1
|
Fan L, Pan J, Zeng J, Guo G, Yang N, Li X, Nafees Ur Rehman M, Zheng J. An outbreak of Providencia rettgeri bacteremia at a Ptyas mucosus farm in Hainan, China. Front Microbiol 2024; 15:1353603. [PMID: 39056011 PMCID: PMC11269246 DOI: 10.3389/fmicb.2024.1353603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Aim To describe the histopathology and etiology of an outbreak of respiratory disease at a Ptyas mucosus farm in Hainan, China. Methods and results The etiology was confirmed by gross examination and microscopic analysis. The bacterial isolates from blood and internal organs were identified by biochemical analysis and 16S rRNA gene sequencing. The virulence and antibiotic resistance characteristics of the isolates were further demonstrated by polymerase chain reaction (PCR), disk diffusion testing, and LD50 analysis in Kunming mice. Histopathological analysis of the diseased P. mucosus revealed systemic lesions, including severe airway obstruction with large numbers of inflammatory cells and cellulose exudates in the lungs; severe multifocal hepatocyte vacuolar degeneration and necrosis in the liver with excessive inflammatory exudates and chronic granuloma; splenic hemorrhage and partial loss of splenic structure; and renal vascular and interstitial congestion. Providencia rettgeri was isolated from the blood and multiple internal organs (liver, spleen, kidneys, and lungs). All examined isolates (H1, H4, and H13) were multidrug-resistant but sensitive to four antibiotics-cefepime, imipenem, chloramphenicol, and ciprofloxacin. Both H1 and H4 carried five resistance genes [bla OXA, tet(A), tet(B), tet(E), and aac (3)-IIa], whereas H13 only carried the tet(A) gene. The dominant virulence pattern of the three isolates was hlyA + ZapA + luxS + rsbA. The virulence of H1 strain was tested, and its 50% lethal dose (LD50) in mice was 2.29 × 108 CFU ml-1. Conclusion To our knowledge, this is the first study to describe an outbreak of bacteremia caused by P. rettgeri in farmed rat snakes. Significance and impact of the study The results highlight that P. rettgeri is an emerging bacterial pathogen in farmed reptiles.
Collapse
Affiliation(s)
- Lixia Fan
- Lab of Microbial Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan University, Haikou, China
| | - Jiwen Pan
- Lab of Microbial Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan University, Haikou, China
- Institute of Tropical Bioscience and Biotechnology, China Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jifeng Zeng
- Lab of Microbial Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan University, Haikou, China
- Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Guiying Guo
- Lab of Microbial Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan University, Haikou, China
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, China
| | - Nou Yang
- Lab of Microbial Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan University, Haikou, China
| | - Xuesong Li
- Lab of Microbial Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan University, Haikou, China
| | - Muhammad Nafees Ur Rehman
- Lab of Microbial Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan University, Haikou, China
| | - Jiping Zheng
- Lab of Microbial Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan University, Haikou, China
- Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| |
Collapse
|
2
|
Bendary MM, Ali MAM, Abdel Halim AS, Boufahja F, Chaudhary AA, Elkelish A, Soliman RHM, Hegazy WAH. Investigating Sulforaphane's anti-virulence and anti-quorum sensing properties against Pseudomonas aeruginosa. Front Pharmacol 2024; 15:1406653. [PMID: 38835668 PMCID: PMC11148281 DOI: 10.3389/fphar.2024.1406653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Background P. aeruginosa, a significant bacterium, can cause severe illness and resistance to antibiotics. Quorum sensing (QS) systems regulate virulence factors production. Targeting QS could reduce bacteria pathogenicity and prevent antibiotic resistance. Cruciferous vegetables contain sulforaphane, known for its anti-inflammatory, antioxidant, anticancer, and antimicrobial properties. Aim We aimed to examine the inhibitory influences of sulforaphane, at a sub-inhibitory concentration (¼ minimum inhibitory concentration, MIC), on virulence and QS in P. aeruginosa. Materials and methods The sulforaphane's anti-virulence actions at sub-inhibitory concentrations were explored in vitro and in vivo. A sub-MIC concentration of sulforaphane was combined with anti-pseudomonal drugs, and the results of this combination were assessed. The virtual affinity of sulforaphane for the receptors of QS was studied, and its effect on the expression of QS genes was quantified. Results Sulforaphane significantly decreased the biofilm formation, motility, ability to withstand oxidative stress, and the synthesis of virulence extracellular enzymes such as proteases, hemolysins, and elastase, as well as other virulence factors like pyocyanin. In addition, sulforaphane lessened the severity of P. aeruginosa infection in mice. Sulforaphane reduced the antipseudomonal antibiotics' MICs when used together, resulting in synergistic effects. The observed anti-virulence impacts were attributed to the ability of sulforaphane to inhibit QS via suppressing the QS genes' expression. Conclusion Sulforaphane shows promise as a potent anti-virulence and anti-QS agent that can be used alongside conventional antimicrobials to manage severe infections effectively. Furthermore, this study paves the way for further investigation of sulforaphane and similar structures as pharmacophores for anti-QS candidates.
Collapse
Affiliation(s)
- Mahmoud M Bendary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fehmi Boufahja
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Rania H M Soliman
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, Oman
| |
Collapse
|
3
|
Elfaky MA, Elbaramawi SS, Eissa AG, Ibrahim TS, Khafagy ES, Ali MAM, Hegazy WAH. Drug repositioning: doxazosin attenuates the virulence factors and biofilm formation in Gram-negative bacteria. Appl Microbiol Biotechnol 2023; 107:3763-3778. [PMID: 37079062 DOI: 10.1007/s00253-023-12522-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
The resistance development is an increasing global health risk that needs innovative solutions. Repurposing drugs to serve as anti-virulence agents is suggested as an advantageous strategy to diminish bacterial resistance development. Bacterial virulence is controlled by quorum sensing (QS) system that orchestrates the expression of biofilm formation, motility, and virulence factors production as enzymes and virulent pigments. Interfering with QS could lead to bacterial virulence mitigation without affecting bacterial growth that does not result in bacterial resistance development. This study investigated the probable anti-virulence and anti-QS activities of α-adrenoreceptor blocker doxazosin against Proteus mirabilis and Pseudomonas aeruginosa. Besides in silico study, in vitro and in vivo investigations were conducted to assess the doxazosin anti-virulence actions. Doxazosin significantly diminished the biofilm formation and release of QS-controlled Chromobacterium violaceum pigment and virulence factors in P. aeruginosa and P. mirabilis, and downregulated the QS encoding genes in P. aeruginosa. Virtually, doxazosin interfered with QS proteins, and in vivo protected mice against P. mirabilis and P. aeruginosa. The role of the membranal sensors as QseC and PmrA was recognized in enhancing the Gram-negative virulence. Doxazosin downregulated the membranal sensors PmR and QseC encoding genes and could in silico interfere with them. In conclusion, this study preliminary documents the probable anti-QS and anti-virulence activities of doxazosin, which indicate its possible application as an alternative or in addition to antibiotics. However, extended toxicological and pharmacological investigations are essential to approve the feasible clinical application of doxazosin as novel efficient anti-virulence agent. KEY POINTS: • Anti-hypertensive doxazosin acquires anti-quorum sensing activities • Doxazosin diminishes the virulence of Proteus mirabilis and Pseudomonas aeruginosa • Doxazosin could dimmish the bacterial espionage.
Collapse
Affiliation(s)
- Mahmoud A Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Samar S Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed G Eissa
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, 113, Oman.
| |
Collapse
|
4
|
Lila ASA, Rajab AAH, Abdallah MH, Rizvi SMD, Moin A, Khafagy ES, Tabrez S, Hegazy WAH. Biofilm Lifestyle in Recurrent Urinary Tract Infections. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010148. [PMID: 36676100 PMCID: PMC9865985 DOI: 10.3390/life13010148] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Urinary tract infections (UTIs) represent one of the most common infections that are frequently encountered in health care facilities. One of the main mechanisms used by bacteria that allows them to survive hostile environments is biofilm formation. Biofilms are closed bacterial communities that offer protection and safe hiding, allowing bacteria to evade host defenses and hide from the reach of antibiotics. Inside biofilm communities, bacteria show an increased rate of horizontal gene transfer and exchange of resistance and virulence genes. Additionally, bacterial communication within the biofilm allows them to orchestrate the expression of virulence genes, which further cements the infestation and increases the invasiveness of the infection. These facts stress the necessity of continuously updating our information and understanding of the etiology, pathogenesis, and eradication methods of this growing public health concern. This review seeks to understand the role of biofilm formation in recurrent urinary tact infections by outlining the mechanisms underlying biofilm formation in different uropathogens, in addition to shedding light on some biofilm eradication strategies.
