokaryotes (ICSP), which oversees the ICNP. The absence of certain regulations from the ICNP for the naming of as yet uncultivated prokaryotes is an acceptable scientific argument, although it does not justify the establishment of a separate code. Moreover, the proposals rejected by the ICSP are unnecessary to adequately regulate the naming of uncultivated prokaryotes. To provide a better service to the wider scientific community, an alternative proposal to emend the ICNP is presented, which would result in Candidatus names being regulated analogously to validly published names. This proposal is fully consistent with previous ICSP decisions, preserves the essential unity of nomenclature and avoids the expected nomenclatural confusion.
Collapse
Affiliation(s)
- David Arahal
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | | | - Henrik Christensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Dominique Clermont
- Institut Pasteur, Université Paris Cité, CRBIP, CIP-Collection of Institut Pasteur, F-75015 Paris, France
| | - Lenie Dijkshoorn
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, Leiden / Torensteelaan 68, 3281 MA Numansdorp, Netherlands
| | - Birgitta Duim
- Department Biomolecular Health Sciences, Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CS Utrecht, Netherlands
| | - Stefan Emler
- SmartGene Services SARL, EPFL Innovation Park, PSE-C, CH-1015 Lausanne, Switzerland
| | - Marian Figge
- Westerdijk Fungal Biodiversity Institute Uppsalalaan 8 3584 CT, Utrecht, Netherlands
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| | - Edward R B Moore
- Department of Infectious Disease and Culture Collection University of Gothenburg (CCUG), Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-402 34 Gothenburg, Sweden
| | - Alexandr Nemec
- Laboratory of Bacterial Genetics, National Institute of Public Health, Srobarova 48, 100 00 Prague 10, Czech Republic
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, V Úvalu 84, 150 06 Prague 5, Czechia
| | | | - Ulrich Nübel
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Stephen L W On
- Department of Wine, Food and Molecular Biosciences, Faculty of Agricultural Science, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Peter Vandamme
- BCCM/LMG, Laboratorium voor Microbiologie, Universiteit Gent (UGent) K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, C/. Prof. Garcia Gonzalez 2, ES-41012 Sevilla, Spain
| |
Collapse
|
2
|
Linz B, Sharafutdinov I, Tegtmeyer N, Backert S. Evolution and Role of Proteases in Campylobacter jejuni Lifestyle and Pathogenesis. Biomolecules 2023; 13:biom13020323. [PMID: 36830692 PMCID: PMC9953165 DOI: 10.3390/biom13020323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Infection with the main human food-borne pathogen Campylobacter jejuni causes campylobacteriosis that accounts for a substantial percentage of gastrointestinal infections. The disease usually manifests as diarrhea that lasts for up to two weeks. C. jejuni possesses an array of peptidases and proteases that are critical for its lifestyle and pathogenesis. These include serine proteases Cj1365c, Cj0511 and HtrA; AAA+ group proteases ClpP, Lon and FtsH; and zinc-dependent protease PqqE, proline aminopeptidase PepP, oligopeptidase PepF and peptidase C26. Here, we review the numerous critical roles of these peptide bond-dissolving enzymes in cellular processes of C. jejuni that include protein quality control; protein transport across the inner and outer membranes into the periplasm, cell surface or extracellular space; acquisition of amino acids and biofilm formation and dispersal. In addition, we highlight their role as virulence factors that inflict intestinal tissue damage by promoting cell invasion and mediating cleavage of crucial host cell factors such as epithelial cell junction proteins. Furthermore, we reconstruct the evolution of these proteases in 34 species of the Campylobacter genus. Finally, we discuss to what extent C. jejuni proteases have initiated the search for inhibitor compounds as prospective novel anti-bacterial therapies.
Collapse
Affiliation(s)
- Bodo Linz
- Correspondence: ; Tel.: +49-(0)-9131-8528988
| | | | | | | |
Collapse
|
3
|
A pilot RNA-seq study in 40 pietrain ejaculates to characterize the porcine sperm microbiome. Theriogenology 2020; 157:525-533. [PMID: 32971422 DOI: 10.1016/j.theriogenology.2020.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022]
Abstract
The microbiome plays a key role in homeostasis and health and it has been also linked to fertility and semen quality in several animal species including swine. Despite the more than likely importance of sperm bacteria on the boar's reproductive ability and the dissemination of pathogens and antimicrobial resistance genes, the high throughput characterization of the swine sperm microbiome remains scarce. We carried RNA-seq on 40 ejaculates each from a different Pietrain boar and found that a proportion of the sequencing reads did not map to the Sus scrofa genome. The current study aimed at using these reads not belonging to pig to carry a pilot study to profile the boar sperm bacterial population and its relation with 7 semen quality traits. We found that the boar sperm contains a broad population of bacteria. The most abundant phyla were Proteobacteria (39.1%), Firmicutes (27.5%), Actinobacteria (14.9%) and Bacteroidetes (5.7%). The predominant species contaminated sperm after ejaculation from soil, faeces and water sources (Bacillus megaterium, Brachybacterium faecium, Bacillus coagulans). Some potential pathogens were also found but at relatively low levels (Escherichia coli, Clostridioides difficile, Clostridium perfringens, Clostridium botulinum and Mycobacterium tuberculosis). We also identified 3 potential antibiotic resistant genes from E. coli against chloramphenicol, Neisseria meningitidis against spectinomycin and Staphylococcus aureus against linezolid. None of these genes were highly abundant. Finally, we classified the ejaculates into categories according to their bacterial features and semen quality parameters and identified two categories that significantly differed for 5 semen quality traits and 13 bacterial features including the genera Acinetobacter, Stenotrophomonas and Rhodobacter. Our results show that boar semen contains a bacterial community, including potential pathogens and putative antibiotic resistance genes, and that these bacteria may affect its reproductive performance.
