1
|
Choufa C, Gascht P, Leblond H, Gauthier A, Vos M, Bontemps C, Leblond P. Conjugation Mediates Large-Scale Chromosomal Transfer in Streptomyces Driving Diversification of Antibiotic Biosynthetic Gene Clusters. Mol Biol Evol 2024; 41:msae236. [PMID: 39506544 DOI: 10.1093/molbev/msae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Streptomyces are ubiquitous soil-dwelling bacteria with large, linear genomes that are of special importance as a source of metabolites used in human and veterinary medicine, agronomy, and industry. Conjugative elements (actinomycetes integrative and conjugative elements, AICEs) are the main drivers of Streptomyces Horizontal Gene Transfer. AICE transfer has long been known to be accompanied by mobilization of chromosomal DNA. However, the magnitude of DNA transfer, or the localization of acquired DNA across their linear chromosome, has remained undetermined. We here show that conjugative crossings in sympatric strains of Streptomyces result in the large-scale, genome-wide distributed replacement of up to one-third of the recipient chromosome, a phenomenon for which we propose the name "Streptomyces Chromosomal Transfer" (SCT). Such chromosome blending results in the acquisition, loss, and hybridization of Specialized Metabolite Biosynthetic Gene Clusters, leading to a novel metabolic arsenal in exconjugant offspring. Harnessing conjugation-mediated specialized metabolite biosynthesis gene cluster diversification holds great promise in the discovery of new bioactive compounds including antibiotics.
Collapse
Affiliation(s)
- Caroline Choufa
- Université de Lorraine, INRAe, DynAMic, Nancy, F-54000, France
| | - Pauline Gascht
- Université de Lorraine, INRAe, DynAMic, Nancy, F-54000, France
| | - Hugo Leblond
- Université de Lorraine, CNRS, Inria, LORIA, Nancy, F-54000, France
| | | | - Michiel Vos
- European Centre for Environment and Human Health, Penryn Campus, Penryn TR10 9FE, UK
| | - Cyril Bontemps
- Université de Lorraine, INRAe, DynAMic, Nancy, F-54000, France
| | - Pierre Leblond
- Université de Lorraine, INRAe, DynAMic, Nancy, F-54000, France
| |
Collapse
|
2
|
Dong J, Ning J, Tian Y, Li H, Chen H, Guan W. The involvement of multiple ABC transporters in daunorubicin efflux in Streptomyces coeruleorubidus. Microb Biotechnol 2024; 17:e70023. [PMID: 39375957 PMCID: PMC11458662 DOI: 10.1111/1751-7915.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/15/2024] [Indexed: 10/09/2024] Open
Abstract
Streptomyces genus produces a large number of antibiotics, which are always synthesized by specific biosynthetic gene clusters (BGCs). To resist autotoxicity, transporters encoded by genes located within BGC occasionally pump antibiotic along with transporter encoded by gene located outside BGC. Daunorubicin is an anthracycline antibiotic biosynthesized by Streptomyces species, playing a crucial role in the treatment of leukaemia. In existing studies, only one two-component ATP-binding cassette (ABC) transporter, encoded by drrA1-drrB1 (abbreviated as drrAB1) and located within the daunorubicin BGC, has been proven to extrude daunorubicin. In this work, two other two-component ABC transporters, encoded by drrAB2 and drrAB3 and located outside the cluster, were found to play the complementary role in daunorubicin efflux in S. coeruleorubidus. Disruption of three drrABs resulted in a 94% decrease in daunorubicin production. Furthermore, drrAB2 is regulated by the TetR family regulator DrrR1, responding to the intracellular accumulation of daunorubicin and suggesting its role in stress response and self-resistance. Although the homologues of DrrAB1 are only found in three anthracycline BGCs, the homologues of DrrAB2 and DrrAB3 are spread in many Streptomyces strains which do not contain any known anthracycline BGC. This indicates that DrrAB2 and DrrAB3 may recognize and extrude a broader range of substrates besides daunorubicin, thus playing a more extensive role in cellular detoxification.
Collapse
Affiliation(s)
- Jianxin Dong
- The Fourth Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of MedicineZhejiang UniversityHangzhouChina
| | - Jiali Ning
- The Fourth Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of MedicineZhejiang UniversityHangzhouChina
| | - Yu Tian
- School of Biology, Food and EnvironmentHefei UniversityHefeiChina
| | - Han Li
- The Fourth Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of MedicineZhejiang UniversityHangzhouChina
| | - Hua Chen
- School of Biology, Food and EnvironmentHefei UniversityHefeiChina
| | - Wenjun Guan
- The Fourth Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
3
|
Javorova R, Sevcikova B, Rezuchova B, Novakova R, Opaterny F, Csolleiova D, Feckova L, Kormanec J. Multiple SigB homologues govern the transcription of the ssgBp promoter in the sporulation-specific ssgB gene in Streptomyces coelicolor A3(2). Res Microbiol 2024; 175:104201. [PMID: 38522628 DOI: 10.1016/j.resmic.2024.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Unlike Bacillus subtilis, Streptomyces coelicolor contains nine SigB homologues of the stress-response sigma factor SigB. By using a two-plasmid system, we previously identified promoters recognized by these sigma factors. Almost all promoters were recognized by several SigB homologues. However, no specific sequences of these promoters were found. One of these promoters, ssgBp, was selected to examine this cross-recognition in the native host. It controls the expression of the sporulation-specific gene ssgB. Using a luciferase reporter, the activity of this promoter in S. coelicolor and nine mutant strains lacking individual sigB homologous genes showed that sgBp is dependent on three sigma factors, SigH, SigN, and SigI. To determine which nucleotides in the-10 region are responsible for the selection of a specific SigB homologue, promoters mutated at the last three nucleotide positions were tested in the two-plasmid system. Some mutant promoters were specifically recognized by a distinct set of SigB homologues. Analysis of these mutant promoters in the native host showed the role of these nucleotides. A conserved nucleotide A at position 5 was essential for promoter activity, and two variable nucleotides at positions 4 and 6 were responsible for the partial selectivity of promoter recognition by SigB homologues.
Collapse
Affiliation(s)
- Rachel Javorova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Beatrica Sevcikova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Bronislava Rezuchova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Filip Opaterny
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Dominika Csolleiova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Lubomira Feckova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| |
Collapse
|
4
|
Feng Y, Jiang Y, Chen X, Zhu L, Xue H, Wu M, Yang L, Yu H, Lin J. Improving the production of carbamoyltobramycin by an industrial Streptoalloteichus tenebrarius through metabolic engineering. Appl Microbiol Biotechnol 2024; 108:304. [PMID: 38643456 PMCID: PMC11033246 DOI: 10.1007/s00253-024-13141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
Tobramycin is an essential and extensively used broad-spectrum aminoglycoside antibiotic obtained through alkaline hydrolysis of carbamoyltobramycin, one of the fermentation products of Streptoalloteichus tenebrarius. To simplify the composition of fermentation products from industrial strain, the main byproduct apramycin was blocked by gene disruption and constructed a mutant mainly producing carbamoyltobramycin. The generation of antibiotics is significantly affected by the secondary metabolism of actinomycetes which could be controlled by modifying the pathway-specific regulatory proteins within the cluster. Within the tobramycin biosynthesis cluster, a transcriptional regulatory factor TobR belonging to the Lrp/AsnC family was identified. Based on the sequence and structural characteristics, tobR might encode a pathway-specific transcriptional regulatory factor during biosynthesis. Knockout and overexpression strains of tobR were constructed to investigate its role in carbamoyltobramycin production. Results showed that knockout of TobR increased carbamoyltobramycin biosynthesis by 22.35%, whereas its overexpression decreased carbamoyltobramycin production by 10.23%. In vitro electrophoretic mobility shift assay (EMSA) experiments confirmed that TobR interacts with DNA at the adjacent tobO promoter position. Strains overexpressing tobO with ermEp* promoter exhibited 36.36% increase, and tobO with kasOp* promoter exhibited 22.84% increase in carbamoyltobramycin titer. When the overexpressing of tobO and the knockout of tobR were combined, the production of carbamoyltobramycin was further enhanced. In the shake-flask fermentation, the titer reached 3.76 g/L, which was 42.42% higher than that of starting strain. Understanding the role of Lrp/AsnC family transcription regulators would be useful for other antibiotic biosynthesis in other actinomycetes. KEY POINTS: • The transcriptional regulator TobR belonging to the Lrp/AsnC family was identified. • An oxygenase TobO was identified within the tobramycin biosynthesis cluster. • TobO and TobR have significant effects on the synthesis of carbamoyltobramycin.
Collapse
Affiliation(s)
- Yun Feng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yiqi Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xutong Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Li Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hailong Xue
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Haoran Yu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China.
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Lee SQE, Ma GL, Candra H, Khandelwal S, Pang LM, Low ZJ, Cheang QW, Liang ZX. Streptomyces sungeiensis SD3 as a Microbial Chassis for the Heterologous Production of Secondary Metabolites. ACS Synth Biol 2024; 13:1259-1272. [PMID: 38513222 DOI: 10.1021/acssynbio.3c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
We present the newly isolated Streptomyces sungeiensis SD3 strain as a promising microbial chassis for heterologous production of secondary metabolites. S. sungeiensis SD3 exhibits several advantageous traits as a microbial chassis, including genetic tractability, rapid growth, susceptibility to antibiotics, and metabolic capability supporting secondary metabolism. Genomic and transcriptomic sequencing unveiled the primary metabolic capabilities and secondary biosynthetic pathways of S. sungeiensis SD3, including a previously unknown pathway responsible for the biosynthesis of streptazone B1. The unique placement of S. sungeiensis SD3 in the phylogenetic tree designates it as a type strain, setting it apart from other frequently employed Streptomyces chassis. This distinction makes it the preferred chassis for expressing biosynthetic gene clusters (BGCs) derived from strains within the same phylogenetic or neighboring phylogenetic clade. The successful expression of secondary biosynthetic pathways from a closely related yet slow-growing strain underscores the utility of S. sungeiensis SD3 as a heterologous expression chassis. Validation of CRISPR/Cas9-assisted genetic tools for chromosomal deletion and insertion paved the way for further strain improvement and BGC refactoring through rational genome editing. The addition of S. sungeiensis SD3 to the heterologous chassis toolkit will facilitate the discovery and production of secondary metabolites.
