1
|
Jin Y, Xu Y, Huang Z, Zhou Z, Wei X. Metabolite pattern in root nodules of the actinorhizal plant Casuarina equisetifolia. PHYTOCHEMISTRY 2021; 186:112724. [PMID: 33721795 DOI: 10.1016/j.phytochem.2021.112724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Casuarina equisetifolia L. (Casuarinaceae), an actinorhizal plant, exhibits mutualistic symbiosis with Frankia and promotes nitrogen fixation in root nodules. While the exchange of metabolites between host plant and microsymbiont is well understood in legume symbioses, the situation in the symbiosis between nitrogen-fixing Frankia and actinorhizal plants is less clear. In this study, a metabolomic approach was applied to root nodules of mature C. equisetifolia trees, leading to the identification of an undescribed taraxerane-type triterpenoid ester, 3-O-dihydrocoumaroyl β-taraxerol, along with twelve known compounds. An abundant component was tyramine with a content of 2.76 ± 0.315 mg/g FW in mature nodules. Tyramine specifically and abundantly accumulated in mature nitrogen-fixing nodules compared to senescent nodules, stems, leaves, and seeds. In addition, the potential function of tyramine was preliminarily examined and discussed.
Collapse
Affiliation(s)
- Yu Jin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingting Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhengwan Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhongyu Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China; South China Branch of Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China; South China Branch of Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
2
|
Paley EL. Discovery of Gut Bacteria Specific to Alzheimer's Associated Diseases is a Clue to Understanding Disease Etiology: Meta-Analysis of Population-Based Data on Human Gut Metagenomics and Metabolomics. J Alzheimers Dis 2020; 72:319-355. [PMID: 31561379 DOI: 10.3233/jad-190873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD)-associated sequence (ADAS) of cultured fecal bacteria was discovered in human gut targeted screening. This study provides important information to expand our current understanding of the structure/activity relationship of ADAS and putative inhibitors/activators that are potentially involved in ADAS appearance/disappearance. The NCBI database analysis revealed that ADAS presents at a large proportion in American Indian Oklahoman (C&A) with a high prevalence of obesity/diabetes and in colorectal cancer (CRC) patients from the US and China. An Oklahoman non-native group (NNI) showed no ADAS. Comparison of two large US populations reveals that ADAS is more frequent in individuals aged ≥66 and in females. Prevalence and levels of fecal metabolites are altered in the C&A and CRC groups versus controls. Biogenic amines (histamine, tryptamine, tyramine, phenylethylamine, cadaverine, putrescine, agmatine, spermidine) that present in food and are produced by gut microbiota are significantly higher in C&A (e.g., histamine/histidine 95-fold) versus NNI (histamine/histidine 16-fold). The majority of these bio-amines are cytotoxic at concentrations found in food. Inositol phosphate signaling implicated in AD is altered in C&A and CRC. Tryptamine stimulated accumulation of inositol phosphate. The seizure-eliciting tryptamine induced cytoplasmic vacuolization and vesiculation with cell fragmentation. Present additions of ADAS-carriers at different ages including infants led to an ADAS-comprising human sample size of 2,830 from 27 studies from four continents (North America, Australia, Asia, Europe). Levels of food-derived monoamine oxidase inhibitors and anti-bacterial compounds, the potential modulators of ADAS-bacteria growth and biogenic amine production, were altered in C&A versus NNI. ADAS is attributable to potentially modifiable risk factors of AD associated diseases.
Collapse
Affiliation(s)
- Elena L Paley
- Expert Biomed, Inc., Miami, FL, USA.,Stop Alzheimers Corp, Miami, FL, USA
| |
Collapse
|
3
|
Yukl ET, Davidson VL. Diversity of structures, catalytic mechanisms and processes of cofactor biosynthesis of tryptophylquinone-bearing enzymes. Arch Biochem Biophys 2018; 654:40-46. [PMID: 30026025 PMCID: PMC6098718 DOI: 10.1016/j.abb.2018.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 11/20/2022]
Abstract
Tryptophyquinone-bearing enzymes contain protein-derived cofactors formed by posttranslational modifications of Trp residues. Tryptophan tryptophylquinone (TTQ) is comprised of a di-oxygenated Trp residue, which is cross-linked to another Trp residue. Cysteine tryptophylquinone (CTQ) is comprised of a di-oxygenated Trp residue, which is cross-linked to a Cys residue. Despite the similarity of these cofactors, it has become evident in recent years that the overall structures of the enzymes that possess these cofactors vary, and that the gene clusters that encode the enzymes are quite diverse. While it had been long assumed that all tryptophylquinone enzymes were dehydrogenases, recently discovered classes of these enzymes are oxidases. A common feature of enzymes that have these cofactors is that the posttranslational modifications that form the mature cofactors are catalyzed by a modifying enzyme. However, it is now clear that modifying enzymes are different for different tryptophylquinone enzymes. For methylamine dehydrogenase a di-heme enzyme, MauG, is needed to catalyze TTQ biosynthesis. However, no gene similar to mauG is present in the gene clusters that encode the other enzymes, and the recently characterized family of CTQ-dependent oxidases, termed LodA-like proteins, require a flavoenzyme for cofactor biosynthesis.