Collapse
|
4
|
Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2020; 70:3956-4042. [DOI: 10.1099/ijsem.0.003789] [Citation(s) in RCA: 782] [Impact Index Per Article: 195.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evolutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current proposals to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M. Garrity
- NamesforLife, LLC, PO Box 769, Okemos MI 48805-0769, USA
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| | | | - Maria Chuvochina
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia QLD 4072, Brisbane, Australia
| | - Martha E. Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
5
|
Liu F, Ma R, Wang Y, Zhang L. The Clinical Importance of Campylobacter concisus and Other Human Hosted Campylobacter Species. Front Cell Infect Microbiol 2018; 8:243. [PMID: 30087857 PMCID: PMC6066527 DOI: 10.3389/fcimb.2018.00243] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Historically, Campylobacteriosis has been considered to be zoonotic; the Campylobacter species that cause human acute intestinal disease such as Campylobacter jejuni and Campylobacter coli originate from animals. Over the past decade, studies on human hosted Campylobacter species strongly suggest that Campylobacter concisus plays a role in the development of inflammatory bowel disease (IBD). C. concisus primarily colonizes the human oral cavity and some strains can be translocated to the intestinal tract. Genome analysis of C. concisus strains isolated from saliva samples has identified a bacterial marker that is associated with active Crohn's disease (one major form of IBD). In addition to C. concisus, humans are also colonized by a number of other Campylobacter species, most of which are in the oral cavity. Here we review the most recent advancements on C. concisus and other human hosted Campylobacter species including their clinical relevance, transmission, virulence factors, disease associated genes, interactions with the human immune system and pathogenic mechanisms.
Collapse
Affiliation(s)
- Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Rena Ma
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yiming Wang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
6
|
On SLW, Miller WG, Houf K, Fox JG, Vandamme P. Minimal standards for describing new species belonging to the families Campylobacteraceae and Helicobacteraceae: Campylobacter, Arcobacter, Helicobacter and Wolinella spp. Int J Syst Evol Microbiol 2017; 67:5296-5311. [PMID: 29034857 PMCID: PMC5845751 DOI: 10.1099/ijsem.0.002255] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/24/2017] [Indexed: 01/25/2023] Open
Abstract
Ongoing changes in taxonomic methods, and in the rapid development of the taxonomic structure of species assigned to the Epsilonproteobacteria have lead the International Committee of Systematic Bacteriology Subcommittee on the Taxonomy of Campylobacter and Related Bacteria to discuss significant updates to previous minimal standards for describing new species of Campylobacteraceae and Helicobacteraceae. This paper is the result of these discussions and proposes minimum requirements for the description of new species belonging to the families Campylobacteraceae and Helicobacteraceae, thus including species in Campylobacter, Arcobacter, Helicobacter, and Wolinella. The core underlying principle remains the use of appropriate phenotypic and genotypic methods to characterise strains sufficiently so as to effectively and unambiguously determine their taxonomic position in these families, and provide adequate means by which the new taxon can be distinguished from extant species and subspecies. This polyphasic taxonomic approach demands the use of appropriate reference data for comparison to ensure the novelty of proposed new taxa, and the recommended study of at least five strains to enable species diversity to be assessed. Methodological approaches for phenotypic and genotypic (including whole-genome sequence comparisons) characterisation are recommended.