Collapse
Affiliation(s)
- Amr S. Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| | - Azza A. H. Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| |
Collapse
|
5
|
Cavalu S, Elbaramawi SS, Eissa AG, Radwan MF, S. Ibrahim T, Khafagy ES, Lopes BS, Ali MAM, Hegazy WAH, Elfaky MA. Characterization of the Anti-Biofilm and Anti-Quorum Sensing Activities of the β-Adrenoreceptor Antagonist Atenolol against Gram-Negative Bacterial Pathogens. Int J Mol Sci 2022; 23:13088. [PMID: 36361877 PMCID: PMC9656717 DOI: 10.3390/ijms232113088] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 08/10/2023] Open
Abstract
The development of bacterial resistance to antibiotics is an increasing public health issue that worsens with the formation of biofilms. Quorum sensing (QS) orchestrates the bacterial virulence and controls the formation of biofilm. Targeting bacterial virulence is promising approach to overcome the resistance increment to antibiotics. In a previous detailed in silico study, the anti-QS activities of twenty-two β-adrenoreceptor blockers were screened supposing atenolol as a promising candidate. The current study aims to evaluate the anti-QS, anti-biofilm and anti-virulence activities of the β-adrenoreceptor blocker atenolol against Gram-negative bacteria Serratia marcescens, Pseudomonas aeruginosa, and Proteus mirabilis. An in silico study was conducted to evaluate the binding affinity of atenolol to S. marcescens SmaR QS receptor, P. aeruginosa QscR QS receptor, and P. mirabilis MrpH adhesin. The atenolol anti-virulence activity was evaluated against the tested strains in vitro and in vivo. The present finding shows considerable ability of atenolol to compete with QS proteins and significantly downregulated the expression of QS- and virulence-encoding genes. Atenolol showed significant reduction in the tested bacterial biofilm formation, virulence enzyme production, and motility. Furthermore, atenolol significantly diminished the bacterial capacity for killing and protected mice. In conclusion, atenolol has potential anti-QS and anti-virulence activities against S. marcescens, P. aeruginosa, and P. mirabilis and can be used as an adjuvant in treatment of aggressive bacterial infections.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Samar S. Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed G. Eissa
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed F. Radwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Bruno Silvester Lopes
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Mohamed A. M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Abstract
Many bacterial species employ systems for interference competition with other microorganisms. Some systems are effective without contact (e.g., through secretion of toxins), while other systems (e.g., type VI secretion system [T6SS]) require direct contact between cells. Here, we provide the initial characterization of a novel contact-dependent competition system for Proteus mirabilis. In neonatal mice, a commensal P. mirabilis strain apparently eliminated commensal Escherichia coli. We replicated the phenotype in vitro and showed that P. mirabilis efficiently reduced the viability of several Enterobacteriaceae species but not Gram-positive species or yeast cells. Importantly, P. mirabilis strains isolated from humans also killed E. coli. A reduction of viability occurred from early stationary phase to 24 h of culture and was observed in shaking liquid media as well as on solid media. Killing required contact but was independent of T6SS, which is the only contact-dependent killing system described for P. mirabilis. Expression of the killing system was regulated by osmolarity and components secreted into the supernatant. Stationary-phase P. mirabilis culture supernatant itself did not kill but was sufficient to induce killing in an exponentially growing coculture. In contrast, killing was largely prevented in media with low osmolarity. In summary, we provide the initial characterization of a potentially novel interbacterial competition system used by P. mirabilis. IMPORTANCE The study of bacterial competition systems has received significant attention in recent years. These systems are important in a multitude of polymicrobial environments and collectively shape the composition of complex ecosystems like the mammalian gut. They are also being explored as narrow-spectrum alternatives to specifically eliminate problematic pathogenic species. However, only a small fraction of the estimated number of interbacterial competition systems has been identified. We discovered a competition system that is novel for Proteus mirabilis. Inspired by an observation in infant mice, we confirmed in vitro that P. mirabilis was able to efficiently kill several Enterobacteriaceae species. This killing system might represent a new function of a known competition system or even a novel system, as the observed characteristics do not fit with described contact-dependent competition systems. Further characterization of this system might help understand how P. mirabilis competes with other Enterobacteriaceae in various niches.
Collapse
|
7
|
Wasfi R, Hamed SM, Amer MA, Fahmy LI. Proteus mirabilis Biofilm: Development and Therapeutic Strategies. Front Cell Infect Microbiol 2020; 10:414. [PMID: 32923408 PMCID: PMC7456845 DOI: 10.3389/fcimb.2020.00414] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/06/2020] [Indexed: 01/21/2023] Open
Abstract
Proteus mirabilis is a Gram negative bacterium that is a frequent cause of catheter-associated urinary tract infections (CAUTIs). Its ability to cause such infections is mostly related to the formation of biofilms on catheter surfaces. In order to form biofilms, P. mirabilis expresses a number of virulence factors. Such factors may include adhesion proteins, quorum sensing molecules, lipopolysaccharides, efflux pumps, and urease enzyme. A unique feature of P. mirabilis biofilms that build up on catheter surfaces is their crystalline nature owing to their ureolytic biomineralization. This leads to catheter encrustation and blockage and, in most cases, is accompanied by urine retention and ascending UTIs. Bacteria embedded in crystalline biofilms become highly resistant to conventional antimicrobials as well as the immune system. Being refractory to antimicrobial treatment, alternative approaches for eradicating P. mirabilis biofilms have been sought by many studies. The current review focuses on the mechanism by which P. mirabilis biofilms are formed, and a state of the art update on preventing biofilm formation and reduction of mature biofilms. These treatment approaches include natural, and synthetic compounds targeting virulence factors and quorum sensing, beside other strategies that include carrier-mediated diffusion of antimicrobials into biofilm matrix. Bacteriophage therapy has also shown successful results in vitro for combating P. mirabilis biofilms either merely through their lytic effect or by acting as facilitators for antimicrobials diffusion.
Collapse
Affiliation(s)
- Reham Wasfi
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Mai A Amer
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Lamiaa Ismail Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
8
|
Wasfi R, Abdellatif GR, Elshishtawy HM, Ashour HM. First-time characterization of viable but non-culturable Proteus mirabilis: Induction and resuscitation. J Cell Mol Med 2020; 24:2791-2801. [PMID: 32030883 PMCID: PMC7077546 DOI: 10.1111/jcmm.15031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/12/2019] [Accepted: 12/22/2019] [Indexed: 12/11/2022] Open
Abstract
Pathogenic bacteria can enter into a viable but non‐culturable (VBNC) state under unfavourable conditions. Proteus mirabilis is responsible for dire clinical consequences including septicaemia, urinary tract infections and pneumonia, but is not a species previously known to enter VBNC state. We suggested that stress‐induced P. mirabilis can enter a VBNC state in which it retains virulence. P. mirabilis isolates were incubated in extreme osmotic pressure, starvation, low temperature and low pH to induce a VBNC state. Resuscitation was induced by temperature upshift and inoculation in tryptone soy broth with Tween 20 and brain heart infusion broth. Cellular ultrastructure and gene expression were examined using transmission electron microscopy (TEM) and quantitative real‐time polymerase chain reaction (qPCR), respectively. High osmotic pressure and low acidity caused rapid entry into VBNC state. Temperature upshift caused the highest percentage of resuscitation (93%) under different induction conditions. In the VBNC state, cells showed aberrant and dwarf morphology, virulence genes and stress response genes (envZ and rpoS) were expressed (levels varied depending on strain and inducing factors). This is the first‐time characterization of VBNC P. mirabilis. The ability of P. mirabilis pathogenic strains to enter a stress‐induced VBNC state can be a serious public health threat.
Collapse
Affiliation(s)
- Reham Wasfi
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Ghada Refaat Abdellatif
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
| | - Hisham Mohamed Elshishtawy
- Microbial Genetics Laboratory, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Hossam M Ashour
- Department of Biological Sciences, College of Arts and Sciences, University of South Florida St. Petersburg, St. Petersburg, Florida.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Pelling H, Nzakizwanayo J, Milo S, Denham EL, MacFarlane WM, Bock LJ, Sutton JM, Jones BV. Bacterial biofilm formation on indwelling urethral catheters. Lett Appl Microbiol 2019; 68:277-293. [PMID: 30811615 DOI: 10.1111/lam.13144] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/21/2022]
Abstract
Urethral catheters are the most commonly deployed medical devices and used to manage a wide range of conditions in both hospital and community care settings. The use of long-term catheterization, where the catheter remains in place for a period >28 days remains common, and the care of these patients is often undermined by the acquisition of infections and formation of biofilms on catheter surfaces. Particular problems arise from colonization with urease-producing species such as Proteus mirabilis, which form unusual crystalline biofilms that encrust catheter surfaces and block urine flow. Encrustation and blockage often lead to a range of serious clinical complications and emergency hospital referrals in long-term catheterized patients. Here we review current understanding of bacterial biofilm formation on urethral catheters, with a focus on crystalline biofilm formation by P. mirabilis, as well as approaches that may be used to control biofilm formation on these devices. SIGNIFICANCE AND IMPACT OF THE STUDY: Urinary catheters are the most commonly used medical devices in many healthcare systems, but their use predisposes to infection and provide ideal conditions for bacterial biofilm formation. Patients managed by long-term urethral catheterization are particularly vulnerable to biofilm-related infections, with crystalline biofilm formation by urease producing species frequently leading to catheter blockage and other serious clinical complications. This review considers current knowledge regarding biofilm formation on urethral catheters, and possible strategies for their control.