Collapse
Affiliation(s)
- Sean Qiu En Lee
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Guang-Lei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hartono Candra
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Srashti Khandelwal
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Li Mei Pang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zhen Jie Low
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Qing Wei Cheang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
6
|
Hao Y, Liu W, Li X, Wen Y. Streptomyces global regulators AfsR and AfsS interact to co-regulate antibiotic production and morphological development. Microb Biotechnol 2024; 17:e14319. [PMID: 37986689 PMCID: PMC10832544 DOI: 10.1111/1751-7915.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 11/22/2023] Open
Abstract
Streptomyces species have a complex life cycle and are the producers of ~70% of commercial antibiotics. Global regulators AfsR and AfsS are widespread among Streptomyces and have been identified as key activators of antibiotic production in several species. However, their roles as repressors of antibiotic production are unclear; in particular, nothing is known regarding the regulatory mechanism of AfsS, despite many decades of research, because it has no DNA-binding domain. Here, we demonstrate that AfsR and AfsS negatively regulate avermectin production and morphological development in the industrially important species S. avermitilis. AfsR directly represses ave structural genes (aveA1, aveA4), cluster-situated activator gene aveR, and eight key developmental genes, whereas it directly activates afsS, aco (for autoregulator avenolide biosynthesis), and avaR1 (encoding avenolide receptor). GST pull-down, microscale thermophoresis, co-immunoprecipitation, and chromatin immunoprecipitation-quantitative PCR assays demonstrated that AfsS interacts with AfsR to co-regulate target genes involved in avermectin production and development and that this interaction requires intact AfsS repeated sequences and enhances the binding affinity of AfsR to target promoters. AfsR/AfsS interaction also occurs in model species S. coelicolor and S. roseosporus (producer of daptomycin, a cyclic lipopeptide antibiotic widely used for the treatment of human infections), suggesting that such interaction is conserved in Streptomyces species. The master developmental repressor BldD acts as a direct activator of both afsR and afsS. Deletion of afsR or afsS strongly enhances avermectin production in wild-type and industrial S. avermitilis strains. Our findings demonstrate novel regulatory roles and mechanisms of AfsR and AfsS in Streptomyces and facilitate methods for antibiotic overproduction.
Collapse
Affiliation(s)
- Yi Hao
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Wenshuai Liu
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xingwang Li
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ying Wen
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
7
|
Vladimirov M, Zhang RX, Mak S, Nodwell JR, Davidson AR. A contractile injection system is required for developmentally regulated cell death in Streptomyces coelicolor. Nat Commun 2023; 14:1469. [PMID: 36927736 PMCID: PMC10020575 DOI: 10.1038/s41467-023-37087-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Diverse bacterial species produce extracellular contractile injection systems (eCISs). Although closely related to contractile phage tails, eCISs can inject toxic proteins into eukaryotic cells. Thus, these systems are commonly viewed as cytotoxic defense mechanisms that are not central to other aspects of bacterial biology. Here, we provide evidence that eCISs appear to participate in the complex developmental process of the bacterium Streptomyces coelicolor. In particular, we show that S. coelicolor produces eCIS particles during its normal growth cycle, and that strains lacking functional eCIS particles exhibit pronounced alterations in their developmental program. Furthermore, eCIS-deficient mutants display reduced levels of cell death and altered morphology during growth in liquid media. Our results suggest that the main role of eCISs in S. coelicolor is to modulate the developmental switch that leads to aerial hyphae formation and sporulation, rather than to attack other species.
Collapse
Affiliation(s)
- Maria Vladimirov
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ruo Xi Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Stefanie Mak
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alan R Davidson
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Establishment of a visual gene knockout system based on CRISPR/Cas9 for the rare actinomycete Nonomuraea gerenzanensis. Biotechnol Lett 2023; 45:401-410. [PMID: 36650342 DOI: 10.1007/s10529-023-03347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To develop a modified CRISPR/Cas9 system with the β-glucuronidase (GusA) reporter and a dual sgRNA cassette for Nonomuraea gerenzanensis (N. gerenzanensis). RESULTS With the aid of a visual GusA reporter, the complicated and tedious process of cloning and gene identification could be abandoned entirely in the genetic editing of N. gerenzanensis. Moreover, introducing a dual sgRNA cassette into the CRISPR/Cas9 system significantly improved gene deletion efficiency compared to the single sgRNA element. Furthermore, the length of the homologous flanking sequences set to the lowest value of 500 bp in this system could still reach the relatively higher conjugation transfer frequency. CONCLUSIONS The enhanced CRISPR/Cas9 system could efficiently perform genetic manipulation on the rare actinomycete N. gerenzanensis.
Collapse
|
9
|
Antonov IV, O’Loughlin S, Gorohovski AN, O’Connor PB, Baranov PV, Atkins JF. Streptomyces rare codon UUA: from features associated with 2 adpA related locations to candidate phage regulatory translational bypassing. RNA Biol 2023; 20:926-942. [PMID: 37968863 PMCID: PMC10732093 DOI: 10.1080/15476286.2023.2270812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/02/2023] [Indexed: 11/17/2023] Open
Abstract
In Streptomyces species, the cell cycle involves a switch from an early and vegetative state to a later phase where secondary products including antibiotics are synthesized, aerial hyphae form and sporulation occurs. AdpA, which has two domains, activates the expression of numerous genes involved in the switch from the vegetative growth phase. The adpA mRNA of many Streptomyces species has a UUA codon in a linker region between 5' sequence encoding one domain and 3' sequence encoding its other and C-terminal domain. UUA codons are exceptionally rare in Streptomyces, and its functional cognate tRNA is not present in a fully modified and acylated form, in the early and vegetative phase of the cell cycle though it is aminoacylated later. Here, we report candidate recoding signals that may influence decoding of the linker region UUA. Additionally, a short ORF 5' of the main ORF has been identified with a GUG at, or near, its 5' end and an in-frame UUA near its 3' end. The latter is commonly 5 nucleotides 5' of the main ORF start. Ribosome profiling data show translation of that 5' region. Ten years ago, UUA-mediated translational bypassing was proposed as a sensor by a Streptomyces phage of its host's cell cycle stage and an effector of its lytic/lysogeny switch. We provide the first experimental evidence supportive of this proposal.
Collapse
Affiliation(s)
- Ivan V. Antonov
- Russian Academy of Science, Institute of Bioengineering, Research Center of Biotechnology, Moscow, Russia
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Sinéad O’Loughlin
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Alessandro N. Gorohovski
- Russian Academy of Science, Institute of Bioengineering, Research Center of Biotechnology, Moscow, Russia
- Structural Biology and BioComputing Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - John F. Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Nitric Oxide Signaling for Aerial Mycelium Formation in Streptomyces coelicolor A3(2) M145. Appl Environ Microbiol 2022; 88:e0122222. [PMID: 36354316 PMCID: PMC9746327 DOI: 10.1128/aem.01222-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nitric oxide (NO) is a well-known signaling molecule in various organisms. Streptomyces undergoes complex morphological differentiation, similar to that of fungi. A recent study revealed a nitrogen oxide metabolic cycle that forms NO in Streptomyces coelicolor A3(2) M145. Further, endogenously produced NO serves as a signaling molecule. Here, we report that endogenously produced NO regulates cyclic 3',5'-diguanylate (c-di-GMP) levels and controls aerial mycelium formation through the c-di-GMP-binding transcriptional regulator BldD in S. coelicolor A3(2) M145. These observations provide important insights into the mechanisms regulating morphological differentiation. This is the first study to demonstrate a link between NO and c-di-GMP in S. coelicolor A3(2) M145. Morphological differentiation is closely linked to the initiation of secondary metabolism in actinomycetes. Thus, the NO signaling-based regulation of aerial mycelium formation has potential applications in the fermentation industry employing useful actinomycetes. IMPORTANCE Eukaryotic and prokaryotic cells utilize nitric oxide (NO) to regulate physiological functions. Besides its role as a producer of different bioactive substances, Streptomyces is suggested to be involved in mycelial development regulated by endogenously produced NO. However, the regulatory mechanisms are unclear. In this study, we proposed that NO signaling is involved in aerial mycelium formation in S. coelicolor A3(2) M145. NO serves as a signaling molecule for the regulation of intracellular cyclic 3',5'-diguanylate (c-di-GMP) levels, resulting in aerial mycelium formation controlled by a c-di-GMP receptor, BldD. As the abundant production of valuable secondary metabolites is closely related to the initiation of morphological differentiation in Streptomyces, NO may provide value for application in industrial fermentation by serving as a tool for regulating secondary metabolism.
Collapse
|
11
|
Rehna EA, Munavar H, Dharmalingam K, Shakila M, Natesan S. Mycobacterium leprae hsp18 promoter-EGFP transcriptional fusion construct: Environmental stress and strain-specific expression. Gene 2022; 851:147034. [DOI: 10.1016/j.gene.2022.147034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
|
12
|
Palacio‐Barrera AM, Schlembach I, Finger M, Büchs J, Rosenbaum MA. Reliable online measurement of population dynamics for filamentous co-cultures. Microb Biotechnol 2022; 15:2773-2785. [PMID: 35972427 PMCID: PMC9618322 DOI: 10.1111/1751-7915.14129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding population dynamics is a key factor for optimizing co-culture processes to produce valuable compounds. However, the measurement of independent population dynamics is difficult, especially for filamentous organisms and in presence of insoluble substrates like cellulose. We propose a workflow for fluorescence-based online monitoring of individual population dynamics of two filamentous microorganisms. The fluorescent tagged target co-culture is composed of the cellulolytic fungus Trichoderma reesei RUT-C30-mCherry and the pigment-producing bacterium Streptomyces coelicolor A3(2)-mNeonGreen (mNG) growing on insoluble cellulose as a substrate. To validate the system, the fluorescence-to-biomass and fluorescence-to-scattered-light correlation of the two strains was characterized in depth under various conditions. Thereby, especially for complex filamentous microorganisms, microbial morphologies have to be considered. Another bias can arise from autofluorescence or pigments that can spectrally interfere with the fluorescence measurement. Green autofluorescence of both strains was uncoupled from different green fluorescent protein signals through a spectral unmixing approach, resulting in a specific signal only linked to the abundance of S. coelicolor A3(2)-mNG. As proof of principle, the population dynamics of the target co-culture were measured at varying inoculation ratios in presence of insoluble cellulose particles. Thereby, the respective fluorescence signals reliably described the abundance of each partner, according to the variations in the inocula. With this method, conditions can be fine-tuned for optimal growth of both partners along with natural product formation by the bacterium.