Collapse
Affiliation(s)
- Stephen L. W. On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85084, Lincoln, New Zealand
| | - William G. Miller
- U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Agricultural Research Service, Albany, CA, USA
| | - Kurt Houf
- Department of Veterinary Public Health, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
- Department of Biochemistry and Microbiology, Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - James G. Fox
- Department of Comparative Medicine, Massachusetts Institute of Technology, 77, Massachusetts Avenue, Cambiridge, MA 02139, USA
| | - Peter Vandamme
- Department of Biochemistry and Microbiology, Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
7
|
Ramadan H, Jackson C, Hinton Jr. A. Screening and Rapid Identification of Campylobacter Spp. DNA by FlaA PCR Based Method on Chicken and Human Fecal Samples in Egypt. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ijps.2015.252.256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Abd El-Baky RM, Sakhy M, Gad GFM. Antibiotic susceptibility pattern and genotyping of campylobacter species isolated from children suffering from gastroenteritis. Indian J Med Microbiol 2015; 32:240-6. [PMID: 25008814 DOI: 10.4103/0255-0857.136550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
PURPOSE To study the prevalence and the antimicrobial resistance of campylobacter species isolated from children suffering from gastroenteritis . MATERIALS AND METHODS A total of 125 stool samples were collected from children with gastroenteritis. The identification of isolates was performed with conventional methods as well as with molecular methods based on 16SrRNA species-specific gene amplification by PCR and product analysis. Resistance pattern of the isolated strains was determined using agar dilution method. RESULTS Conventional methods including sodium hippurate hydrolysis revealed that 12 (9.6%) samples were positive for Campylobacter species. Ten out of 12 Campylobacter spp. were identified as Campylobacter jejuni and 2 as Campylobacter coli but PCR assay revealed that five samples only were positive for Campylobacter and all were C. jejuni. Antimicrobial susceptibility to 10 antimicrobials was performed and all isolates (five isolates of C. jejuni) were susceptible to chloramphenicol, gentamicin and amikacin but all were resistant to ceftriaxone. CONCLUSION PCR assay method allows reliable detection of C. jejuni. C. jejuni was the most prevalent Campylobacter species. Gentamicin, amikacin and chloramphenicol were the most effective antibiotic.
Collapse
Affiliation(s)
- R M Abd El-Baky
- Department of Microbiology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | | | |
Collapse
|
9
|
Iraola G, Pérez R, Naya H, Paolicchi F, Pastor E, Valenzuela S, Calleros L, Velilla A, Hernández M, Morsella C. Genomic evidence for the emergence and evolution of pathogenicity and niche preferences in the genus Campylobacter. Genome Biol Evol 2014; 6:2392-405. [PMID: 25193310 PMCID: PMC4202331 DOI: 10.1093/gbe/evu195] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The genus Campylobacter includes some of the most relevant pathogens for human and animal health; the continuous effort in their characterization has also revealed new species putatively involved in different kind of infections. Nowadays, the available genomic data for the genus comprise a wide variety of species with different pathogenic potential and niche preferences. In this work, we contribute to enlarge this available information presenting the first genome for the species Campylobacter sputorum bv. sputorum and use this and the already sequenced organisms to analyze the emergence and evolution of pathogenicity and niche preferences among Campylobacter species. We found that campylobacters can be unequivocally distinguished in established and putative pathogens depending on their repertory of virulence genes, which have been horizontally acquired from other bacteria because the nonpathogenic Campylobacter ancestor emerged, and posteriorly interchanged between some members of the genus. Additionally, we demonstrated the role of both horizontal gene transfers and diversifying evolution in niche preferences, being able to distinguish genetic features associated to the tropism for oral, genital, and gastrointestinal tissues. In particular, we highlight the role of nonsynonymous evolution of disulphide bond proteins, the invasion antigen B (CiaB), and other secreted proteins in the determination of niche preferences. Our results arise from assessing the previously unmet goal of considering the whole available Campylobacter diversity for genome comparisons, unveiling notorious genetic features that could explain particular phenotypes and set the basis for future research in Campylobacter biology.
Collapse
Affiliation(s)
- Gregorio Iraola
- Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay Sección Genética Evolutiva, Facultad de Ciencias, Montevideo, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Facultad de Ciencias, Montevideo, Uruguay
| | - Hugo Naya
- Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Montevideo, Uruguay
| | - Fernando Paolicchi
- Laboratorio de Bacteriología, Unidad Integrada INTA-Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Eugenia Pastor
- Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay
| | | | - Lucía Calleros
- Sección Genética Evolutiva, Facultad de Ciencias, Montevideo, Uruguay
| | - Alejandra Velilla
- Laboratorio de Bacteriología, Unidad Integrada INTA-Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Martín Hernández
- Sección Genética Evolutiva, Facultad de Ciencias, Montevideo, Uruguay
| | - Claudia Morsella
- Laboratorio de Bacteriología, Unidad Integrada INTA-Universidad Nacional de Mar del Plata, Balcarce, Argentina
| |
Collapse
|
10
|
Verma AK, Verma R, Ahuja V, Paul J. Real-time analysis of gut flora in Entamoeba histolytica infected patients of Northern India. BMC Microbiol 2012; 12:183. [PMID: 22913622 PMCID: PMC3534334 DOI: 10.1186/1471-2180-12-183] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 07/30/2012] [Indexed: 02/07/2023] Open
Abstract
Background Amebic dysentery is caused by the protozoan parasite Entamoeba histolytica and the ingestion of quadrinucleate cyst of E. histolytica from fecally contaminated food or water initiates infection. Excystation occurs in the lumen of small intestine, where motile and potentially invasive trophozoites germinate from cysts. The ability of trophozoites to interact and digest gut bacteria is apparently important for multiplication of the parasite and its pathogenicity; however the contribution of resident bacterial flora is not well understood. We quantified the population of Bacteroides, Bifidobacterium, Ruminococcus, Lactobacillus, Clostridium leptum subgroup, Clostridium coccoides subgroup, Eubacterium, Campylobacter, Methanobrevibacter smithii and Sulphur reducing bacteria using genus specific primers in healthy (N = 22) vs amebic patients (E. histolytica positive, N = 17) stool samples by Real-time PCR. Results Absolute quantification of Bacteroides (p = .001), Closrtridium coccoides subgroup (p = 0.002), Clostridium leptum subgroup (p = 0.0001), Lactobacillus (p = 0.037), Campylobacter (p = 0.0014) and Eubacterium (p = 0.038) show significant drop in their population however, significant increase in Bifdobacterium (p = 0.009) was observed where as the population of Ruminococcus (p = 0.33) remained unaltered in healthy vs amebic patients (E. histolytica positive). We also report high prevalence of nimE gene in stool samples of both healthy volunteers and amebic patients. No significant decrease in nimE gene copy number was observed before and after the treatment with antiamebic drug. Conclusions Our results show significant alteration in predominant gut bacteria in E. histolytica infected individuals. The frequent episodes of intestinal amoebic dysentery thus result in depletion of few predominant genera in gut that may lead to poor digestion and absorption of food in intestine. It further disturbs the homeostasis between gut epithelium and bacterial flora. The decrease in beneficial bacterial population gives way to dysbiosis of gut bacteria which may contribute to final outcome of the disease. Increase in the copy number of nimE gene harboring bacteria in our population reflects possible decrease in the availability of metronidazole drug during treatment of amoebiasis.
