1
|
Helekal D, Mortimer TD, Mukherjee A, Gentile G, Le Van A, Nicholas RA, Jerse AE, Palace SG, Grad YH. Quantifying the impact of antibiotic use and genetic determinants of resistance on bacterial lineage dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636319. [PMID: 39975361 PMCID: PMC11838577 DOI: 10.1101/2025.02.03.636319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The dynamics of antimicrobial resistance in bacterial populations are informed by the fitness impact of genetic determinants of resistance and antibiotic pressure. However, estimates of real-world fitness impact have been lacking. To address this gap, we developed a hierarchical Bayesian phylodynamic model to quantify contributions of resistance determinants to strain success in a 20-year collection of Neisseria gonorrhoeae isolates. Fitness contributions varied with antibiotic use, and genetic pathways to phenotypically identical resistance conferred distinct fitness effects. These findings were supported by in vitro and experimental infection competition. Quantifying these fitness contributions to lineage dynamics reveals opportunities for investigation into other genetic and environmental drivers of fitness. This work thus establishes a method for linking pathogen genomics and antibiotic use to define factors shaping ecological trends.
Collapse
Affiliation(s)
- David Helekal
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Tatum D. Mortimer
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Aditi Mukherjee
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Gabriella Gentile
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adriana Le Van
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD 20817, USA
| | - Robert A. Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Departments of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ann E. Jerse
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Samantha G. Palace
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yonatan H. Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
2
|
Corbella M, Moreira C, Bello‐Madruga R, Torrent Burgas M, Kamerlin SCL, Blair JMA, Sancho‐Vaello E. Targeting MarA N-terminal domain dynamics to prevent DNA binding. Protein Sci 2025; 34:e5258. [PMID: 39660948 PMCID: PMC11633057 DOI: 10.1002/pro.5258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/14/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024]
Abstract
Efflux is one of the mechanisms employed by Gram-negative bacteria to become resistant to routinely used antibiotics. The inhibition of efflux by targeting their regulators is a promising strategy to re-sensitize bacterial pathogens to antibiotics. AcrAB-TolC is the main resistance-nodulation-division efflux pump in Enterobacteriaceae. MarA is an AraC/XylS family global regulator that regulates more than 40 genes related to the antimicrobial resistance phenotype, including acrAB. The aim of this work was to understand the role of the N-terminal helix of MarA in the mechanism of DNA binding. An N-terminal deletion of MarA showed that the N-terminal helix is critical for recognition of the functional marboxes. By engineering two double cysteine variants of MarA that form a disulfide bond between the N-terminal helix and the hydrophobic core of one of the helices in direct DNA contact, and combining in vitro electrophoretic mobility assays, in vivo measurements of acrAB transcription using a GFP reporter system, and molecular dynamic simulations, it was shown that the immobilization of the N-terminal helix of MarA prevents binding to DNA. This inhibited conformation seems to be universal for the monomeric members of the AraC/XylS family, as suggested by additional molecular dynamics simulations of the two-domain protein Rob. These results point to the N-terminal helix of the AraC/XylS family monomeric regulators as a promising target for the development of inhibitors.
Collapse
Affiliation(s)
- Marina Corbella
- Science for Life Laboratory, Department of Chemistry‐BMCUppsala UniversityUppsalaSweden
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB)Universitat de BarcelonaBarcelonaSpain
| | - Cátia Moreira
- Science for Life Laboratory, Department of Chemistry‐BMCUppsala UniversityUppsalaSweden
| | - Roberto Bello‐Madruga
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Marc Torrent Burgas
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Shina C. L. Kamerlin
- Science for Life Laboratory, Department of Chemistry‐BMCUppsala UniversityUppsalaSweden
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Jessica M. A. Blair
- College of Medicine and Health, Department of Microbes, Infection and MicrobiomesInstitute of Microbiology and Infection, University of BirminghamBirminghamUK
| | - Enea Sancho‐Vaello
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
- College of Medicine and Health, Department of Microbes, Infection and MicrobiomesInstitute of Microbiology and Infection, University of BirminghamBirminghamUK
| |
Collapse
|
3
|
Waltmann A, Balthazar JT, Begum AA, Hua N, Jerse AE, Shafer WM, Hobbs MM, Duncan JA. Experimental genital tract infection demonstrates Neisseria gonorrhoeae MtrCDE efflux pump is not required for in vivo human infection and identifies gonococcal colonization bottleneck. PLoS Pathog 2024; 20:e1012578. [PMID: 39321205 PMCID: PMC11457995 DOI: 10.1371/journal.ppat.1012578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/07/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
The MtrCDE efflux pump of Neisseria gonorrhoeae exports a wide range of antimicrobial compounds that the gonococcus encounters at mucosal surfaces during colonization and infection and is a known gonococcal virulence factor. Here, we evaluate the role of this efflux pump system in strain FA1090 during in vivo human male urethral infection with N. gonorrhoeae using a controlled human infection model. With the strategy of competitive infections initiated with mixtures of wild-type FA1090 and an isogenic mutant FA1090 strain that does not contain a functional MtrCDE pump, we found that the presence of the efflux pump is not required for an infection to be established in the human male urethra. This finding contrasts with previous studies of in vivo infection in the lower genital tract of female mice, which demonstrated that mutant gonococci of a different strain (FA19) lacking a functional MtrCDE pump had a significantly reduced fitness compared to their wild-type parental FA19 strain. To determine if these conflicting results are due to strain or human vs. mouse differences, we conducted a series of systematic competitive infections in female mice with the same FA1090 strains as in humans, and with FA19 strains, including mutants that do not assemble a functional MtrCDE efflux pump. Our results indicate the fitness advantage provided by the MtrCDE efflux pump during infection of mice is strain dependent. Owing to the equal fitness of the two FA1090 strains in men, our experiments also demonstrated the presence of a colonization bottleneck of N. gonorrhoeae in the human male urethra, which may open a new area of inquiry into N. gonorrhoeae infection dynamics and control. TRIAL REGISTRATION. Clinicaltrials.gov NCT03840811.
Collapse
Affiliation(s)
- Andreea Waltmann
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Jacqueline T. Balthazar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Afrin A. Begum
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States
| | - Nancy Hua
- The Emmes Company, Rockville, Maryland, United States
| | - Ann E. Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States
- The Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, United States
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center (Atlanta), Decatur, Georgia, United States
| | - Marcia M. Hobbs
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Joseph A. Duncan
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| |
Collapse
|
4
|
Unemo M, Sánchez-Busó L, Golparian D, Jacobsson S, Shimuta K, Lan PT, Eyre DW, Cole M, Maatouk I, Wi T, Lahra MM. The novel 2024 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations and superseded WHO N. gonorrhoeae reference strains-phenotypic, genetic and reference genome characterization. J Antimicrob Chemother 2024; 79:1885-1899. [PMID: 38889110 PMCID: PMC11290888 DOI: 10.1093/jac/dkae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVES MDR and XDR Neisseria gonorrhoeae strains remain major public health concerns internationally, and quality-assured global gonococcal antimicrobial resistance (AMR) surveillance is imperative. The WHO global Gonococcal Antimicrobial Surveillance Programme (GASP) and WHO Enhanced GASP (EGASP), including metadata and WGS, are expanding internationally. We present the phenotypic, genetic and reference genome characteristics of the 2024 WHO gonococcal reference strains (n = 15) for quality assurance worldwide. All superseded WHO gonococcal reference strains (n = 14) were identically characterized. MATERIAL AND METHODS The 2024 WHO reference strains include 11 of the 2016 WHO reference strains, which were further characterized, and four novel strains. The superseded WHO reference strains include 11 WHO reference strains previously unpublished. All strains were characterized phenotypically and genomically (single-molecule PacBio or Oxford Nanopore and Illumina sequencing). RESULTS The 2024 WHO reference strains represent all available susceptible and resistant phenotypes and genotypes for antimicrobials currently and previously used (n = 22), or considered for future use (n = 3) in gonorrhoea treatment. The novel WHO strains include internationally spreading ceftriaxone resistance, ceftriaxone resistance due to new penA mutations, ceftriaxone plus high-level azithromycin resistance and azithromycin resistance due to mosaic MtrRCDE efflux pump. AMR, serogroup, prolyliminopeptidase, genetic AMR determinants, plasmid types, molecular epidemiological types and reference genome characteristics are presented for all strains. CONCLUSIONS The 2024 WHO gonococcal reference strains are recommended for internal and external quality assurance in laboratory examinations, especially in the WHO GASP, EGASP and other GASPs, but also in phenotypic and molecular diagnostics, AMR prediction, pharmacodynamics, epidemiology, research and as complete reference genomes in WGS analysis.
Collapse
Affiliation(s)
- Magnus Unemo
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Microbiology, Örebro University, Örebro, Sweden
- Institute for Global Health, University College London (UCL), London, UK
| | - Leonor Sánchez-Busó
- Joint Research Unit ‘Infection and Public Health’, FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain
- CIBERESP, ISCIII, Madrid, Spain
| | - Daniel Golparian
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Microbiology, Örebro University, Örebro, Sweden
| | - Susanne Jacobsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Microbiology, Örebro University, Örebro, Sweden
| | - Ken Shimuta
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Pham Thi Lan
- Hanoi Medical University, National Hospital of Dermatology and Venereology, Hanoi, Vietnam
| | - David W Eyre
- Big Data Institute, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Ismael Maatouk
- Department of the Global HIV, Hepatitis and STI Programmes, WHO, Geneva, Switzerland
| | - Teodora Wi
- Department of the Global HIV, Hepatitis and STI Programmes, WHO, Geneva, Switzerland
| | - Monica M Lahra
- WHO Collaborating Centre for Sexually Transmitted Infections and Antimicrobial Resistance, New South Wales Health Pathology, Microbiology, Randwick, NSW, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| |
Collapse
|
5
|
Duffey M, Jumde RP, da Costa RM, Ropponen HK, Blasco B, Piddock LJ. Extending the Potency and Lifespan of Antibiotics: Inhibitors of Gram-Negative Bacterial Efflux Pumps. ACS Infect Dis 2024; 10:1458-1482. [PMID: 38661541 PMCID: PMC11091901 DOI: 10.1021/acsinfecdis.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Efflux is a natural process found in all prokaryotic and eukaryotic cells that removes a diverse range of substrates from inside to outside. Many antibiotics are substrates of bacterial efflux pumps, and modifications to the structure or overexpression of efflux pumps are an important resistance mechanism utilized by many multidrug-resistant bacteria. Therefore, chemical inhibition of bacterial efflux to revitalize existing antibiotics has been considered a promising approach for antimicrobial chemotherapy over two decades, and various strategies have been employed. In this review, we provide an overview of bacterial multidrug resistance (MDR) efflux pumps, of which the resistance nodulation division (RND) efflux pumps are considered the most clinically relevant in Gram-negative bacteria, and describe over 50 efflux inhibitors that target such systems. Although numerous efflux inhibitors have been identified to date, none have progressed into clinical use because of formulation, toxicity, and pharmacokinetic issues or a narrow spectrum of inhibition. For these reasons, the development of efflux inhibitors has been considered a difficult and complex area of research, and few active preclinical studies on efflux inhibitors are in progress. However, recently developed tools, including but not limited to computational tools including molecular docking models, offer hope that further research on efflux inhibitors can be a platform for research and development of new bacterial efflux inhibitors.
Collapse
Affiliation(s)
- Maëlle Duffey
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Ravindra P. Jumde
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Renata M.A. da Costa
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Henni-Karoliina Ropponen
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Benjamin Blasco
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Laura J.V. Piddock
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| |
Collapse
|
6
|
Colón Pérez J, Villarino Fernández RA, Domínguez Lago A, Treviño Castellano MM, Pérez del Molino Bernal ML, Sánchez Poza S, Torres-Sangiao E. Addressing Sexually Transmitted Infections Due to Neisseria gonorrhoeae in the Present and Future. Microorganisms 2024; 12:884. [PMID: 38792714 PMCID: PMC11124187 DOI: 10.3390/microorganisms12050884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
It was in the 1800s when the first public publications about the infection and treatment of gonorrhoea were released. However, the first prevention programmes were only published a hundred years later. In the 1940s, the concept of vaccination was introduced into clinical prevention programmes to address early sulphonamide resistance. Since then, tons of publications on Neisseria gonorrhoeae are undisputed, around 30,000 publications today. Currently, the situation seems to be just as it was in the last century, nothing has changed or improved. So, what are we doing wrong? And more importantly, what might we do? The review presented here aims to review the current situation regarding the resistance mechanisms, prevention programmes, treatments, and vaccines, with the challenge of better understanding this special pathogen. The authors have reviewed the last five years of advancements, knowledge, and perspectives for addressing the Neisseria gonorrhoeae issue, focusing on new therapeutic alternatives.