Collapse
Affiliation(s)
- Ana M. Palacio‐Barrera
- Leibniz Institute for Natural Product Research and Infection BiologyHans‐Knöll‐InstituteJenaGermany
- Faculty of Biological SciencesFriedrich‐Schiller‐University JenaJenaGermany
| | - Ivan Schlembach
- Leibniz Institute for Natural Product Research and Infection BiologyHans‐Knöll‐InstituteJenaGermany
- Faculty of Biological SciencesFriedrich‐Schiller‐University JenaJenaGermany
| | - Maurice Finger
- RWTH Aachen UniversityAVT—Biochemical EngineeringAachenGermany
| | - Jochen Büchs
- RWTH Aachen UniversityAVT—Biochemical EngineeringAachenGermany
| | - Miriam A. Rosenbaum
- Leibniz Institute for Natural Product Research and Infection BiologyHans‐Knöll‐InstituteJenaGermany
- Faculty of Biological SciencesFriedrich‐Schiller‐University JenaJenaGermany
| |
Collapse
|
13
|
Liu X, Li J, Li Y, Li J, Sun H, Zheng J, Zhang J, Tan H. A visualization reporter system for characterizing antibiotic biosynthetic gene clusters expression with high-sensitivity. Commun Biol 2022; 5:901. [PMID: 36056143 PMCID: PMC9440138 DOI: 10.1038/s42003-022-03832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
The crisis of antibiotic resistance has become an impending global problem. Genome sequencing reveals that streptomycetes have the potential to produce many more bioactive compounds that may combat the emerging pathogens. The existing challenge is to devise sensitive reporter systems for mining valuable antibiotics. Here, we report a visualization reporter system based on Gram-negative bacterial acyl-homoserine lactone quorum-sensing (VRS-bAHL). AHL synthase gene (cviI) of Chromobacterium violaceum as reporter gene is expressed in Gram-positive Streptomyces to synthesize AHL, which is detected with CV026, an AHL deficient mutant of C. violaceum, via its violacein production upon AHL induction. Validation assays prove that VRS-bAHL can be widely used for characterizing gene expression in Streptomyces. With the guidance of VRS-bAHL, a novel oxazolomycin derivative is discovered to the best of our knowledge. The results demonstrate that VRS-bAHL is a powerful tool for advancing genetic regulation studies and discovering valuable active metabolites in microorganisms. A quorum sensing based visualization reporter system is presented for the characterization of promoters in Gram-positive bacteria, utilizing violacein production, especially for use in the identification of secondary metabolites.
Collapse
Affiliation(s)
- Xiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jine Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Junyue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huiying Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiazhen Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Efficient degradation of hydroquinone by a metabolically engineered Pseudarthrobacter sulfonivorans strain. Arch Microbiol 2022; 204:588. [PMID: 36048304 DOI: 10.1007/s00203-022-03214-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022]
Abstract
Pseudarthrobacter sulfonivorans strain Ar51 can degrade crude oil and multi-substituted benzene compounds efficiently at low temperatures. However, it cannot degrade hydroquinone, which is a key intermediate in the degradation of several other compounds of environmental importance, such as 4-nitrophenol, g-hexachlorocyclohexane, 4-hydroxyacetophenone and 4-aminophenol. Here we co-expressed the two subunits of hydroquinone dioxygenase from Sphingomonas sp. strain TTNP3 with different promoters in the strain Ar51. The strain with 2 hdnO promoters exhibited the strongest hydroquinone catabolic activity. However, in the absence of antibiotic selection this ability to degrade hydroquinone was lost due to plasmid instability. Consequently, we constructed a hisD knockout strain, which was unable to synthesise histidine. By introducing the hisD gene onto the plasmid, the ability to degrade hydroquinone in the absence of antibiotic selection was stabilised. In addition, to make the strain more stable for industrial applications, we knocked out the recA gene and integrated the hydroquinone dioxygenase genes at this chromosomal locus. This strain exhibited the strongest activity in catabolizing hydroquinone, up to 470 mg/L in 16 h without antibiotic selection. In addition, this activity was shown to be stable when the strain has cultured in medium without antibiotic selection after 20 passages.
Collapse
|
15
|
Chen X, Li S, Zhang B, Sun H, Wang J, Zhang W, Meng W, Chen T, Dyson P, Liu G. A new bacterial tRNA enhances antibiotic production in Streptomyces by circumventing inefficient wobble base-pairing. Nucleic Acids Res 2022; 50:7084-7096. [PMID: 35699212 PMCID: PMC9262613 DOI: 10.1093/nar/gkac502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
We report the discovery and functional characterization of a new bacterial tRNA species. The tRNA-Asp-AUC, from a fast-growing desert streptomycete, decodes GAU codons. In the absence of queuosine tRNA anticodon modification in streptomycetes, the new tRNA circumvents inefficient wobble base-pairing during translation. The tRNA, which is constitutively expressed, greatly enhances synthesis of 4 different antibiotics in the model mesophilic species Streptomyces coelicolor, including the product of a so-called cryptic pathway, and increases yields of medically-important antibiotics in other species. This can be rationalised due to increased expression of both pleiotropic and pathway-specific transcriptional activators of antibiotic biosynthesis whose genes generally possess one or more GAT codons; the frequency of this codon in these gene sets is significantly higher than the average for streptomycete genes. In addition, the tRNA enhances production of cobalamin, a precursor of S-adenosyl methionine, itself an essential cofactor for synthesis of many antibiotics. The results establish a new paradigm of inefficient wobble base-pairing involving GAU codons as an evolved strategy to regulate gene expression and, in particular, antibiotic biosynthesis. Circumventing this by expression of the new cognate tRNA offers a generic strategy to increase antibiotic yields and to expand the repertoire of much-needed new bioactive metabolites produced by these valuable bacteria.
Collapse
Affiliation(s)
- Ximing Chen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, China
| | - Shuyan Li
- School of Medical Information and Engineering, Xuzhou Medical University, Jiangsu, China
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, China,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Haili Sun
- School of Chemistry and Environmental Science, Lanzhou City University, Lanzhou, Gansu, China
| | - Jinxiu Wang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, China
| | - Wenbo Meng
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province; The First Clinical Medical School of Lanzhou University, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu, China,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Paul Dyson
- To whom correspondence should be addressed. Tel: +44 1792 295667;
| | - Guangxiu Liu
- Correspondence may also be addressed to Guangxiu Liu.
| |
Collapse
|
16
|
Misaki Y, Nindita Y, Fujita K, Fauzi AA, Arakawa K. Overexpression of SRO_3163, a homolog of Streptomyces antibiotic regulatory protein, induces the production of novel cyclohexene-containing enamide in Streptomyces rochei. Biosci Biotechnol Biochem 2022; 86:177-184. [PMID: 34849547 DOI: 10.1093/bbb/zbab206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022]
Abstract
Streptomyces antibiotic regulatory proteins (SARPs) are well characterized as transcriptional activators for secondary metabolites in Streptomyces species. Streptomyces rochei 7434AN4 harbors 15 SARP genes, among which 3 were located on a giant linear plasmid pSLA2-L and others were on the chromosome. Some SARP genes were cloned into an integrative thiostrepton-inducible vector pIJ8600, and their recombinants were cultivated. The recombinant of SARP gene, SRO_3163, accumulated a UV-active compound YM3163-A, which was not detected in the parent strain and other SARP recombinants. Its molecular formula was established to be C8H11NO. Extensive NMR analysis revealed that YM3163-A is a novel enamide, 2-(cyclohex-2-en-1-ylidene)acetamide, and its structure was confirmed by chemical synthesis including Horner-Wadsworth-Emmons reaction and ammonolysis.
Collapse
Affiliation(s)
- Yuya Misaki
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yosi Nindita
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kota Fujita
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Amirudin Akhmad Fauzi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kenji Arakawa
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
17
|
Zhang X, Wu Q, Zhang X, Lv Z, Mo X, Li Y, Chen XA. Elevation of FK506 production by regulatory pathway engineering and medium optimization in Streptomyces tsukubaensis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Wang X, Fu Y, Wang M, Niu G. Synthetic Cellobiose-Inducible Regulatory Systems Allow Tight and Dynamic Controls of Gene Expression in Streptomyces. ACS Synth Biol 2021; 10:1956-1965. [PMID: 34347449 DOI: 10.1021/acssynbio.1c00152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Precise control of microbial gene expression is crucial for synthetic biotechnological applications. This is particularly true for the bacterial genus Streptomyces, major producers of diverse natural products including many antibiotics. Although a plethora of genetic tools have been developed for Streptomyces, there is still an urgent need for effective gene induction systems. We herein created two novel cellobiose-inducible regulatory systems referred to as Cel-RS1 and Cel-RS2. The regulatory systems are based upon the well-characterized repressor/operator pair CebR/cebO from Streptomyces scabies and the well-defined constitutive kasO* promoter. Both Cel-RS1 and Cel-RS2 exhibit a high level of induced reporter activity and virtually no leaky expression in three model Streptomyces species, which are commonly used as surrogate hosts for expression of natural product biosynthetic gene clusters. Cel-RS2 has been proven successful for programmable control of gene expression and controllable production of specialized metabolites in multiple Streptomyces species. The strategy can be used to expand the toolkit of inducible regulatory systems that will be broadly applicable to various Streptomyces.
