1
|
Ye YQ, Ye MQ, Zhang XY, Huang YZ, Zhou ZY, Feng YJ, Du ZJ. Description of the first marine-isolated member of the under-represented phylum Gemmatimonadota, and the environmental distribution and ecogenomics of Gaopeijiales ord. nov. mSystems 2024; 9:e0053524. [PMID: 39560406 DOI: 10.1128/msystems.00535-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
The phylum Gemmatimonadota is widespread but rarely cultured and, in fact, there are only six described species isolated from soil, freshwater, and wastewater treatment. However, no isolates of Gemmatimonadota from marine environment have been described; thus, little is known about the physiology and metabolism of members of the marine lineages. In this study, four novel facultatively anaerobic bacterial strains belonging to Gemmatimonadota were isolated from marine sediments collected from Xiaoshi Island in Weihai, China, using an aerobic enrichment method. The integrated results of phylogenetic and phenotypic characteristics supported that these four strains represent one novel species in a novel genus, for which the name Gaopeijia maritima gen. nov., sp. nov. is proposed, as the first representative of novel taxa, Gaopeijiales ord. nov., Gaopeijiaceae fam. nov. in the class Longimicrobiia. Gaopeijiales was detected in 22,884 out of 95,549 amplicon data sets, mainly from soil. However, the highest mean relative abundances were in sponge (0.7%) and marine sediment (0.35%), showing salt-related character. Most of the Gaopeijiales subgroups potentially belong to the rare bacterial biosphere. The aerobic enrichment in this study could significantly increase the relative abundance of Gaopeijiales (from 0.37% to 2.6%). Furthermore, the metabolic capabilities inferred from high-quality representative Gaopeijiales genomes/MAGs suggest that this group primarily performs chemoorganoheterotrophic metabolism with facultatively anaerobic characteristics and possesses various secondary metabolite biosynthesis gene clusters (BGCs), mirroring those observed in the four novel strains.IMPORTANCEDespite rapid advances in molecular and sequencing technologies, obtaining pure cultures remains a crucial research goal in microbiology, as it is essential for a deeper understanding of microbial metabolism. Gemmatimonadota is a widespread but rarely cultured bacterial phylum. Currently, there are only six cultured strains of this interesting group, all isolated from non-marine environments. Little is known about the physiology and metabolism of members of the marine lineages. Here we isolated and characterized four novel marine strains, and proposed a new order Gaopeijiales within Gemmatimonadota. Furthermore, the global distribution, environmental preference, and metabolic potential of Gaopeijiales are analyzed using public data. Our work enriches the resources available for the under-represented phylum Gemmatimonadota and provides insights into the physiological and metabolic characteristics of the marine lineage (Gaopeijiales) through culturology and omics.
Collapse
Affiliation(s)
- Yu-Qi Ye
- Marine College, Shandong University, Weihai, Shandong, China
| | - Meng-Qi Ye
- Marine College, Shandong University, Weihai, Shandong, China
- Shandong University-Weihai Research Institute of Industrial Technology, Weihai, Shandong, China
| | - Xin-Yue Zhang
- SDU-ANU Joint Science College, Shandong University, Weihai, Shandong, China
| | - You-Zhi Huang
- Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zi-Yang Zhou
- Marine College, Shandong University, Weihai, Shandong, China
| | - Yan-Jun Feng
- SDU-ANU Joint Science College, Shandong University, Weihai, Shandong, China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong, China
- Shandong University-Weihai Research Institute of Industrial Technology, Weihai, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Du J, Wang Z, Hu L, Wang L, Fang J, Liu R. Comparative Genomics Reveal Distinct Environment Preference and Functional Adaptation Among Lineages of Gemmatimonadota. Microorganisms 2024; 12:2198. [PMID: 39597587 PMCID: PMC11596202 DOI: 10.3390/microorganisms12112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Bacteria in the phylum Gemmatimonadota are globally distributed and abundant in microbial communities of various environments, playing an important role in driving biogeochemical cycling on Earth. Although high diversities in taxonomic composition and metabolic capabilities have been reported, little is known about the environmental preferences and associated functional features that facilitate adaptation among different Gemmatimonadota lineages. This study systematically analyzed the relationships between the environments, taxonomy, and functions of Gemmatimonadota lineages, by using a comparative genomics approach based on 1356 Gemmatimonadota genomes (213 high-quality and non-redundant genomes) available in a public database (NCBI). The taxonomic analysis showed that the 99.5% of the genomes belong to the class Gemmatimonadetes, and the rest of the genomes belong to the class Glassbacteria. Functional profiling revealed clear environmental preference among different lineages of Gemmatimonadota, and a marine group and two non-marine groups were identified and tested to be significantly different in functional composition. Further annotation and statistical comparison revealed a large number of functional genes (e.g., amiE, coxS, yfbK) that were significantly enriched in genomes from the marine group, supporting enhanced capabilities in energy acquisition, genetic information regulation (e.g., DNA repair), electrolyte homeostasis, and growth rate control. These genomic features are important for their survival in the marine environment, which is oligotrophic, variable, and with high salinity. The findings enhanced our understanding of the metabolic processes and environmental adaptation of Gemmatimonadota, and further advanced the understanding of the interactions of microorganisms and their habitats.
Collapse
Affiliation(s)
| | | | | | | | | | - Rulong Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (J.D.); (Z.W.); (L.H.); (L.W.); (J.F.)