Collapse
Affiliation(s)
- Erik T Yukl
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
4
|
Xiao X, Si M, Yang Z, Zhang Y, Guan J, Chaudhry MT, Wang Y, Shen X. Molecular characterization of a eukaryotic-like phenol hydroxylase from Corynebacterium glutamicum. J GEN APPL MICROBIOL 2016; 61:99-107. [PMID: 26377129 DOI: 10.2323/jgam.61.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study focuses on the genetic and biochemical characterization of phenol hydroxylase (Phe, NCgl2588) from Corynebacterium glutamicum that shares 31% identity in amino acids with phenol hydroxylase from yeast Trichosporon cutaneum but less similarity with that from bacteria. The phe deletion mutant significantly reduced its ability to grow with phenol as the sole carbon and energy source. Expression of the phe gene was strongly induced with phenol and also subject to the control of carbon catabolite repression (CCR). The molecular weight of purified Phe protein determined by gel filtration chromatography was 70 kDa, indicating that Phe exists as a monomer in the purification condition. However, Phe protein pre-incubated with phenol showed a molecular weight of 140 kDa, suggesting that Phe is likely active as a dimer. In addition to phenol, the Phe protein could utilize various other phenolic compounds as substrates. Site-directed mutagenesis revealed that D75, P261, R262, R269, C349 and C476 are key amino acid residues closely related to the enzyme activity of Phe.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Gandu B, Sandhya K, Gangagni Rao A, Swamy YV. Gas phase bio-filter for the removal of triethylamine (TEA) from air: microbial diversity analysis with reference to design parameters. BIORESOURCE TECHNOLOGY 2013; 139:155-160. [PMID: 23651599 DOI: 10.1016/j.biortech.2013.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Biotic (packed bio-filter; PBF) and abiotic (packed filter; PF) studies were carried out on two similar 2L gas phase filters for the removal of triethylamine (TEA) at inlet concentration in the range of 250-280 ppmV. Removal efficiency (RE) of PBF remained in the range of 90-99% during the stable period of operation (170 days) whereas RE of PF dropped gradually to 10% in a span of 90 days. Five different bacterial species viz; Aeromonas sp., Alcaligenes sp., Arthrobacter sp., Klebsiella sp., and Pseudomonas sp., were identified in PBF. It was observed that diethyl amine, ethylamine and nitrate were formed as metabolites during the degradation pathway. Empty bed residence time of 20s, mass loading rate of 202.26 g/m(3)/h, space velocity of 178.82 m(3)/m(3)/h and elimination capacity of 201.52 g/m(3)/h were found to be optimum design parameters for PBF to get RE in the range of 90-99%.