Collapse
Affiliation(s)
- H Pelling
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - J Nzakizwanayo
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - S Milo
- Department of Chemistry, University of Bath, Claverton Down, Bath, UK
| | - E L Denham
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - W M MacFarlane
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - L J Bock
- National Infections Service, Public Health England, Porton Down, Salisbury, UK
| | - J M Sutton
- National Infections Service, Public Health England, Porton Down, Salisbury, UK
| | - B V Jones
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| |
Collapse
|
10
|
Abstract
Proteus mirabilis, a Gram-negative rod-shaped bacterium most noted for its swarming motility and urease activity, frequently causes catheter-associated urinary tract infections (CAUTIs) that are often polymicrobial. These infections may be accompanied by urolithiasis, the development of bladder or kidney stones due to alkalinization of urine from urease-catalyzed urea hydrolysis. Adherence of the bacterium to epithelial and catheter surfaces is mediated by 17 different fimbriae, most notably MR/P fimbriae. Repressors of motility are often encoded by these fimbrial operons. Motility is mediated by flagella encoded on a single contiguous 54-kb chromosomal sequence. On agar plates, P. mirabilis undergoes a morphological conversion to a filamentous swarmer cell expressing hundreds of flagella. When swarms from different strains meet, a line of demarcation, a "Dienes line," develops due to the killing action of each strain's type VI secretion system. During infection, histological damage is caused by cytotoxins including hemolysin and a variety of proteases, some autotransported. The pathogenesis of infection, including assessment of individual genes or global screens for virulence or fitness factors has been assessed in murine models of ascending urinary tract infections or CAUTIs using both single-species and polymicrobial models. Global gene expression studies performed in culture and in the murine model have revealed the unique metabolism of this bacterium. Vaccines, using MR/P fimbria and its adhesin, MrpH, have been shown to be efficacious in the murine model. A comprehensive review of factors associated with urinary tract infection is presented, encompassing both historical perspectives and current advances.
Collapse
|
11
|
Pawar S, Ashraf MI, Mujawar S, Mishra R, Lahiri C. In silico Identification of the Indispensable Quorum Sensing Proteins of Multidrug Resistant Proteus mirabilis. Front Cell Infect Microbiol 2018; 8:269. [PMID: 30131943 PMCID: PMC6090301 DOI: 10.3389/fcimb.2018.00269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Catheter-associated urinary tract infections (CAUTI) is an alarming hospital based disease with the increase of multidrug resistance (MDR) strains of Proteus mirabilis. Cases of long term hospitalized patients with multiple episodes of antibiotic treatments along with urinary tract obstruction and/or undergoing catheterization have been reported to be associated with CAUTI. The cases are complicated due to the opportunist approach of the pathogen having robust swimming and swarming capability. The latter giving rise to biofilms and probably inducible through autoinducers make the scenario quite complex. High prevalence of long-term hospital based CAUTI for patients along with moderate percentage of morbidity, cropping from ignorance about drug usage and failure to cure due to MDR, necessitates an immediate intervention strategy effective enough to combat the deadly disease. Several reports and reviews focus on revealing the important genes and proteins, essential to tackle CAUTI caused by P. mirabilis. Despite longitudinal countrywide studies and methodical strategies to circumvent the issues, effective means of unearthing the most indispensable proteins to target for therapeutic uses have been meager. Here, we report a strategic approach for identifying the most indispensable proteins from the genome of P. mirabilis strain HI4320, besides comparing the interactomes comprising the autoinducer-2 (AI-2) biosynthetic pathway along with other proteins involved in biofilm formation and responsible for virulence. Essentially, we have adopted a theoretical network model based approach to construct a set of small protein interaction networks (SPINs) along with the whole genome (GPIN) to computationally identify the crucial proteins involved in the phenomenon of quorum sensing (QS) and biofilm formation and thus, could be therapeutically targeted to fight out the MDR threats to antibiotics of P. mirabilis. Our approach utilizes the functional modularity coupled with k-core analysis and centrality scores of eigenvector as a measure to address the pressing issues.
Collapse
Affiliation(s)
- Shrikant Pawar
- Department of Computer Science, Georgia State University, Atlanta, GA, United States.,Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Md Izhar Ashraf
- Department of Computer Applications, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India.,Theoretical Physics, The Institute of Mathematical Sciences, Chennai, India
| | - Shama Mujawar
- Department of Biological Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Rohit Mishra
- Department of Bioinformatics, G.N. Khalsa College, University of Mumbai, Mumbai, India
| | - Chandrajit Lahiri
- Department of Biological Sciences, Sunway University, Petaling Jaya, Malaysia
| |
Collapse
|
12
|
Srinivasan R, Vigneshwari L, Rajavel T, Durgadevi R, Kannappan A, Balamurugan K, Pandima Devi K, Veera Ravi A. Biogenic synthesis of silver nanoparticles using Piper betle aqueous extract and evaluation of its anti-quorum sensing and antibiofilm potential against uropathogens with cytotoxic effects: an in vitro and in vivo approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10538-10554. [PMID: 29288300 DOI: 10.1007/s11356-017-1049-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/13/2017] [Indexed: 04/15/2023]
Abstract
Urinary tract infections are the utmost common bacterial infections caused by Proteus mirabilis, Pseudomonas aeruginosa, Escherichia coli, and Serratia marcescens. These uropathogens resist the action of several antibiotics due to their ability to form biofilms. Most of these bacterial pathogens use the quorum sensing (QS) machinery to co-ordinate their cells and regulate several virulence factors and biofilm formation. On the other hand, the anti-quorum sensing (anti-QS) and antibiofilm potential of silver nanoparticles have been well reported against certain bacterial pathogens, but to the best of our knowledge, no report is available against the pathogenicity of uropathogens in particular S. marcescens and P. mirabilis. Therefore, the present study is primarily focused on the anti-QS and antibiofilm potential of Piper betle-based synthesized silver nanoparticles (PbAgNPs) against S. marcescens and P. mirabilis. Initially, the silver nanoparticles were synthesized by the aqueous extract of P. betle and characterized by UV-absorbance spectroscopy, XRD, FT-IR, SEM, TEM, and DLS. The synthesized silver nanoparticles were assessed for their anti-QS activity and the obtained results revealed that the PbAgNPs inhibited the QS-mediated virulence factors such as prodigiosin, protease, biofilm formation, exopolysaccharides and hydrophobicity productions in uropathogens. The gene expression analysis divulged the downregulation of fimA, fimC, flhD, and bsmB genes in S. marcescens and flhB, flhD, and rsbA genes in P. mirabilis, respectively. The in vivo Caenorhabditis elegans assays revealed the non-toxic and anti-adherence efficiency of PbAgNPs. Furthermore, the non-toxic effect of PbAgNPs was also confirmed through peripheral blood mononuclear cells and normal lung epithelial cells. Therefore, the contemporary study demonstrates the use of PbAgNPs as a possible alternative toward conventional antibiotics in controlling QS and biofilm-related uropathogen infections.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, -630 003, India
| | - Loganathan Vigneshwari
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, -630 003, India
| | - Tamilselvam Rajavel
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, -630 003, India
| | - Ravindran Durgadevi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, -630 003, India
| | - Arunachalam Kannappan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, -630 003, India
| | - Krishnaswamy Balamurugan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, -630 003, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, -630 003, India
| | - Arumugam Veera Ravi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, -630 003, India.
| |
Collapse
|
13
|
Tandem mass tag-based quantitative proteomics analyses reveal the response of Bacillus licheniformis to high growth temperatures. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1279-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
14
|
Abstract
Proteus mirabilis is a Gram-negative bacterium and is well known for its ability to robustly swarm across surfaces in a striking bulls'-eye pattern. Clinically, this organism is most frequently a pathogen of the urinary tract, particularly in patients undergoing long-term catheterization. This review covers P. mirabilis with a focus on urinary tract infections (UTI), including disease models, vaccine development efforts, and clinical perspectives. Flagella-mediated motility, both swimming and swarming, is a central facet of this organism. The regulation of this complex process and its contribution to virulence is discussed, along with the type VI-secretion system-dependent intra-strain competition, which occurs during swarming. P. mirabilis uses a diverse set of virulence factors to access and colonize the host urinary tract, including urease and stone formation, fimbriae and other adhesins, iron and zinc acquisition, proteases and toxins, biofilm formation, and regulation of pathogenesis. While significant advances in this field have been made, challenges remain to combatting complicated UTI and deciphering P. mirabilis pathogenesis.
Collapse
|
15
|
Koul S, Prakash J, Mishra A, Kalia VC. Potential Emergence of Multi-quorum Sensing Inhibitor Resistant (MQSIR) Bacteria. Indian J Microbiol 2015; 56:1-18. [PMID: 26843692 DOI: 10.1007/s12088-015-0558-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022] Open
Abstract
Expression of certain bacterial genes only at a high bacterial cell density is termed as quorum-sensing (QS). Here bacteria use signaling molecules to communicate among themselves. QS mediated genes are generally involved in the expression of phenotypes such as bioluminescence, biofilm formation, competence, nodulation, and virulence. QS systems (QSS) vary from a single in Vibrio spp. to multiple in Pseudomonas and Sinorhizobium species. The complexity of QSS is further enhanced by the multiplicity of signals: (1) peptides, (2) acyl-homoserine lactones, (3) diketopiperazines. To counteract this pathogenic behaviour, a wide range of bioactive molecules acting as QS inhibitors (QSIs) have been elucidated. Unlike antibiotics, QSIs don't kill bacteria and act at much lower concentration than those of antibiotics. Bacterial ability to evolve resistance against multiple drugs has cautioned researchers to develop QSIs which may not generate undue pressure on bacteria to develop resistance against them. In this paper, we have discussed the implications of the diversity and multiplicity of QSS, in acting as an arsenal to withstand attack from QSIs and may use these as reservoirs to develop multi-QSI resistance.