Collapse
Affiliation(s)
- Xia Wang
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yudie Fu
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Meiyan Wang
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guoqing Niu
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
19
|
Sevcikova B, Rezuchova B, Mazurakova V, Homerova D, Novakova R, Feckova L, Kormanec J. Cross-Recognition of Promoters by the Nine SigB Homologues Present in Streptomyces coelicolor A3(2). Int J Mol Sci 2021; 22:ijms22157849. [PMID: 34360615 PMCID: PMC8346170 DOI: 10.3390/ijms22157849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
In contrast to Bacillus subtilis, Streptomyces coelicolor A3(2) contains nine homologues of stress response sigma factor SigB with a major role in differentiation and osmotic stress response. The aim of this study was to further characterize these SigB homologues. We previously established a two-plasmid system to identify promoters recognized by sigma factors and used it to identify promoters recognized by the three SigB homologues, SigF, SigG, and SigH from S. coelicolor A3(2). Here, we used this system to identify 14 promoters recognized by SigB. The promoters were verified in vivo in S. coelicolor A3(2) under osmotic stress conditions in sigB and sigH operon mutants, indicating some cross-recognition of these promoters by these two SigB homologues. This two-plasmid system was used to examine the recognition of all identified SigB-, SigF-, SigG-, and SigH-dependent promoters with all nine SigB homologues. The results confirmed this cross-recognition. Almost all 24 investigated promoters were recognized by two or more SigB homologues and data suggested some distinguishing groups of promoters recognized by these sigma factors. However, analysis of the promoters did not reveal any specific sequence characteristics for these recognition groups. All promoters showed high similarity in the -35 and -10 regions. Immunoblot analysis revealed the presence of SigB under osmotic stress conditions and SigH during morphological differentiation. Together with the phenotypic analysis of sigB and sigH operon mutants in S. coelicolor A3(2), the results suggest a dominant role for SigB in the osmotic stress response and a dual role for SigH in the osmotic stress response and morphological differentiation. These data suggest a complex regulation of the osmotic stress response in relation to morphological differentiation in S. coelicolor A3(2).
Collapse
|
20
|
Worsley SF, Macey MC, Prudence SMM, Wilkinson B, Murrell JC, Hutchings MI. Investigating the Role of Root Exudates in Recruiting Streptomyces Bacteria to the Arabidopsis thaliana Microbiome. Front Mol Biosci 2021; 8:686110. [PMID: 34222338 PMCID: PMC8241931 DOI: 10.3389/fmolb.2021.686110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023] Open
Abstract
Streptomyces species are saprophytic soil bacteria that produce a diverse array of specialized metabolites, including half of all known antibiotics. They are also rhizobacteria and plant endophytes that can promote plant growth and protect against disease. Several studies have shown that streptomycetes are enriched in the rhizosphere and endosphere of the model plant Arabidopsis thaliana. Here, we set out to test the hypothesis that they are attracted to plant roots by root exudates, and specifically by the plant phytohormone salicylate, which they might use as a nutrient source. We confirmed a previously published report that salicylate over-producing cpr5 plants are colonized more readily by streptomycetes but found that salicylate-deficient sid2-2 and pad4 plants had the same levels of root colonization by Streptomyces bacteria as the wild-type plants. We then tested eight genome sequenced Streptomyces endophyte strains in vitro and found that none were attracted to or could grow on salicylate as a sole carbon source. We next used 13CO2 DNA stable isotope probing to test whether Streptomyces species can feed off a wider range of plant metabolites but found that Streptomyces bacteria were outcompeted by faster growing proteobacteria and did not incorporate photosynthetically fixed carbon into their DNA. We conclude that, given their saprotrophic nature and under conditions of high competition, streptomycetes most likely feed on more complex organic material shed by growing plant roots. Understanding the factors that impact the competitiveness of strains in the plant root microbiome could have consequences for the effective application of biocontrol strains.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Michael C Macey
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Samuel M M Prudence
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
21
|
Genetic Network Architecture and Environmental Cues Drive Spatial Organization of Phenotypic Division of Labor in Streptomyces coelicolor. mBio 2021; 12:mBio.00794-21. [PMID: 34006658 PMCID: PMC8262882 DOI: 10.1128/mbio.00794-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of bacteria are known to differentiate into cells with distinct phenotypic traits during processes such as biofilm formation or the development of reproductive structures. These cell types, by virtue of their specialized functions, embody a division of labor. However, how bacteria build spatial patterns of differentiated cells is not well understood. Here, we examine the factors that drive spatial patterns in divisions of labor in colonies of Streptomyces coelicolor, a multicellular bacterium capable of synthesizing an array of antibiotics and forming complex reproductive structures (e.g., aerial hyphae and spores). Using fluorescent reporters, we demonstrate that the pathways for antibiotic biosynthesis and aerial hypha formation are activated in distinct waves of gene expression that radiate outwards in S. coelicolor colonies. We also show that the spatiotemporal separation of these cell types depends on a key activator in the developmental pathway, AdpA. Importantly, when we manipulated local gradients by growing competing microbes nearby, or through physical disruption, expression in these pathways could be decoupled and/or disordered, respectively. Finally, the normal spatial organization of these cell types was partially restored with the addition of a siderophore, a public good made by these organisms, to the growth medium. Together, these results indicate that spatial divisions of labor in S. coelicolor colonies are determined by a combination of physiological gradients and regulatory network architecture, key factors that also drive patterns of cellular differentiation in multicellular eukaryotic organisms.
Collapse
|
22
|
Abstract
Almost all bacteria are surrounded by a cell wall, which protects cells from environmental harm. Formation of the cell wall requires the precursor molecule lipid II, which in bacteria is universally synthesized by the conserved and essential lipid II synthase MurG. The cell wall is a stress-bearing structure and a unifying trait in bacteria. Without exception, synthesis of the cell wall involves formation of the precursor molecule lipid II by the activity of the essential biosynthetic enzyme MurG, which is encoded in the division and cell wall synthesis (dcw) gene cluster. Here, we present the discovery of a cell wall enzyme that can substitute for MurG. A mutant of Kitasatospora viridifaciens lacking a significant part of the dcw cluster, including murG, surprisingly produced lipid II and wild-type peptidoglycan. Genomic analysis identified a distant murG homologue, which encodes a putative enzyme that shares only around 31% amino acid sequence identity with MurG. We show that this enzyme can replace the canonical MurG, and we therefore designated it MglA. Orthologues of mglA are present in 38% of all genomes of Kitasatospora and members of the sister genus Streptomyces. CRISPR interference experiments showed that K. viridifaciens mglA can also functionally replace murG in Streptomyces coelicolor, thus validating its bioactivity and demonstrating that it is active in multiple genera. All together, these results identify MglA as a bona fide lipid II synthase, thus demonstrating plasticity in cell wall synthesis.
Collapse
|
23
|
Lee N, Hwang S, Kim W, Lee Y, Kim JH, Cho S, Kim HU, Yoon YJ, Oh MK, Palsson BO, Cho BK. Systems and synthetic biology to elucidate secondary metabolite biosynthetic gene clusters encoded in Streptomyces genomes. Nat Prod Rep 2021; 38:1330-1361. [PMID: 33393961 DOI: 10.1039/d0np00071j] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2010 to 2020 Over the last few decades, Streptomyces have been extensively investigated for their ability to produce diverse bioactive secondary metabolites. Recent advances in Streptomyces research have been largely supported by improvements in high-throughput technology 'omics'. From genomics, numerous secondary metabolite biosynthetic gene clusters were predicted, increasing their genomic potential for novel bioactive compound discovery. Additional omics, including transcriptomics, translatomics, interactomics, proteomics and metabolomics, have been applied to obtain a system-level understanding spanning entire bioprocesses of Streptomyces, revealing highly interconnected and multi-layered regulatory networks for secondary metabolism. The comprehensive understanding derived from this systematic information accelerates the rational engineering of Streptomyces to enhance secondary metabolite production, integrated with the exploitation of the highly efficient 'Design-Build-Test-Learn' cycle in synthetic biology. In this review, we describe the current status of omics applications in Streptomyces research to better understand the organism and exploit its genetic potential for higher production of valuable secondary metabolites and novel secondary metabolite discovery.
Collapse
Affiliation(s)
- Namil Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeo Joon Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA. and Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA and Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea. and Innovative Biomaterials Centre, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea and Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| |
Collapse
|
24
|
Tenconi E, Traxler M, Tellatin D, van Wezel GP, Rigali S. Prodiginines Postpone the Onset of Sporulation in Streptomyces coelicolor. Antibiotics (Basel) 2020; 9:E847. [PMID: 33256178 PMCID: PMC7760128 DOI: 10.3390/antibiotics9120847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/29/2023] Open
Abstract
Bioactive natural products are typically secreted by the producer strain. Besides that, this allows the targeting of competitors, also filling a protective role, reducing the chance of self-killing. Surprisingly, DNA-degrading and membrane damaging prodiginines (PdGs) are only produced intracellularly, and are required for the onset of the second round of programmed cell death (PCD) in Streptomyces coelicolor. In this work, we investigated the influence of PdGs on the timing of the morphological differentiation of S. coelicolor. The deletion of the transcriptional activator gene redD that activates the red cluster for PdGs or nutrient-mediated reduction of PdG synthesis both resulted in the precocious appearance of mature spore chains. Transcriptional analysis revealed an accelerated expression of key developmental genes in the redD null mutant, including bldN for the developmental σ factor BldN which is essential for aerial mycelium formation. In contrast, PdG overproduction due to the enhanced copy number of redD resulted in a delay or block in sporulation. In addition, confocal fluorescence microscopy revealed that the earliest aerial hyphae do not produce PdGs. This suggests that filaments that eventually differentiate into spore chains and are hence required for survival of the colony, are excluded from the second round of PCD induced by PdGs. We propose that one of the roles of PdGs would be to delay the entrance of S. coelicolor into the dormancy state (sporulation) by inducing the leakage of the intracellular content of dying filaments thereby providing nutrients for the survivors.
Collapse
Affiliation(s)
- Elodie Tenconi
- InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liège, Belgium; (E.T.); (D.T.)
- Hedera-22, Boulevard du rectorat 27b, B-4000 Liège, Belgium
| | - Matthew Traxler
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA;
| | - Déborah Tellatin
- InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liège, Belgium; (E.T.); (D.T.)
| | - Gilles P. van Wezel
- Molecular Biotechnology, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands;
| | - Sébastien Rigali
- InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liège, Belgium; (E.T.); (D.T.)