Collapse
Affiliation(s)
- Anil Kumar Verma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | |
Collapse
|
11
|
Kaakoush NO, Mitchell HM. Campylobacter concisus - A new player in intestinal disease. Front Cell Infect Microbiol 2012; 2:4. [PMID: 22919596 PMCID: PMC3417403 DOI: 10.3389/fcimb.2012.00004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/17/2012] [Indexed: 12/12/2022] Open
Abstract
Over the last decade Campylobacter concisus, a highly fastidious member of the Campylobacter genus has been described as an emergent pathogen of the human intestinal tract. Historically, C. concisus was associated with the human oral cavity and has been linked with periodontal lesions, including gingivitis and periodontitis, although currently its role as an oral pathogen remains contentious. Evidence to support the role of C. concisus in acute intestinal disease has come from studies that have detected or isolated C. concisus as sole pathogen in fecal samples from diarrheic patients. C. concisus has also been associated with chronic intestinal disease, its prevalence being significantly higher in children with newly diagnosed Crohn’s disease (CD) and adults with ulcerative colitis than in controls. Further C. concisus has been isolated from biopsy specimens of patients with CD. While such studies support the role of C. concisus as an intestinal pathogen, its isolation from healthy individuals, and failure of some studies to show a significant difference in C. concisus prevalence in subjects with diarrhea and healthy controls has raised contention as to its role in intestinal disease. Such findings could argue against the role of C. concisus in intestinal disease, however, the fact that C. concisus strains are genetically diverse raises the possibility that differences exist in their pathogenic potential. Evidence to support this view comes from studies showing strain specific differences in the ability of C. concisus to attach to and invade cells and produce virulence factors, including toxins and hemolytic phospholipase A. Further, sequencing of the genome of a C. concisus strain isolated from a child with CD (UNSWCD) and comparison of this with the only other fully sequenced strain (BAA-1457) would suggest that major differences exist in the genetic make-up of this species which could explain different outcomes of C. concisus infection.
Collapse
Affiliation(s)
- Nadeem Omar Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales Sydney, NSW, Australia
| | | |
Collapse
|
12
|
Abstract
A growing number of Campylobacter species other than C. jejuni and C. coli have been recognized as emerging human and animal pathogens. Although C. jejuni continues to be the leading cause of bacterial gastroenteritis in humans worldwide, advances in molecular biology and development of innovative culture methodologies have led to the detection and isolation of a range of under-recognized and nutritionally fastidious Campylobacter spp., including C. concisus, C. upsaliensis and C. ureolyticus. These emerging Campylobacter spp. have been associated with a range of gastrointestinal diseases, particularly gastroenteritis, IBD and periodontitis. In some instances, infection of the gastrointestinal tract by these bacteria can progress to life-threatening extragastrointestinal diseases. Studies have shown that several emerging Campylobacter spp. have the ability to attach to and invade human intestinal epithelial cells and macrophages, damage intestinal barrier integrity, secrete toxins and strategically evade host immune responses. Members of the Campylobacter genus naturally colonize a wide range of hosts (including pets, farm animals and wild animals) and are frequently found in contaminated food products, which indicates that these bacteria are at risk of zoonotic transmission to humans. This Review presents the latest information on the role and clinical importance of emerging Campylobacter spp. in gastrointestinal health and disease.