Collapse
Affiliation(s)
- Julia Colón Pérez
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Rosa-Antía Villarino Fernández
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Adrián Domínguez Lago
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - María Mercedes Treviño Castellano
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - María Luisa Pérez del Molino Bernal
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Sandra Sánchez Poza
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Eva Torres-Sangiao
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Rice J, Gibson J, Young E, Souder K, Cunningham K, Schmitt DM. Low Oxygen Concentration Reduces Neisseria gonorrhoeae Susceptibility to Resazurin. Antibiotics (Basel) 2024; 13:395. [PMID: 38786124 PMCID: PMC11117329 DOI: 10.3390/antibiotics13050395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Neisseria gonorrhoeae has developed resistance to every antibiotic currently approved for the treatment of gonorrhea, prompting the development of new therapies. The phenoxazine dye resazurin exhibits robust antimicrobial activity against N. gonorrhoeae in vitro but fails to limit vaginal colonization by N. gonorrhoeae in a mouse model. The lack of in vivo efficacy may be due to oxygen limitation as in vitro susceptibility assays with resazurin are conducted under atmospheric oxygen while a microaerophilic environment is present in the vagina. Here, we utilized broth microdilution assays to determine the susceptibility of N. gonorrhoeae to resazurin under low and atmospheric oxygen conditions. The minimal inhibitory concentration of resazurin for multiple N. gonorrhoeae clinical isolates was significantly higher under low oxygen. This effect was specific to resazurin as N. gonorrhoeae was equally susceptible to other antibiotics under low and atmospheric oxygen conditions. The reduced susceptibility of N. gonorrhoeae to resazurin under low oxygen was largely attributed to reduced oxidative stress, as the addition of antioxidants under atmospheric oxygen mimicked the reduced susceptibility to resazurin observed under low oxygen. Together, these data suggest oxygen concentration is an important factor to consider when evaluating the efficacy of new antibiotics against N. gonorrhoeae in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | - Deanna M. Schmitt
- Department of Biomedical Sciences, West Liberty University, West Liberty, WV 26074, USA
| |
Collapse
|
8
|
Liao Y, Xie Q, Yin X, Li X, Xie J, Wu X, Tang S, Liu M, Zeng L, Pan Y, Yang J, Feng Z, Qin X, Zheng H. penA profile of Neisseria gonorrhoeae in Guangdong, China: Novel penA alleles are related to decreased susceptibility to ceftriaxone or cefixime. Int J Antimicrob Agents 2024; 63:107101. [PMID: 38325722 DOI: 10.1016/j.ijantimicag.2024.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 12/15/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Resistance to extended-spectrum cephalosporins (ESCs) has become a public health concern with the spread of Neisseria gonorrhoeae and increasing antimicrobial resistance. Mutation of penA, encoding penicillin-binding protein 2, represents a mechanism of ESC resistance. This study sought to assess penA alleles and mutations associated with decreased susceptibility (DS) to ESCs in N. gonorrhoeae. MATERIALS AND METHODS In 2021, 347 gonococci were collected in Guangdong, China. Minimum inhibitory concentations (MICs) of ceftriaxone and cefixime were determined, and whole-genome sequencing and phylogenetic analysis were performed. Multi-locus sequence typing (MLST) and conventional resistance determinants such as penA, mtrR, PonA and PorB were analysed. penA was genotyped and sequence-aligned using PubMLST. RESULTS Genome-wide phylogenetic analysis revealed that the prevalence of DS to ESCs was highest in Clade 11.1 (100.0%), Clade 2 (66.7%) and Clade 0 (55.7%), and the leading cause was strains with penA-60.001 or new penA alleles in clades. The penA phylogenetic tree is divided into two branches: non-mosaic penA and mosaic penA. The latter contained penA-60.001, penA-10 and penA-34. penA profile analysis indicated that A311V and T483S are closely related to DS to ESCs in mosaic penA. The new alleles NEIS1753_2840 and NEIS1753_2837 are closely related to penA-60.001, with DS to ceftriaxone and cefixime of 100%. NEIS1753_2660, a derivative of penA-10 (A486V), has increased DS to ceftriaxone. NEIS1753_2846, a derivative of penA-34.007 (G546S), has increased DS to cefixime. CONCLUSION This study identified critical penA alleles related to elevated MICs, and trends of gonococcus-evolved mutated penA associated with DS to ESCs in Guangdong.
Collapse
Affiliation(s)
- Yiwen Liao
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinghui Xie
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaona Yin
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoxiao Li
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junhui Xie
- The Affiliated Cancer Hospital of Gannan Medical University, Ganzhou, Jiang Xi, China
| | - Xingzhong Wu
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sanmei Tang
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingjing Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lihong Zeng
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuying Pan
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianjiang Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhanqin Feng
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaolin Qin
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory for Sexually Transmitted Disease Control, Guangzhou, Guangdong, China
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory for Sexually Transmitted Disease Control, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Hibbert T, Krpetic Z, Latimer J, Leighton H, McHugh R, Pottenger S, Wragg C, James CE. Antimicrobials: An update on new strategies to diversify treatment for bacterial infections. Adv Microb Physiol 2024; 84:135-241. [PMID: 38821632 DOI: 10.1016/bs.ampbs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ninety-five years after Fleming's discovery of penicillin, a bounty of antibiotic compounds have been discovered, modified, or synthesised. Diversification of target sites, improved stability and altered activity spectra have enabled continued antibiotic efficacy, but overwhelming reliance and misuse has fuelled the global spread of antimicrobial resistance (AMR). An estimated 1.27 million deaths were attributable to antibiotic resistant bacteria in 2019, representing a major threat to modern medicine. Although antibiotics remain at the heart of strategies for treatment and control of bacterial diseases, the threat of AMR has reached catastrophic proportions urgently calling for fresh innovation. The last decade has been peppered with ground-breaking developments in genome sequencing, high throughput screening technologies and machine learning. These advances have opened new doors for bioprospecting for novel antimicrobials. They have also enabled more thorough exploration of complex and polymicrobial infections and interactions with the healthy microbiome. Using models of infection that more closely resemble the infection state in vivo, we are now beginning to measure the impacts of antimicrobial therapy on host/microbiota/pathogen interactions. However new approaches are needed for developing and standardising appropriate methods to measure efficacy of novel antimicrobial combinations in these contexts. A battery of promising new antimicrobials is now in various stages of development including co-administered inhibitors, phages, nanoparticles, immunotherapy, anti-biofilm and anti-virulence agents. These novel therapeutics need multidisciplinary collaboration and new ways of thinking to bring them into large scale clinical use.
Collapse
Affiliation(s)
- Tegan Hibbert
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Zeljka Krpetic
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Joe Latimer
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Rebecca McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Charlotte Wragg
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Chloë E James
- School of Science, Engineering, and Environment, University of Salford, Salford, UK.
| |
Collapse
|
10
|
Frost KM, Charron-Smith SL, Cotsonas TC, Dimartino DC, Eisenhart RC, Everingham ET, Holland EC, Imtiaz K, Kornowicz CJ, Lenhard LE, Lynch LH, Moore NP, Phadke K, Reed ML, Smith SR, Ward LL, Wadsworth CB. Rolling the evolutionary dice: Neisseria commensals as proxies for elucidating the underpinnings of antibiotic resistance mechanisms and evolution in human pathogens. Microbiol Spectr 2024; 12:e0350723. [PMID: 38179941 PMCID: PMC10871548 DOI: 10.1128/spectrum.03507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Species within the genus Neisseria are adept at sharing adaptive allelic variation, with commensal species repeatedly transferring resistance to their pathogenic relative Neisseria gonorrhoeae. However, resistance in commensals is infrequently characterized, limiting our ability to predict novel and potentially transferable resistance mechanisms that ultimately may become important clinically. Unique evolutionary starting places of each Neisseria species will have distinct genomic backgrounds, which may ultimately control the fate of evolving populations in response to selection as epistatic and additive interactions coerce lineages along divergent evolutionary trajectories. Alternatively, similar genetic content present across species due to shared ancestry may constrain existing adaptive solutions. Thus, identifying the paths to resistance across commensals may aid in characterizing the Neisseria resistome-or the reservoir of alleles within the genus as well as its depth. Here, we use in vitro evolution of four commensal species to investigate the potential and repeatability of resistance evolution to two antimicrobials, the macrolide azithromycin and the β-lactam penicillin. After 20 days of selection, commensals evolved resistance to penicillin and azithromycin in 11/16 and 12/16 cases, respectively. Almost all cases of resistance emergence converged on mutations within ribosomal components or the mtrRCDE efflux pump for azithromycin-based selection and mtrRCDE, penA, and rpoB for penicillin selection, thus supporting constrained adaptive solutions despite divergent evolutionary starting points across the genus for these particular drugs. Though drug-selected loci were limited, we do identify novel resistance-imparting mutations. Continuing to explore paths to resistance across different experimental conditions and genomic backgrounds, which could shunt evolution down alternative evolutionary trajectories, will ultimately flesh out the full Neisseria resistome.IMPORTANCENeisseria gonorrhoeae is a global threat to public health due to its rapid acquisition of antibiotic resistance to all first-line treatments. Recent work has documented that alleles acquired from close commensal relatives have played a large role in the emergence of resistance to macrolides and beta-lactams within gonococcal populations. However, commensals have been relatively underexplored for the resistance genotypes they may harbor. This leaves a gap in our understanding of resistance that could be rapidly acquired by the gonococcus through a known highway of horizontal gene exchange. Here, we characterize resistance mechanisms that can emerge in commensal Neisseria populations via in vitro selection to multiple antimicrobials and begin to define the number of paths to resistance. This study, and other similar works, may ultimately aid both surveillance efforts and clinical diagnostic development by nominating novel and conserved resistance mechanisms that may be at risk of rapid dissemination to pathogen populations.
Collapse
Affiliation(s)
- Kelly M. Frost
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Sierra L. Charron-Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Terence C. Cotsonas
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Daniel C. Dimartino
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Rachel C. Eisenhart
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eric T. Everingham
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Elle C. Holland
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kainat Imtiaz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Cory J. Kornowicz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Lydia E. Lenhard
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liz H. Lynch
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Nadia P. Moore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kavya Phadke
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Makayla L. Reed
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Samantha R. Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liza L. Ward
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| |
Collapse
|
11
|
Huang L, Guo F, Li X, Wang M, Zhu D, Wang M, Jia R, Chen S, Zhao X, Zhang S, Gao Q, Yang Q, Wu Y, Huang J, Tian B, Ou X, Sun D, Mao S, Zhang L, Yu Y, Götz F, Cheng A, Liu M. Functional characterization of two TolC in the resistance to drugs and metals and in the virulence of Riemerella anatipestifer. Appl Environ Microbiol 2023; 89:e0130823. [PMID: 38038982 PMCID: PMC10734528 DOI: 10.1128/aem.01308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Riemerella anatipestifer (RA) is a notorious duck pathogen, characterized by a multitude of serotypes that exhibit no cross-reaction with one another. Moreover, RA is resistant to various antibacterial agents. Consequently, understanding the mechanisms behind resistance and identifying potential targets for drug development have become pressing needs. In this study, we show that the two TolC proteins play a role in the resistance to different drugs and metals and in the virulence. The results suggest that TolCA has a wider range of efflux substrates than TolCB. Except for gentamicin, neither TolCA nor TolCB was involved in the efflux of the other tested antibiotics. Strikingly, TolCA but not TolCB enhanced the frequency of resistance-conferring mutations. Moreover, TolCA was involved in RA virulence. Given its conservation in RA, TolCA has potential as a drug target for the development of therapeutics against RA infections.