| |
Collapse
|
3
|
Kopejtka K, Tomasch J, Shivaramu S, Saini MK, Kaftan D, Koblížek M. Minimal transcriptional regulation of horizontally transferred photosynthesis genes in phototrophic bacterium Gemmatimonas phototrophica. mSystems 2024; 9:e0070624. [PMID: 39189770 PMCID: PMC11406998 DOI: 10.1128/msystems.00706-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
The first phototrophic member of the bacterial phylum Gemmatimonadota, Gemmatimonas phototrophica AP64T, received all its photosynthesis genes via distant horizontal gene transfer from a purple bacterium. Here, we investigated how these acquired genes, which are tightly controlled by oxygen and light in the ancestor, are integrated into the regulatory system of its new host. G. phototrophica grew well under aerobic and semiaerobic conditions, with almost no difference in gene expression. Under aerobic conditions, the growth of G. phototrophica was optimal at 80 µmol photon m-2 s-1, while higher light intensities had an inhibitory effect. The transcriptome showed only a minimal response to the dark-light shift at optimal light intensity, while the exposure to a higher light intensity (200 µmol photon m-2 s-1) induced already stronger but still transient changes in gene expression. Interestingly, a singlet oxygen defense was not activated under any conditions tested. Our results indicate that G. phototrophica possesses neither the oxygen-dependent repression of photosynthesis genes known from purple bacteria nor the light-dependent repression described in aerobic anoxygenic phototrophs. Instead, G. phototrophica has evolved as a low-light species preferring reduced oxygen concentrations. Under these conditions, the bacterium can safely employ its photoheterotrophic metabolism without the need for complex regulatory mechanisms. IMPORTANCE Horizontal gene transfer is one of the main mechanisms by which bacteria acquire new genes. However, it represents only the first step as the transferred genes have also to be functionally and regulatory integrated into the recipient's cellular machinery. Gemmatimonas phototrophica, a member of bacterial phylum Gemmatimonadota, acquired its photosynthesis genes via distant horizontal gene transfer from a purple bacterium. Thus, it represents a unique natural experiment, in which the entire package of photosynthesis genes was transplanted into a distant host. We show that G. phototrophica lacks the regulation of photosynthesis gene expressions in response to oxygen concentration and light intensity that are common in purple bacteria. This restricts its growth to low-light habitats with reduced oxygen. Understanding the regulation of horizontally transferred genes is important not only for microbial evolution but also for synthetic biology and the engineering of novel organisms, as these rely on the successful integration of foreign genes.
Collapse
Affiliation(s)
- Karel Kopejtka
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Acad Sci, Třeboň, Czechia
| | - Jürgen Tomasch
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Acad Sci, Třeboň, Czechia
| | - Sahana Shivaramu
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Acad Sci, Třeboň, Czechia
| | - Mohit Kumar Saini
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Acad Sci, Třeboň, Czechia
| | - David Kaftan
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Acad Sci, Třeboň, Czechia
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Acad Sci, Třeboň, Czechia
| |
Collapse
|
4
|
Basiry D, Kommedal R, Kaster KM. Effect of subinhibitory concentrations on the spreading of the ampicillin resistance gene blaCMY-2 in an activated sludge microcosm. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 39215485 DOI: 10.1080/09593330.2024.2394719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
As the problem of multi-resistant bacteria grows a better understanding of the spread of antibiotic resistance genes is of utmost importance for society. Wastewater treatment plants contain subinhibitory concentrations of antibiotics and are thought to be hotspots for antibiotic resistance gene propagation. Here we evaluate the influence of sub-minimum inhibitory concentrations of antibiotics on the spread of resistance genes within the bacterial community in activated sludge laboratory-scale sequencing batch reactors. The mixed communities were fed two different ampicillin concentrations (500 and 5000 µg/L) and the reactors were run and monitored for 30 days. During the experiment the β-lactamase resistance gene blaCMY-2 was monitored via qPCR and DNA samples were taken to monitor the effect of ampicillin on the microbial community. The relative copy number of blaCMY-2 in the reactor fed with the sub-minimum inhibitory concentration of 500 µg/L ampicillin was spread out over a wider range of values than the control and 5000 µg/L ampicillin reactors indicating more variability of gene number in the 500 µg/L reactor. This result emphasises the problem of sub-minimum inhibitory concentrations of antibiotics in wastewater. High-throughput sequencing showed that continuous exposure to ampicillin caused a shift from a Bacteroidetes to Proteobacteria in the bacterial community. The combined use of qPCR and high-throughput sequencing showed that ampicillin stimulates the spread of resistance genes and leads to the propagation of microbial populations which are resistant to it.
Collapse
Affiliation(s)
- Daniel Basiry
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Roald Kommedal
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Krista Michelle Kaster
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
5
|
Gong X, Xu L, Langwig MV, Chen Z, Huang S, Zhao D, Su L, Zhang Y, Francis CA, Liu J, Li J, Baker BJ. Globally distributed marine Gemmatimonadota have unique genomic potentials. MICROBIOME 2024; 12:149. [PMID: 39123272 PMCID: PMC11316326 DOI: 10.1186/s40168-024-01871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Gemmatimonadota bacteria are widely distributed in nature, but their metabolic potential and ecological roles in marine environments are poorly understood. RESULTS Here, we obtained 495 metagenome-assembled genomes (MAGs), and associated viruses, from coastal to deep-sea sediments around the world. We used this expanded genomic catalog to compare the protein composition and update the phylogeny of these bacteria. The marine Gemmatimonadota are phylogenetically different from those previously reported from terrestrial environments. Functional analyses of these genomes revealed these marine genotypes are capable of degradation of complex organic carbon, denitrification, sulfate reduction, and oxidizing sulfide and sulfite. Interestingly, there is widespread genetic potential for secondary metabolite biosynthesis across Gemmatimonadota, which may represent an unexplored source of novel natural products. Furthermore, viruses associated with Gemmatimonadota have the potential to "hijack" and manipulate host metabolism, including the assembly of the lipopolysaccharide in their hosts. CONCLUSIONS This expanded genomic diversity advances our understanding of these globally distributed bacteria across a variety of ecosystems and reveals genetic distinctions between those in terrestrial and marine communities. Video Abstract.
Collapse
Affiliation(s)
- Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, Guangdong, China.
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA.
| | - Le Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Marguerite V Langwig
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA
| | - Zhiyi Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Shujie Huang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Duo Zhao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Lei Su
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Yan Zhang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Christopher A Francis
- Departments of Earth System Science & Oceans, Stanford University, Stanford, CA, 94305, USA
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China.
| | - Brett J Baker
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA.