- Hedera-22, Boulevard du rectorat 27b, B-4000 Liège, Belgium
| |
Collapse
|
25
|
Streptomyces Endophytes Promote Host Health and Enhance Growth across Plant Species. Appl Environ Microbiol 2020; 86:AEM.01053-20. [PMID: 32561579 PMCID: PMC7414947 DOI: 10.1128/aem.01053-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 01/07/2023] Open
Abstract
We must reduce reliance on agrochemicals, and there is increasing interest in using bacterial strains to promote plant growth and protect against disease. Our study follows up reports that Arabidopsis thaliana specifically recruits Streptomyces bacteria to its roots. We test the hypotheses that they offer benefits to their A. thaliana hosts and that strains isolated from these plants might be used as probiotics. We isolated Streptomyces strains from A. thaliana roots and genome sequenced five phylogenetically distinct strains. Genome mining and bioassays indicated that all five have plant growth-promoting properties, including production of indole-3-acetic acid (IAA), siderophores, and aminocyclopropane-1-carboxylate (ACC) deaminase. Three strains significantly increased A. thaliana growth in vitro and in combination in soil. Another produces potent filipin-like antifungals and protected germinating wheat seeds against the fungal pathogen Gaeumannomyces graminis var. tritici (wheat take-all fungus). We conclude that introducing Streptomyces strains into the root microbiome provides significant benefits to plants. Streptomyces bacteria are ubiquitous in soils and are well known for producing secondary metabolites, including antimicrobials. Increasingly, they are being isolated from plant roots, and several studies have shown they are specifically recruited to the rhizosphere and the endosphere of the model plant Arabidopsis thaliana. Here, we test the hypothesis that Streptomyces bacteria have a beneficial effect on A. thaliana growth and could potentially be used as plant probiotics. To do this, we selectively isolated streptomycetes from surface-washed A. thaliana roots and generated high-quality genome sequences for five strains, which we named L2, M2, M3, N1, and N2. Reinfection of A. thaliana plants with L2, M2, and M3 significantly increased plant biomass individually and in combination, whereas N1 and N2 had a negative effect on plant growth, likely due to their production of polyene natural products which can bind to phytosterols and reduce plant growth. N2 exhibits broad-spectrum antimicrobial activity and makes filipin-like polyenes, including 14-hydroxyisochainin which inhibits the take-all fungus, Gaeumannomyces graminis var. tritici. N2 antifungal activity as a whole was upregulated ∼2-fold in response to indole-3-acetic acid (IAA), suggesting a possible role during competition in the rhizosphere. Furthermore, coating wheat seeds with N2 spores protected wheat seedlings against take-all disease. We conclude that at least some soil-dwelling streptomycetes confer growth-promoting benefits on A. thaliana, while others might be exploited to protect crops against disease. IMPORTANCE We must reduce reliance on agrochemicals, and there is increasing interest in using bacterial strains to promote plant growth and protect against disease. Our study follows up reports that Arabidopsis thaliana specifically recruits Streptomyces bacteria to its roots. We test the hypotheses that they offer benefits to their A. thaliana hosts and that strains isolated from these plants might be used as probiotics. We isolated Streptomyces strains from A. thaliana roots and genome sequenced five phylogenetically distinct strains. Genome mining and bioassays indicated that all five have plant growth-promoting properties, including production of indole-3-acetic acid (IAA), siderophores, and aminocyclopropane-1-carboxylate (ACC) deaminase. Three strains significantly increased A. thaliana growth in vitro and in combination in soil. Another produces potent filipin-like antifungals and protected germinating wheat seeds against the fungal pathogen Gaeumannomyces graminis var. tritici (wheat take-all fungus). We conclude that introducing Streptomyces strains into the root microbiome provides significant benefits to plants.
Collapse
|
26
|
Misaki Y, Yamamoto S, Suzuki T, Iwakuni M, Sasaki H, Takahashi Y, Inada K, Kinashi H, Arakawa K. SrrB, a Pseudo-Receptor Protein, Acts as a Negative Regulator for Lankacidin and Lankamycin Production in Streptomyces rochei. Front Microbiol 2020; 11:1089. [PMID: 32582072 PMCID: PMC7296167 DOI: 10.3389/fmicb.2020.01089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 11/15/2022] Open
Abstract
Streptomyces rochei 7434AN4, a producer of lankacidin (LC) and lankamycin (LM), carries many regulatory genes including a biosynthesis gene for signaling molecules SRBs (srrX), an SRB receptor gene (srrA), and a SARP (Streptomyces antibiotic regulatory protein) family activator gene (srrY). Our previous study revealed that the main regulatory cascade goes from srrX through srrA to srrY, leading to LC production, whereas srrY further regulates a second SARP gene srrZ to synthesize LM. In this study we extensively investigated the function of srrB, a pseudo-receptor gene, by analyzing antibiotic production and transcription. Metabolite analysis showed that the srrB mutation increased both LC and LM production over four-folds. Transcription, gel shift, and DNase I footprinting experiments revealed that srrB and srrY are expressed under the SRB/SrrA regulatory system, and at the later stage, SrrB represses srrY expression by binding to the promoter region of srrY. These findings confirmed that SrrB acts as a negative regulator of the activator gene srrY to control LC and LM production at the later stage of fermentation in S. rochei.
Collapse
Affiliation(s)
- Yuya Misaki
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shouji Yamamoto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Toshihiro Suzuki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Miyuki Iwakuni
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiroaki Sasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuzuru Takahashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kuninobu Inada
- Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Japan
| | - Haruyasu Kinashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kenji Arakawa
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
27
|
Vassallo A, Palazzotto E, Renzone G, Botta L, Faddetta T, Scaloni A, Puglia AM, Gallo G. The Streptomyces coelicolor Small ORF trpM Stimulates Growth and Morphological Development and Exerts Opposite Effects on Actinorhodin and Calcium-Dependent Antibiotic Production. Front Microbiol 2020; 11:224. [PMID: 32140146 PMCID: PMC7042404 DOI: 10.3389/fmicb.2020.00224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/30/2020] [Indexed: 11/25/2022] Open
Abstract
In actinomycetes, antibiotic production is often associated with a morpho-physiological differentiation program that is regulated by complex molecular and metabolic networks. Many aspects of these regulatory circuits have been already elucidated and many others still deserve further investigations. In this regard, the possible role of many small open reading frames (smORFs) in actinomycete morpho-physiological differentiation is still elusive. In Streptomyces coelicolor, inactivation of the smORF trpM (SCO2038) – whose product modulates L-tryptophan biosynthesis – impairs production of antibiotics and morphological differentiation. Indeed, it was demonstrated that TrpM is able to interact with PepA (SCO2179), a putative cytosol aminopeptidase playing a key role in antibiotic production and sporulation. In this work, a S. coelicolor trpM knock-in (Sco-trpMKI) mutant strain was generated by cloning trpM into overexpressing vector to further investigate the role of trpM in actinomycete growth and morpho-physiological differentiation. Results highlighted that trpM: (i) stimulates growth and actinorhodin (ACT) production; (ii) decreases calcium-dependent antibiotic (CDA) production; (iii) has no effect on undecylprodigiosin production. Metabolic pathways influenced by trpM knock-in were investigated by combining two-difference in gel electrophoresis/nanoliquid chromatography coupled to electrospray linear ion trap tandem mass spectrometry (2D-DIGE/nanoLC-ESI-LIT-MS/MS) and by LC-ESI-MS/MS procedures, respectively. These analyses demonstrated that over-expression of trpM causes an over-representation of factors involved in protein synthesis and nucleotide metabolism as well as a down-representation of proteins involved in central carbon and amino acid metabolism. At the metabolic level, this corresponded to a differential accumulation pattern of different amino acids – including aromatic ones but tryptophan – and central carbon intermediates. PepA was also down-represented in Sco-trpMKI. The latter was produced as recombinant His-tagged protein and was originally proven having the predicted aminopeptidase activity. Altogether, these results highlight the stimulatory effect of trpM in S. coelicolor growth and ACT biosynthesis, which are elicited through the modulation of various metabolic pathways and PepA representation, further confirming the complexity of regulatory networks that control antibiotic production in actinomycetes.
Collapse
Affiliation(s)
- Alberto Vassallo
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, Palermo, Italy.,Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Emilia Palazzotto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Giovanni Renzone
- Proteomic and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Luigi Botta
- Dipartimento di Ingegneria, Università di Palermo, Palermo, Italy
| | - Teresa Faddetta
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, Palermo, Italy
| | - Andrea Scaloni
- Proteomic and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Anna Maria Puglia
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, Palermo, Italy
| | - Giuseppe Gallo
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, Palermo, Italy
| |
Collapse
|
28
|
Zhang Z, Du C, de Barsy F, Liem M, Liakopoulos A, van Wezel GP, Choi YH, Claessen D, Rozen DE. Antibiotic production in Streptomyces is organized by a division of labor through terminal genomic differentiation. SCIENCE ADVANCES 2020; 6:eaay5781. [PMID: 31998842 PMCID: PMC6962034 DOI: 10.1126/sciadv.aay5781] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
One of the hallmark behaviors of social groups is division of labor, where different group members become specialized to carry out complementary tasks. By dividing labor, cooperative groups increase efficiency, thereby raising group fitness even if these behaviors reduce individual fitness. We find that antibiotic production in colonies of Streptomyces coelicolor is coordinated by a division of labor. We show that S. coelicolor colonies are genetically heterogeneous because of amplifications and deletions to the chromosome. Cells with chromosomal changes produce diversified secondary metabolites and secrete more antibiotics; however, these changes reduced individual fitness, providing evidence for a trade-off between antibiotic production and fitness. Last, we show that colonies containing mixtures of mutants and their parents produce significantly more antibiotics, while colony-wide spore production remains unchanged. By generating specialized mutants that hyper-produce antibiotics, streptomycetes reduce the fitness costs of secreted secondary metabolites while maximizing the yield and diversity of these products.