Collapse
Affiliation(s)
- Li Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Fang Guo
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiao Li
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mengying Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - YanLing Yu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Mikucki A, Kahler CM. Microevolution and Its Impact on Hypervirulence, Antimicrobial Resistance, and Vaccine Escape in Neisseria meningitidis. Microorganisms 2023; 11:3005. [PMID: 38138149 PMCID: PMC10745880 DOI: 10.3390/microorganisms11123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neisseria meningitidis is commensal of the human pharynx and occasionally invades the host, causing the life-threatening illness invasive meningococcal disease. The meningococcus is a highly diverse and adaptable organism thanks to natural competence, a propensity for recombination, and a highly repetitive genome. These mechanisms together result in a high level of antigenic variation to invade diverse human hosts and evade their innate and adaptive immune responses. This review explores the ways in which this diversity contributes to the evolutionary history and population structure of the meningococcus, with a particular focus on microevolution. It examines studies on meningococcal microevolution in the context of within-host evolution and persistent carriage; microevolution in the context of meningococcal outbreaks and epidemics; and the potential of microevolution to contribute to antimicrobial resistance and vaccine escape. A persistent theme is the idea that the process of microevolution contributes to the development of new hyperinvasive meningococcal variants. As such, microevolution in this species has significant potential to drive future public health threats in the form of hypervirulent, antibiotic-resistant, vaccine-escape variants. The implications of this on current vaccination strategies are explored.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
13
|
Vashishtha S, Thakur S, Singh J, Adhana S, Kundu B. Evolutionarily conserved heat shock protein, HtpX, as an adjunct target against antibiotic-resistant Neisseria gonorrhoeae. J Cell Biochem 2023; 124:1516-1529. [PMID: 37566682 DOI: 10.1002/jcb.30461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/09/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
The emergence of multiple drug resistance and extreme drug resistance pathogens necessitates the continuous evaluation of the pathogenic genome to identify conserved molecular targets and their respective inhibitors. In this study, we mapped the global mutational landscape of Neisseria gonorrhoeae (an intracellular pathogen notoriously known to cause the sexually transmitted disease gonorrhoea). We identified highly variable amino acid positions in the antibiotic target genes like the penA, ponA, 23s rRNA, rpoB, gyrA, parC, mtrR and porB. Some variations are directly reported to confer resistance to the currently used front-line drugs like ceftriaxone, cefixime, azithromycin and ciprofloxacin. Further, by whole genome comparison and Shannon entropy analysis, we identified a completely conserved protein HtpX in the drug-resistant as well as susceptible isolates of N. gonorrhoeae (NgHtpX). Comparison with the only available information of Escherichia coli HtpX suggested it to be a transmembrane metalloprotease having a role in stress response. The critical zinc-binding residue of NgHtpX was mapped to E141. By applying composite high throughput screening followed by MD simulations, we identified pemirolast and thalidomide as high-energy binding ligands of NgHtpX. Following cloning and expression of the purified metal-binding domain of NgHtpX (NgHtpXd), its Zn2+ -binding (Kd = 0.4 µM) and drug-binding (pemirolast, Kd = 3.47 µM; and thalidomide, Kd = 1.04 µM) potentials were determined using in-vitro fluorescence quenching experiment. When tested on N. gonorrhoeae cultures, both the ligands imposed a dose-dependent reduction in viability. Overall, our results provide high entropy positions in the targets of presently used antibiotics, which can be further explored to understand the AMR mechanism. Additionally, HtpX and its specific inhibitors identified can be utilised effectively in managing gonococcal infections.
Collapse
Affiliation(s)
- Shubham Vashishtha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Sheetal Thakur
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Jasdeep Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Sujata Adhana
- Department of Biomedical Sciences, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
14
|
Waltmann A, Balthazar JT, Begum AA, Hua N, Jerse AE, Shafer WM, Hobbs MM, Duncan JA. Neisseria gonorrhoeae MtrCDE Efflux Pump During In Vivo Experimental Genital Tract Infection in Men and Mice Reveals the Presence of Within-Host Colonization Bottleneck. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.23.23291824. [PMID: 37425726 PMCID: PMC10327229 DOI: 10.1101/2023.06.23.23291824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The MtrCDE efflux pump of Neisseria gonorrhoeae exports a wide range of antimicrobial compounds that the gonococcus encounters at mucosal surfaces during colonization and infection. Here, we evaluate the role of this efflux pump system in strain FA1090 in human male urethral infection with a Controlled Human Infection Model. Using the strategy of competitive multi-strain infection with wild-type FA1090 and an isogenic mutant strain that does not contain a functional MtrCDE pump, we found that the presence of the efflux pump during human experimental infection did not confer a competitive advantage. This finding is in contrast to previous findings in female mice, which demonstrated that gonococci of strain FA19 lacking a functional MtrCDE pump had a significantly reduced fitness compared to the wild type strain in the lower genital tract of female mice. We conducted competitive infections in female mice with FA19 and FA1090 strains, including mutants that do not assemble a functional Mtr efflux pump, demonstrating the fitness advantage provided byt the MtrCDE efflux pump during infection of mice is strain dependent. Our data indicate that new gonorrhea treatment strategies targeting the MtrCDE efflux pump functions may not be universally efficacious in naturally occurring infections. Owing to the equal fitness of FA1090 strains in men, our experiments unexpectedly demonstrated the likely presence of an early colonization bottleneck of N. gonorrhoeae in the human male urethra. TRIAL REGISTRATION Clinicaltrials.gov NCT03840811 .
Collapse
|
15
|
Martin SL, Mortimer TD, Grad YH. Machine learning models for Neisseria gonorrhoeae antimicrobial susceptibility tests. Ann N Y Acad Sci 2023; 1520:74-88. [PMID: 36573759 PMCID: PMC9974846 DOI: 10.1111/nyas.14549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neisseria gonorrhoeae is an urgent public health threat due to the emergence of antibiotic resistance. As most isolates in the United States are susceptible to at least one antibiotic, rapid molecular antimicrobial susceptibility tests (ASTs) would offer the opportunity to tailor antibiotic therapy, thereby expanding treatment options. With genome sequence and antibiotic resistance phenotype data for nearly 20,000 clinical N. gonorrhoeae isolates now available, there is an opportunity to use statistical methods to develop sequence-based diagnostics that predict antibiotic susceptibility from genotype. N. gonorrhoeae, therefore, provides a useful example illustrating how to apply machine learning models to aid in the design of sequence-based ASTs. We present an overview of this framework, which begins with establishing the assay technology, the performance criteria, the population in which the diagnostic will be used, and the clinical goals, and extends to the choices that must be made to arrive at a set of features with the desired properties for predicting susceptibility phenotype from genotype. While we focus on the example of N. gonorrhoeae, the framework generalizes to other organisms for which large-scale genotype and antibiotic resistance data can be combined to aid in diagnostics development.
Collapse
Affiliation(s)
- Skylar L. Martin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tatum D. Mortimer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Yonatan H. Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Evolution of Ceftriaxone Resistance of Penicillin-Binding Proteins 2 Revealed by Molecular Modeling. Int J Mol Sci 2022; 24:ijms24010176. [PMID: 36613627 PMCID: PMC9820184 DOI: 10.3390/ijms24010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Penicillin-binding proteins 2 (PBP2) are critically important enzymes in the formation of the bacterial cell wall. Inhibition of PBP2 is utilized in the treatment of various diseases, including gonorrhea. Ceftriaxone is the only drug used to treat gonorrhea currently, and recent growth in PBP2 resistance to this antibiotic is a serious threat to human health. Our study reveals mechanistic aspects of the inhibition reaction of PBP2 from the wild-type FA19 strain and mutant 35/02 and H041 strains of Neisseria Gonorrhoeae by ceftriaxone. QM(PBE0-D3/6-31G**)/MM MD simulations show that the reaction mechanism for the wild-type PBP2 consists of three elementary steps including nucleophilic attack, C-N bond cleavage in the β-lactam ring and elimination of the leaving group in ceftriaxone. In PBP2 from the mutant strains, the second and third steps occur simultaneously. For all considered systems, the acylation rate is determined by the energy barrier of the first step that increases in the order of PBP2 from FA19, 35/02 and H041 strains. Dynamic behavior of ES complexes is analyzed using geometry and electron density features including Fukui electrophilicity index and Laplacian of electron density maps. It reveals that more efficient activation of the carbonyl group of the antibiotic leads to the lower energy barrier of nucleophilic attack and larger stabilization of the first reaction intermediate. Dynamical network analysis of MD trajectories explains the differences in ceftriaxone binding affinity: in PBP2 from the wild-type strain, the β3-β4 loop conformation facilitates substrate binding, whereas in PBP2 from the mutant strains, it exists in the conformation that is unfavorable for complex formation. Thus, we clarify that the experimentally observed decrease in the second-order rate constant of acylation (k2/KS) in PBP2 from the mutant strains is due to both a decrease in the acylation rate constant k2 and an increase in the dissociation constant KS.
Collapse
|
17
|
Abstract
Gonorrhea remains a major global public health problem because of the high incidence of infection (estimated 82 million cases in 2020) and the emergence and spread of Neisseria gonorrhoeae strains resistant to previous and current antibiotics used to treat infections. Given the dearth of new antibiotics that are likely to enter clinical practice in the near future, there is concern that cases of untreatable gonorrhea might emerge. In response to this crisis, the World Health Organization (WHO), in partnership with the Global Antibiotic Research and Development Partnership (GARDP), has made the search for and development of new antibiotics against N. gonorrhoeae a priority. Ideally, these antibiotics should also be active against other sexually transmitted organisms, such as Chlamydia trachomatis and/or Mycoplasma genitalium, which are often found with N. gonorrhoeae as co-infections. Corallopyronin A is a potent antimicrobial that exhibits activity against Chlamydia spp. and inhibits transcription by binding to the RpoB switch region. Accordingly, we tested the effectiveness of corallopyronin A against N. gonorrhoeae. We also examined the mutation frequency and modes of potential resistance against corallopyronin A. We report that corallopyronin A has potent antimicrobial action against antibiotic-susceptible and antibiotic-resistant N. gonorrhoeae strains and could eradicate gonococcal infection of cultured, primary human cervical epithelial cells. Critically, we found that spontaneous corallopyronin A-resistant mutants of N. gonorrhoeae are exceedingly rare (≤10-10) when selected at 4× the MIC. Our results support pre-clinical studies aimed at developing corallopyronin A for gonorrheal treatment regimens. IMPORTANCE The high global incidence of gonorrhea, the lack of a protective vaccine, and the emergence of N. gonorrhoeae strains expressing resistance to currently used antibiotics demand that new treatment options be developed. Accordingly, we investigated whether corallopyronin A, an antibiotic which is effective against other pathogens, including C. trachomatis, which together with gonococci frequently cause co-infections in humans, could exert anti-gonococcal action in vitro and ex vivo, and potential resistance emergence. We propose that corallopyronin A be considered a potential future treatment option for gonorrhea because of its potent activity, low resistance development, and recent advances in scalable production.
Collapse
|
18
|
Radovanovic M, Kekic D, Jovicevic M, Kabic J, Gajic I, Opavski N, Ranin L. Current Susceptibility Surveillance and Distribution of Antimicrobial Resistance in N. gonorrheae within WHO Regions. Pathogens 2022; 11:1230. [PMID: 36364980 PMCID: PMC9697523 DOI: 10.3390/pathogens11111230] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 08/01/2023] Open
Abstract
Neisseria gonorrhoeae (N. gonorrhoeae) is the etiological agent of the second most common sexually transmitted disease in the world, gonorrhoea. Currently recommended and last available first-line therapy is extended-spectrum cephalosporins most often combined with azitromycin. However, misuse of antibiotics and the abilities of N. gonorrhoeae to acquire new genetic and plasmid-borne resistance determinants has gradually led to the situation where this bacterium has become resistant to all major classes of antibiotics. Together with a generally slow update of treatment guidelines globally, as well as with the high capacity of gonococci to develop and retain AMR, this may lead to the global worsening of gonococcal AMR. Since effective vaccines are unavailable, the management of gonorrhoea relies mostly on prevention and accurate diagnosis, together with antimicrobial treatment. The study overviews the latest results of mostly WHO-initiated studies, primarily focusing on the data regarding the molecular basis of the resistance to the current and novel most promising antibacterial agents, which could serve to establish or reinforce the continual, quality-assured and comparable AMR surveillance, including systematic monitoring and treatment with the use of molecular AMR prediction methods.