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
6
|
Haufschild T, Kallscheuer N, Hammer J, Kohn T, Kabuu M, Jogler M, Wohlfarth N, Rohde M, van Teeseling MCF, Jogler C. An untargeted cultivation approach revealed Pseudogemmatithrix spongiicola gen. nov., sp. nov., and sheds light on the gemmatimonadotal mode of cell division: binary fission. Sci Rep 2024; 14:16764. [PMID: 39034380 PMCID: PMC11271474 DOI: 10.1038/s41598-024-67408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
Members of the phylum Gemmatimonadota can account for up to 10% of the phylogenetic diversity in bacterial communities. However, a detailed investigation of their cell biology and ecological roles is restricted by currently only six characterized species. By combining low-nutrient media, empirically determined inoculation volumes and long incubation times in a 96-well plate cultivation platform, we isolated two strains from a limnic sponge that belong to this under-studied phylum. The characterization suggests that the two closely related strains constitute a novel species of a novel genus, for which we introduce the name Pseudogemmatithrix spongiicola. The here demonstrated isolation of novel members from an under-studied bacterial phylum substantiates that the cultivation platform can provide access to axenic bacterial cultures from various environmental samples. Similar to previously described members of the phylum, the novel isolates form spherical appendages at the cell poles that were believed to be daughter cells resulting from asymmetric cell division by budding. However, time-lapse microscopy experiments and quantitative image analysis showed that the spherical appendages never grew or divided. Although the role of these spherical cells remains enigmatic, our data suggests that cells of the phylum Gemmatimonadota divide via FtsZ-based binary fission with different division plane localization patterns than in other bacterial phyla.
Collapse
Affiliation(s)
- Tom Haufschild
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Jonathan Hammer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Timo Kohn
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Moses Kabuu
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nicole Wohlfarth
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Muriel C F van Teeseling
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
7
|
Mucsi M, Borsodi AK, Megyes M, Szili-Kovács T. Response of the metabolic activity and taxonomic composition of bacterial communities to mosaically varying soil salinity and alkalinity. Sci Rep 2024; 14:7460. [PMID: 38553497 PMCID: PMC10980690 DOI: 10.1038/s41598-024-57430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Soil salinity and sodicity is a worldwide problem that affects the composition and activity of bacterial communities and results from elevated salt and sodium contents. Depending on the degree of environmental pressure and the combined effect of other factors, haloalkalitolerant and haloalkaliphilic bacterial communities will be selected. These bacteria play a potential role in the maintenance and restoration of salt-affected soils; however, until recently, only a limited number of studies have simultaneously studied the bacterial diversity and activity of saline-sodic soils. Soil samples were collected to analyse and compare the taxonomic composition and metabolic activity of bacteria from four distinct natural plant communities at three soil depths corresponding to a salinity‒sodicity gradient. Bacterial diversity was detected using 16S rRNA gene Illumina MiSeq amplicon sequencing. Community-level physiological profiles (CLPPs) were analysed using the MicroResp™ method. The genus-level bacterial composition and CLPPs differed significantly in soils with different alkaline vegetation. The surface soil samples also significantly differed from the intermediate and deep soil samples. The results showed that the pH, salt content, and Na+ content of the soils were the main edaphic factors influencing both bacterial diversity and activity. With salinity and pH, the proportion of the phylum Gemmatimonadota increased, while the proportions of Actinobacteriota and Acidobacteriota decreased.
Collapse
Affiliation(s)
- Márton Mucsi
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Pázmány P. sétány 1/AC, Budapest, 1117, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary.
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary.
| | - Melinda Megyes
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Pázmány P. sétány 1/AC, Budapest, 1117, Hungary
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
| | - Tibor Szili-Kovács
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary.
| |
Collapse
|
8
|
Ge ZB, Zhai ZQ, Xie WY, Dai J, Huang K, Johnson DR, Zhao FJ, Wang P. Two-tiered mutualism improves survival and competitiveness of cross-feeding soil bacteria. THE ISME JOURNAL 2023; 17:2090-2102. [PMID: 37737252 PMCID: PMC10579247 DOI: 10.1038/s41396-023-01519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Metabolic cross-feeding is a pervasive microbial interaction type that affects community stability and functioning and directs carbon and energy flows. The mechanisms that underlie these interactions and their association with metal/metalloid biogeochemistry, however, remain poorly understood. Here, we identified two soil bacteria, Bacillus sp. BP-3 and Delftia sp. DT-2, that engage in a two-tiered mutualism. Strain BP-3 has low utilization ability of pyruvic acid while strain DT-2 lacks hexokinase, lacks a phosphotransferase system, and is defective in glucose utilization. When strain BP-3 is grown in isolation with glucose, it releases pyruvic acid to the environment resulting in acidification and eventual self-killing. However, when strain BP-3 is grown together with strain DT-2, strain DT-2 utilizes the released pyruvic acid to meet its energy requirements, consequently rescuing strain BP-3 from pyruvic acid-induced growth inhibition. The two bacteria further enhance their collective competitiveness against other microbes by using arsenic as a weapon. Strain DT-2 reduces relatively non-toxic methylarsenate [MAs(V)] to highly toxic methylarsenite [MAs(III)], which kills or suppresses competitors, while strain BP-3 detoxifies MAs(III) by methylation to non-toxic dimethylarsenate [DMAs(V)]. These two arsenic transformations are enhanced when strains DT-2 and BP-3 are grown together. The two strains, along with their close relatives, widely co-occur in soils and their abundances increase with the soil arsenic concentration. Our results reveal that these bacterial types employ a two-tiered mutualism to ensure their collective metabolic activity and maintain their ecological competitive against other soil microbes. These findings shed light on the intricateness of bacterial interactions and their roles in ecosystem functioning.