Collapse
Affiliation(s)
- Bharath Gandu
- Bioengineering and Environmental Centre (BEEC), CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
| | | | | | | |
Collapse
|
6
|
Pérez-Pantoja D, De la Iglesia R, Pieper DH, González B. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacteriumCupriavidus necatorJMP134. FEMS Microbiol Rev 2008; 32:736-94. [DOI: 10.1111/j.1574-6976.2008.00122.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Roujeinikova A, Hothi P, Masgrau L, Sutcliffe MJ, Scrutton NS, Leys D. New Insights into the Reductive Half-reaction Mechanism of Aromatic Amine Dehydrogenase Revealed by Reaction with Carbinolamine Substrates. J Biol Chem 2007; 282:23766-77. [PMID: 17475620 DOI: 10.1074/jbc.m700677200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aromatic amine dehydrogenase uses a tryptophan tryptophylquinone (TTQ) cofactor to oxidatively deaminate primary aromatic amines. In the reductive half-reaction, a proton is transferred from the substrate C1 to betaAsp-128 O-2, in a reaction that proceeds by H-tunneling. Using solution studies, kinetic crystallography, and computational simulation we show that the mechanism of oxidation of aromatic carbinolamines is similar to amine oxidation, but that carbinolamine oxidation occurs at a substantially reduced rate. This has enabled us to determine for the first time the structure of the intermediate prior to the H-transfer/reduction step. The proton-betaAsp-128 O-2 distance is approximately 3.7A, in contrast to the distance of approximately 2.7A predicted for the intermediate formed with the corresponding primary amine substrate. This difference of approximately 1.0 A is due to an unexpected conformation of the substrate moiety, which is supported by molecular dynamic simulations and reflected in the approximately 10(7)-fold slower TTQ reduction rate with phenylaminoethanol compared with that with primary amines. A water molecule is observed near TTQ C-6 and is likely derived from the collapse of the preceding carbinolamine TTQ-adduct. We suggest this water molecule is involved in consecutive proton transfers following TTQ reduction, and is ultimately repositioned near the TTQ O-7 concomitant with protein rearrangement. For all carbinolamines tested, highly stable amide-TTQ adducts are formed following proton abstraction and TTQ reduction. Slow hydrolysis of the amide occurs after, rather than prior to, TTQ oxidation and leads ultimately to a carboxylic acid product.
Collapse
Affiliation(s)
- Anna Roujeinikova
- Manchester Interdisciplinary Biocenter, University of Manchester, Manchester M17DN, United Kingdom
| | | | | | | | | | | |
Collapse
|
8
|
Roujeinikova A, Scrutton NS, Leys D. Atomic level insight into the oxidative half-reaction of aromatic amine dehydrogenase. J Biol Chem 2006; 281:40264-72. [PMID: 17005560 DOI: 10.1074/jbc.m605559200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The quinoprotein aromatic amine dehydrogenase (AADH) uses a covalently bound tryptophan tryptophylquinone (TTQ) cofactor to oxidatively deaminate primary aromatic amines. Recent crystal structures have provided insight into the reductive half-reaction. In contrast, no atomic details are available for the oxidative half-reaction. The TTQ O7 hydroxyl group is protonated during reduction, but it is unclear how this proton can be removed during the oxidative half-reaction. Furthermore, compared with the electron transfer from the N-quinol form, electron transfer from the non-physiological O-quinol form to azurin is significantly slower. Here we report crystal structures of the O-quinol, N-quinol, and N-semiquinone forms of AADH. A comparison of oxidized and substrate reduced AADH species reveals changes in the TTQ-containing subunit, extending from residues in the immediate vicinity of the N-quinol to the putative azurin docking site, suggesting a mechanism whereby TTQ redox state influences interprotein electron transfer. In contrast, chemical reduction of the TTQ center has no significant effect on protein conformation. Furthermore, structural reorganization upon substrate reduction places a water molecule near TTQ O7 where it can act as proton acceptor. The structure of the N-semiquinone, however, is essentially similar to oxidized AADH. Surprisingly, in the presence of substrate a covalent N-semiquinone substrate adduct is observed. To our knowledge this is the first detailed insight into a complex, branching mechanism of quinone oxidation where significant structural reorganization upon reduction of the quinone center directly influences formation of the electron transfer complex and nature of the electron transfer process.