Collapse
Affiliation(s)
- Zheren Zhang
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Chao Du
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Frédérique de Barsy
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Michael Liem
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Apostolos Liakopoulos
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Gilles P. van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Young H. Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
- College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, 02447 Seoul, Republic of Korea
| | - Dennis Claessen
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Daniel E. Rozen
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| |
Collapse
|
29
|
Musiol-Kroll EM, Tocchetti A, Sosio M, Stegmann E. Challenges and advances in genetic manipulation of filamentous actinomycetes - the remarkable producers of specialized metabolites. Nat Prod Rep 2019; 36:1351-1369. [PMID: 31517370 DOI: 10.1039/c9np00029a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to February 2019Actinomycetes are Gram positive bacteria of the phylum Actinobacteria. These organisms are one of the most important sources of structurally diverse, clinically used antibiotics and other valuable bioactive products, as well as biotechnologically relevant enzymes. Most strains were discovered by their ability to produce a given molecule and were often poorly characterized, physiologically and genetically. The development of genetic methods for Streptomyces and related filamentous actinomycetes has led to the successful manipulation of antibiotic biosynthesis to attain structural modification of microbial metabolites that would have been inaccessible by chemical means and improved production yields. Moreover, genome mining reveals that actinomycete genomes contain multiple biosynthetic gene clusters (BGCs), however only a few of them are expressed under standard laboratory conditions, leading to the production of the respective compound(s). Thus, to access and activate the so-called "silent" BGCs, to improve their biosynthetic potential and to discover novel natural products methodologies for genetic manipulation are required. Although different methods have been applied for many actinomycete strains, genetic engineering is still remaining very challenging for some "underexplored" and poorly characterized actinomycetes. This review summarizes the strategies developed to overcome the obstacles to genetic manipulation of actinomycetes and allowing thereby rational genetic engineering of this industrially relevant group of microorganisms. At the end of this review we give some tips to researchers with limited or no previous experience in genetic manipulation of actinomycetes. The article covers the most relevant literature published until February 2019.
Collapse
Affiliation(s)
- Ewa M Musiol-Kroll
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
| | | | | | - Evi Stegmann
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
| |
Collapse
|
30
|
Abstract
Horizontal gene transfer is a rapid and efficient way to diversify bacterial gene pools. Currently, little is known about this gene flux within natural soil populations. Using comparative genomics of Streptomyces strains belonging to the same species and isolated at microscale, we reveal frequent transfer of a significant fraction of the pangenome. We show that it occurs at a time scale enabling the population to diversify and to cope with its changing environment, notably, through the production of public goods. In this work, by comparing genomes of closely related individuals of Streptomyces isolated at a spatial microscale (millimeters or centimeters), we investigated the extent and impact of horizontal gene transfer in the diversification of a natural Streptomyces population. We show that despite these conspecific strains sharing a recent common ancestor, all harbored significantly different gene contents, implying massive and rapid gene flux. The accessory genome of the strains was distributed across insertion/deletion events (indels) ranging from one to several hundreds of genes. Indels were preferentially located in the arms of the linear chromosomes (ca. 12 Mb) and appeared to form recombination hot spots. Some of them harbored biosynthetic gene clusters (BGCs) whose products confer an inhibitory capacity and may constitute public goods that can favor the cohesiveness of the bacterial population. Moreover, a significant proportion of these variable genes were either plasmid borne or harbored signatures of actinomycete integrative and conjugative elements (AICEs). We propose that conjugation is the main driver for the indel flux and diversity in Streptomyces populations.
Collapse
|
31
|
Wright ES, Vetsigian KH. Stochastic exits from dormancy give rise to heavy‐tailed distributions of descendants in bacterial populations. Mol Ecol 2019; 28:3915-3928. [DOI: 10.1111/mec.15200] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Erik S. Wright
- Department of Biomedical Informatics University of Pittsburgh Pittsburgh PA USA
| | - Kalin H. Vetsigian
- Wisconsin Institute for Discovery University of Wisconsin‐Madison Madison WI USA
| |
Collapse
|
32
|
Identification of a secondary metabolism-responsive promoter by proteomics for over-production of natamycin in Streptomyces. Arch Microbiol 2019; 201:1459-1464. [DOI: 10.1007/s00203-019-01710-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/20/2019] [Indexed: 12/18/2022]
|
33
|
Li YP, Yu P, Li JF, Tang YL, Bu QT, Mao XM, Li YQ. FadR1, a pathway-specific activator of fidaxomicin biosynthesis in Actinoplanes deccanensis Yp-1. Appl Microbiol Biotechnol 2019; 103:7583-7596. [DOI: 10.1007/s00253-019-09949-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022]
|
34
|
A novel multidomain acyl-CoA carboxylase in Saccharopolyspora erythraea provides malonyl-CoA for de novo fatty acid biosynthesis. Sci Rep 2019; 9:6725. [PMID: 31040353 PMCID: PMC6491548 DOI: 10.1038/s41598-019-43223-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/17/2019] [Indexed: 11/08/2022] Open
Abstract
Acetyl-CoA carboxylases (ACCs) are enzyme complexes generally composed of three catalytic domains and distributed in all organisms. In prokaryotes and plastids of most plants, these domains are encoded in distinct subunits forming heteromeric complexes. Distinctively, cytosolic ACCs from eukaryotes and plastids of graminaceous monocots, are organized in a single multidomain polypeptide. Until now, no multidomain ACCs had been discovered in bacteria. Here, we show that a putative multidomain ACC in Saccharopolyspora erythraea is encoded by the sace_4237 gene, representing the first prokaryotic ACC homodimeric multidomain complex described. The SACE_4237 complex has both acetyl-CoA and propionyl-CoA carboxylase activities. Importantly, we demonstrate that sace_4237 is essential for S. erythraea survival as determined by the construction of a sace_4237 conditional mutant. Altogether, our results show that this prokaryotic homodimeric multidomain ACC provides malonyl-CoA for de novo fatty acid biosynthesis. Furthermore, the data presented here suggests that evolution of these enzyme complexes, from single domain subunits to eukaryotic multidomain ACCs, occurred in bacteria through domain fusion.
Collapse
|
35
|
Suárez-Moreno ZR, Vinchira-Villarraga DM, Vergara-Morales DI, Castellanos L, Ramos FA, Guarnaccia C, Degrassi G, Venturi V, Moreno-Sarmiento N. Plant-Growth Promotion and Biocontrol Properties of Three Streptomyces spp. Isolates to Control Bacterial Rice Pathogens. Front Microbiol 2019; 10:290. [PMID: 30858835 PMCID: PMC6398372 DOI: 10.3389/fmicb.2019.00290] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/04/2019] [Indexed: 11/23/2022] Open
Abstract
Bacterial Panicle Blight caused by Burkholderia glumae is a major disease of rice, which has dramatically affected rice production around the world in the last years. In this study we describe the assessment of three Streptomyces isolates as biocontrol agents for B. glumae. Additionally, the presence of other plant-growth promoting abilities and their possible beneficial effects upon their inoculation on rice plants was evaluated as an ecological analysis for their future inoculation in rice crops. Two isolates (A20 and 5.1) inhibited growth of virulent B. glumae strains, as well as a wide range of bacterial and fungal species, while a third strain (7.1) showed only antifungal activity. In vitro tests demonstrated the ability of these strains to produce siderophores, Indoleacetic acid (IAA), extracellular enzymes and solubilizing phosphate. Greenhouse experiments with two rice cultivars indicated that Streptomyces A20 is able to colonize rice plants and promote plant growth in both cultivars. Furthermore, an egfp tagged mutant was generated and colonization experiments were performed, indicating that Streptomyces A20 –GFP was strongly associated with root hairs, which may be related to the plant growth promotion observed in the gnotobiotic experiments. In order to characterize the antimicrobial compounds produced by strain A20 bacteria, mass spectrometry analyses were performed. This technique indicated that A20 produced several antimicrobial compounds with sizes below 3 kDa and three of these molecules were identified as Streptotricins D, E and F. These findings indicate the potential of Streptomyces A20 as a biocontrol inoculant to protect rice plants against bacterial diseases.
Collapse
Affiliation(s)
| | | | | | | | - Freddy A Ramos
- Departamento de Química. Universidad Nacional de Colombia, Bogotá, Colombia
| | - Corrado Guarnaccia
- Biotechnology Development Unit, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Giuliano Degrassi
- Bacteriology and Plant Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Vittorio Venturi
- Bacteriology and Plant Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | |
Collapse
|
36
|
Zheng Y, Sun CF, Fu Y, Chen XA, Li YQ, Mao XM. Dual regulation between the two-component system PhoRP and AdpA regulates antibiotic production in Streptomyces. J Ind Microbiol Biotechnol 2019; 46:725-737. [PMID: 30712141 DOI: 10.1007/s10295-018-02127-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/19/2018] [Indexed: 01/03/2023]
Abstract
Antibiotic production during secondary metabolism in Streptomyces spp. is elaborately controlled by multiple environmental signals and intracellular cascades. These include the two-component system PhoRP responding to phosphate starvation and a conserved signaling pathway mediated by the pleiotropic regulator AdpA. However, little information exists about how these two pathways work together for secondary metabolite production of Streptomyces. Herein, we report the dual regulation from the phosphate starvation-responsive regulator PhoP and AdpA on atrA promoter (atrAp) for the production of daptomycin, an antibiotic produced by Streptomyces roseosporus. We found that PhoP directly binds to atrAp, positively regulates atrA expression and thus daptomycin production. We also observed positive auto-regulation of phoRP expression during fermentation for daptomycin production. Moreover, partial overlap between PhoP- and AdpA-binding sites on atrAp was observed, which results in partial competitive binding between these two regulators. This partial overlapping and competition between PhoP and AdpA was further confirmed by mutations and binding assays. In summary, our findings have revealed dual regulation of PhoP and AdpA on the same promoter for antibiotic production in Streptomyces. This mechanism would be beneficial to further environment-responsive fermentation optimization for antibiotic production.
Collapse
Affiliation(s)
- Yang Zheng
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Chen-Fan Sun
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Yu Fu
- School of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Ai Chen
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China.