Collapse
Affiliation(s)
- Shikha Koul
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| | - Jyotsana Prakash
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| | - Anjali Mishra
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| |
Collapse
|
16
|
In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against Proteus species. Antimicrob Agents Chemother 2014; 59:763-71. [PMID: 25403677 DOI: 10.1128/aac.03047-14] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
N-acylated homoserine lactonases are known to inhibit the signaling molecules of the biofilm-forming pathogens. In this study, gold nanoparticles were coated with N-acylated homoserine lactonase proteins (AiiA AuNPs) purified from Bacillus licheniformis. The AiiA AuNPs were characterized by UV-visible spectra, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The synthesized AiiA AuNPs were found to be spherical in shape and 10 to 30 nm in size. Treatment with AiiA protein-coated AuNPs showed maximum reduction in exopolysaccharide production, metabolic activities, and cell surface hydrophobicity and potent antibiofilm activity against multidrug-resistant Proteus species compared to treatment with AiiA protein alone. AiiA AuNPs exhibited potent antibiofilm activity at 2 to 8 μM concentrations without being harmful to the macrophages. We conclude that at a specific dose, AuNPs coated with AiiA can kill bacteria without harming the host cells, thus representing a potential template for the design of novel antibiofilm and antibacterial protein drugs to decrease bacterial colonization and to overcome the problem of drug resistance. In summary, our data suggest that the combined effect of the lactonase and the gold nanoparticles of the AiiA AuNPs has promising antibiofilm activity against biofilm-forming and multidrug-resistant Proteus species.
Collapse
|
17
|
Armbruster CE, Hodges SA, Smith SN, Alteri CJ, Mobley HLT. Arginine promotes Proteus mirabilis motility and fitness by contributing to conservation of the proton gradient and proton motive force. Microbiologyopen 2014; 3:630-41. [PMID: 25100003 PMCID: PMC4234256 DOI: 10.1002/mbo3.194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/04/2014] [Accepted: 06/16/2014] [Indexed: 12/22/2022] Open
Abstract
Swarming contributes to Proteus mirabilis pathogenicity by facilitating access to the catheterized urinary tract. We previously demonstrated that 0.1–20 mmol/L arginine promotes swarming on normally nonpermissive media and that putrescine biosynthesis is required for arginine-induced swarming. We also previously determined that arginine-induced swarming is pH dependent, indicating that the external proton concentration is critical for arginine-dependent effects on swarming. In this study, we utilized survival at pH 5 and motility as surrogates for measuring changes in the proton gradient (ΔpH) and proton motive force (μH+) in response to arginine. We determined that arginine primarily contributes to ΔpH (and therefore μH+) through the action of arginine decarboxylase (speA), independent of the role of this enzyme in putrescine biosynthesis. In addition to being required for motility, speA also contributed to fitness during infection. In conclusion, consumption of intracellular protons via arginine decarboxylase is one mechanism used by P. mirabilis to conserve ΔpH and μH+ for motility.
Collapse
Affiliation(s)
- Chelsie E Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48104
| | | | | | | | | |
Collapse
|
18
|
Initiation of swarming motility by Proteus mirabilis occurs in response to specific cues present in urine and requires excess L-glutamine. J Bacteriol 2013; 195:1305-19. [PMID: 23316040 DOI: 10.1128/jb.02136-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Proteus mirabilis, a leading cause of catheter-associated urinary tract infection (CaUTI), differentiates into swarm cells that migrate across catheter surfaces and medium solidified with 1.5% agar. While many genes and nutrient requirements involved in the swarming process have been identified, few studies have addressed the signals that promote initiation of swarming following initial contact with a surface. In this study, we show that P. mirabilis CaUTI isolates initiate swarming in response to specific nutrients and environmental cues. Thirty-three compounds, including amino acids, polyamines, fatty acids, and tricarboxylic acid (TCA) cycle intermediates, were tested for the ability to promote swarming when added to normally nonpermissive media. L-Arginine, L-glutamine, DL-histidine, malate, and DL-ornithine promoted swarming on several types of media without enhancing swimming motility or growth rate. Testing of isogenic mutants revealed that swarming in response to the cues required putrescine biosynthesis and pathways involved in amino acid metabolism. Furthermore, excess glutamine was found to be a strict requirement for swarming on normal swarm agar in addition to being a swarming cue under normally nonpermissive conditions. We thus conclude that initiation of swarming occurs in response to specific cues and that manipulating concentrations of key nutrient cues can signal whether or not a particular environment is permissive for swarming.
Collapse
|
19
|
Armbruster CE, Mobley HLT. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol 2012; 10:743-54. [PMID: 23042564 DOI: 10.1038/nrmicro2890] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteus mirabilis, named for the Greek god who changed shape to avoid capture, has fascinated microbiologists for more than a century with its unique swarming differentiation, Dienes line formation and potent urease activity. Transcriptome profiling during both host infection and swarming motility, coupled with the availability of the complete genome sequence for P. mirabilis, has revealed the occurrence of interbacterial competition and killing through a type VI secretion system, and the reciprocal regulation of adhesion and motility, as well as the intimate connections between metabolism, swarming and virulence. This Review addresses some of the unique and recently described aspects of P. mirabilis biology and pathogenesis, and emphasizes the potential role of this bacterium in single-species and polymicrobial urinary tract infections.
Collapse
Affiliation(s)
- Chelsie E Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, 5641 Medical Science Building II, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
20
|
Sybiya Vasantha Packiavathy IA, Agilandeswari P, Musthafa KS, Karutha Pandian S, Veera Ravi A. Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against Gram negative bacterial pathogens. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.10.022] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Influence of quorum sensing signal molecules on biofilm formation in Proteus mirabilis O18. Folia Microbiol (Praha) 2011; 57:53-60. [PMID: 22198843 PMCID: PMC3297748 DOI: 10.1007/s12223-011-0091-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 12/06/2011] [Indexed: 11/15/2022]
Abstract
The influence of basis of quorum sensing molecules on Proteus strains is much less known as compared to Pseudomonas or Escherichia. We have previously shown that a series of acylated homoserine lactones (acyl-HSL) does not influence the ureolytic, proteolytic, or hemolytic abilities, and that the swarming motility of Proteus mirabilis rods is strain specific. The aim of the presented study was to find out if the presence of a series of acyl-HSL influences biofilm formation of P. mirabilis laboratory strain belonging to O18 serogroup. This serogroup is characterized by the presence of a unique non-carbohydrate component, namely phosphocholine. Escherichia coli and P. mirabilis O18 strains used in this work contains cloned plasmids encoding fluorescent protein genes with constitutive gene expression. In mixed biofilms in stationary and continuous flow conditions, P. mirabilis O18 overgrow whole culture. P. mirabilis O18 strain has genetically proved a presence of AI–2 quorum sensing system. Differences in biofilm structure were observed depending on the biofilm type and culture methods. From tested acylated homoserine lactones (BHL, HHL, OHL, DHL, dDHL, tDHL), a significant influence had BHL on thickness, structure, and the amount of exopolysaccharides produced by biofilms formed by P. mirabilis O18 pDsRed2.
Collapse
|
22
|
Affiliation(s)
- Karine A Gibbs
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
23
|
Morgenstein RM, Szostek B, Rather PN. Regulation of gene expression during swarmer cell differentiation in Proteus mirabilis. FEMS Microbiol Rev 2010; 34:753-63. [PMID: 20497230 DOI: 10.1111/j.1574-6976.2010.00229.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The gram-negative bacterium Proteus mirabilis can exist in either of two cell types, a vegetative cell characterized as a short rod and a highly elongated and hyperflagellated swarmer cell. This differentiation is triggered by growth on solid surfaces and multiple inputs are sensed by the cell to initiate the differentiation process. These include the inhibition of flagellar rotation, the accumulation of extracellular putrescine and O-antigen interactions with a surface. A key event in the differentiation process is the upregulation of FlhD(2)C(2), which activates the flagellar regulon and additional genes required for differentiation. There are a number of genes that influence FlhD(2)C(2) expression and the function of these genes, if known, will be discussed in this review. Additional genes that have been shown to regulate gene expression during swarming will also be reviewed. Although P. mirabilis represents an excellent system to study microbial differentiation, it is largely understudied relative to other systems. Therefore, this review will also discuss some of the unanswered questions that are central to understanding this process in P. mirabilis.