Collapse
Affiliation(s)
- Marina Radovanovic
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade 11000, Serbia
| | - Dusan Kekic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Milos Jovicevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Jovana Kabic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Natasa Opavski
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Lazar Ranin
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
19
|
Ayala JC, Balthazar JT, Shafer WM. Transcriptional regulation of the mtrCDE efflux pump operon: importance for Neisseria gonorrhoeae antimicrobial resistance. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35916832 DOI: 10.1099/mic.0.001231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This review focuses on the mechanisms of transcriptional control of an important multidrug efflux pump system (MtrCDE) possessed by Neisseria gonorrhoeae, the aetiological agent of the sexually transmitted infection termed gonorrhoea. The mtrCDE operon that encodes this tripartite protein efflux pump is subject to both cis- and trans-acting transcriptional factors that negatively or positively influence expression. Critically, levels of MtrCDE can influence levels of gonococcal susceptibility to classical antibiotics, host-derived antimicrobials and various biocides. The regulatory systems that control mtrCDE can have profound influences on the capacity of gonococci to resist current and past antibiotic therapy regimens as well as virulence. The emergence, mechanisms of action and clinical significance of the transcriptional regulatory systems that impact mtrCDE expression in gonococci are reviewed here with the aim of linking bacterial antimicrobial resistance with multidrug efflux capability.
Collapse
Affiliation(s)
- Julio C Ayala
- Department of Microbiology and Immunology Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Jacqueline T Balthazar
- Department of Microbiology and Immunology Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - William M Shafer
- Department of Microbiology and Immunology Emory University School of Medicine, Atlanta, Georgia, 30322, USA.,Laboratories of Bacterial Pathogenesis, VA Medical Center (Atlanta), Decatur, Georgia, 30033, USA.,The Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Schörner MA, Mesa D, Barazzetti FH, Martins JM, Machado HDM, Grisard HBDS, Wachter JK, Starick MR, Scheffer MC, Palmeiro JK, Bazzo ML. In vitro selection of Neisseria gonorrhoeae unveils novel mutations associated with extended-spectrum cephalosporin resistance. Front Cell Infect Microbiol 2022; 12:924764. [PMID: 35967879 PMCID: PMC9363574 DOI: 10.3389/fcimb.2022.924764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
The emergence of Neisseria gonorrhoeae strains resistant to extended-spectrum cephalosporins (ESCs) is a worldwide concern because this class of antibiotics represents the last empirical treatment option for gonorrhea. The abusive use of antimicrobials may be an essential factor for the emergence of ESC resistance in N. gonorrhoeae. Cephalosporin resistance mechanisms have not been fully clarified. In this study, we mapped mutations in the genome of N. gonorrhoeae isolates after resistance induction with cefixime and explored related metabolic pathways. Six clinical isolates with different antimicrobial susceptibility profiles and genotypes and two gonococcal reference strains (WHO F and WHO Y) were induced with increasing concentrations of cefixime. Antimicrobial susceptibility testing was performed against six antimicrobial agents before and after induction. Clinical isolates were whole-genome sequenced before and after induction, whereas reference strains were sequenced after induction only. Cefixime resistance induction was completed after 138 subcultures. Several metabolic pathways were affected by resistance induction. Five isolates showed SNPs in PBP2. The isolates M111 and M128 (ST1407 with mosaic penA-34.001) acquired one and four novel missense mutations in PBP2, respectively. These isolates exhibited the highest minimum inhibitory concentration (MIC) for cefixime among all clinical isolates. Mutations in genes contributing to ESC resistance and in other genes were also observed. Interestingly, M107 and M110 (ST338) showed no mutations in key determinants of ESC resistance despite having a 127-fold increase in the MIC of cefixime. These findings point to the existence of different mechanisms of acquisition of ESC resistance induced by cefixime exposure. Furthermore, the results reinforce the importance of the gonococcal antimicrobial resistance surveillance program in Brazil, given the changes in treatment protocols made in 2017 and the nationwide prevalence of sequence types that can develop resistance to ESC.
Collapse
Affiliation(s)
- Marcos André Schörner
- Laboratório de Biologia Molecular, Microbiologia e Sorologia, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- *Correspondence: Marcos André Schörner,
| | - Dany Mesa
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Fernando Hartmann Barazzetti
- Laboratório de Biologia Molecular, Microbiologia e Sorologia, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Laboratório de Bioinformática, Programa de Pós-Graduação em Biotecnologia e Biociências, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Jéssica Motta Martins
- Laboratório de Biologia Molecular, Microbiologia e Sorologia, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Programa de Pós-Graduação em Farmácia, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Hanalydia de Melo Machado
- Laboratório de Biologia Molecular, Microbiologia e Sorologia, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Henrique Borges da Silva Grisard
- Laboratório de Biologia Molecular, Microbiologia e Sorologia, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Julia Kinetz Wachter
- Laboratório de Biologia Molecular, Microbiologia e Sorologia, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Márick Rodrigues Starick
- Programa de Pós-Graduação em Farmacologia, Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Laboratório de Imunofarmacologia e Doenças Infecciosas, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Mara Cristina Scheffer
- Laboratório de Microbiologia, Unidade do Laboratório de Análises Clínicas, Hospital Universitário Professor Polydoro Ernani de São Thiago, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Jussara Kasuko Palmeiro
- Centro de Ciências da Saúde, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Maria Luiza Bazzo
- Laboratório de Biologia Molecular, Microbiologia e Sorologia, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Programa de Pós-Graduação em Farmácia, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Centro de Ciências da Saúde, Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
21
|
Blair JMA, Zeth K, Bavro VN, Sancho-Vaello E. The role of bacterial transport systems in the removal of host antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol Rev 2022; 46:6617596. [PMID: 35749576 PMCID: PMC9629497 DOI: 10.1093/femsre/fuac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance is a global issue that threatens our progress in healthcare and life expectancy. In recent years, antimicrobial peptides (AMPs) have been considered as promising alternatives to the classic antibiotics. AMPs are potentially superior due to their lower rate of resistance development, since they primarily target the bacterial membrane ('Achilles' heel' of the bacteria). However, bacteria have developed mechanisms of AMP resistance, including the removal of AMPs to the extracellular space by efflux pumps such as the MtrCDE or AcrAB-TolC systems, and the internalization of AMPs to the cytoplasm by the Sap transporter, followed by proteolytic digestion. In this review, we focus on AMP transport as a resistance mechanism compiling all the experimental evidence for the involvement of efflux in AMP resistance in Gram-negative bacteria and combine this information with the analysis of the structures of the efflux systems involved. Finally, we expose some open questions with the aim of arousing the interest of the scientific community towards the AMPs-efflux pumps interactions. All the collected information broadens our understanding of AMP removal by efflux pumps and gives some clues to assist the rational design of AMP-derivatives as inhibitors of the efflux pumps.
Collapse
Affiliation(s)
- Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Vassiliy N Bavro
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom
| | - Enea Sancho-Vaello
- Corresponding author. College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom. E-mail:
| |
Collapse
|
22
|
Lin EY, Adamson PC, Ha SM, Klausner JD. Reliability of Genetic Alterations in Predicting Ceftriaxone Resistance in Neisseria gonorrhoeae Globally. Microbiol Spectr 2022; 10:e0206521. [PMID: 35348352 PMCID: PMC9045316 DOI: 10.1128/spectrum.02065-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/20/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance in N. gonorrhoeae is increasing globally, and ceftriaxone is the recommended treatment for empirical therapy in most settings. Developing molecular assays to detect decreased ceftriaxone susceptibility is critical. Using PathogenWatch, a public database of N. gonorrhoeae genomes, antibiotic susceptibility data and DNA sequences of different genes associated with ceftriaxone resistance were extracted. That information was used to determine the sensitivity and specificity of different molecular markers and algorithms to predict decreased susceptibility to ceftriaxone. A total of 12,943 N. gonorrhoeae genomes were extracted from the PathogenWatch database, of which 9,540 genomes were used in the analysis. The sensitivity and specificity of specific molecular markers and algorithms were largely consistent with prior reports. Small variation (<10%) in either sensitivity or specificity occurred. Certain algorithms using different molecular markers at various prevalence of decreased ceftriaxone susceptibility identified a potentially clinically useful range of positive and negative predictive values. We validated previously described mutations and algorithms in a large public database containing a global collection of N. gonorrhoeae genomes. Certain mutations and algorithms resulted in sensitivity and specificity values consistent with those of prior studies. Further research is needed to integrate these markers and algorithms into the development of molecular assays to predict decreased ceftriaxone susceptibility. IMPORTANCE Antimicrobial resistance in Neisseria gonorrhoeae (N. gonorrhoeae), the causative agent of gonorrhea, is rising globally. Ceftriaxone is the last remaining antibiotic for empirical treatment of gonorrhea. Developing molecular tests to predict ceftriaxone resistance can help to improve detection and surveillance of ceftriaxone resistance. Here, we utilized PathogenWatch, a public global online database of N. gonorrhoeae genomes, to evaluate different genetic markers in predicting decreased susceptibility to ceftriaxone. We compiled MICs for ceftriaxone from the PathogenWatch database and used a computational approach to extract all the genetic markers from the genomic data. We determined the sensitivity and specificity for predicting decreased ceftriaxone susceptibility among several combinations of genetic markers. We identified several combinations of genetic markers with high predictive values for decreased susceptibility to ceftriaxone. These combinations of genetic markers might be promising candidates for future molecular tests to predict ceftriaxone resistance.
Collapse
Affiliation(s)
- Eric Yu Lin
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Paul C. Adamson
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sung-min Ha
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California, USA
| | - Jeffrey D. Klausner
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, California, USA
| |
Collapse
|
23
|
Ayala JC, Schmerer MW, Kersh EN, Unemo M, Shafer WM. Gonococcal Clinical Strains Bearing a Common gdhR Single Nucleotide Polymorphism That Results in Enhanced Expression of the Virulence Gene lctP Frequently Possess a mtrR Promoter Mutation That Decreases Antibiotic Susceptibility. mBio 2022; 13:e0027622. [PMID: 35258329 PMCID: PMC9040798 DOI: 10.1128/mbio.00276-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
GdhR is a transcriptional repressor of the virulence factor gene lctP, which encodes a unique l-lactate permease that has been linked to pathogenesis of Neisseria gonorrhoeae, and loss of gdhR can confer increased fitness of gonococci in a female mouse model of lower genital tract infection. In this work, we identified a single nucleotide polymorphism (SNP) in gdhR, which is often present in both recent and historical gonococcal clinical strains and results in a proline (P)-to-serine (S) change at amino acid position 6 (P6S) of GdhR. This mutation (gdhR6) was found to reduce GdhR transcriptional repression at lctP in gonococcal strains containing the mutant protein compared to wild-type GdhR. By using purified recombinant proteins and in vitro DNA-binding and cross-linking experiments, we found that gdhR6 impairs the DNA-binding activity of GdhR at lctP without an apparent effect on protein oligomerization. By analyzing a panel of U.S. (from 2017 to 2018) and Danish (1928 to 2013) clinical isolates, we observed a statistical association between gdhR6 and the previously described adenine deletion in the promoter of mtrR (mtrR-P A-del), encoding the repressor (MtrR) of the mtrCDE operon that encodes the MtrCDE multidrug efflux pump that can export antibiotics, host antimicrobials, and biocides. The frequent association of gdhR6 with the mtrR promoter mutation in these clinical isolates suggests that it has persisted in this genetic background to enhance lctP expression, thereby promoting virulence. IMPORTANCE We report the frequent appearance of a novel SNP in the gdhR gene (gdhR6) possessed by Neisseria gonorrhoeae. The resulting amino acid change in the GdhR protein resulted in enhanced expression of a virulence gene (lctP) that has been suggested to promote gonococcal survival during infection. The mutant GdhR protein expressed by gdhR6 had a reduced ability to bind to its target DNA sequence upstream of lctP. Interestingly, gdhR6 was found in clinical gonococcal strains isolated in the United States and Denmark at a high frequency and was frequently associated with a mutation in the promoter of the gene encoding a repressor (MtrR) of both the mtrCDE antimicrobial efflux pump operon and gdhR. Given this frequent association and the known impact of these regulatory mutations, we propose that virulence and antibiotic resistance properties are often phenotypically linked in contemporary gonococcal strains.