Collapse
Affiliation(s)
- Zhan-Biao Ge
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Qiang Zhai
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wan-Ying Xie
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Dai
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke Huang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
- Institute of Ecology and Evolution, University of Bern, 3012, Bern, Switzerland
| | - Fang-Jie Zhao
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Wang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Mujakić I, Cabello-Yeves PJ, Villena-Alemany C, Piwosz K, Rodriguez-Valera F, Picazo A, Camacho A, Koblížek M. Multi-environment ecogenomics analysis of the cosmopolitan phylum Gemmatimonadota. Microbiol Spectr 2023; 11:e0111223. [PMID: 37732776 PMCID: PMC10581226 DOI: 10.1128/spectrum.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023] Open
Abstract
Gemmatimonadota is a diverse bacterial phylum commonly found in environments such as soils, rhizospheres, fresh waters, and sediments. So far, the phylum contains just six cultured species (five of them sequenced), which limits our understanding of their diversity and metabolism. Therefore, we analyzed over 400 metagenome-assembled genomes (MAGs) and 5 culture-derived genomes representing Gemmatimonadota from various aquatic environments, hydrothermal vents, sediments, soils, and host-associated (with marine sponges and coral) species. The principal coordinate analysis based on the presence/absence of genes in Gemmatimonadota genomes and phylogenomic analysis documented that marine and host-associated Gemmatimonadota were the most distant from freshwater and wastewater species. A smaller genome size and coding sequences (CDS) number reduction were observed in marine MAGs, pointing to an oligotrophic environmental adaptation. Several metabolic pathways are restricted to specific environments. For example, genes for anoxygenic phototrophy were found only in freshwater, wastewater, and soda lake sediment genomes. There were several genomes from soda lake sediments and wastewater containing type IC/ID ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Various genomes from wastewater harbored bacterial type II RuBisCO, whereas RuBisCO-like protein was found in genomes from fresh waters, soil, host-associated, and marine sediments. Gemmatimonadota does not contain nitrogen fixation genes; however, the nosZ gene, involved in the reduction of N2O, was present in genomes from most environments, missing only in marine water and host-associated Gemmatimonadota. The presented data suggest that Gemmatimonadota evolved as an organotrophic species relying on aerobic respiration and then remodeled its genome inventory when adapting to particular environments. IMPORTANCE Gemmatimonadota is a rarely studied bacterial phylum consisting of a handful of cultured species. Recent culture-independent studies documented that these organisms are distributed in many environments, including soil, marine, fresh, and waste waters. However, due to the lack of cultured species, information about their metabolic potential and environmental role is scarce. Therefore, we collected Gemmatimonadota metagenome-assembled genomes (MAGs) from different habitats and performed a systematic analysis of their genomic characteristics and metabolic potential. Our results show how Gemmatimonadota have adapted their genomes to different environments.
Collapse
Affiliation(s)
- Izabela Mujakić
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Pedro J. Cabello-Yeves
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Cristian Villena-Alemany
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
10
|
Srivastava A, Verma D. Comparative bacteriome and antibiotic resistome analysis of water and sediment of the Ganga River of India. World J Microbiol Biotechnol 2023; 39:294. [PMID: 37656255 DOI: 10.1007/s11274-023-03730-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
A comparative analysis between water and sediment can provide better information to understand the dynamics of the inhabitant microbiome and their respective antibiotic resistance genes of a river. Therefore, the present investigation was carried to explore the limited information available on bacterial microbiome and their predictive antibiotic resistance genes (ARGs) from water and sediment of the Ganga River. The study utilized the NGS-based sequences previously submitted under the accession number (PRJNA847424 and PRJNA892876). Overall analysis revealed that twenty phyla and fifty-four genera were shared between the water and sediment of the Ganga River. Of them, nine phyla and nineteen genera were observed as significantly different (p-value < 0.05). Where the majority of the genera were associated with the sediment samples over the water that identify the sediment samples as more diverse for species richness. Similarly, seventy-six ARGs were shared between water and sediment samples. Of the ten abundant antibiotic resistance pathways, seven were relatively abundant in sediment samples as compared to the water. Vancomycin resistance genes were significantly more abundant among sediment samples, whereas β-lactam resistance genes were equally distributed in water and sediment samples. The network analysis further revealed that five genera (Flavobacterium, Pseudomonas, Acinetobacter, Candidatus_divison CL5003, and Candidatus_division SWB02) showed a significantly positive correlation with six antibiotic resistance pathways (β-lactam, vancomycin, multidrug resistance, tetracycline, aminoglycoside, and macrolide resistance pathways). The study comes out with several findings where sediment may be considered as a more atrocious habitat for evolving the resistance mechanisms against threatful antibiotics over the water samples of the Ganga River.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Environmental Microbiology, School of Earth and Environemntal Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environemntal Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| |
Collapse
|
11
|
Dedysh SN. Describing difficult-to-culture bacteria: Taking a shortcut or investing time to discover something new? Syst Appl Microbiol 2023; 46:126439. [PMID: 37413783 DOI: 10.1016/j.syapm.2023.126439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Despite the growing interest in isolating representatives of poorly studied and as-yet-uncultivated bacterial phylogenetic groups, these microorganisms remain difficult objects for taxonomic studies. The time required for describing one of these fastidious bacteria is commonly measured in several years. What is even more problematic, many routine laboratory tests, which were originally developed for fast-growing and fast-responding microorganisms, are not fully suitable for many environmentally relevant, slow-growing bacteria. Standard techniques used in chemotaxonomic analyses do not identify unique lipids produced by these bacteria. A common practice of preparing taxonomic descriptions that report a minimal set of features to name a newly isolated organism deepens a gap between microbial ecologists and taxonomists. By contrast, investing time in detailed analysis of cell biology and experimental verification of genome-encoded capabilities of newly isolated microorganisms opens a window for novel, unexpected findings, which may shape our ideas about the functional role of these microbes in the environment.