Collapse
Affiliation(s)
- Randy M Morgenstein
- Department of Microbiology and Immunology, 3001 Rollins Research Center, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
24
|
Abstract
Swarming motility by the urinary tract pathogen Proteus mirabilis has been a long-studied but little understood phenomenon. On agar, a P. mirabilis colony grows outward in a bull's-eye pattern formed by consecutive waves of rapid swarming followed by consolidation into shorter cells. To examine differential gene expression in these growth phases, a microarray was constructed based on the completed genome sequence and annotation. RNA was extracted from broth-cultured, swarming, and consolidation-phase cells to assess transcription during each of these growth states. A total of 587 genes were differentially expressed in broth-cultured cells versus swarming cells, and 527 genes were differentially expressed in broth-cultured cells versus consolidation-phase cells (consolidate). Flagellar genes were highly upregulated in both swarming cells and consolidation-phase cells. Fimbriae were downregulated in swarming cells, while genes involved in cell division and anaerobic growth were upregulated in broth-cultured cells. Direct comparison of swarming cells to consolidation-phase cells found that 541 genes were upregulated in consolidate, but only nine genes were upregulated in swarm cells. Genes involved in flagellar biosynthesis, oligopeptide transport, amino acid import and metabolism, cell division, and phage were upregulated in consolidate. Mutation of dppA, oppB, and cysJ, upregulated during consolidation compared to during swarming, revealed that although these genes play a minor role in swarming, dppA and cysJ are required during ascending urinary tract infection. Swarming on agar to which chloramphenicol had been added suggested that protein synthesis is not required for swarming. These data suggest that the consolidation phase is a state in which P. mirabilis prepares for the next wave of swarming.
Collapse
|
25
|
|
26
|
Frénod E, Sire O. An explanatory model to validate the way water activity rules periodic terrace generation in Proteus mirabilis swarm. J Math Biol 2008; 59:439-66. [PMID: 19009295 DOI: 10.1007/s00285-008-0235-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 07/28/2008] [Indexed: 11/25/2022]
Abstract
This paper explains the biophysical principles which, according to us, govern the Proteus mirabilis swarm phenomenon. Then, this explanation is translated into a mathematical model, essentially based on partial differential equations. This model is then implemented using numerical methods of the finite volume type in order to make simulations. The simulations show most of the characteristics which are observed in situ and in particular the terrace generation.
Collapse
Affiliation(s)
- Emmanuel Frénod
- Université Europénne de Bretagne, Lab-STICC (UMR CNRS 3192), Université de Bretagne-Sud, Centre Yves Coppens, Campus de Tohannic, 56017 Vannes, France.
| | | |
Collapse
|
27
|
Gao Y, Song J, Hu B, Zhang L, Liu Q, Liu F. The luxS Gene Is Involved in AI-2 Production, Pathogenicity, and Some Phenotypes in Erwinia amylovora. Curr Microbiol 2008; 58:1-10. [DOI: 10.1007/s00284-008-9256-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 07/18/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
|
28
|
Rezzonico F, Duffy B. Lack of genomic evidence of AI-2 receptors suggests a non-quorum sensing role for luxS in most bacteria. BMC Microbiol 2008; 8:154. [PMID: 18803868 PMCID: PMC2561040 DOI: 10.1186/1471-2180-8-154] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 09/20/2008] [Indexed: 01/08/2023] Open
Abstract
Background Great excitement accompanied discoveries over the last decade in several Gram-negative and Gram-positive bacteria of the LuxS protein, which catalyzes production of the AI-2 autoinducer molecule for a second quorum sensing system (QS-2). Since the luxS gene was found to be widespread among the most diverse bacterial taxa, it was hypothesized that AI-2 may constitute the basis of a universal microbial language, a kind of bacterial Esperanto. Many of the studies published in this field have drawn a direct correlation between the occurrence of the luxS gene in a given organism and the presence and functionality of a QS-2 therein. However, rarely hathe existence of potential AI-2 receptors been examined. This is important, since it is now well recognized that LuxS also holds a central role as a metabolic enzyme in the activated methyl cycle which is responsible for the generation of S-adenosyl-L-methionine, the major methyl donor in the cell. Results In order to assess whether the role of LuxS in these bacteria is indeed related to AI-2 mediated quorum sensing we analyzed genomic databases searching for established AI-2 receptors (i.e., LuxPQ-receptor of Vibrio harveyi and Lsr ABC-transporter of Salmonella typhimurium) and other presumed QS-related proteins and compared the outcome with published results about the role of QS-2 in these organisms. An unequivocal AI-2 related behavior was restricted primarily to organisms bearing known AI-2 receptor genes, while phenotypes of luxS mutant bacteria lacking these genes could often be explained simply by assuming deficiencies in sulfur metabolism. Conclusion Genomic analysis shows that while LuxPQ is restricted to Vibrionales, the Lsr-receptor complex is mainly present in pathogenic bacteria associated with endotherms. This suggests that QS-2 may play an important role in interactions with animal hosts. In most other species, however, the role of LuxS appears to be limited to metabolism, although in a few cases the presence of yet unknown receptors or the adaptation of pre-existent effectors to QS-2 must be postulated.
Collapse
Affiliation(s)
- Fabio Rezzonico
- Agroscope Changins-Wädenswil ACW, Division of Plant Protection, CH-8820 Wädenswil, Switzerland.
| | | |
Collapse
|
29
|
Hardie KR, Heurlier K. Establishing bacterial communities by 'word of mouth': LuxS and autoinducer 2 in biofilm development. Nat Rev Microbiol 2008; 6:635-43. [DOI: 10.1038/nrmicro1916] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev 2008; 21:26-59. [PMID: 18202436 DOI: 10.1128/cmr.00019-07] [Citation(s) in RCA: 477] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) represent the most common type of nosocomial infection and are a major health concern due to the complications and frequent recurrence. These infections are often caused by Escherichia coli and Proteus mirabilis. Gram-negative bacterial species that cause CAUTIs express a number of virulence factors associated with adhesion, motility, biofilm formation, immunoavoidance, and nutrient acquisition as well as factors that cause damage to the host. These infections can be reduced by limiting catheter usage and ensuring that health care professionals correctly use closed-system Foley catheters. A number of novel approaches such as condom and suprapubic catheters, intermittent catheterization, new surfaces, catheters with antimicrobial agents, and probiotics have thus far met with limited success. While the diagnosis of symptomatic versus asymptomatic CAUTIs may be a contentious issue, it is generally agreed that once a catheterized patient is believed to have a symptomatic urinary tract infection, the catheter is removed if possible due to the high rate of relapse. Research focusing on the pathogenesis of CAUTIs will lead to a better understanding of the disease process and will subsequently lead to the development of new diagnosis, prevention, and treatment options.
Collapse
|
31
|
Lahaye E, Aubry T, Fleury V, Sire O. Does water activity rule P. mirabilis periodic swarming? II. Viscoelasticity and water balance during swarming. Biomacromolecules 2007; 8:1228-35. [PMID: 17355121 DOI: 10.1021/bm070115w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Following the analysis of the biochemical and functional properties of the P. mirabilis extra cellular matrix performed in the first part of this study, the viscoelasticity of an actively growing colony was investigated in relation to water activity. The results demonstrate that the P. mirabilis colony exhibits a marked viscoelastic character likely due to both cell rafts and exoproduct H-bond networks. Besides, the water loss by evaporation during migration has been measured, whereas the experimental determination of the water diffusion coefficient in agar has allowed us to estimate the net water influx at the agar/colony interface. These data drive us to propose that a periodic increase of the water activity at the colony's periphery, mainly due to the drastic surface to volume ratio increase associated with swarming, causes the periodic and synchronous cessation of migration through the dissociation of exoproduct networks, which in turn strongly alters the matrix viscoelasticity.
Collapse
Affiliation(s)
- Elodie Lahaye
- Laboratoire des Polymères, Propriétés aux Interfaces et Composites, Université de Bretagne-Sud, Campus de Tohannic, BP573 56017 Vannes Cedex, France
| | | | | | | |
Collapse
|
32
|
Lahaye E, Aubry T, Kervarec N, Douzenel P, Sire O. Does Water Activity Rule P. mirabilis Periodic Swarming? I. Biochemical and Functional Properties of the Extracellular Matrix. Biomacromolecules 2007; 8:1218-27. [PMID: 17355120 DOI: 10.1021/bm061181l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of bacterial colonies is complex in nature because it correlates the behavior of numerous individual cells in space and time and is characterized by emergent properties such as virulence or antibiotics resistance. Because there is no clear-cut evidence that periodic swarming of P. mirabilis colonies is ruled by chemical triggers responsible for cell-to-cell signaling in most of the biofilms, we propose that the observed periodicity relies on the colony's global properties. Hence, the biochemical and functional properties of the extracellular matrix (ECM) of P. mirabilis colonies were investigated. A binary exopolysaccharide mixture (1 and 300 kDa), glycinebetaine, and a phenoglycolipid were identified. Rheology, calorimetry, and water sorption experiments performed on purified EPS bring evidence that these exoproducts exhibit marked viscoelasticity, which likely relies on large scale H bond networks. Such behavior is discussed in terms of water activity because the mechanical ECM properties were found to depend on hydration.