Collapse
Affiliation(s)
- Si Ming Man
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| |
Collapse
|
13
|
Woo P, Lau S, Teng J, Tse H, Yuen KY. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect 2008; 14:908-34. [DOI: 10.1111/j.1469-0691.2008.02070.x] [Citation(s) in RCA: 524] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Aabenhus R, On SLW, Siemer BL, Permin H, Andersen LP. Delineation of Campylobacter concisus genomospecies by amplified fragment length polymorphism analysis and correlation of results with clinical data. J Clin Microbiol 2005; 43:5091-6. [PMID: 16207968 PMCID: PMC1248439 DOI: 10.1128/jcm.43.10.5091-5096.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter concisus has been as frequently isolated from human diarrhea as the important enteropathogen Campylobacter jejuni, but it also occurs in the feces of healthy individuals. The role of C. concisus in human disease has been difficult to determine, since the species comprises at least two phenotypically indistinguishable but genetically distinct taxa (i.e., genomospecies) that may vary in pathogenicity. We examined 62 C. concisus strains by amplified fragment length polymorphism (AFLP) profiling and correlated the results with clinical data. All C. concisus strains gave unique AFLP profiles, and numerical analysis of these data distributed the strains among four clusters. The clustering was of taxonomic significance: two clusters contained, respectively, the type strain (of oral origin) and a reference strain (from diarrhea) of each of the known genomospecies. Genomospecies 2 strains were more frequently isolated from immunocompetent patients and/or patients without concomitant infections that presented with fever, chronic diarrhea, and gut inflammation than was genomospecies 1, clustering with the type strain of oral origin. Bloody diarrhea was recorded only with C. concisus genomospecies 2 infections. We identified two additional C. concisus genomospecies: genomospecies 3 comprised a single strain from an immunocompetent patient, and genomospecies 4 contained five isolates from severely immunodeficient patients, i.e., organ transplantation recipients or those with hematological malignancies. All genomospecies 4 strains were of the same protein profile group and failed to react with a C. concisus species-specific PCR assay based on 23S rRNA gene sequences: the taxonomic position of this group requires closer investigation. Campylobacter concisus is genetically and taxonomically diverse and contains at least four distinct genomospecies that may exhibit differences in their spectra of virulence potential.
Collapse
Affiliation(s)
- Rune Aabenhus
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
15
|
Workman SN, Mathison GE, Lavoie MC. Pet dogs and chicken meat as reservoirs of Campylobacter spp. in Barbados. J Clin Microbiol 2005; 43:2642-50. [PMID: 15956378 PMCID: PMC1151911 DOI: 10.1128/jcm.43.6.2642-2650.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 11/21/2004] [Accepted: 02/13/2005] [Indexed: 11/20/2022] Open
Abstract
Campylobacter spp. are the second most common pathogen isolated from stools of patients with gastroenteritis in Barbados. The aim of this study was to identify reservoirs of Campylobacter and the likely source(s) of human infection. Fecal specimens from 596 animals and 311 samples of animal food products were analyzed for the presence of Campylobacter spp. by standard culture techniques. Isolates were characterized by conventional phenotypic tests, confirmed by latex agglutination and PCR with genus-specific primers, and identified by the use of species-specific primers. High isolation rates were obtained for chickens (94.2%), pigs (90.5%), dogs (46.9%), cats (37.3%), and wild birds (39.3%). Campylobacter was also recovered from monkeys (17.1%) and sheep (4.2%) but not from cows. Chicken meat was frequently contaminated with Campylobacter (58.4%), but its recovery from other animal food products was rare. Campylobacter jejuni was the most commonly identified species in humans (63.6%), chickens (86.6%), dogs (51.5%), and chicken meat (79.8%). Porcine isolates were predominantly C. coli (98.4%), while cats harbored mainly C. upsaliensis and C. helveticus. Wild birds alone carried urease-positive thermophilic campylobacters. C. jejuni and C. coli isolates from different sources were compared with isolates from humans by randomly amplified polymorphic DNA typing with the primers OPA 11 and HLWL 85. Genotyping revealed similarities between isolates from chicken meat and those from humans and could not distinguish between two clinical isolates and four canine strains. Our results suggest that dogs are significant reservoirs of Campylobacter and contribute to human enteric infections and that chicken meat is a likely vehicle for the transmission of campylobacters to humans.
Collapse
Affiliation(s)
- Suzanne N Workman
- Department of Biological and Chemical Sciences, Faculty of Pure and Applied Sciences, University of the West Indies, Cave Hill Campus, P.O. Box 64, Bridgetown, Barbados.