Collapse
Affiliation(s)
- Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|
12
|
Aldeguer-Riquelme B, Antón J, Santos F. Distribution, abundance, and ecogenomics of the Palauibacterales, a new cosmopolitan thiamine-producing order within the Gemmatimonadota phylum. mSystems 2023; 8:e0021523. [PMID: 37345931 PMCID: PMC10469786 DOI: 10.1128/msystems.00215-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/19/2023] [Indexed: 06/23/2023] Open
Abstract
The phylum Gemmatimonadota comprises mainly uncultured microorganisms that inhabit different environments such as soils, freshwater lakes, marine sediments, sponges, or corals. Based on 16S rRNA gene studies, the group PAUC43f is one of the most frequently retrieved Gemmatimonadota in marine samples. However, its physiology and ecological roles are completely unknown since, to date, not a single PAUC43f isolate or metagenome-assembled genome (MAG) has been characterized. Here, we carried out a broad study of the distribution, abundance, ecotaxonomy, and metabolism of PAUC43f, for which we propose the name of Palauibacterales. This group was detected in 4,965 16S rRNA gene amplicon datasets, mainly from marine sediments, sponges, corals, soils, and lakes, reaching up to 34.3% relative abundance, which highlights its cosmopolitan character, mainly salt-related. The potential metabolic capabilities inferred from 52 Palauibacterales MAGs recovered from marine sediments, sponges, and saline soils suggested a facultative aerobic and chemoorganotrophic metabolism, although some members may also oxidize hydrogen. Some Palauibacterales species might also play an environmental role as N2O consumers as well as suppliers of serine and thiamine. When compared to the rest of the Gemmatimonadota phylum, the biosynthesis of thiamine was one of the key features of the Palauibacterales. Finally, we show that polysaccharide utilization loci (PUL) are widely distributed within the Gemmatimonadota so that they are not restricted to Bacteroidetes, as previously thought. Our results expand the knowledge about this cryptic phylum and provide new insights into the ecological roles of the Gemmatimonadota in the environment. IMPORTANCE Despite advances in molecular and sequencing techniques, there is still a plethora of unknown microorganisms with a relevant ecological role. In the last years, the mostly uncultured Gemmatimonadota phylum is attracting scientific interest because of its widespread distribution and abundance, but very little is known about its ecological role in the marine ecosystem. Here we analyze the global distribution and potential metabolism of the marine Gemmatimonadota group PAUC43f, for which we propose the name of Palauibacterales order. This group presents a saline-related character and a chemoorganoheterotrophic and facultatively aerobic metabolism, although some species might oxidize H2. Given that Palauibacterales is potentially able to synthesize thiamine, whose auxotrophy is the second most common in the marine environment, we propose Palauibacterales as a key thiamine supplier to the marine communities. This finding suggests that Gemmatimonadota could have a more relevant role in the marine environment than previously thought.
Collapse
Affiliation(s)
- Borja Aldeguer-Riquelme
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Josefa Antón
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
- Multidisciplinary Institute of Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| | - Fernando Santos
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| |
Collapse
|
13
|
McLain NK, Gomez MY, Gachomo EW. Acetaminophen Levels Found in Recycled Wastewater Alter Soil Microbial Community Structure and Functional Diversity. MICROBIAL ECOLOGY 2023; 85:1448-1462. [PMID: 35507048 PMCID: PMC10167187 DOI: 10.1007/s00248-022-02022-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/22/2022] [Indexed: 05/10/2023]
Abstract
The practice of using recycled wastewater (RWW) has been successfully adopted to address the growing demand for clean water. However, chemicals of emerging concern (CECs) including pharmaceutical products remain in the RWW even after additional cleaning. When RWW is used to irrigate crops or landscapes, these chemicals can enter these and adjacent environments. Unfortunately, the overall composition and concentrations of CECs found in different RWW sources vary, and even the same source can vary over time. Therefore, we selected one compound that is found frequently and in high concentrations in many RWW sources, acetaminophen (APAP), to use for our study. Using greenhouse grown eggplants treated with APAP concentrations within the ranges found in RWW effluents, we investigated the short-term impacts of APAP on the soil bacterial population under agricultural settings. Using Illumina sequencing-based approaches, we showed that APAP has the potential to cause shifts in the microbial community most likely by positively selecting for bacteria that are capable of metabolizing the breakdown products of APAP such as glycosides and carboxylic acids. Community-level physiological profiles of carbon metabolism were evaluated using Biolog EcoPlate as a proxy for community functions. The Biolog plates indicated that the metabolism of amines, amino acids, carbohydrates, carboxylic acids, and polymers was significantly higher in the presence of APAP. Abundance of microorganisms of importance to plant health and productivity was altered by APAP. Our results indicate that the soil microbial community and functions could be altered by APAP at concentrations found in RWW. Our findings contribute to the knowledge base needed to guide policies regulating RWW reuse in agriculture and also highlight the need to further investigate the effects of CECs found in RWW on soil microbiomes.
Collapse
Affiliation(s)
- Nathan K McLain
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Melissa Y Gomez
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Emma W Gachomo
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
14
|
Native plant gardens support more microbial diversity and higher relative abundance of potentially beneficial taxa compared to adjacent turf grass lawns. Urban Ecosyst 2023. [DOI: 10.1007/s11252-022-01325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Bourhane Z, Cagnon C, Castañeda C, Rodríguez-Ochoa R, Álvaro-Fuentes J, Cravo-Laureau C, Duran R. Vertical organization of microbial communities in Salineta hypersaline wetland, Spain. Front Microbiol 2023; 14:869907. [PMID: 36778872 PMCID: PMC9911865 DOI: 10.3389/fmicb.2023.869907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Microbial communities inhabiting hypersaline wetlands, well adapted to the environmental fluctuations due to flooding and desiccation events, play a key role in the biogeochemical cycles, ensuring ecosystem service. To better understand the ecosystem functioning, we studied soil microbial communities of Salineta wetland (NE Spain) in dry and wet seasons in three different landscape stations representing situations characteristic of ephemeral saline lakes: S1 soil usually submerged, S2 soil intermittently flooded, and S3 soil with halophytes. Microbial community composition was determined according to different redox layers by 16S rRNA gene barcoding. We observed reversed redox gradient, negative at the surface and positive in depth, which was identified by PERMANOVA as the main factor explaining microbial distribution. The Pseudomonadota, Gemmatimonadota, Bacteroidota, Desulfobacterota, and Halobacteriota phyla were dominant in all stations. Linear discriminant analysis effect size (LEfSe) revealed that the upper soil surface layer was characterized by the predominance of operational taxonomic units (OTUs) affiliated to strictly or facultative anaerobic halophilic bacteria and archaea while the subsurface soil layer was dominated by an OTU affiliated to Roseibaca, an aerobic alkali-tolerant bacterium. In addition, the potential functional capabilities, inferred by PICRUSt2 analysis, involved in carbon, nitrogen, and sulfur cycles were similar in all samples, irrespective of the redox stratification, suggesting functional redundancy. Our findings show microbial community changes according to water flooding conditions, which represent useful information for biomonitoring and management of these wetlands whose extreme aridity and salinity conditions are exposed to irreversible changes due to human activities.