Collapse
Affiliation(s)
- Elodie Lahaye
- Laboratoire des Polymères, Propriétés aux Interfaces et Composites, Université de Bretagne-Sud, Campus de Tohannic, BP573 56017 Vannes Cedex, France
| | | | | | | | | |
Collapse
|
33
|
Osaki T, Hanawa T, Manzoku T, Fukuda M, Kawakami H, Suzuki H, Yamaguchi H, Yan X, Taguchi H, Kurata S, Kamiya S. Mutation of luxS affects motility and infectivity of Helicobacter pylori in gastric mucosa of a Mongolian gerbil model. J Med Microbiol 2006; 55:1477-1485. [PMID: 17030905 DOI: 10.1099/jmm.0.46660-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is associated with gastric disorders in humans and some experimental animals, and possesses the luxS/type 2 autoinducer (AI-2) system. The effects of a specific luxS mutation on the characteristics of H. pylori were examined. On 0.3 % agar medium, motility of H. pylori HPKY08 (luxS : : cat) was significantly lower than that of wild-type H. pylori TK1402. The luxS-complemented strain HPKY21 exhibited motility comparable to that of H. pylori TK1402. It was shown that the luxS/AI-2 system plays an important role in H. pylori motility. The luxS mutant exhibited a reduced infection rate relative to the wild-type parent strain TK1402 in a Mongolian gerbil model. At 3 months after oral inoculation, lower numbers of H. pylori were detected by semi-quantitative real-time reverse transcription PCR (qRT-PCR) in luxS(-) mutant-infected gerbils than in TK1402-infected gerbils. Gastric inflammation and increased antibody titre for H. pylori were observed in TK1402-infected gerbils only.
Collapse
Affiliation(s)
| | | | | | | | | | - Hidekazu Suzuki
- Department of Internal Medicine, Keio University School of Medicine Shinjuku-ku, Tokyo, Japan
| | - Hiroyuki Yamaguchi
- Department of Basic Laboratory Sciences, School of Allied Health Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Xu Yan
- Department of Microbiology, Kunming Medical School, Kunming, Republic of China
| | | | | | | |
Collapse
|
34
|
Wang WB, Lai HC, Hsueh PR, Chiou RYY, Lin SB, Liaw SJ. Inhibition of swarming and virulence factor expression in Proteus mirabilis by resveratrol. J Med Microbiol 2006; 55:1313-1321. [PMID: 17005777 DOI: 10.1099/jmm.0.46661-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Resveratrol (3,5,4-trihydroxy-trans-stilbene) is a phytoalexin compound with anti-inflammatory and antioxidant activities. The effect of resveratrol on swarming and virulence factor expression of Proteus mirabilis, an important pathogen infecting the urinary tract, was determined on swarming agar plates with and without the compound. Bacteria harvested at different times were assayed for cell length and the production of flagella, haemolysin and urease. Resveratrol inhibited P. mirabilis swarming and virulence factor expression in a dose-dependent manner. Resveratrol significantly inhibited swarming at 15 microg ml(-1), and completely inhibited swarming at 60 microg ml(-1). Inhibition of swarming and virulence factor expression was mediated through RsbA, a His-containing phosphotransmitter of the bacterial two-component signalling system possibly involved in quorum sensing. Complementation of an rsbA-defective mutant with the rsbA gene restored its responsiveness to resveratrol. The compound also inhibited the ability of P. mirabilis to invade human urothelial cells. These findings suggest that resveratrol has potential to be developed as an antimicrobial agent against P. mirabilis infection.
Collapse
Affiliation(s)
| | - Hsin-Chih Lai
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Robin Y-Y Chiou
- Department of Food Science, National Chiayi University, Chiayi, Taiwan, Republic of China
| | - Shwu-Bin Lin
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Shwu-Jen Liaw
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
35
|
Abstract
Proteus penneri, formerly P. vulgaris biogroup 1, was recognized as a new species in 1982. This species is associated with clinical processes similar to those involving P. mirabilis and P. vulgaris and expresses similar pathogenic determinants. In clinical samples, P. penneri is mainly isolated from urine (50%), wound and soft tissue exudates (25%), and blood cultures (15%), mostly of nosocomial origin. Although P. penneri is easy to identify, it can be misidentified as P. vulgaris by automatic systems that do not include the indol test result in the identification process. This species has a characteristic susceptibility profile, essentially due to the production of the chromosomal inducible beta-lactamase HugA, which presents a high homology (86%) with CumA from P. vulgaris. HugA is inhibited by clavulanic acid and determines resistance to aminopenicillins and first- and second-generation cephalosporins, including cefuroxime, but does not affect cephamycins or carbapenems, and is inhibited by clavulanic acid. HugA is derepressed due to mutational processes in gene regulators, affecting the activity of cefotaxime and, to a much lesser extent, that of ceftazidime and aztreonam. This phenotype resembles the production of an extended spectrum beta-lactamase. Like other Proteus species, P. penneri is resistant to tetracyclines and should be considered resistant to nitrofurantoin.
Collapse
Affiliation(s)
- Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Madrid, España.
| | | | | |
Collapse
|
36
|
Stevenson LG, Rather PN. A novel gene involved in regulating the flagellar gene cascade in Proteus mirabilis. J Bacteriol 2006; 188:7830-9. [PMID: 16980463 PMCID: PMC1636314 DOI: 10.1128/jb.00979-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we identified a transposon insertion in a novel gene, designated disA, that restored swarming motility to a putrescine-deficient speA mutant of Proteus mirabilis. A null allele in disA also increased swarming in a wild-type background. The DisA gene product was homologous to amino acid decarboxylases, and its role in regulating swarming was investigated by examining the expression of genes in the flagellar cascade. In a disA mutant background, we observed a 1.4-fold increase in the expression of flhDC, which encodes FlhD(2)C(2), the master regulator of the flagellar gene cascade. However, the expressions of class 2 (fliA, flgM) and class 3 (flaA) genes were at least 16-fold higher in the disA background during swarmer cell differentiation. Overexpression of DisA on a high-copy-number plasmid did not significantly decrease flhDC mRNA accumulation but resulted in a complete block in mRNA accumulation for both fliA and flaA. DisA overexpression also blocked swarmer cell differentiation. The disA gene was regulated during the swarming cycle, and a single-copy disA::lacZ fusion exhibited a threefold increase in expression in swarmer cells. Given that DisA was similar to amino acid decarboxylases, a panel of decarboxylated amino acids was tested for effects similar to DisA overexpression, and phenethylamine, the product of phenylalanine decarboxylation, was capable of inhibiting both swarming and the expression of class 2 and class 3 genes in the flagellar regulon. A DisA-dependent decarboxylated amino acid may inhibit the formation of active FlhD(2)C(2) heterotetramers or inhibit FlhD(2)C(2) binding to DNA.
Collapse
Affiliation(s)
- Lindsay G Stevenson
- Department of Microbiology and Immunology, Emory University School of Medicine, 3001 Rollins Research Center, Atlanta, GA, USA
| | | |
Collapse
|
37
|
Abstract
Movement on surfaces, or swarming motility, is effectively mediated by the lateral flagellar (laf) system in Vibrio parahaemolyticus. Expression of laf is induced by conditions inhibiting rotation of the polar flagellum, which is used for swimming in liquid. However, not all V. parahaemolyticus isolates swarm proficiently. The organism undergoes phase variation between opaque (OP) and translucent (TR) cell types. The OP cell produces copious capsular polysaccharide and swarms poorly, whereas the TR type produces minimal capsule and swarms readily. OP<-->TR switching is often the result of genetic alterations in the opaR locus. Previously, OpaR, a Vibrio harveyi LuxR homolog, was shown to activate expression of the cpsA locus, encoding capsular polysaccharide biosynthetic genes. Here, we show that OpaR also regulates swarming by repressing laf gene expression. However, in the absence of OpaR, the swarming phenotype remains tightly surface regulated. To further investigate the genetic controls governing swarming, transposon mutagenesis of a TR (DeltaopaR1) strain was performed, and SwrT, a TetR-type regulator, was identified. Loss of swrT, a homolog of V. harveyi luxT, created a profound defect in swarming. This defect could be rescued upon isolation of suppressor mutations that restored swarming. One class of suppressors mapped in swrZ, encoding a GntR-type transcriptional regulator. Overexpression of swrZ repressed laf expression. Using reporter fusions and quantitative reverse transcription-PCR, SwrT was demonstrated to repress swrZ transcription. Thus, we have identified the regulatory link that inhibits swarming of OP strains and have begun to elucidate a regulatory circuit that modulates swarming in TR strains.
Collapse
Affiliation(s)
- Sandford Jaques
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
38
|
Kim W, Surette MG. Coordinated regulation of two independent cell-cell signaling systems and swarmer differentiation in Salmonella enterica serovar Typhimurium. J Bacteriol 2006; 188:431-40. [PMID: 16385032 PMCID: PMC1347318 DOI: 10.1128/jb.188.2.431-440.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Almost all members of the genus Salmonella differentiate and migrate on semisolid surfaces in a coordinated population behavior known as swarming. Important virulence determinants are coupled to swarmer differentiation in several other pathogenic organisms, collectively suggesting that conditions that trigger swarming in the laboratory may fortuitously promote the cells to enter a robust physiological state relevant to the host environment. Here, we present evidence that expression of two independent cell-cell signaling systems are also coupled to swarmer differentiation in S. enterica serovar Typhimurium. Expression of both pfs and sdiA genes was up-regulated in the actively migrating swarmers compared to their vegetative counterparts propagated in broth or spread plated on the surface of swim, swarm, and solid media. Accordingly, swarmers produced elevated levels of a universally recognized signaling molecule, autoinducer-2, and exhibited increased sensitivity to N-acyl homoserine lactones (AHLs), signaling molecules that Salmonella does not produce. Expression of the rck operon was concomitantly up-regulated in the swarmers in an SdiA-dependent manner only in the presence of exogenous AHLs. In addition to the previously reported adaptive antibiotic resistance phenotype and global shift in metabolism, this work presents another component of the physiological changes that are specifically associated with swarmer differentiation in serovar Typhimurium and not simply due to growth on a surface.