| | | | | |
Collapse
|
16
|
Malinen E, Rinttilä T, Kajander K, Mättö J, Kassinen A, Krogius L, Saarela M, Korpela R, Palva A. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am J Gastroenterol 2005; 100:373-82. [PMID: 15667495 DOI: 10.1111/j.1572-0241.2005.40312.x] [Citation(s) in RCA: 490] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The gut microbiota may contribute to the onset and maintenance of irritable bowel syndrome (IBS). In this study, the microbiotas of patients suffering from IBS were compared with a control group devoid of gastrointestinal (GI) symptoms. METHODS Fecal microbiota of patients (n = 27) fulfilling the Rome II criteria for IBS was compared with age- and gender-matched control subjects (n = 22). Fecal samples were obtained at 3 months intervals. Total bacterial DNA was analyzed by 20 quantitative real-time PCR assays covering approximately 300 bacterial species. RESULTS Extensive individual variation was observed in the GI microbiota among both the IBS- and control groups. Sorting of the IBS patients according to the symptom subtypes (diarrhea, constipation, and alternating predominant type) revealed that lower amounts of Lactobacillus spp. were present in the samples of diarrhea predominant IBS patients whereas constipation predominant IBS patients carried increased amounts of Veillonella spp. Average results from three fecal samples suggested differences in the Clostridium coccoides subgroup and Bifidobacterium catenulatum group between IBS patients (n = 21) and controls (n = 15). Of the intestinal pathogens earlier associated with IBS, no indications of Helicobacter spp. or Clostridium difficile were found whereas one case of Campylobacter jejuni was identified by sequencing. CONCLUSIONS With these real-time PCR assays, quantitative alterations in the GI microbiota of IBS patients were found. Increasing microbial DNA sequence information will further allow designing of new real-time PCR assays for a more extensive analysis of intestinal microbes in IBS.
Collapse
Affiliation(s)
- Erja Malinen
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Section of Microbiology, P.O. Box 66, FIN-00014 University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
AIMS To determine the prevalence of chronic shedding of Campylobacter species by beef cattle, a longitudinal study of shedding patterns was conducted in a cohort of 60 beef steers over a 4-month period. METHODS AND RESULTS Steers were maintained in a simulated feedlot setting but individually in pens to minimize transmission among animals. At each collection time, campylobacters in faeces were detected using conventional PCR. In addition, quantities of Campylobacter jejuni and C. lanienae in faeces were measured using real-time quantitative (RTQ) PCR. All of the steers tested shed Campylobacter species during the course of the study, and overall, 90% of the 299 samples tested were positive for Campylobacter DNA. The majority of the animals (86%) shed campylobacters at >/=4 sample times. The most prevalent taxon detected in bovine faeces was C. lanienae (56% of samples) followed by C. jejuni (13%), C. hyointestinalis (8%), and C. fetus (2%). No C. coli was detected, and 13% of the faecal samples contained two or more of the above species. Seven (12%) and 34 (57%) animals shed C. jejuni and C. lanienae at >/=3 sample times, respectively. For both C. lanienae and C. jejuni, a substantial number of cells were detected in faeces using RTQ-PCR; 27% of the samples positive for C. jejuni contained populations >10(4) cells g(-1) (maximum of 5 x 10(5) cells g(-1)), and 44% of samples positive for C. lanienae possessed populations >10(6) cells g(-1) (maximum of 4 x 10(8) cells g(-1)). A significant correlation was observed between shedding of C. lanienae and the severity of liver abscesses. In 27% of the samples, an amplicon was obtained for genus-specific but not for the species-specific primers. Sequencing of the partial 16S rRNA gene suggested the presence of at least two undescribed Campylobacter species but this has yet to be confirmed. CONCLUSIONS A high percentage of feedlot cattle shed large quantities of Campylobacter species in their faeces over a protracted period of time (ca 112 days). SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study of longitudinal shedding patterns of campylobacters in beef cattle using PCR-detection methods. In addition, this is the first use of RTQ-PCR to directly quantify C. jejuni or C. lanienae in faeces. The results of the study show that a large number of cattle (>85%) chronically shed campylobacters in feedlots.
Collapse
Affiliation(s)
- G D Inglis
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, Canada.
| | | | | |
Collapse
|
18
|
Linscott AJ, Flamholtz RB, Shukla D, Song Y, Liu C, Finegold SM. Fatal septicemia due to Clostridium hathewayi and Campylobacter hominis. Anaerobe 2004; 11:97-8. [PMID: 16701538 DOI: 10.1016/j.anaerobe.2004.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2004] [Accepted: 10/15/2004] [Indexed: 11/30/2022]
Abstract
Clostridium hathewayi and Campylobacter hominis have not been previously reported in infection. We report a fatal case of septicemia, massive intravascular hemolysis, shock, and disseminated intravascular coagulation; both of these organisms were recovered on blood culture, although it seems likely that the C. hathewayi was responsible for the clinical picture and that the C. hominis was an incidental finding.