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China.
| |
Collapse
|
37
|
Hamed MB, Vrancken K, Bilyk B, Koepff J, Novakova R, van Mellaert L, Oldiges M, Luzhetskyy A, Kormanec J, Anné J, Karamanou S, Economou A. Monitoring Protein Secretion in Streptomyces Using Fluorescent Proteins. Front Microbiol 2018; 9:3019. [PMID: 30581427 PMCID: PMC6292873 DOI: 10.3389/fmicb.2018.03019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/22/2018] [Indexed: 01/25/2023] Open
Abstract
Fluorescent proteins are a major cell biology tool to analyze protein sub-cellular topology. Here we have applied this technology to study protein secretion in the Gram-positive bacterium Streptomyces lividans TK24, a widely used host for heterologous protein secretion biotechnology. Green and monomeric red fluorescent proteins were fused behind Sec (SPSec) or Tat (SPTat) signal peptides to direct them through the respective export pathway. Significant secretion of fluorescent eGFP and mRFP was observed exclusively through the Tat and Sec pathways, respectively. Plasmid over-expression was compared to a chromosomally integrated spSec-mRFP gene to allow monitoring secretion under high and low level synthesis in various media. Fluorimetric detection of SPSec-mRFP recorded folded states, while immuno-staining detected even non-folded topological intermediates. Secretion of SPSec-mRFP is unexpectedly complex, is regulated independently of cell growth phase and is influenced by the growth regime. At low level synthesis, highly efficient secretion occurs until it is turned off and secretory preforms accumulate. At high level synthesis, the secretory pathway overflows and proteins are driven to folding and subsequent degradation. High-level synthesis of heterologous secretory proteins, whether secretion competent or not, has a drastic effect on the endogenous secretome, depending on their secretion efficiency. These findings lay the foundations of dissecting how protein targeting and secretion are regulated by the interplay between the metabolome, secretion factors and stress responses in the S. lividans model.
Collapse
Affiliation(s)
- Mohamed Belal Hamed
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium.,Molecular Biology Department, National Research Centre, Dokki, Egypt
| | - Kristof Vrancken
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Joachim Koepff
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lieve van Mellaert
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marco Oldiges
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andriy Luzhetskyy
- Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Anné
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Conjugational delivery of chromosomal integrative constructs for gene expression in the carbendazim-degrading Rhodococcus erythropolis D-1. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1382-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
39
|
Tenconi E, Traxler MF, Hoebreck C, van Wezel GP, Rigali S. Production of Prodiginines Is Part of a Programmed Cell Death Process in Streptomyces coelicolor. Front Microbiol 2018; 9:1742. [PMID: 30127771 PMCID: PMC6087738 DOI: 10.3389/fmicb.2018.01742] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/12/2018] [Indexed: 12/24/2022] Open
Abstract
Actinobacteria are prolific producers of antitumor antibiotics with antiproliferative activity, but why these bacteria synthetize metabolites with this bioactivity has so far remained a mystery. In this work we raised the hypothesis that under certain circumstances, production of antiproliferative agents could be part of a genetically programmed death of the producing organism. While programmed cell death (PCD) has been well documented when Streptomyces species switch from vegetative (nutrition) to aerial (reproduction) growth, lethal determinants are yet to be discovered. Using DNA-damaging prodiginines of Streptomyces coelicolor as model system, we revealed that, under certain conditions, their biosynthesis is always triggered in the dying zone of the mycelial network prior to morphological differentiation, right after an initial round of cell death. The programmed massive death round of the vegetative mycelium is absent in a prodiginine non-producer (ΔredD strain), and mutant complementation restored both prodiginine production and cell death. The redD null mutant of S. coelicolor also showed increased DNA, RNA, and proteins synthesis when most of the mycelium of the wild-type strain was dead when prodiginines accumulated. Moreover, addition of the prodiginine synthesis inhibitors also resulted in enhanced accumulation of viable filaments. Overall, our data enable us to propose a model where the time-space production of prodiginines is programmed to be triggered by the perception of dead cells, and their biosynthesis further amplifies the PCD process. As prodiginine production coincides with the moment S. coelicolor undergoes morphogenesis, the production of these lethal compounds might be used to eradicate the obsolete part of the population in order to provide nutrients for development of the survivors. Hence, next to weapons in competition between organisms or signals in inter- and intra-species communications, we propose a third role for antibiotics (in the literal meaning of the word ‘against life’) i.e., elements involved in self-toxicity in order to control cell proliferation, and/or for PCD associated with developmental processes.
Collapse
Affiliation(s)
- Elodie Tenconi
- InBioS - Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Matthew F Traxler
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Charline Hoebreck
- InBioS - Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Sébastien Rigali
- InBioS - Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| |
Collapse
|
40
|
Lin L, Xu X, Zheng Y, Zhang C. Effects of AttM lactonase on the pathogenicity of Streptomyces scabies. Lett Appl Microbiol 2018; 67:270-277. [PMID: 29897616 DOI: 10.1111/lam.13019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/21/2018] [Accepted: 06/04/2018] [Indexed: 11/30/2022]
Abstract
The biosynthesis of phytotoxin thaxtomin A (TXT) constitutes the major pathogenicity determinant in Streptomyces scabies, the most widely studied phytopathogen causing scab disease in potato and other root crops. It is recognized that S. scabies regulates its pathogenicity via γ-butyrolactone (GBL)-dependent quorum sensing (QS) signalling. AttM, from Agrobacterium tumefaciens C58 strain, has recently been proposed to have GBL-assimilative capacity. Here, we presented the introduction of A. tumefaciens-derived attM gene into S. scabies using the Escherichia coli-Streptomyces shuttle vector pIJ8600 via intergeneric conjugation, followed by the investigation of secondary metabolism (mycelium growth, TXT production and pathogenicity) in S. scabies attM exconjugants (S.s/attM) in comparison with their wild-type parent strain (S.s/WT). Among the resultant S.s/attM exconjugants, attM was found to be integrated into S. scabies chromosome as analysed by Southern blotting. Moreover, S.s/attM failed to evoke the disease symptoms in planta and displayed altered morphological differentiation in contrast to S.s/WT. The abolishment of TXT production in S.s/attM substantiated the loss of pathogenicity and also implied that attM, when constitutively expressed in S. scabies, could paralyse its GBL signalling pathway. Altogether, lactonase-coding gene attM would be useful in a quorum quenching strategy for plant protection via suppressing TXT production and pathogenicity of S. scabies. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides an efficient means to introduce the lactonase gene attM from Agrobacterium tumefaciens into Streptomyces scabies for evaluating the role of γ-butyrolactone (GBL) in thaxtomin A production and pathogenicity, etc. Our results showed that pathogenicity was abrogated in attM-expressing S. scabies exconjugants. Although there are gene knockout approaches to inactivating GBL signalling and thus pathogenicity in S. scabies, they are not only time consuming due to refractory host but also possibly incomplete in view of gene redundancy. Our work is the first report for a kind of lactonase affecting pathogenicity and/or virulence of scab-causing Streptomyces species.
Collapse
Affiliation(s)
- L Lin
- Department of Bioengineering, School of Medicine, Southeast University, Nanjing, China
| | - X Xu
- Department of Bioengineering, School of Medicine, Southeast University, Nanjing, China
| | - Y Zheng
- Department of Bioengineering, School of Medicine, Southeast University, Nanjing, China
| | - C Zhang
- Division of Electronic Microscopy, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
41
|
Transposon-based identification of a negative regulator for the antibiotic hyper-production in Streptomyces. Appl Microbiol Biotechnol 2018; 102:6581-6592. [DOI: 10.1007/s00253-018-9103-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 11/29/2022]
|
42
|
Patel JK, Madaan S, Archana G. Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogen-challenged cereal crops. Microbiol Res 2018; 215:36-45. [PMID: 30172307 DOI: 10.1016/j.micres.2018.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/24/2018] [Accepted: 06/02/2018] [Indexed: 11/16/2022]
Abstract
The Streptomyces spp. used in this work were previously isolated as diazotrophic endophytes from sorghum stems. Here, we characterized the Streptomyces spp. for their colonization ability, plant growth promotion and protection against fungal disease in three cereals. In vitro analysis by dual culture study showed inhibitory effect on the rice pathogen Magnaporthe oryzae B157 along with inhibition of the ubiquitous phytopathogen Rhizoctonia solani by the Streptomyces spp. used in this study. The active compounds responsible for phytopathogen inhibition were extracted with ethyl acetate and tested positive against the fungal pathogens. GC-MS based identification of the active compounds responsible for fungal pathogen inhibition showed them to be 2-(chloromethyl)-2-cyclopropyloxirane, 2, 4- ditert-butylphenol and 1-ethylthio-3-methyl-1, 3-butadiene in extracts of culture supernatants from the three different strains respectively. EGFP tagged Streptomyces strains showed profuse colonization in roots as well as aerial parts of cereal plants. Direct inhibitory action against M. oryzae B157 and R. solani correlated with the observation that upon fungal pathogen challenge, the bacterized rice, sorghum and wheat plants showed significantly good plant growth, particularly in aerial parts as compared to unbacterized controls. In addition, benefit was seen in inoculated healthy plants in terms of increase in wet weight of roots and shoots as compared to the uninoculated controls. The mechanism of biocontrol also involved induction of plant defense response as evidenced by the upregulation of PR10a, NPR1, PAL and LOX2 in Streptomyces colonized plants.
Collapse
Affiliation(s)
- Janki K Patel
- Department of Microbiology and Biotechnology Center, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Sheeba Madaan
- Department of Microbiology and Biotechnology Center, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - G Archana
- Department of Microbiology and Biotechnology Center, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India.
| |
Collapse
|
43
|
Zacchetti B, Smits P, Claessen D. Dynamics of Pellet Fragmentation and Aggregation in Liquid-Grown Cultures of Streptomyces lividans. Front Microbiol 2018; 9:943. [PMID: 29867851 PMCID: PMC5958208 DOI: 10.3389/fmicb.2018.00943] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/23/2018] [Indexed: 11/20/2022] Open
Abstract
Streptomycetes are extensively used for the production of valuable products, including various antibiotics and industrial enzymes. The preferred way to grow these bacteria in industrial settings is in large-scale fermenters. Growth of streptomycetes under these conditions is characterized by the formation of complex mycelial particles, called pellets. While the process of pellet formation is well characterized, little is known about their disintegration. Here, we use a qualitative and quantitative approach to show that pellet fragmentation in Streptomyces lividans is initiated when cultures enter the stationary phase, which coincides with a remarkable change in pellet architecture. Unlike young pellets, aging pellets have a less dense appearance and are characterized by the appearance of filaments protruding from their outer edges. These morphological changes are accompanied by a dramatic increase in the number of mycelial fragments in the culture broth. In the presence of fresh nutrients, these fragments are able to aggregate with other small fragments, but not with disintegrating pellets, to form new mycelial particles. Altogether, our work indicates that fragmentation might represent an escape mechanism from the environmental stress caused by nutrient scarcity, with striking similarities to the disassembly of bacterial biofilms.