Collapse
Affiliation(s)
- Wook Kim
- Department of Microbiology and Infectious Diseases, University of Calgary, 3330 Hospital Dr. NW, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
39
|
Coulthurst SJ, Lilley KS, Salmond GPC. Genetic and proteomic analysis of the role of luxS in the enteric phytopathogen, Erwinia carotovora. MOLECULAR PLANT PATHOLOGY 2006; 7:31-45. [PMID: 20507426 DOI: 10.1111/j.1364-3703.2005.00314.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Erwinia carotovora is a Gram-negative phytopathogen that is an important cause of soft rot disease, including stem and tuber rot in potatoes. Quorum sensing is the process by which bacteria detect their population density and regulate gene expression accordingly. Quorum sensing, an important example of intercellular communication, involves the production and detection of chemical signal molecules. The enzyme LuxS is responsible for the production of Autoinducer-2 (AI-2), a molecule that has been implicated in quorum sensing in many bacterial species. In this study, the role of luxS in Erwinia carotovora ssp. carotovora strain ATTn10 and Erwinia carotovora ssp. atroseptica SCRI1043 has been examined. Both strains have been shown to produce luxS-dependent extracellular AI-2 activity and the phenotypes of defined luxS mutants in these strains have been characterized. Inactivation of luxS in Er. carotovora was found to have a strain-dependent impact on the intracellular proteome (using two-dimensional difference in gel electrophoresis), secreted proteins, motility and virulence in planta. No link was detected with the N-acyl-l-homoserine lactone quorum sensing system in these organisms. Although the molecular mechanism(s) of luxS regulation in Erwinia remain to be determined, this is the first report of any luxS-dependent phenotypes in a plant pathogen.
Collapse
Affiliation(s)
- Sarah J Coulthurst
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | | |
Collapse
|
40
|
Abstract
Under the appropriate environmental conditions, the gram-negative bacterium Proteus mirabilis undergoes a remarkable differentiation to form a distinct cell type called a swarmer cell. The swarmer cell is characterized by a 20- to 40-fold increase in both cell length and the number of flagella per cell. Environmental conditions required for swarmer cell differentiation include: surface contact, inhibition of flagellar rotation, a sufficient cell density and cell-to-cell signalling. The differentiated swarmer cell is then able to carry out a highly ordered population migration termed swarming. Genetic analysis of the swarming process has revealed that a large variety of distinct loci are required for this differentiation including: genes involved in regulation, lipopolysaccharide and peptidoglycan synthesis, cell division, ATP production, putrescine biosynthesis, proteolysis and cell shape determination. The process of swarming is important medically because the expression of virulence genes and the ability to invade cells are coupled to the differentiated swarmer cell. In this review, the genetic and environmental requirements for swarmer cell differentiation will be outlined. In addition, the role of the differentiated swarmer cell in virulence and its possible role in biofilm formation will be discussed.
Collapse
Affiliation(s)
- Philip N Rather
- Department of Microbiology and Immunology, Emory University School of Medicine and Laboratories of Bacterial Pathogenesis, Atlanta VA Medical Center, 3001 Rollins Research Center, Atlanta, GA 30322, USA.
| |
Collapse
|
41
|
Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR. Making 'sense' of metabolism: autoinducer-2, LUXS and pathogenic bacteria. Nat Rev Microbiol 2005; 3:383-96. [PMID: 15864263 DOI: 10.1038/nrmicro1146] [Citation(s) in RCA: 435] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacteria exploit many mechanisms to communicate with each other and their surroundings. Mechanisms using small diffusible signals to coordinate behaviour with cell density (quorum sensing) frequently contribute to pathogenicity. However, pathogens must also be able to acquire nutrients and replicate to successfully invade their host. One quorum-sensing system, based on the possession of LuxS, bears the unique feature of contributing directly to metabolism, and therefore has the potential to influence both gene regulation and bacterial fitness. Here, we discuss the influence that LuxS and its product, autoinducer-2, have on virulence, relating the current evidence to the preferred niche of the pathogen and the underlying mechanisms involved.
Collapse
Affiliation(s)
- Agnès Vendeville
- Centre for Molecular Microbiology and Infection, Department of Infectious Diseases, Faculty of Medicine, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
42
|
Carter GP, Purdy D, Williams P, Minton NP. Quorum sensing in Clostridium difficile: analysis of a luxS-type signalling system. J Med Microbiol 2005; 54:119-127. [PMID: 15673504 DOI: 10.1099/jmm.0.45817-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The increasing incidence of Clostridium difficile-associated disease, and the problems associated with its control, highlight the need for additional countermeasures. The attenuation of virulence through the blockade of bacterial cell-to-cell communication (quorum sensing) is one potential therapeutic target. Preliminary studies have shown that C. difficile produces at least one potential signalling molecule. Through the molecule's ability to induce bioluminescence in a Vibrio harveyi luxS reporter strain, it has been shown to correspond to autoinducer 2 (AI-2). In keeping with this observation, a homologue of luxS has been identified in the genome of C. difficile. Adjacent to luxS(Cd) a potential transcriptional regulator and sensor kinase, rolA and rolB, have been located. RT-PCR has been used to confirm the genetic organization of the luxS(Cd) locus. While AI-2 production has not been blocked so far using antisense technology, AI-2 levels could be modulated by controlling expression of the putative transcriptional regulator rolA. RolA, therefore, acts as a negative regulator of AI-2 production. Finally, it has been shown that the exogenous addition of AI-2 or 4-hydroxy-5-methyl-3(2H) furanone has no discernible effect on the production of toxins by C. difficile.
Collapse
Affiliation(s)
- Glen P Carter
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK 2Health Protection Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Des Purdy
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK 2Health Protection Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Paul Williams
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK 2Health Protection Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Nigel P Minton
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK 2Health Protection Agency, Porton Down, Salisbury SP4 0JG, UK
| |
Collapse
|
43
|
Mire CE, Tourjee JA, O'Brien WF, Ramanujachary KV, Hecht GB. Lead precipitation by Vibrio harveyi: evidence for novel quorum-sensing interactions. Appl Environ Microbiol 2004; 70:855-64. [PMID: 14766565 PMCID: PMC348931 DOI: 10.1128/aem.70.2.855-864.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three pleiotropic, quorum sensing-defective Vibrio harveyi mutants were observed to precipitate soluble Pb2+ as an insoluble compound. The compound was purified and subjected to X-ray diffraction and elemental analyses. These assays identified the precipitated compound as Pb9(PO4)6, an unusual and complex lead phosphate salt that is produced synthetically at temperatures of ca. 200 degrees C. Regulation of the precipitation phenotype was also examined. Introduction of a luxO::kan allele into one of the mutants abolished lead precipitation, indicating that the well-characterized autoinducer 1 (AI1)-AI2 quorum-sensing system can block lead precipitation in dense cell populations. Interestingly, the V. harveyi D1 mutant, a strain defective for secretion of both AI1 and AI2, was shown to be an effective trans inhibitor of lead precipitation. This suggests that a previously undescribed V. harveyi autoinducer, referred to as AI3, can also negatively regulate lead precipitation. Experiments with heterologous bacterial populations demonstrated that many different species are capable of trans regulating the V. harveyi lead precipitation phenotype. Moreover, one of the V. harveyi mutants in this study exhibited little or no response to intercellular signals from other V. harveyi inocula but was quite responsive to some of the heterologous bacteria. Based on these observations, we propose that V. harveyi carries at least one quorum sensor that is specifically dedicated to receiving cross-species communication.
Collapse
Affiliation(s)
- Chad E Mire
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey 08028, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
Bacterial cells can produce and sense signal molecules, allowing the whole population to initiate a concerted action once a critical concentration (corresponding to a particular population density) of the signal has been reached, a phenomenon known as quorum sensing. One of the possible quorum sensing-regulated phenotypes is swarming, a flagella-driven movement of differentiated swarmer cells (hyperflagellated, elongated, multinucleated) by which bacteria can spread as a biofilm over a surface. The glycolipid or lipopeptide biosurfactants thereby produced function as wetting agent by reducing the surface tension. Quorum sensing systems are almost always integrated into other regulatory circuits. This effectively expands the range of environmental signals that influence target gene expression beyond population density. In this review, we first discuss the regulation of AHL-mediated surface migration and the involvement of other low-molecular-mass signal molecules (such as the furanosyl borate diester AI-2) in biosurfactant production of different bacteria. In addition, population density-dependent regulation of swarmer cell differentiation is reviewed. Also, several examples of interspecies signalling are reported. Different signal molecules either produced by bacteria (such as other AHLs and diketopiperazines) or excreted by plants (such as furanones, plant signal mimics) might influence the quorum sensing-regulated swarming behaviour in bacteria different from the producer. On the other hand, specific bacteria can reduce the local available concentration of signal molecules produced by others. In the last part, the role and regulation of a surface-associated movement in biofilm formation is discussed. Here we also describe how quorum sensing may disperse existing biofilms and control the interaction between bacteria and higher organisms (such as the Rhizobium-bean symbiosis).