Collapse
Affiliation(s)
- Zeina Bourhane
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Christine Cagnon
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Rafael Rodríguez-Ochoa
- Departamento de Medio Ambiente y Ciencias del Suelo, Universidad de Lleida, Lleida, Spain
| | | | | | - Robert Duran
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
16
|
The Influence of Calcium on the Growth, Morphology and Gene Regulation in Gemmatimonas phototrophica. Microorganisms 2022; 11:microorganisms11010027. [PMID: 36677319 PMCID: PMC9862903 DOI: 10.3390/microorganisms11010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The bacterium Gemmatimonas phototrophica AP64 isolated from a freshwater lake in the western Gobi Desert represents the first phototrophic member of the bacterial phylum Gemmatimonadota. This strain was originally cultured on agar plates because it did not grow in liquid medium. In contrast, the closely related species G. groenlandica TET16 grows both on solid and in liquid media. Here, we show that the growth of G. phototrophica in liquid medium can be induced by supplementing the medium with 20 mg CaCl2 L-1. When grown at a lower concentration of calcium (2 mg CaCl2 L-1) in the liquid medium, the growth was significantly delayed, cells were elongated and lacked flagella. The elevated requirement for calcium is relatively specific as it can be partially substituted by strontium, but not by magnesium. The transcriptome analysis documented that several groups of genes involved in flagella biosynthesis and transport of transition metals were co-activated after amendment of 20 mg CaCl2 L-1 to the medium. The presented results document that G. phototrophica requires a higher concentration of calcium for its metabolism and growth compared to other Gemmatimonas species.
Collapse
|
17
|
Study of Wetland Soils of the Salar de Atacama with Different Azonal Vegetative Formations Reveals Changes in the Microbiota Associated with Hygrophile Plant Type on the Soil Surface. Microbiol Spectr 2022; 10:e0053322. [PMID: 36121227 DOI: 10.1128/spectrum.00533-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salar de Atacama is located approximately 55 km south of San Pedro de Atacama in the Antofagasta region, Chile. The high UV irradiation and salt concentration and extreme drought make Salar de Atacama an ideal site to search for novel soil microorganisms with unique properties. Here, we used a metataxonomic approach (16S rRNA V3-V4) to identify and characterize the soil microbiota associated with different surface azonal vegetation formations, including strict hygrophiles (Baccharis juncea, Juncus balticus, and Schoenoplectus americanus), transitional hygrophiles (Distichlis spicata, Lycium humile, and Tessaria absinthioides), and their various combinations. We detected compositional differences among the soil surface microbiota associated with each plant formation in the sampling area. There were changes in soil microbial phylogenetic diversity from the strict to the transitional hygrophiles. Moreover, we found alterations in the abundance of bacterial phyla and genera. Halobacteriota and Actinobacteriota might have facilitated water uptake by the transitional hygrophiles. Our findings helped to elucidate the microbiota of Salar de Atacama and associate them with the strict and transitional hygrophiles indigenous to the region. These findings could be highly relevant to future research on the symbiotic relationships between microbiota and salt-tolerant plants in the face of climate change-induced desertification. IMPORTANCE The study of the composition and diversity of the wetland soil microbiota associated with hygrophilous plants in a desert ecosystem of the high Puna in northern Chile makes it an ideal approach to search for novel extremophilic microorganisms with unique properties. These microorganisms are adapted to survive in ecological niches, such as those with high UV irradiation, extreme drought, and high salt concentration; they can be applied in various fields, such as biotechnology and astrobiology, and industries, including the pharmaceutical, food, agricultural, biofuel, cosmetic, and textile industries. These microorganisms can also be used for ecological conservation and restoration. Extreme ecosystems are a unique biological resource and biodiversity hot spots that play a crucial role in maintaining environmental sustainability. The findings could be highly relevant to future research on the symbiotic relationships between microbiota and extreme-environment-tolerant plants in the face of climate change-induced desertification.
Collapse
|
18
|
(Meta)Genomic Analysis Reveals Diverse Energy Conservation Strategies Employed by Globally Distributed Gemmatimonadota. mSystems 2022; 7:e0022822. [PMID: 35913193 PMCID: PMC9426454 DOI: 10.1128/msystems.00228-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Gemmatimonadota is a phylum-level lineage distributed widely but rarely reported. Only six representatives of Gemmatimonadota have so far been isolated and cultured in laboratory. The physiology, ecology, and evolutionary history of this phylum remain unknown. The 16S rRNA gene survey of our salt lake and deep-sea sediments, and Earth Microbiome Project (EMP) samples, reveals that Gemmatimonadota exist in diverse environments globally. In this study, we retrieved 17 metagenome-assembled genomes (MAGs) from salt lake sediments (12 MAGs) and deep-sea sediments (5 MAGs). Analysis of these MAGs and the nonredundant MAGs or genomes from public databases reveals Gemmatimonadota can degrade various complex organic substrates, and mainly employ heterotrophic pathways (e.g., glycolysis and tricarboxylic acid [TCA] cycle) for growth via aerobic respiration. And the processes of sufficient energy being stored in glucose through gluconeogenesis, followed by the synthesis of more complex compounds, are prevalent in Gemmatimonadota. A highly expandable pangenome for Gemmatimonadota has been observed, which presumably results from their adaptation to thriving in diverse environments. The enrichment of the Na+/H+ antiporter in the SG8-23 order represents their adaptation to salty habitats. Notably, we identified a novel lineage of the SG8-23 order, which is potentially anoxygenic phototrophic. This lineage is not closely related to the phototrophs in the order of Gemmatimonadales. The two orders differ distinctly in the gene organization and phylogenetic relationship of their photosynthesis gene clusters, indicating photosystems in Gemmatimonadota have evolved in two independent routes. IMPORTANCE The phylum Gemmatimonadota is widely distributed in various environments. However, their physiology, ecology and evolutionary history remain unknown, primary due to the limited cultured isolates and available genomes. We were intrigued to find out how widespread this phylum is, and how it can thrive under diverse conditions. Our results here expand the knowledge of the genetic and metabolic diversity of Gemmatimonadota, and shed light on the diverse energy conservation strategies (i.e., oxidative phosphorylation, substrate phosphorylation, and photosynthetic phosphorylation) responsible for their global distribution. Moreover, gene organization and phylogenetic analysis of photosynthesis gene clusters in Gemmatimonadota provide a valuable insight into the evolutionary history of photosynthesis.