Collapse
Affiliation(s)
- Julio C. Ayala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew W. Schmerer
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ellen N. Kersh
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
24
|
Golparian D, Unemo M. Antimicrobial resistance prediction in Neisseria gonorrhoeae: Current status and future prospects. Expert Rev Mol Diagn 2021; 22:29-48. [PMID: 34872437 DOI: 10.1080/14737159.2022.2015329] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Several nucleic acid amplification tests (NAATs), mostly real-time PCRs, to detect antimicrobial resistance (AMR) determinants and predict AMR in Neisseria gonorrhoeae are promising, and some may be ready to apply at the point-of-care (POC), but important limitations remain with most NAATs. Next-generation sequencing (NGS) can overcome many of these limitations.Areas covered: Recent advances, with main focus on publications since 2017, in the development and use of NAATs and NGS to predict gonococcal AMR for surveillance and clinical use, and pros and cons of these tests as well as future perspectives for appropriate use of molecular AMR prediction for N. gonorrhoeae.Expert Commentary: NAATs and/or NGS for AMR prediction should supplement culture-based AMR surveillance, which will remain because it detects also AMR due to unknown AMR determinants, and translation into POC tests is imperative for the end-goal of individualized treatment, sparing ceftriaxone±azithromycin. Several challenges for direct testing of clinical, especially pharyngeal, specimens and for accurate prediction of cephalosporins and azithromycin resistance, especially using NAATs, remain. The choice of AMR prediction assay needs to carefully consider the intended use of the assay; limitations intrinsic to the AMR prediction technology, algorithms and specific to chosen methodology; specimen types analyzed; and cost-effectiveness.
Collapse
Affiliation(s)
- Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
25
|
Self-inhibitory peptides targeting the Neisseria gonorrhoeae MtrCDE efflux pump increase antibiotic susceptibility. Antimicrob Agents Chemother 2021; 66:e0154221. [PMID: 34633841 PMCID: PMC8765275 DOI: 10.1128/aac.01542-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae is an increasing public health threat due to rapidly rising incidence and antibiotic resistance. There are an estimated 106 million cases per year worldwide, there is no vaccine available to prevent infection, and N. gonorrhoeae strains have emerged that are resistant to all antibiotics routinely used to treat the infection. In many strains, antibiotic resistance is mediated by overexpression of the MtrCDE efflux pump, which enables the bacteria to transport toxic antibiotics out of the cell. Genetic mutations that inactivate MtrCDE have previously been shown to render resistant strains susceptible to certain antibiotics. Here we have shown that peptides rationally-designed to target and disrupt the activity of each of the three protein components of MtrCDE were able to increase the susceptibility of N. gonorrhoeae strains to antibiotics, in a dose-dependent manner and with no toxicity to human cells. Co-treatment of bacteria with subinhibitory concentrations of peptide led to 2-64 fold increases in the susceptibility to erythromycin, azithromycin, ciprofloxacin and/or ceftriaxone in N. gonorrhoeae strains FA1090, WHO K, WHO P and WHO X. The co-treatment experiments with peptides P-MtrC1 and P-MtrE1 resulted in increased susceptibility to azithromycin, ciprofloxacin and ceftriaxone in WHO P and WHO X that was of the same magnitude seen in MtrCDE mutants. P-MtrE1 was able to change the azithromycin resistance profile of WHO P from resistant to susceptible. Data presented here demonstrate that these peptides could be developed for use as a dual treatment with existing antibiotics to treat multidrug-resistant gonococcal infections.
Collapse
|
26
|
A Unique Sequence Is Essential for Efficient Multidrug Efflux Function of the MtrD Protein of Neisseria gonorrhoeae. mBio 2021; 12:e0167521. [PMID: 34465021 PMCID: PMC8406276 DOI: 10.1128/mbio.01675-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance in Neisseria gonorrhoeae has reached an alarming level, severely impacting the effective treatment of gonorrhea. Belonging to the resistance-nodulation-cell division (RND) superfamily of efflux transporters, the MtrD membrane protein of N. gonorrhoeae provides resistance to a broad range of antimicrobial compounds. A unique feature of MtrD is an 11-residue sequence (from N917 to P927 [N917-P927]) that connects transmembrane helices (TMS) 9 and 10; this sequence is not present in homologous RND proteins. This study explores the structural and functional roles of the N917-P927 region by means of mutant analysis and molecular dynamics simulations. We show that N917-P927 plays a key role in modulating substrate access to the binding cleft and influences the overall orientation of the protein within the inner membrane necessary for optimal functioning. Removal of N917-P927 significantly reduced MtrD-mediated resistance to a range of antimicrobials and mutations of three single amino acids impacted MtrD-mediated multidrug resistance. Furthermore, molecular dynamics simulations showed deletion of N917-P927 in MtrD may dysregulate access of the substrate to the binding cleft and closure of the substrate-binding pocket during the transport cycle. These findings indicate that N917-P927 is a key region for interacting with the inner membrane, conceivably influencing substrate capture from the membrane-periplasm interface and thus is essential for full multidrug resistance capacity of MtrD. IMPORTANCE The historical sexually transmitted infection gonorrhea continues to be a major public health concern with an estimated global annual incidence of 86.9 million cases. N. gonorrhoeae has been identified by the World Health Organization as one of the 12 antimicrobial-resistant bacterial species that poses the greatest risk to human health. As the major efflux pump in gonococci, the MtrD transporter contributes to the cell envelope barrier in this organism and pumps antimicrobials from the periplasm and inner membrane, resulting in resistance. This study demonstrates that a unique region of the MtrD protein that connects TMS 9 and TMS 10 forms a structure that may interact with the inner membrane positioning TMS 9 and stabilizing the protein facilitating substrate capture from the inner membrane-periplasm interface. Analysis of mutants of this region identified that it was essential for MtrD-mediated multidrug resistance. Characterization of the structure and function of this unique local region of MtrD has implications for drug efflux mechanisms used by related proteins and is important knowledge for development of antibiotics that bypass efflux.
Collapse
|
27
|
Harrison OB, Maiden MCJ. Recent advances in understanding and combatting Neisseria gonorrhoeae: a genomic perspective. Fac Rev 2021; 10:65. [PMID: 34557869 PMCID: PMC8442004 DOI: 10.12703/r/10-65] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sexually transmitted infection (STI) gonorrhoea remains a major global public health concern. The World Health Organization (WHO) estimates that 87 million new cases in individuals who were 15 to 49 years of age occurred in 2016. The growing number of gonorrhoea cases is concerning given the rise in gonococci developing antimicrobial resistance (AMR). Therefore, a global action plan is needed to facilitate surveillance. Indeed, the WHO has made surveillance leading to the elimination of STIs (including gonorrhoea) a global health priority. The availability of whole genome sequence data offers new opportunities to combat gonorrhoea. This can be through (i) enhanced surveillance of the global prevalence of AMR, (ii) improved understanding of the population biology of the gonococcus, and (iii) opportunities to mine sequence data in the search for vaccine candidates. Here, we review the current status in Neisseria gonorrhoeae genomics. In particular, we explore how genomics continues to advance our understanding of this complex pathogen.
Collapse
Affiliation(s)
- Odile B Harrison
- Department of Zoology, University of Oxford, The Peter Medawar Building, Oxford, UK
| | - Martin CJ Maiden
- Department of Zoology, University of Oxford, The Peter Medawar Building, Oxford, UK
| |
Collapse
|
28
|
Bodoev I, Malakhova M, Bespyatykh J, Bespiatykh D, Arapidi G, Pobeguts O, Zgoda V, Shitikov E, Ilina E. Substitutions in SurA and BamA Lead to Reduced Susceptibility to Broad Range Antibiotics in Gonococci. Genes (Basel) 2021; 12:1312. [PMID: 34573293 PMCID: PMC8467665 DOI: 10.3390/genes12091312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
There is growing concern about the emergence and spread of multidrug-resistant Neisseria gonorrhoeae. To effectively control antibiotic-resistant bacterial pathogens, it is necessary to develop new antimicrobials and to understand the resistance mechanisms to existing antibiotics. In this study, we discovered the unexpected onset of drug resistance in N. gonorrhoeae caused by amino acid substitutions in the periplasmic chaperone SurA and the β-barrel assembly machinery component BamA. Here, we investigated the i19.05 clinical isolate with mutations in corresponding genes along with reduced susceptibility to penicillin, tetracycline, and azithromycin. The mutant strain NG05 (surAmut bamAmut, and penAmut) was obtained using the pan-susceptible n01.08 clinical isolate as a recipient in the transformation procedure. Comparative proteomic analysis of NG05 and n01.08 strains revealed significantly increased levels of other chaperones, Skp and FkpA, and some transport proteins. Efflux pump inhibition experiments demonstrated that the reduction in sensitivity was achieved due to the activity of efflux pumps. We hypothesize that the described mutations in the surA and bamA genes cause the qualitative and quantitative changes of periplasmic chaperones, which in turn alters the function of synthesized cell envelope proteins.
Collapse
Affiliation(s)
- Ivan Bodoev
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (M.M.); (J.B.); (D.B.); (G.A.); (O.P.); (E.S.); (E.I.)
| | - Maja Malakhova
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (M.M.); (J.B.); (D.B.); (G.A.); (O.P.); (E.S.); (E.I.)
| | - Julia Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (M.M.); (J.B.); (D.B.); (G.A.); (O.P.); (E.S.); (E.I.)
| | - Dmitry Bespiatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (M.M.); (J.B.); (D.B.); (G.A.); (O.P.); (E.S.); (E.I.)
| | - Georgij Arapidi
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (M.M.); (J.B.); (D.B.); (G.A.); (O.P.); (E.S.); (E.I.)
- Moscow Institute of Physics and Technology, State University, 141701 Dolgoprudny, Russia
| | - Olga Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (M.M.); (J.B.); (D.B.); (G.A.); (O.P.); (E.S.); (E.I.)
| | - Victor Zgoda
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 119121 Moscow, Russia;
| | - Egor Shitikov
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (M.M.); (J.B.); (D.B.); (G.A.); (O.P.); (E.S.); (E.I.)
| | - Elena Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia; (M.M.); (J.B.); (D.B.); (G.A.); (O.P.); (E.S.); (E.I.)
| |
Collapse
|
29
|
Fairweather SJ, Gupta V, Chitsaz M, Booth L, Brown MH, O’Mara ML. Coordination of Substrate Binding and Protonation in the N. gonorrhoeae MtrD Efflux Pump Controls the Functionally Rotating Transport Mechanism. ACS Infect Dis 2021; 7:1833-1847. [PMID: 33980014 DOI: 10.1021/acsinfecdis.1c00149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multidrug resistance is a serious problem that threatens the effective treatment of the widespread sexually transmitted disease gonorrhea, caused by the Gram-negative bacterium Neisseria gonorrhoeae. The drug efflux pump primarily implicated in N. gonorrhoeae antimicrobial resistance is the inner membrane transporter MtrD, which forms part of the tripartite multiple transferable resistance (Mtr) CDE efflux system. A structure of MtrD was first solved in 2014 as a symmetrical homotrimer, and then, recently, as an asymmetrical homotrimer. Through a series of molecular dynamics simulations and mutagenesis experiments, we identify the combination of substrate binding and protonation states of the proton relay network that drives the transition from the symmetric to the asymmetric conformation of MtrD. We characterize the allosteric coupling between the functionally important local regions that control conformational changes between the access, binding, and extrusion states and allow for transition to the asymmetric MtrD conformation. We also highlight a significant rotation of the transmembrane helices caused by protonation of the proton relay network, which widens the intermonomeric gap that is a hallmark of the rotational transporter mechanism. This is the first analysis and description of the transport mechanism for the N. gonorrhoeae MtrD transporter and provides evidence that antimicrobial efflux in MtrD follows the functionally rotating transport mechanism seen in protein homologues from the same transport protein superfamily.