Collapse
Affiliation(s)
- Andrea J Linscott
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | | | | | | | | |
Collapse
|
19
|
Maher M, Finnegan C, Collins E, Ward B, Carroll C, Cormican M. Evaluation of culture methods and a DNA probe-based PCR assay for detection of Campylobacter species in clinical specimens of feces. J Clin Microbiol 2003; 41:2980-6. [PMID: 12843030 PMCID: PMC165355 DOI: 10.1128/jcm.41.7.2980-2986.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter species are the leading agents of bacterial gastroenteritis in developed countries. In this study 320 specimens of feces from patients with symptoms of acute gastroenteritis were cultured for Campylobacter species by direct plating on modified charcoal cefoperazone deoxycholate agar and by enrichment in modified Preston broth, with or without blood added, for 48 h at 37 degrees C prior to plating. A 16S/23S PCR/DNA probe membrane-based colorimetric detection assay was evaluated on a subset of the feces (n = 127), including 18 culture-positive and 109 culture-negative specimens. DNA was extracted directly from the fecal specimens by using the QIAamp DNA stool Minikit for the DNA probe-based PCR assay (PCR/DNA probe assay). A second PCR/DNA probe assay based on the 16S rRNA gene in Campylobacter spp. was applied to all specimens that were culture negative, PCR/DNA positive on initial analysis. Campylobacter species were cultured in 20 of the 320 specimens. The 16S/23S PCR/DNA probe assay detected campylobacter DNA in 17 of 18 (94% sensitivity) culture-positive specimens and in 41 (38%) culture-negative specimens. The presence of campylobacter DNA in 35 of 41 culture-negative specimens was confirmed by the 16S PCR/DNA probe assay. DNA sequence analysis of seven 16S/23S PCR products and five 16S PCR products amplified from a selection of these specimens confirmed the presence of campylobacter DNA and more specifically Campylobacter jejuni, C. concisus, C. curvus, and C. gracilis DNA in these specimens. The molecular assays described in this study are rapid methods for the detection and identification of Campylobacter species in fecal specimens. The finding of Campylobacter spp. DNA in a large number of specimens of feces from patients with no other identified cause of diarrhea may suggest that Campylobacter spp. other than C. jejuni and C. coli may account for a proportion of cases of acute gastroenteritis in which no etiological agent is currently identified.
Collapse
Affiliation(s)
- Majella Maher
- The National Diagnostics Centre, BioResearch, National University of Ireland and Department of Medical Microbiology, University College Hospital, Galway, Ireland.
| | | | | | | | | | | |
Collapse
|
20
|
Kulkarni SP, Lever S, Logan JMJ, Lawson AJ, Stanley J, Shafi MS. Detection of campylobacter species: a comparison of culture and polymerase chain reaction based methods. J Clin Pathol 2002; 55:749-53. [PMID: 12354800 PMCID: PMC1769764 DOI: 10.1136/jcp.55.10.749] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIMS To investigate the optimal method for the detection of campylobacters from stool samples by comparing selective culture with membrane filtration and the polymerase chain reaction (PCR). METHODS Three hundred and forty three stool samples were investigated by each of the three methods mentioned above. Selective culture was performed with charcoal cefoperazone desoxycholate agar plates. Membrane filtration was performed using cellulose triacetate membranes with 0.45 micro m pores placed on blood agar plates. Enteropathogenic campylobacters were detected using a PCR identification algorithm, consisting of screening PCRs and species identification using a PCR enzyme linked immunosorbent assay (PCR-ELISA), both based on the 16S rRNA gene. RESULTS Of the 343 samples tested, 23 were positive by one or more method. Of these, 17 were positive by selective culture, 12 by membrane filtration, and 20 by the PCR identification algorithm. A total of 18 of 23 positives were identified as C jejuni and/or C coli by the PCR identification algorithm, compared with 14 identified to the genus level by selective culture, and 10 by membrane filtration. Among the remaining five positive samples, one C hyointestinalis was detected only by the PCR identification algorithm; one C upsaliensis was detected only by the PCR identification algorithm; one Campylobacter sp was detected by membrane filtration and selective culture and later identified as C concisus; one Campylobacter sp was detected by membrane filtration alone and later identified as Arcobacter sp; and one Campylobacter sp detected only by selective culture was lost to study and therefore not speciated. There was no significant difference between detection by selective culture and the other two methods. However, detection by PCR was significantly better than by membrane filtration (0.05 > p > 0.02). CONCLUSION The PCR identification algorithm can detect and identify Campylobacter spp to the species level and the result is obtained on the same day. However, PCR is expensive, labour intensive, and does not provide an isolate for further identification or typing. Selective culture is as good as the PCR identification algorithm for the detection of the two most common species, C jejuni and C coli, and it is cheap and practical. However, it does miss the less common species, results take 48 hours, and identification is only to the genus level. Membrane filtration showed a low sensitivity compared with the other methods and is not appropriate for the diagnostic laboratory, although it was the only method to detect the Arcobacter sp. The optimum method for the detection of campylobacters from stool samples in the diagnostic laboratory remains selective culture.
Collapse
Affiliation(s)
- S P Kulkarni
- Public Health Laboratory, Central Middlesex Hospital, Acton Lane, Park Royal, London NW10 7NS, UK.
| | | | | | | | | | | |
Collapse
|
21
|
On SL. Taxonomy of Campylobacter, Arcobacter, Helicobacter and related bacteria: current status, future prospects and immediate concerns. SYMPOSIUM SERIES (SOCIETY FOR APPLIED MICROBIOLOGY) 2001:1S-15S. [PMID: 11422556 DOI: 10.1046/j.1365-2672.2001.01349.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- S L On
- Danish Veterinary Laboratory, Copenhagen, Denmark.