Collapse
|
19
|
Wang Y, Cheng X, Wang H, Zhou J, Liu X, Tuovinen OH. The Characterization of Microbiome and Interactions on Weathered Rocks in a Subsurface Karst Cave, Central China. Front Microbiol 2022; 13:909494. [PMID: 35847118 PMCID: PMC9277220 DOI: 10.3389/fmicb.2022.909494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Karst caves are a natural oligotrophic subsurface biosphere widely distributed in southern China. Despite the progress in bacterial and fungal diversity, the knowledge about interactions between bacteria, fungi, and minerals is still limited in caves. Hence, for the first time, we investigated the interaction between bacteria and fungi living on weathered rocks in the Heshang Cave via high-throughput sequencing of 16S rRNA and ITS1 genes, and co-occurrence analysis. The mineral compositions of weathered rocks were analyzed by X-ray diffraction. Bacterial communities were dominated by Actinobacteria (33.68%), followed by Alphaproteobacteria (8.78%), and Planctomycetia (8.73%). In contrast, fungal communities were dominated by Sordariomycetes (21.08%) and Dothideomycetes (14.06%). Mineral substrata, particularly phosphorus-bearing minerals, significantly impacted bacterial (hydroxyapatite) and fungal (fluorapatite) communities as indicated by the redundancy analysis. In comparison with fungi, the development of bacterial communities was more controlled by the environmental selection indicated by the overwhelming contribution of deterministic processes. Co-occurrence network analysis showed that all nodes were positively linked, indicating ubiquitous cooperation within bacterial groups and fungal groups, as well as between bacteria and fungi under oligotrophic conditions in the subsurface biosphere. In total, 19 bacterial ASVs and 34 fungal OTUs were identified as keystone taxa, suggesting the fundamental role of fungi in maintaining the microbial ecosystem on weathered rocks. Ascomycota was most dominant in keystone taxa, accounting for 26.42%, followed by Actinobacteria in bacteria (24.53%). Collectively, our results confirmed the highly diverse bacterial and fungal communities on weathered rocks, and their close cooperation to sustain the subsurface ecosystem. Phosphorus-bearing minerals were of significance in shaping epipetreous bacterial and fungal communities. These observations provide new knowledge about microbial interactions between bacteria, fungi, and minerals in the subterranean biosphere.
Collapse
Affiliation(s)
- Yiheng Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Jianping Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xiaoyan Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Olli H Tuovinen
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
20
|
Yang Y, Deng W, Hu Y, Chen R, Wang XC. Gravity-driven high flux filtration behavior and microbial community of an integrated granular activated carbon and dynamic membrane bioreactor for domestic wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153930. [PMID: 35202693 DOI: 10.1016/j.scitotenv.2022.153930] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/12/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
A gravity-driven dynamic membrane bioreactors (DMBR) with GAC addition (G-DMBR) was operated under constant pressure filtration mode (using 20 cm water head) for real domestic wastewater treatment. During the stable operation period, the treatment performance, DM filtration behavior and mechanism as well as microbial properties were studied and compared with a control DMBR (C-DMBR). Both DMBRs showed stable removal of chemical oxygen demand (COD) and ammonia (NH4+-N) with average removal rates over 88% and 98%, respectively. GAC addition effectively enhanced dynamic membrane (DM) permeability with a stable flux of 17 to 65 L/m2h, which was approximately four times higher than that in the C-DMBR without GAC addition. Filtration resistance analysis indicated the DM formation can be divided to three stages: the formation of the initial DM layer, the development of mature DM layer and dynamic equilibrium stage of the DM layer. Filtration model analysis illustrated that added GAC could be the skeleton of the DM, resulting in a more porous and incompressible DM layer. Additionally, microbial community analysis revealed that in the G-DMBR several fouling-causing phyla including Proteobacteria reduced while other phyla preferring attached growth such as Bacteroidetes and Gemmatimonadetes increased. Thus, adding GAC to the DMBR can be an effective strategy for achieving stable and high-flux operation by modifying DM properties and regulating DM formation process and structure.
Collapse
Affiliation(s)
- Yuan Yang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Weihang Deng
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China.
| | - Rong Chen
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| |
Collapse
|
21
|
Ding Q, Song X, Yuan M, Sun R, Zhang J, Yin L, Pu Y. Multiple pathways for the anaerobic biodegradation of microcystin-LR in the enriched microbial communities from Lake Taihu. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118787. [PMID: 34995687 DOI: 10.1016/j.envpol.2022.118787] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic biodegradation is a non-negligible elimination approach for microcystin (MC) pollution and exhibits important bioremediation potential for environmental problems. However, the specific anaerobic MC-degrading mechanism remains unclear and few functional bacteria have been found. In this study, three microbial communities of sludges from different locations in Lake Taihu were collected and further enriched by microcystin-LR (MC-LR) under anaerobic conditions. MC-LR (1 mg/L) could be completely degraded by these enriched microbial communities under anaerobic conditions, but their degradation rates were significantly different. In addition, two different ring-opening sites of MC-LR in Ala-Leu and Arg-Adda were observed, and three new anaerobic degradation products were first identified, including two hexapeptides (MeAsp-Arg-Adda-Glu-Mdha-Ala and Adda-Glu-Mdha-Ala-Leu-MeAsp) and one end-product pentapeptide (Glu-Mdha-Ala-Leu-MeAsp). Based on the chemical structures and temporal trends of all detected degradation products, two novel anaerobic biodegradation pathways of MC-LR were proposed. Moreover, the MC-degrading genes mlrABC were not detected among all microbial communities, which suggested that some new MC-degrading mechanisms might exist under anaerobic conditions. Finally, through the comparison of microbial community structure, Gemmatimonas and Smithella were deduced as possible anaerobic MC-degrading bacteria. These findings strongly indicate that anaerobic biodegradation is an important method of self-repair in the natural environment and provides a potential removal strategy for MC pollution.