Collapse
Affiliation(s)
- Anna Roujeinikova
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, United Kingdom
| | | | | |
Collapse
|
9
|
Hothi P, Khadra KA, Combe JP, Leys D, Scrutton NS. Tryptophan tryptophylquinone cofactor biogenesis in the aromatic amine dehydrogenase of Alcaligenes faecalis. FEBS J 2005; 272:5894-909. [PMID: 16279953 DOI: 10.1111/j.1742-4658.2005.04990.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heterologous expression of tryptophan trytophylquinone (TTQ)-dependent aromatic amine dehydrogenase (AADH) has been achieved in Paracoccus denitrificans. The aauBEDA genes and orf-2 from the aromatic amine utilization (aau) gene cluster of Alcaligenes faecalis were placed under the regulatory control of the mauF promoter from P. denitrificans and introduced into P. denitrificans using a broad-host-range vector. The physical, spectroscopic and kinetic properties of the recombinant AADH were indistinguishable from those of the native enzyme isolated from A. faecalis. TTQ biogenesis in recombinant AADH is functional despite the lack of analogues in the cloned aau gene cluster for mauF, mauG, mauL, mauM and mauN that are found in the methylamine utilization (mau) gene cluster of a number of methylotrophic organisms. Steady-state reaction profiles for recombinant AADH as a function of substrate concentration differed between 'fast' (tryptamine) and 'slow' (benzylamine) substrates, owing to a lack of inhibition by benzylamine at high substrate concentrations. A deflated and temperature-dependent kinetic isotope effect indicated that C-H/C-D bond breakage is only partially rate-limiting in steady-state reactions with benzylamine. Stopped-flow studies of the reductive half-reaction of recombinant AADH with benzylamine demonstrated that the KIE is elevated over the value observed in steady-state turnover and is independent of temperature, consistent with (a) previously reported studies with native AADH and (b) breakage of the substrate C-H bond by quantum mechanical tunnelling. The limiting rate constant (k(lim)) for TTQ reduction is controlled by a single ionization with pK(a) value of 6.0, with maximum activity realized in the alkaline region. Two kinetically influential ionizations were identified in plots of k(lim)/K(d) of pK(a) values 7.1 and 9.3, again with the maximum value realized in the alkaline region. The potential origin of these kinetically influential ionizations is discussed.
Collapse
Affiliation(s)
- Parvinder Hothi
- Manchester Interdisciplinary Biocentre and Faculty of Life Sciences, University of Manchester, UK
| | | | | | | | | |
Collapse
|
10
|
Jones LH, Pearson AR, Tang Y, Wilmot CM, Davidson VL. Active site aspartate residues are critical for tryptophan tryptophylquinone biogenesis in methylamine dehydrogenase. J Biol Chem 2005; 280:17392-6. [PMID: 15734739 DOI: 10.1074/jbc.m500943200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of methylamine dehydrogenase (MADH) requires formation of six intrasubunit disulfide bonds, incorporation of two oxygens into residue betaTrp57 and covalent cross-linking of betaTrp57 to betaTrp108 to form the protein-derived cofactor tryptophan tryptophylquinone (TTQ). Residues betaAsp76 and betaAsp32 are located in close proximity to the quinone oxygens of TTQ in the enzyme active site. These residues are structurally conserved in quinohemoprotein amine dehydrogenase, which possesses a cysteine tryptophylquinone cofactor. Relatively conservative betaD76N and betaD32N mutations resulted in very low levels of MADH expression. Analysis of the isolated proteins by mass spectrometry revealed that each mutation affected TTQ biogenesis. betaD76N MADH possessed the six disulfides but had no oxygen incorporated into betaTrp57 and was completely inactive. The betaD32N MADH preparation contained a major species with six disulfides but no oxygen incorporated into betaTrp57 and a minor species with both oxygens incorporated, which was active. The steady-state kinetic parameters for the betaD32N mutant were significantly altered by the mutation and exhibited a 1000-fold increase in the Km value for methylamine. These results have allowed us to more clearly define the sequence of events that lead to TTQ biogenesis and to define novel roles for aspartate residues in the biogenesis of a protein-derived cofactor.
Collapse
Affiliation(s)
- Limei H Jones
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | |
Collapse
|
11
|
Davidson VL. Structure and mechanism of tryptophylquinone enzymes. Bioorg Chem 2004; 33:159-70. [PMID: 15888309 DOI: 10.1016/j.bioorg.2004.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/05/2004] [Accepted: 10/08/2004] [Indexed: 11/23/2022]
Abstract
Tryptophylquinone cofactors are formed by posttranslational modifications that result in the incorporation of two oxygens into a tryptophan side chain, and the covalent cross-linking of that side chain to another amino acid residue. Tryptophylquinone enzymes catalyze the oxidative deamination of primary amines, and utilize other redox proteins as electron acceptors. Mechanistic and structural studies of these enzymes are providing insight into how these enzymes utilize these highly reactive protein-derived quinones in a controlled manner to facilitate biologically important catalytic and electron transfer reactions.
Collapse
Affiliation(s)
- Victor L Davidson
- Department of Biochemistry, The University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216-4505, USA.
| |
Collapse
|