Collapse
Affiliation(s)
- Stephen J. Fairweather
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Vrinda Gupta
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Mohsen Chitsaz
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Lauren Booth
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Melissa H. Brown
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Megan L. O’Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
30
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
31
|
Laumen JGE, Manoharan-Basil SS, Verhoeven E, Abdellati S, De Baetselier I, Crucitti T, Xavier BB, Chapelle S, Lammens C, Van Dijck C, Malhotra-Kumar S, Kenyon C. Molecular pathways to high-level azithromycin resistance in Neisseria gonorrhoeae. J Antimicrob Chemother 2021; 76:1752-1758. [DOI: 10.1093/jac/dkab084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/28/2021] [Indexed: 01/02/2023] Open
Abstract
Abstract
Background
The prevalence of azithromycin resistance in Neisseria gonorrhoeae is increasing in numerous populations worldwide.
Objectives
To characterize the genetic pathways leading to high-level azithromycin resistance.
Methods
A customized morbidostat was used to subject two N. gonorrhoeae reference strains (WHO-F and WHO-X) to dynamically sustained azithromycin pressure. We tracked stepwise evolution of resistance by whole genome sequencing.
Results
Within 26 days, all cultures evolved high-level azithromycin resistance. Typically, the first step towards resistance was found in transitory mutations in genes rplD, rplV and rpmH (encoding the ribosomal proteins L4, L22 and L34 respectively), followed by mutations in the MtrCDE-encoded efflux pump and the 23S rRNA gene. Low- to high-level resistance was associated with mutations in the ribosomal proteins and MtrCDE efflux pump. However, high-level resistance was consistently associated with mutations in the 23S ribosomal RNA, mainly the well-known A2059G and C2611T mutations, but also at position A2058G.
Conclusions
This study enabled us to track previously reported mutations and identify novel mutations in ribosomal proteins (L4, L22 and L34) that may play a role in the genesis of azithromycin resistance in N. gonorrhoeae.
Collapse
Affiliation(s)
- J G E Laumen
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - S S Manoharan-Basil
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
| | - E Verhoeven
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- Pfizer, Puurs, Belgium
| | - S Abdellati
- Institute of Tropical Medicine, Department of Clinical Sciences, Clinical Reference Laboratory, Antwerp, Belgium
| | - I De Baetselier
- Institute of Tropical Medicine, Department of Clinical Sciences, Clinical Reference Laboratory, Antwerp, Belgium
| | - T Crucitti
- Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - B B Xavier
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - S Chapelle
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - C Lammens
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - C Van Dijck
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - S Malhotra-Kumar
- University of Antwerp, Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Antwerp, Belgium
| | - C Kenyon
- Institute of Tropical Medicine, Department of Clinical Sciences, STI Unit, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
32
|
Draft Genome Sequences of Three Penicillin-Resistant Neisseria gonorrhoeae Strains Isolated in Cincinnati, Ohio, in 1994. Microbiol Resour Announc 2021; 10:10/11/e00074-21. [PMID: 33737358 PMCID: PMC7975876 DOI: 10.1128/mra.00074-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the draft genome sequences of three penicillin-resistant Neisseria gonorrhoeae isolates. We include associated data on MICs and genetic relationships to other N. gonorrhoeae strains collected from across the United States. Resistance mutations known to contribute to reduced penicillin susceptibility are annotated in each genome. Here, we report the draft genome sequences of three penicillin-resistant Neisseria gonorrhoeae isolates. We include associated data on MICs and genetic relationships to other N. gonorrhoeae strains collected from across the United States. Resistance mutations known to contribute to reduced penicillin susceptibility are annotated in each genome.
Collapse
|
33
|
In Vitro and In Vivo Activities of TP0480066, a Novel Topoisomerase Inhibitor, against Neisseria gonorrhoeae. Antimicrob Agents Chemother 2021; 65:AAC.02145-20. [PMID: 33558293 DOI: 10.1128/aac.02145-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/30/2021] [Indexed: 01/02/2023] Open
Abstract
Gonorrhea is a common, sexually transmitted disease caused by Neisseria gonorrhoeae Multidrug-resistant N. gonorrhoeae is an urgent threat, and the development of a new antimicrobial agent that functions via a new mechanism is strongly desired. We evaluated the in vitro and in vivo activities of a DNA gyrase/topoisomerase IV inhibitor, TP0480066, which is a novel 8-(methylamino)-2-oxo-1,2-dihydroquinoline derivative. The MICs of TP0480066 were substantially lower than those of other currently or previously used antimicrobials against gonococcal strains demonstrating resistance to fluoroquinolones, macrolides, β-lactams, and aminoglycosides (MICs, ≤0.0005 μg/ml). Additionally, no cross-resistance was observed between TP0480066 and ciprofloxacin. The frequencies of spontaneous resistance to TP0480066 for N. gonorrhoeae ATCC 49226 were below the detection limit (<2.4 × 10-10) at concentrations equivalent to 32× MIC. TP0480066 also showed potent in vitro bactericidal activity and in vivo efficacy in a mouse model of N. gonorrhoeae infection. These data suggest that TP0480066 is a candidate antimicrobial agent for gonococcal infections.
Collapse
|
34
|
Turner JM, Connolly KL, Aberman KE, Fonseca JC, Singh A, Jerse AE, Nicholas RA, Davies C. Molecular Features of Cephalosporins Important for Activity against Antimicrobial-Resistant Neisseria gonorrhoeae. ACS Infect Dis 2021; 7:293-308. [PMID: 33533239 PMCID: PMC9847585 DOI: 10.1021/acsinfecdis.0c00400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The increasing prevalence of Neisseria gonorrhoeae strains exhibiting decreased susceptibility to extended-spectrum cephalosporins (ESCs) presents a challenge for the successful treatment of gonorrhea infections. To address this challenge, we evaluated a panel of 23 cephalosporins against penicillin-binding protein 2 (PBP2) from the ESC-resistant (ESCR) N. gonorrhoeae strain H041 to determine which molecular features are important for antimicrobial activity. Structure-activity relationships (SARs) developed from acylation rate constants against PBP2 and antimicrobial susceptibilities against the H041 strain of N. gonorrhoeae, and interpreted against docking models, reveal that cephalosporins possessing large, lipophilic R1 side chains and electronegative R2 side chains with planar groups are associated with higher acylation rates against PBP2, but also that these same amphipathic features can lower antimicrobial activity. Based on these studies, we tested cefoperazone, one of the most effective ESCs for targeting PBP2, in the female mouse model infected with H041 and showed that it was equally or more effective than ceftriaxone or gentamicin for clearing infections. Taken together, our results reveal that two U.S. Food and Drug Administration (FDA)-approved agents (cefoperazone, ceftaroline) and one FDA-qualified infectious disease product (ceftobiprole) have potential as first-line treatments for gonorrhea and provide a framework for the future design of cephalosporins with improved activity against ESC-resistant N. gonorrhoeae.
Collapse
Affiliation(s)
- Jonathan M. Turner
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kristie L. Connolly
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
| | - Kate E. Aberman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Joseph C. Fonseca
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Avinash Singh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Ann E. Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814
| | - Robert A. Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425,Corresponding author: Department of Biochemistry & Molecular Biology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688. Tel +1 (651) 460-6659;
| |
Collapse
|
35
|
Lim KYL, Mullally CA, Haese EC, Kibble EA, McCluskey NR, Mikucki EC, Thai VC, Stubbs KA, Sarkar-Tyson M, Kahler CM. Anti-Virulence Therapeutic Approaches for Neisseria gonorrhoeae. Antibiotics (Basel) 2021; 10:antibiotics10020103. [PMID: 33494538 PMCID: PMC7911339 DOI: 10.3390/antibiotics10020103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/15/2023] Open
Abstract
While antimicrobial resistance (AMR) is seen in both Neisseria gonorrhoeae and Neisseria meningitidis, the former has become resistant to commonly available over-the-counter antibiotic treatments. It is imperative then to develop new therapies that combat current AMR isolates whilst also circumventing the pathways leading to the development of AMR. This review highlights the growing research interest in developing anti-virulence therapies (AVTs) which are directed towards inhibiting virulence factors to prevent infection. By targeting virulence factors that are not essential for gonococcal survival, it is hypothesized that this will impart a smaller selective pressure for the emergence of resistance in the pathogen and in the microbiome, thus avoiding AMR development to the anti-infective. This review summates the current basis of numerous anti-virulence strategies being explored for N. gonorrhoeae.
Collapse
Affiliation(s)
- Katherine Y. L. Lim
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Christopher A. Mullally
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Ethan C. Haese
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Emily A. Kibble
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Edward C. Mikucki
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Van C. Thai
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Keith A. Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Charlene M. Kahler
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- Correspondence:
| |
Collapse
|
36
|
Gao L, Wang Z, van der Veen S. Gonococcal Adaptation to Palmitic Acid Through farAB Expression and FadD Activity Mutations Increases In Vivo Fitness in a Murine Genital Tract Infection Model. J Infect Dis 2020; 224:141-150. [PMID: 33170275 DOI: 10.1093/infdis/jiaa701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Neisseria gonorrhoeae is a bacterial pathogen that colonizes mucosal epithelia that are rich in antimicrobial molecules such as long-chain fatty acids. Here we studied the mechanisms involved in palmitic acid resistance and their impact on in vivo biological fitness in a murine genital tract infection model. A stable palmitic acid-resistant derivative was obtained by serial passage with incremental palmitic acid concentrations. This derivative outcompeted its parent strain for colonization and survival in the murine infection model. Subsequent whole-genome sequencing resulted in the identification of the 3 resistance-related SNPs ihfAC5T, fadDC772T, and farAG-52T (promoter) that were verified for resistance against palmitic acid. Subsequent characterization of the associated resistance determinants showed that ihfAC5T and farAG-52T induced gene expression of the FarAB efflux pump, whereas fadDC772T increased the maximum enzyme activity of the FadD long-chain fatty acid-coenzyme A ligase. Our results highlight the mechanisms involved in gonococcal adaptation to the murine host environment.
Collapse
Affiliation(s)
- Lingyu Gao
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhemin Wang
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Exploration of the Neisseria Resistome Reveals Resistance Mechanisms in Commensals That May Be Acquired by N. gonorrhoeae through Horizontal Gene Transfer. Antibiotics (Basel) 2020; 9:antibiotics9100656. [PMID: 33007823 PMCID: PMC7650674 DOI: 10.3390/antibiotics9100656] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022] Open
Abstract
Nonpathogenic Neisseria transfer mutations encoding antibiotic resistance to their pathogenic relative Neisseria gonorrhoeae. However, the resistance genotypes and subsequent phenotypes of nonpathogens within the genus have been described infrequently. Here, we characterize the minimum inhibitory concentrations (MICs) of a panel of Neisseria (n = 26)—including several commensal species—to a suite of diverse antibiotics. We furthermore use whole genome sequencing and the Comprehensive Antibiotic Resistance Database Resistance Gene Identifier (RGI) platform to predict putative resistance-encoding mutations. Resistant isolates to all tested antimicrobials including penicillin (n = 5/26), ceftriaxone (n = 2/26), cefixime (n = 3/26), tetracycline (n = 10/26), azithromycin (n = 11/26), and ciprofloxacin (n = 4/26) were found. In total, 63 distinct mutations were predicted by RGI to be involved in resistance. The presence of several mutations had clear associations with increased MIC such as DNA gyrase subunit A (gyrA) (S91F) and ciprofloxacin, tetracycline resistance protein (tetM) and 30S ribosomal protein S10 (rpsJ) (V57M) and tetracycline, and TEM-type β-lactamases and penicillin. However, mutations with strong associations to macrolide and cephalosporin resistance were not conclusive. This work serves as an initial exploration into the resistance-encoding mutations harbored by nonpathogenic Neisseria, which will ultimately aid in prospective surveillance for novel resistance mechanisms that may be rapidly acquired by N. gonorrhoeae.