Collapse
Affiliation(s)
- Boris Zacchetti
- Microbial Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Paul Smits
- Microbial Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Dennis Claessen
- Microbial Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
44
|
Sporulation-specific cell division defects in ylmE mutants of Streptomyces coelicolor are rescued by additional deletion of ylmD. Sci Rep 2018; 8:7328. [PMID: 29743540 PMCID: PMC5943314 DOI: 10.1038/s41598-018-25782-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/25/2018] [Indexed: 01/15/2023] Open
Abstract
Cell division during the reproductive phase of the Streptomyces life-cycle requires tight coordination between synchronous formation of multiple septa and DNA segregation. One remarkable difference with most other bacterial systems is that cell division in Streptomyces is positively controlled by the recruitment of FtsZ by SsgB. Here we show that deletion of ylmD (SCO2081) or ylmE (SCO2080), which lie in operon with ftsZ in the dcw cluster of actinomycetes, has major consequences for sporulation-specific cell division in Streptomyces coelicolor. Electron and fluorescence microscopy demonstrated that ylmE mutants have a highly aberrant phenotype with defective septum synthesis, and produce very few spores with low viability and high heat sensitivity. FtsZ-ring formation was also highly disturbed in ylmE mutants. Deletion of ylmD had a far less severe effect on sporulation. Interestingly, the additional deletion of ylmD restored sporulation to the ylmE null mutant. YlmD and YlmE are not part of the divisome, but instead localize diffusely in aerial hyphae, with differential intensity throughout the sporogenic part of the hyphae. Taken together, our work reveals a function for YlmD and YlmE in the control of sporulation-specific cell division in S. coelicolor, whereby the presence of YlmD alone results in major developmental defects.
Collapse
|
45
|
Regulatory and biosynthetic effects of the bkd gene clusters on the production of daptomycin and its analogs A21978C1–3. ACTA ACUST UNITED AC 2018; 45:271-279. [DOI: 10.1007/s10295-018-2011-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/11/2018] [Indexed: 01/10/2023]
Abstract
Abstract
Daptomycin is a cyclic lipopeptide antibiotic produced by Streptomyces roseosporus in an acidic peptide complex A21978C. In this complex, A21978C1–3 is most abundant and contains branched-chain fatty acyl groups, while daptomycin has a straight decanoic acyl group. The branched-chain α-keto acid dehydrogenase complex (BCDH complex), encoded by bkd gene clusters in Streptomyces, is responsible for the early step of converting branched-chain amino acids into branched-chain fatty acids. In a daptomycin industrial producer S. roseosporus L30, two alleles of bkd gene clusters, bkdA1B1C1/bkdA2B2C2, and a regulatory gene bkdR located upstream of bkdA2B2C2 are identified. We show that BkdR positively regulated bkdA2B2C2 expression and was negatively auto-regulated, but is not directly involved in regulation of daptomycin gene cluster expression. However, BkdR is required for both daptomycin and A21978C1–3 production. Furthermore, deletion of bkdA2B2C2 only led to partial reduction of A21978C1–3 production, while the ΔbkdA1B1C1 mutant shows very weak production of A21978C1–3, and the double bkd mutant has a similar production profile as the single ΔbkdA1B1C1 mutant, suggesting that bkdA1B1C1 gene cluster plays a dominant role in branched-chain fatty acid biosynthesis. So we reveal a unique regulatory function of BkdR and genetic engineered a bkd null strain for daptomycin production with reduced impurities.
Collapse
|
46
|
Yu P, Bu QT, Tang YL, Mao XM, Li YQ. Bidirectional Regulation of AdpA ch in Controlling the Expression of scnRI and scnRII in the Natamycin Biosynthesis of Streptomyces chattanoogensis L10. Front Microbiol 2018; 9:316. [PMID: 29551998 PMCID: PMC5840217 DOI: 10.3389/fmicb.2018.00316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
AdpA, an AraC/XylS family protein, had been proved as a key regulator for secondary metabolism and morphological differentiation in Streptomyces griseus. Here, we identify AdpAch, an ortholog of AdpA, as a "higher level" pleiotropic regulator of natamycin biosynthesis with bidirectional regulatory ability in Streptomyces chattanoogensis L10. DNase I footprinting revealed six AdpAch-binding sites in the scnRI-scnRII intergenic region. Further analysis using the xylE reporter gene fused to the scnRI-scnRII intergenic region of mutated binding sites demonstrated that the expression of scnRI and scnRII was under the control of AdpAch. AdpAch showed a bi-stable regulatory ability where it firstly binds to the Site C and Site D to activate the transcription of the two pathway-specific genes, scnRI and scnRII, and then binds to other sites where it acts as an inhibitor. When Site A and Site F were mutated in vivo, the production of natamycin was increased by 21% and 25%, respectively. These findings indicated an autoregulatory mechanism where AdpAch serves as a master switch with bidirectional regulation for natamycin biosynthesis.
Collapse
Affiliation(s)
- Pin Yu
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China.,College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qing-Ting Bu
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Yi-Li Tang
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| |
Collapse
|
47
|
Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A. Molecular interaction of 1-aminocyclopropane-1-carboxylate deaminase (ACCD)-producing endophytic Streptomyces sp. GMKU 336 towards salt-stress resistance of Oryza sativa L. cv. KDML105. Sci Rep 2018; 8:1950. [PMID: 29386629 PMCID: PMC5792428 DOI: 10.1038/s41598-018-19799-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/08/2018] [Indexed: 11/08/2022] Open
Abstract
1-aminocyclopropane-1-carboxylate deaminase (ACCD)-producing endophytic Streptomyces sp. GMKU 336 and its ACCD-deficient mutant were inoculated into Thai jasmine rice Khao Dok Mali 105 cultivar (Oryza sativa L. cv. KDML105) under salt stress (150 mM NaCl) conditions. The results clearly indicated that Streptomyces sp. GMKU 336 significantly increased plant growth, chlorophyll, proline, K+, Ca+, and water contents; but decreased ethylene, reactive oxygen species (ROS), Na+, and Na+/K+ ratio when compared to plants not inoculated and those inoculated with the ACCD-deficient mutant. Expression profiles of stress responsive genes in rice in association with strain GMKU 336 were correlated to plant physiological characteristics. Genes involved in the ethylene pathway, ACO1 and EREBP1, were significantly down-regulated; while acdS encoding ACCD in Streptomyces sp. GMKU 336 was up-regulated in vivo. Furthermore, genes involved in osmotic balance (BADH1), Na+ transporters (NHX1 and SOS1), calmodulin (Cam1-1), and antioxidant enzymes (CuZn-SOD1 and CATb) were up-regulated; whereas, a gene implicated in a signaling cascade, MAPK5, was down-regulated. This work demonstrates the first time that ACCD-producing Streptomyces sp. GMKU 336 enhances growth of rice and increases salt tolerance by reduction of ethylene via the action of ACCD and further assists plants to scavenge ROS, balance ion content and osmotic pressure.
Collapse
Affiliation(s)
- Ratchaniwan Jaemsaeng
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Bangkok, 10900, Thailand
| | | | - Arinthip Thamchaipenet
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Bangkok, 10900, Thailand.
| |
Collapse
|
48
|
A set of synthetic versatile genetic control elements for the efficient expression of genes in Actinobacteria. Sci Rep 2018; 8:491. [PMID: 29323285 PMCID: PMC5765039 DOI: 10.1038/s41598-017-18846-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
The design and engineering of secondary metabolite gene clusters that are characterized by complicated genetic organization, require the development of collections of well-characterized genetic control elements that can be reused reliably. Although a few intrinsic terminators and RBSs are used routinely, their translation and termination efficiencies have not been systematically studied in Actinobacteria. Here, we analyzed the influence of the regions surrounding RBSs on gene expression in these bacteria. We demonstrated that inappropriate RBSs can reduce the expression efficiency of a gene to zero. We developed a genetic device – an in vivo RBS-selector – that allows selection of an optimal RBS for any gene of interest, enabling rational control of the protein expression level. In addition, a genetic tool that provides the opportunity for measurement of termination efficiency was developed. Using this tool, we found strong terminators that lead to a 17–100-fold reduction in downstream expression and are characterized by sufficient sequence diversity to reduce homologous recombination when used with other elements. For the first time, a C-terminal degradation tag was employed for the control of protein stability in Streptomyces. Finally, we describe a collection of regulatory elements that can be used to control metabolic pathways in Actinobacteria.
Collapse
|
49
|
Rocha D, Ruiz-Villafán B, Manzo M, Rodríguez-Sanoja R, Sánchez S. Development of an efficient conjugal DNA transfer system between Escherichia coli and a non-sporulating Streptomyces strain. J Microbiol Methods 2018; 144:60-66. [DOI: 10.1016/j.mimet.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/07/2023]
|
50
|
Abstract
Streptomyces are of great biological and industrial significance due to their complex morphological development and ability to produce numerous secondary metabolites. However, the intrinsic biochemical mechanisms underlying morphogenesis and secondary metabolism are rarely revealed, partially because of the limited availability of the biochemical tools in Streptomyces. Here we provided series of integrative vectors with various affinity tags, including single tags 3×FLAG, 3×HA, 3×Strep-tag II, 18×His, 13×Myc, and dual tags, all of which were driven from a strong constitutive promoter ermEp*. Using a sigma factor SigT from S. coelicolor as a model, we successfully expressed and immuno-detected SigT fused with all tags. Moreover, after SigT was N-terminally tagged with 3×FLAG and C-terminally tagged with 18×His, we isolated SigT-interactive proteins from the S. coelicolor lysate based on the tandem affinity purification (TAP). Particularly, among the proteins purified, the SigT cognate anti-sigma factor RstA ranked the top with the most total independent spectra. These data suggested the feasibility of these affinity tags in Streptomyces, which will be widely employed to explore the biochemical mechanisms to further understand the dynamic and elaborate regulation in this genus.
Collapse
|