| |
Collapse
|
22
|
Engberg J, On SL, Harrington CS, Gerner-Smidt P. Prevalence of Campylobacter, Arcobacter, Helicobacter, and Sutterella spp. in human fecal samples as estimated by a reevaluation of isolation methods for Campylobacters. J Clin Microbiol 2000; 38:286-91. [PMID: 10618103 PMCID: PMC88711 DOI: 10.1128/jcm.38.1.286-291.2000] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aims of this study were to investigate the prevalence of campylobacteria including Campylobacter jejuni subsp. jejuni (C. jejuni) and Campylobacter coli in human clinical samples and in samples from healthy individuals and to reevaluate the efficacies of conventional selective methods for isolation of Campylobacter spp. Two charcoal-based selective media, modified charcoal cefoperazone deoxycholate agar (mCCDA) and cefoperazone-amphotericin-teicoplanin (CAT) agar, were compared with Skirrow's blood-based medium and with a filter method (filter) applied to a yeast-enriched blood agar. A total of 1,376 specimens were tested on all four media, and the percentages of thermophilic Campylobacter-positive specimens isolated on Skirrow's medium, filters, CAT agar, and mCCDA were 82, 83, 85, and 95%, respectively. When additional samples were processed with the three selective media, mCCDA recovered significantly more thermophilic Campylobacter spp. than Skirrow's medium (P = 0.0034). No significant difference between Skirrow's medium and CAT agar was observed in this study. Another six taxa were identified, namely, Campylobacter concisus, Campylobacter curvus-like bacteria, Arcobacter butzleri, Arcobacter cryaerophilus, Helicobacter cinaedi, and Sutterella wadsworthensis. Most of these strains were isolated after 5 to 6 days of incubation by use of the filter technique. This paper provides evidence for the existence of S. wadsworthensis in human feces from clinical cases of gastrointestinal disorders and in feces from a healthy individual. Furthermore, C. concisus was isolated from a large number of diarrheal cases, particularly those at the extremes of age, but was additionally isolated from the feces of healthy people. Further investigations to establish the role of C. concisus and S. wadsworthensis in enteric disease is needed. We conclude that a range of campylobacteria may cause infections in Denmark.
Collapse
Affiliation(s)
- J Engberg
- Department of Gastrointestinal Infections, Division of Diagnostics, Statens Serum Institut, DK-2300 Copenhagen S, Denmark.
| | | | | | | |
Collapse
|
23
|
Lawson AJ, Logan JM, O'neill GL, Desai M, Stanley J. Large-scale survey of Campylobacter species in human gastroenteritis by PCR and PCR-enzyme-linked immunosorbent assay. J Clin Microbiol 1999; 37:3860-4. [PMID: 10565897 PMCID: PMC85830 DOI: 10.1128/jcm.37.12.3860-3864.1999] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A PCR-based study of the incidence of enteropathogenic campylobacter infection in humans was done on the basis of a detection and identification algorithm consisting of screening PCRs and species identification by PCR-enzyme-linked immunosorbent assay. This was applied to DNA extracted from 3,738 fecal samples from patients with sporadic cases of acute gastroenteritis, submitted by seven regional Public Health Laboratories in England and Wales over a 2-year period. The sending laboratories had cultured "Campylobacter spp." from 464 samples. The PCR methodologies detected 492 Campylobacter-positive samples, and the combination of culture and PCR yielded 543 Campylobacter-positive samples. There was identity (overlap) for 413 samples, but 79 PCR-positive samples were culture negative, and 51 culture-positive samples were PCR negative. While there was no statistically significant difference between PCR and culture in detection of C. jejuni-C. coli (PCR, 478 samples; culture, 461 samples), PCR provided unique data about mixed infections and non-C. jejuni and non- C. coli campylobacters. Mixed infections with C. jejuni and C. coli were found in 19 samples, and mixed infection with C. jejuni and C. upsaliensis was found in one sample; this was not apparent from culture. Eleven cases of gastroenteritis were attributed to C. upsaliensis by PCR, three cases were attributed to C. hyointestinalis, and one case was attributed to C. lari. This represents the highest incidence of C. hyointestinalis yet reported from human gastroenteritis, while the low incidence of C. lari suggests that it is less important in this context.
Collapse
Affiliation(s)
- A J Lawson
- Molecular Biology Unit, Virus Reference Division, Central Public Health Laboratory, London NW9 5HT, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Connerton PL, Connerton IF. Identification of a gene encoding an immuno-reactive membrane protein from Campylobacter jejuni. Lett Appl Microbiol 1999; 28:233-7. [PMID: 10196775 DOI: 10.1046/j.1365-2672.1999.00491.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A gene encoding a putative membrane protein has been identified from Campylobacter jejuni NCTC 11168 following an immuno-screen of a lambda ZAP II genomic DNA library with antiserum raised against glycine-extractable proteins. The nucleotide sequence of the entire genomic insert revealed six open reading frames, all but one of which have sequence homologues in the complete genome sequence of Helicobacter pylori. The gene encoding the immuno-reactive protein was further identified by independent expression of these reading frames in Escherichia coli. The gene encodes an integral membrane protein, expression of which in E. coli results in a profound filamentous phenotype.
Collapse
Affiliation(s)
- P L Connerton
- Department of Biochemistry, Imperial College of Science Technology and Medicine, London, UK
| | | |
Collapse
|