Collapse
|
38
|
Calder A, Menkiti CJ, Çağdaş A, Lisboa Santos J, Streich R, Wong A, Avini AH, Bojang E, Yogamanoharan K, Sivanesan N, Ali B, Ashrafi M, Issa A, Kaur T, Latif A, Mohamed HAS, Maqsood A, Tamang L, Swager E, Stringer AJ, Snyder LAS. Virulence genes and previously unexplored gene clusters in four commensal Neisseria spp. isolated from the human throat expand the neisserial gene repertoire. Microb Genom 2020; 6. [PMID: 32845827 PMCID: PMC7643975 DOI: 10.1099/mgen.0.000423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Commensal non-pathogenic Neisseria spp. live within the human host alongside the pathogenic Neisseria meningitidis and Neisseria gonorrhoeae and due to natural competence, horizontal gene transfer within the genus is possible and has been observed. Four distinct Neisseria spp. isolates taken from the throats of two human volunteers have been assessed here using a combination of microbiological and bioinformatics techniques. Three of the isolates have been identified as Neisseria subflava biovar perflava and one as Neisseria cinerea. Specific gene clusters have been identified within these commensal isolate genome sequences that are believed to encode a Type VI Secretion System, a newly identified CRISPR system, a Type IV Secretion System unlike that in other Neisseria spp., a hemin transporter, and a haem acquisition and utilization system. This investigation is the first to investigate these systems in either the non-pathogenic or pathogenic Neisseria spp. In addition, the N. subflava biovar perflava possess previously unreported capsule loci and sequences have been identified in all four isolates that are similar to genes seen within the pathogens that are associated with virulence. These data from the four commensal isolates provide further evidence for a Neisseria spp. gene pool and highlight the presence of systems within the commensals with functions still to be explored.
Collapse
Affiliation(s)
- Alan Calder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Chukwuma Jude Menkiti
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Aylin Çağdaş
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Jefferson Lisboa Santos
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Ricarda Streich
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Alice Wong
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Amir H Avini
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Ebrima Bojang
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Karththeepan Yogamanoharan
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Nivetha Sivanesan
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Besma Ali
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Mariam Ashrafi
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Abdirizak Issa
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Tajinder Kaur
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Aisha Latif
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Hani A Sheik Mohamed
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Atifa Maqsood
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Laxmi Tamang
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Emily Swager
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Alex J Stringer
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Lori A S Snyder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
39
|
Lin EY, Adamson PC, Deng X, Klausner JD. Establishing Novel Molecular Algorithms to Predict Decreased Susceptibility to Ceftriaxone in Neisseria gonorrhoeae Strains. J Infect Dis 2020; 223:1232-1240. [PMID: 32779717 DOI: 10.1093/infdis/jiaa495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/31/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Globally, decreased susceptibility to ceftriaxone in Neisseria gonorrhoeae is rising. We aimed to compile a global collection of N. gonorrhoeae strains and assess the genetic characteristics associated with decreased susceptibility to ceftriaxone. METHODS We performed a literature review of all published reports of N. gonorrhoeae strains with decreased susceptibility to ceftriaxone (>0.064 mg/L minimum inhibitory concentration) through October 2019. Genetic mutations in N. gonorrhoeae genes (penA, penB, mtrR, and ponA), including determination of penA mosaicism, were compiled and evaluated for predicting decreased susceptibility to ceftriaxone. RESULTS There were 3821 N. gonorrhoeae strains identified from 23 countries and 684 (18%) had decreased susceptibility to ceftriaxone. High sensitivities or specificities (>95%) were found for specific genetic mutations in penA, penB, mtrR, and ponA, both with and without determination of penA mosaicism. Four algorithms to predict ceftriaxone susceptibility were proposed based on penA mosaicism determination and penA or non-penA genetic mutations, with sensitivity and specificity combinations up to 95% and 62%, respectively. CONCLUSION Molecular algorithms based on genetic mutations were proposed to predict decreased susceptibility to ceftriaxone in N. gonorrhoeae. Those algorithms can serve as a foundation for the development of future assays predicting ceftriaxone decreased susceptibility within N. gonorrhoeae globally.
Collapse
Affiliation(s)
- Eric Y Lin
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Paul C Adamson
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xiaomeng Deng
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jeffrey D Klausner
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
40
|
Pereira JC, Daher SS, Zorn KM, Sherwood M, Russo R, Perryman AL, Wang X, Freundlich MJ, Ekins S, Freundlich JS. Machine Learning Platform to Discover Novel Growth Inhibitors of Neisseria gonorrhoeae. Pharm Res 2020; 37:141. [PMID: 32661900 DOI: 10.1007/s11095-020-02876-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE To advance fundamental biological and translational research with the bacterium Neisseria gonorrhoeae through the prediction of novel small molecule growth inhibitors via naïve Bayesian modeling methodology. METHODS Inspection and curation of data from the publicly available ChEMBL web site for small molecule growth inhibition data of the bacterium Neisseria gonorrhoeae resulted in a training set for the construction of machine learning models. A naïve Bayesian model for bacterial growth inhibition was utilized in a workflow to predict novel antibacterial agents against this bacterium of global health relevance from a commercial library of >105 drug-like small molecules. Follow-up efforts involved empirical assessment of the predictions and validation of the hits. RESULTS Specifically, two small molecules were found that exhibited promising activity profiles and represent novel chemotypes for agents against N. gonorrrhoeae. CONCLUSIONS This represents, to the best of our knowledge, the first machine learning approach to successfully predict novel growth inhibitors of this bacterium. To assist the chemical tool and drug discovery fields, we have made our curated training set available as part of the Supplementary Material and the Bayesian model is accessible via the web. Graphical Abstract.
Collapse
Affiliation(s)
- Janaina Cruz Pereira
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University New Jersey Medical School, I-503 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Samer S Daher
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University New Jersey Medical School, I-503 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA
| | - Matthew Sherwood
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University New Jersey Medical School, I-503 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Riccardo Russo
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University New Jersey Medical School, I-503 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Alexander L Perryman
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University New Jersey Medical School, I-503 185 South Orange Avenue, Newark, NJ, 07103, USA.,Repare Therapeutics,, 7210 Rue Frederick-Banting Suite 100, Montreal, QC, H4S 2A1, Canada
| | - Xin Wang
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University New Jersey Medical School, I-503 185 South Orange Avenue, Newark, NJ, 07103, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Madeleine J Freundlich
- Stuart Country Day School of the Sacred Heart, 1200 Stuart Road, Princeton, NJ, 08540, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA.,Collaborations in Chemistry, Inc. 5616 Hilltop Needmore Road, Fuquay-, Varina, NC, 27526, USA
| | - Joel S Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University New Jersey Medical School, I-503 185 South Orange Avenue, Newark, NJ, 07103, USA. .,Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University New Jersey Medical School, I-503 185 South Orange Avenue, Newark, NJ, 07103, USA.
| |
Collapse
|
41
|
|
42
|
Yan J, Xue J, Chen Y, Chen S, Wang Q, Zhang C, Wu S, Lv H, Yu Y, van der Veen S. Increasing prevalence of Neisseria gonorrhoeae with decreased susceptibility to ceftriaxone and resistance to azithromycin in Hangzhou, China (2015-17). J Antimicrob Chemother 2020; 74:29-37. [PMID: 30329062 DOI: 10.1093/jac/dky412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022] Open
Abstract
Objectives Development of resistance in Neisseria gonorrhoeae to ceftriaxone monotherapy or ceftriaxone plus azithromycin dual therapy is a global public health concern. The aim of this study was to analyse the trend in antimicrobial resistance in Hangzhou, China, over the period 2015-17. Methods In total, 379 clinical isolates were collected from seven hospitals and antimicrobial susceptibility was determined using the agar dilution method. Isolates showing resistance to ceftriaxone, azithromycin or cefixime were analysed for the presence of resistance determinants. STs were determined with the N. gonorrhoeae multiantigen sequence typing (NG-MAST) method and phylogenetic analysis and strain clustering was determined using porB and tbpB sequences. Results Ceftriaxone resistance, decreased susceptibility to ceftriaxone and azithromycin resistance were observed in 3%, 17% and 21% of the isolates, respectively. This resulted in 5% of the isolates showing both decreased susceptibility to ceftriaxone and azithromycin resistance. Importantly, resistance levels to ceftriaxone and azithromycin increased over the study period, resulting in 5% ceftriaxone resistance, 27% decreased susceptibility to ceftriaxone and 35% azithromycin resistance in 2017 and 11% of the isolates showing both decreased susceptibility to ceftriaxone and azithromycin resistance. Phylogenetic and cluster analysis showed the emergence and expansion in 2017 of a clonally related cluster containing strains with high abundance of decreased susceptibility to ceftriaxone and/or cefixime, which was related to the presence of the mosaic penA allele X. Co-resistance to azithromycin was also observed in this cluster. Conclusions Our findings have major implications for the future reliability of ceftriaxone monotherapy and ceftriaxone plus azithromycin dual therapy in China.
Collapse
Affiliation(s)
- Jing Yan
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Xue
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shi Chen
- Clinical Laboratory Department, Hangzhou Third Hospital, Hangzhou, China
| | - Qiang Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuanling Zhang
- Clinical Laboratory, Zhejiang Xiaoshan Hospital, Hangzhou, China
| | - Shenghai Wu
- Department of Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huoyang Lv
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Transcriptional regulation of a gonococcal gene encoding a virulence factor (L-lactate permease). PLoS Pathog 2019; 15:e1008233. [PMID: 31860664 PMCID: PMC6957213 DOI: 10.1371/journal.ppat.1008233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/13/2020] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
GdhR is a GntR-type regulator of Neisseria gonorrhoeae encoded by a gene (gdhR) belonging to the MtrR regulon, which comprises multiple genes required for antibiotic resistance such as the mtrCDE efflux pump genes. In previous work we showed that loss of gdhR results in enhanced gonococcal fitness in a female mouse model of lower genital tract infection. Here, we used RNA-Seq to perform a transcriptional profiling study to determine the GdhR regulon. GdhR was found to regulate the expression of 2.3% of all the genes in gonococcal strain FA19, of which 39 were activated and 11 were repressed. Within the GdhR regulon we found that lctP, which encodes a unique L-lactate transporter and has been associated with gonococcal pathogenesis, was the highest of GdhR-repressed genes. By using in vitro transcription and DNase I footpriting assays we mapped the lctP transcriptional start site (TSS) and determined that GdhR directly inhibits transcription by binding to an inverted repeat sequence located 9 bases downstream of the lctP TSS. Epistasis analysis revealed that, while loss of lctP increased susceptibility of gonococci to hydrogen peroxide (H2O2) the loss of gdhR enhanced resistance; however, this GdhR-endowed property was reversed in a double gdhR lctP null mutant. We assessed the effect of different carbon sources on lctP expression and found that D-glucose, but not L-lactate or pyruvate, repressed lctP expression within a physiological concentration range but in a GdhR-independent manner. Moreover, we found that adding glucose to the medium enhanced susceptibility of gonococci to hydrogen peroxide. We propose a model for the role of lctP regulation via GdhR and glucose in the pathogenesis of N. gonorrhoeae.
Collapse
|
44
|
Abstract
The bacterium Neisseria gonorrhoeae causes the sexually transmitted infection (STI) gonorrhoea, which has an estimated global annual incidence of 86.9 million adults. Gonorrhoea can present as urethritis in men, cervicitis or urethritis in women, and in extragenital sites (pharynx, rectum, conjunctiva and, rarely, systemically) in both sexes. Confirmation of diagnosis requires microscopy of Gram-stained samples, bacterial culture or nucleic acid amplification tests. As no gonococcal vaccine is available, prevention relies on promoting safe sexual behaviours and reducing STI-associated stigma, which hinders timely diagnosis and treatment thereby increasing transmission. Single-dose systemic therapy (usually injectable ceftriaxone plus oral azithromycin) is the recommended first-line treatment. However, a major public health concern globally is that N. gonorrhoeae is evolving high levels of antimicrobial resistance (AMR), which threatens the effectiveness of the available gonorrhoea treatments. Improved global surveillance of the emergence, evolution, fitness, and geographical and temporal spread of AMR in N. gonorrhoeae, and improved understanding of the pharmacokinetics and pharmacodynamics for current and future antimicrobials in the treatment of urogenital and extragenital gonorrhoea, are essential to inform treatment guidelines. Key priorities for gonorrhoea control include strengthening prevention, early diagnosis, and treatment of patients and their partners; decreasing stigma; expanding surveillance of AMR and treatment failures; and promoting responsible antimicrobial use and stewardship. To achieve these goals, the development of rapid and affordable point-of-care diagnostic tests that can simultaneously detect AMR, novel therapeutic antimicrobials and gonococcal vaccine(s) in particular is crucial.