Collapse
Affiliation(s)
- Ruth Daniels
- Centre of Microbial and Plant Genetics, K. U. Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | | | | |
Collapse
|
45
|
Coulthurst SJ, Kurz CL, Salmond GPC. luxS mutants of Serratia defective in autoinducer-2-dependent ‘quorum sensing’ show strain-dependent impacts on virulence and production of carbapenem and prodigiosin. Microbiology (Reading) 2004; 150:1901-1910. [PMID: 15184576 DOI: 10.1099/mic.0.26946-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The enzyme LuxS is responsible for the production of autoinducer-2 (AI-2), a molecule that has been implicated in quorum sensing in many bacterial species. This study investigated whether there is aluxS-dependent signalling system in the Gram-negative bacteriaSerratiaspp.Serratia marcescensis a broad-host-range pathogen and an important cause of nosocomial infections. Production of AI-2 activity was detected inS. marcescensATCC 274 andSerratiaATCC 39006 and theirluxSgenes were sequenced.luxSmutants were constructed in these strains and were analysed to determine which phenotypes are regulated byluxSand therefore, potentially, by AI-2. The phenotypes of theluxSmutants included decreased carbapenem antibiotic production inSerratiaATCC 39006 and decreased prodigiosin and secreted haemolysin production inS. marcescensATCC 274. TheluxSmutant ofS. marcescensATCC 274 was also found to exhibit modestly reduced virulence in aCaenorhabditis elegansmodel. Finally, it was shown that the culture supernatant of a wild-type strain contains a signal, presumably AI-2, capable of complementing the prodigiosin defect of theluxSmutant of another strain, even when substantially diluted. It is concluded thatluxSmodulates virulence and antibiotic production inSerratia, in a strain-dependent manner, and that, for at least one phenotype, this regulation is via extracellular signalling.
Collapse
Affiliation(s)
- Sarah J Coulthurst
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - C Léopold Kurz
- Centre d'Immunologie de Marseille Luminy, Case 906, 13288 Marseille-Cedex 9, France
| | - George P C Salmond
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
46
|
Abstract
Quorum sensing is a signaling mechanism through which bacteria modulate a number of cellular functions (genes), including sporulation, biofilm formation, bacteriocin production, virulence responses, as well as others. Quorum sensing is a mechanism of cell-to-cell communication and is mediated by extracellular chemical signals generated by the bacteria when specific cell densities are reached. When the concentration of the signal (and cell population) is sufficiently high, the target gene or genes are either activated or repressed. Quorum sensing increases the ability of the bacteria to have access to nutrients or to more favorable environmental niches and enhances bacterial defenses against eukaryotic hosts, competing bacteria, and environmental stresses. The physiological and clinical aspects of quorum sensing have received considerable attention and have been studied at the molecular level. Little is known, however, on the role of quorum sensing in food spoilage or in the growth and/or toxin production of pathogens present in food. A number of compounds have been isolated or synthesized that antagonize quorum sensors, and application of these antagonists may potentially be useful in inhibiting the growth or virulence mechanisms of bacteria in different environments, including food. It is important that food microbiologists have an awareness and an understanding of the mechanisms involved in bacterial quorum sensing, since strategies targeting quorum sensing may offer a means to control the growth of undesirable bacteria in foods.
Collapse
Affiliation(s)
- James L Smith
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA.
| | | | | |
Collapse
|
47
|
Sturgill G, Rather PN. Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis. Mol Microbiol 2004; 51:437-46. [PMID: 14756784 DOI: 10.1046/j.1365-2958.2003.03835.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In a search for Proteus mirabilis genes that were regulated by cell-to-cell signalling, a lacZ fusion (cmr437::mini-Tn5lacZ) was identified that was repressed 10-fold by a self-produced extracellular signal from wild-type cells. However, the cmr437::mini-Tn5lacZ insertion itself led to a marked reduction in this extracellular repressing signal. The cmr437::mini-Tn5lacZ insertion was mapped to a speA homologue in P. mirabilis. Sequence analysis indicated that a speB homologue was encoded downstream of speA. Products of the SpeA and SpeB enzymes (agmatine and putrescine) were tested for repression of cmr437::lacZ. Agmatine did not have repressing activity. However, putrescine was an effective repressing molecule at concentrations down to 30 microM. A second prominent phenotype of the cmr437 (speA)::mini-Tn5lacZ insertion was a severe defect in swarming motility. This swarming defect was also observed in a strain containing a disruption of the downstream speB gene. Differentiation of the speB mutant to swarmer cells was delayed by two hours relative to wild-type cells. Furthermore, the speB mutant was unable to migrate effectively across agar surfaces and formed very closely spaced swarming rings. Exogenous putrescine restored both the normal timing of swarmer cell differentiation and the ability to migrate to speB mutants.
Collapse
Affiliation(s)
- Gwen Sturgill
- Research Service, Department of Veterans Affairs, Medical Center, Cleveland, Ohio, USA
| | | |
Collapse
|
48
|
Jeon B, Itoh K, Misawa N, Ryu S. Effects of quorum sensing on flaA transcription and autoagglutination in Campylobacter jejuni. Microbiol Immunol 2004; 47:833-9. [PMID: 14638994 DOI: 10.1111/j.1348-0421.2003.tb03449.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Some bacteria can communicate with other species of bacteria by means of autoinducer-2 (AI-2)-mediated quorum sensing. In this study, we demonstrated that AI-2-mediated quorum sensing influences the transcription of flaA, the major flagellin gene in Campylobacter jejuni. A null mutation of luxS in C. jejuni strain 81116 reduced flaA transcription (approximately 43% that of the wild-type) and induced a reduction in motility. However, the luxS mutant had the same level of total flagellin protein as the wild-type. Transmission electron microscopy showed that the flagellar structure was preserved in the luxS mutant. The agglutination capability was reduced in the mutant strain, implying that quorum sensing might be involved in the formation of surface structures of C. jejuni. These observations suggest that AI-2-mediated quorum sensing may play a role in regulation of motility and surface properties in C. jejuni.
Collapse
Affiliation(s)
- Byeonghwa Jeon
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
49
|
Winzer K, Hardie KR, Williams P. LuxS and autoinducer-2: their contribution to quorum sensing and metabolism in bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2004; 53:291-396. [PMID: 14696323 DOI: 10.1016/s0065-2164(03)53009-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Klaus Winzer
- Institute of Infection, Immunity and Inflammation, Queen's Medical Centre, C-Floor, West Block, Nottingham, NG7 2UH, U.K
| | | | | |
Collapse
|
50
|
Hardie KR, Cooksley C, Green AD, Winzer K. Autoinducer 2 activity in Escherichia coli culture supernatants can be actively reduced despite maintenance of an active synthase, LuxS. MICROBIOLOGY (READING, ENGLAND) 2003; 149:715-728. [PMID: 12634340 DOI: 10.1099/mic.0.25853-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Production of the signalling molecule (autoinducer-2) synthesized by LuxS has been proposed to be pivotal to a universal mechanism of inter-species bacterial cell-cell communication (quorum sensing); however recently the function of LuxS has been noted to be integral to central metabolism since it contributes to the activated methyl cycle. This paper shows that when Helicobacter pylori LuxS is overproduced in Escherichia coli, it forms cross-linkable multimers. These multimers persist at comparable levels after 24 h of growth if glucose is omitted from the growth medium; however, the levels of extracellular autoinducer-2 decline (Glucose Retention of AI-2 Levels: GRAIL). Glycerol, maltose, galactose, ribose and L-arabinose could substitute for glucose, but lactose, D-arabinose, acetate, citrate and pyruvate could not. Mutations in (i). metabolic pathways (glycolytic enzymes eno, pgk, pgm; galactose epimerase; the Pta-AckA pathway), (ii). sugar transport (pts components, rbs operon, mgl, trg), and (iii). regulators involved in conventional catabolic repression (crp, cya), cAMP-independent catabolite repression (creC, fruR, rpoS,) the stringent response (relA, spoT) and the global carbon storage regulator (csrA) did not prevent GRAIL. Although the basis of GRAIL remains uncertain, it is clear that the mechanism is distinct from conventional catabolite repression. Moreover, GRAIL is not due to inactivation of the enzymic activity of LuxS, since in E. coli, LuxS contained within stationary-phase cells grown in the absence of glucose maintains its activity in vitro.
Collapse
Affiliation(s)
- Kim R Hardie
- School of Pharmaceutical Sciences, Nottingham University, Nottingham NG7 2RD, UK
- Institute of Infections and Immunity, Queen's Medical Centre, C-Floor, West Block, Nottingham NG7 2UH, UK
| | - Clare Cooksley
- Institute of Infections and Immunity, Queen's Medical Centre, C-Floor, West Block, Nottingham NG7 2UH, UK
| | - Andrew D Green
- School of Pharmaceutical Sciences, Nottingham University, Nottingham NG7 2RD, UK
- Institute of Infections and Immunity, Queen's Medical Centre, C-Floor, West Block, Nottingham NG7 2UH, UK
| | - Klaus Winzer
- Institute of Infections and Immunity, Queen's Medical Centre, C-Floor, West Block, Nottingham NG7 2UH, UK
| |
Collapse
|