Collapse
|
45
|
Multidrug Resistance in Neisseria gonorrhoeae: Identification of Functionally Important Residues in the MtrD Efflux Protein. mBio 2019; 10:mBio.02277-19. [PMID: 31744915 PMCID: PMC6867893 DOI: 10.1128/mbio.02277-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
With over 78 million new infections globally each year, gonorrhea remains a frustratingly common infection. Continuous development and spread of antimicrobial-resistant strains of Neisseria gonorrhoeae, the causative agent of gonorrhea, have posed a serious threat to public health. One of the mechanisms in N. gonorrhoeae involved in resistance to multiple drugs is performed by the MtrD multidrug resistance efflux pump. This study demonstrated that the MtrD pump has a broader substrate specificity than previously proposed and identified a cluster of residues important for drug binding and translocation. Additionally, a permeation pathway for the MtrD substrate progesterone actively moving through the protein was determined, revealing key interactions within the putative MtrD drug binding pockets. Identification of functionally important residues and substrate-protein interactions of the MtrD protein is crucial to develop future strategies for the treatment of multidrug-resistant gonorrhea. A key mechanism that Neisseria gonorrhoeae uses to achieve multidrug resistance is the expulsion of structurally different antimicrobials by the MtrD multidrug efflux protein. MtrD resembles the homologous Escherichia coli AcrB efflux protein with several common structural features, including an open cleft containing putative access and deep binding pockets proposed to interact with substrates. A highly discriminating N. gonorrhoeae strain, with the MtrD and NorM multidrug efflux pumps inactivated, was constructed and used to confirm and extend the substrate profile of MtrD to include 14 new compounds. The structural basis of substrate interactions with MtrD was interrogated by a combination of long-timescale molecular dynamics simulations and docking studies together with site-directed mutagenesis of selected residues. Of the MtrD mutants generated, only one (S611A) retained a wild-type (WT) resistance profile, while others (F136A, F176A, I605A, F610A, F612C, and F623C) showed reduced resistance to different antimicrobial compounds. Docking studies of eight MtrD substrates confirmed that many of the mutated residues play important nonspecific roles in binding to these substrates. Long-timescale molecular dynamics simulations of MtrD with its substrate progesterone showed the spontaneous binding of the substrate to the access pocket of the binding cleft and its subsequent penetration into the deep binding pocket, allowing the permeation pathway for a substrate through this important resistance mechanism to be identified. These findings provide a detailed picture of the interaction of MtrD with substrates that can be used as a basis for rational antibiotic and inhibitor design.
Collapse
|
46
|
Pasqua M, Grossi M, Zennaro A, Fanelli G, Micheli G, Barras F, Colonna B, Prosseda G. The Varied Role of Efflux Pumps of the MFS Family in the Interplay of Bacteria with Animal and Plant Cells. Microorganisms 2019; 7:microorganisms7090285. [PMID: 31443538 PMCID: PMC6780985 DOI: 10.3390/microorganisms7090285] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Efflux pumps represent an important and large group of transporter proteins found in all organisms. The importance of efflux pumps resides in their ability to extrude a wide range of antibiotics, resulting in the emergence of multidrug resistance in many bacteria. Besides antibiotics, multidrug efflux pumps can also extrude a large variety of compounds: Bacterial metabolites, plant-produced compounds, quorum-sensing molecules, and virulence factors. This versatility makes efflux pumps relevant players in interactions not only with other bacteria, but also with plant or animal cells. The multidrug efflux pumps belonging to the major facilitator superfamily (MFS) are widely distributed in microbial genomes and exhibit a large spectrum of substrate specificities. Multidrug MFS efflux pumps are present either as single-component transporters or as tripartite complexes. In this review, we will summarize how the multidrug MFS efflux pumps contribute to the interplay between bacteria and targeted host cells, with emphasis on their role in bacterial virulence, in the colonization of plant and animal host cells and in biofilm formation. We will also address the complexity of these interactions in the light of the underlying regulatory networks required for the effective activation of efflux pump genes.
Collapse
Affiliation(s)
- Martina Pasqua
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Milena Grossi
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Alessandro Zennaro
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Giulia Fanelli
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Gioacchino Micheli
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche (CNR), P.le A. Moro 5, 00185 Roma, Italy
| | - Frederic Barras
- Département de Microbiologie, Institut Pasteur, 75015 Paris, France
- Équipe de Recherche Labellisée (ERL) Microbiology, Centre National de la Recherche Scientifique (CNRS), 13009 Marseille, France
| | - Bianca Colonna
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Gianni Prosseda
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy.
| |
Collapse
|
47
|
Abstract
Infections arising from multidrug-resistant pathogenic bacteria are spreading rapidly throughout the world and threaten to become untreatable. The origins of resistance are numerous and complex, but one underlying factor is the capacity of bacteria to rapidly export drugs through the intrinsic activity of efflux pumps. In this Review, we describe recent advances that have increased our understanding of the structures and molecular mechanisms of multidrug efflux pumps in bacteria. Clinical and laboratory data indicate that efflux pumps function not only in the drug extrusion process but also in virulence and the adaptive responses that contribute to antimicrobial resistance during infection. The emerging picture of the structure, function and regulation of efflux pumps suggests opportunities for countering their activities.
Collapse
|
48
|
Lemonidis K, Salih TS, Dancer SJ, Hunter IS, Tucker NP. Emergence of an Australian-like pstS-null vancomycin resistant Enterococcus faecium clone in Scotland. PLoS One 2019; 14:e0218185. [PMID: 31194809 PMCID: PMC6563996 DOI: 10.1371/journal.pone.0218185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Multi-locus sequencing typing (MLST) is widely used to monitor the phylogeny of microbial outbreaks. However, several strains of vancomycin-resistant Enterococcus faecium (VREfm) with a missing MLST locus (pstS) have recently emerged in Australia, with a few cases also reported in England. Here, we identified similarly distinct strains circulating in two neighbouring hospitals in Scotland. Whole genome sequencing of five VREfm strains isolated from these hospitals identified four pstS-null strains in both hospitals, while the fifth was multi-locus sequence type (ST) 262, which is the first documented in the UK. All five Scottish isolates had an insertion in the tetM gene, which is associated with increased susceptibility to tetracyclines, providing no other tetracycline-resistant gene is present. Such an insertion, which encompasses a dfrG gene and two currently uncharacterised genes, was additionally identified in all tested vanA-type pstS-null VREfm strains (5 English and 68 Australian). Phylogenetic comparison with other VREfm genomes indicates that the four pstS-null Scottish isolates sequenced in this study are more closely related to pstS-null strains from Australia rather than the English pstS-null isolates. Given how rapidly such pstS-null strains have expanded in Australia, the emergence of this clone in Scotland raises concerns for a potential outbreak.
Collapse
Affiliation(s)
- Kimon Lemonidis
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- * E-mail:
| | - Talal S. Salih
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Stephanie J. Dancer
- Department of Microbiology, Hairmyres Hospital, NHS Lanarkshire, United Kingdom
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Iain S. Hunter
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Nicholas P. Tucker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
49
|
Jamaludin N, Gedye K, Collins-Emerson J, Benschop J, Nulsen M. Phenotypic and Genotypic Characterization of Neisseria gonorrhoeae Isolates from New Zealand with Reduced Susceptibility to Ceftriaxone. Microb Drug Resist 2019; 25:1003-1011. [PMID: 31021281 DOI: 10.1089/mdr.2018.0111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: To characterize mutations in penA, mtrR, ponA, and porBIB, considered target genes for antimicrobial resistance, in Neisseria gonorrhoeae isolates with elevated minimum inhibitory concentrations (MICs) of ceftriaxone cultured from patients in New Zealand. Results: Out of 28 isolates supplied by the Institute of Environmental Science and Research Limited (ESR), Porirua, New Zealand, 14 were found to show reduced susceptibility to ceftriaxone (MIC of 0.06 mg/L) according to criteria used by the ESR and the Australian Gonococcal Surveillance Programme (AGSP) when tested in our laboratory. Rates of resistance to ciprofloxacin, azithromycin, penicillin, and tetracycline were 100% (28/28), 7% (2/28), 36% (10/28), and 25% (7/28), respectively. Ten different penA (Penicillin binding protein 2 [PBP2]) sequences were observed. The most common mosaic penA M-1 resembled mosaic penA XXXIV, which has been associated with ceftriaxone treatment failures in other countries. Four semimosaic PBP2 sequences were observed and may be novel PBP sequences, while four out of five nonmosaic PBP2 sequences were similar to PBP2 sequences reported in Australia. Twenty-one isolates harbored mutations in all 4 genes (penA, mtrR, porBIB, and ponA), and 13 of these exhibited reduced susceptibility to ceftriaxone. Conclusion: Mutations in penA, mtrR, porBIB, and ponA observed in this study may have contributed to reduced susceptibility to ceftriaxone among New Zealand gonococcal isolates. Over half (16/22) of mosaic penA sequences from the gonococcal isolates resembled penA XXXIV.
Collapse
Affiliation(s)
- Norshuhaidah Jamaludin
- College of Health, Massey University, Palmerston North, New Zealand.,National Blood Centre (PDN), Transfusion Microbiology Laboratory Department, Kuala Lumpur, Malaysia
| | - Kristene Gedye
- College of Sciences, Massey University, Palmerston North, New Zealand
| | | | - Jackie Benschop
- Epilab, Hopkirk Institute, Massey University, Palmerston North, New Zealand
| | - Mary Nulsen
- College of Health, Massey University, Palmerston North, New Zealand
| |
Collapse
|
50
|
Cristillo AD, Bristow CC, Torrone E, Dillon JA, Kirkcaldy RD, Dong H, Grad YH, Nicholas RA, Rice PA, Lawrence K, Oldach D, Shafer WM, Zhou P, Wi TE, Morris SR, Klausner JD. Antimicrobial Resistance in Neisseria gonorrhoeae: Proceedings of the STAR Sexually Transmitted Infection-Clinical Trial Group Programmatic Meeting. Sex Transm Dis 2019; 46:e18-e25. [PMID: 30363025 PMCID: PMC6370498 DOI: 10.1097/olq.0000000000000929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/01/2018] [Indexed: 11/27/2022]
Abstract
The goal of the Sexually Transmitted Infection Clinical Trial Group's Antimicrobial Resistance (AMR) in Neisseria gonorrhoeae (NG) meeting was to assemble experts from academia, government, nonprofit and industry to discuss the current state of research, gaps and challenges in research and technology and priorities and new directions to address the continued emergence of multidrug-resistant NG infections. Topics discussed at the meeting, which will be the focus of this article, include AMR NG global surveillance initiatives, the use of whole genome sequencing and bioinformatics to understand mutations associated with AMR, mechanisms of AMR, and novel antibiotics, vaccines and other methods to treat AMR NG. Key points highlighted during the meeting include: (i) US and International surveillance programs to understand AMR in NG; (ii) the US National Strategy for combating antimicrobial-resistant bacteria; (iii) surveillance needs, challenges, and novel technologies; (iv) plasmid-mediated and chromosomally mediated mechanisms of AMR in NG; (v) novel therapeutic (eg, sialic acid analogs, factor H [FH]/Fc fusion molecule, monoclonal antibodies, topoisomerase inhibitors, fluoroketolides, LpxC inhibitors) and preventative (eg, peptide mimic) strategies to combat infection. The way forward will require renewed political will, new funding initiatives, and collaborations across academic and commercial research and public health programs.
Collapse
Affiliation(s)
- Anthony D. Cristillo
- From the Department of Clinical Research and Bioscience Social & Scientific Systems, Inc., Silver Spring, MD
| | - Claire C. Bristow
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA
| | - Elizabeth Torrone
- Division of STD Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA
| | - Jo-Anne Dillon
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Robert D. Kirkcaldy
- Division of STD Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA
| | - Huan Dong
- Charles R. Drew University of Medicine and Sciences, Los Angeles, CA
- David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Yonatan H. Grad
- Department of Immunology and Infectious Diseases, Harvard University T.H. Chan School of Public Health, Boston, MA
| | - Robert A. Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Peter A. Rice
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | | | | | - William Maurice Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta
- Veterans Affairs Medical Center, Decatur, GA
| | - Pei Zhou
- Department of Biochemistry, Duke University Medical Center, Durham, NC; and
| | - Teodora E. Wi
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland; and
| | - Sheldon R. Morris
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA
| | - Jeffrey D. Klausner
- Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|