Collapse
Affiliation(s)
- Qin Ding
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiaolei Song
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Mengxuan Yuan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
22
|
Mujakić I, Piwosz K, Koblížek M. Phylum Gemmatimonadota and Its Role in the Environment. Microorganisms 2022; 10:microorganisms10010151. [PMID: 35056600 PMCID: PMC8779627 DOI: 10.3390/microorganisms10010151] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Bacteria are an important part of every ecosystem that they inhabit on Earth. Environmental microbiologists usually focus on a few dominant bacterial groups, neglecting less abundant ones, which collectively make up most of the microbial diversity. One of such less-studied phyla is Gemmatimonadota. Currently, the phylum contains only six cultured species. However, data from culture-independent studies indicate that members of Gemmatimonadota are common in diverse habitats. They are abundant in soils, where they seem to be frequently associated with plants and the rhizosphere. Moreover, Gemmatimonadota were found in aquatic environments, such as freshwaters, wastewater treatment plants, biofilms, and sediments. An important discovery was the identification of purple bacterial reaction centers and anoxygenic photosynthesis in this phylum, genes for which were likely acquired via horizontal gene transfer. So far, the capacity for anoxygenic photosynthesis has been described for two cultured species: Gemmatimonas phototrophica and Gemmatimonas groenlandica. Moreover, analyses of metagenome-assembled genomes indicate that it is also common in uncultured lineages of Gemmatimonadota. This review summarizes the current knowledge about this understudied bacterial phylum with an emphasis on its environmental distribution.
Collapse
Affiliation(s)
- Izabela Mujakić
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Kasia Piwosz
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland
| | - Michal Koblížek
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
- Correspondence:
| |
Collapse
|
23
|
Nupur, Kuzma M, Hájek J, Hrouzek P, Gardiner AT, Lukeš M, Moos M, Šimek P, Koblížek M. Structure elucidation of the novel carotenoid gemmatoxanthin from the photosynthetic complex of Gemmatimonas phototrophica AP64. Sci Rep 2021; 11:15964. [PMID: 34354109 PMCID: PMC8342508 DOI: 10.1038/s41598-021-95254-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
Gemmatimonas phototrophica AP64 is the first phototrophic representative of the bacterial phylum Gemmatimonadetes. The cells contain photosynthetic complexes with bacteriochlorophyll a as the main light-harvesting pigment and an unknown carotenoid with a single broad absorption band at 490 nm in methanol. The carotenoid was extracted from isolated photosynthetic complexes, and purified by liquid chromatography. A combination of nuclear magnetic resonance (1H NMR, COSY, 1H-13C HSQC, 1H-13C HMBC, J-resolved, and ROESY), high-resolution mass spectroscopy, Fourier-transformed infra-red, and Raman spectroscopy was used to determine its chemical structure. The novel linear carotenoid, that we have named gemmatoxanthin, contains 11 conjugated double bonds and is further substituted by methoxy, carboxyl and aldehyde groups. Its IUPAC-IUBMB semi-systematic name is 1'-Methoxy-19'-oxo-3',4'-didehydro-7,8,1',2'-tetrahydro- Ψ, Ψ carotene-16-oic acid. To our best knowledge, the presence of the carboxyl, methoxy and aldehyde groups on a linear C40 carotenoid backbone is reported here for the first time.
Collapse
Affiliation(s)
- Nupur
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Marek Kuzma
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Jan Hájek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Pavel Hrouzek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Alastair T Gardiner
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Martin Lukeš
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Martin Moos
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - Petr Šimek
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - Michal Koblížek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic.
| |
Collapse
|
24
|
Tanvir RU, Zhang J, Canter T, Chen D, Lu J, Hu Z. Harnessing Solar Energy using Phototrophic Microorganisms: A Sustainable Pathway to Bioenergy, Biomaterials, and Environmental Solutions. RENEWABLE & SUSTAINABLE ENERGY REVIEWS 2021; 146:1-111181. [PMID: 34526853 PMCID: PMC8437043 DOI: 10.1016/j.rser.2021.111181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phototrophic microorganisms (microbial phototrophs) use light as an energy source to carry out various metabolic processes producing biomaterials and bioenergy and supporting their own growth. Among them, microalgae and cyanobacteria have been utilized extensively for bioenergy, biomaterials, and environmental applications. Their superior photosynthetic efficiency, lipid content, and shorter cultivation time compared to terrestrial biomass make them more suitable for efficient production of bioenergy and biomaterials. Other phototrophic microorganisms, especially anoxygenic phototrophs, demonstrated the ability to survive and flourish while producing renewable energy and high-value products under harsh environmental conditions. This review presents a comprehensive overview of microbial phototrophs on their (i) production of bioenergy and biomaterials, (ii) emerging and innovative applications for environmental conservation, mitigation, and remediation, and (iii) physical, genetic, and metabolic pathways to improve light harvesting and biomass/biofuel/biomaterial production. Both physical (e.g., incremental irradiation) and genetic approaches (e.g., truncated antenna) are implemented to increase the light-harvesting efficiency. Increases in biomass yield and metabolic products are possible through the manipulation of metabolic pathways and selection of a proper strain under optimal cultivation conditions and downstream processing, including harvesting, extraction, and purification. Finally, the current barriers in harnessing solar energy using phototrophic microorganisms are presented, and future research perspectives are discussed, such as integrating phototrophic microorganisms with emerging technologies.
Collapse
Affiliation(s)
- Rahamat Ullah Tanvir
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jianying Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Timothy Canter
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| | - Dick Chen
- Dual Enrollment Program, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency (EPA), Cincinnati, Ohio, 45268, USA
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
25
|
Yuan C, Na S, Li F, Hu H. Impact of sulfate and iron oxide on bacterial community dynamics in paddy soil under alternate watering conditions. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124417. [PMID: 33172683 DOI: 10.1016/j.jhazmat.2020.124417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Sulfate and iron oxides are often used as amendments in paddy soil, but their ecological risks for soil microbiomes are not well understood. Paddy soil amended with gypsum or hematite was incubated in laboratory microcosms under submerged (56 d) and subsequent dry (35 d) conditions. The soil bacterial community composition stabilized after 15-21 d of submergence and remained largely unchanged after redrying. The presence of OTUs related to facultative anaerobic bacteria (mainly Acidobacteria groups 7 and 16, Gemmatimonas, and unclassified bacteria) probably accounted for the limited variation in community composition after redrying, as suggested by random forest regressions. Redrying caused remarkable changes in the relative abundance of many bacteria putatively involved in soil reduction and oxidation. Gypsum and hematite did not stimulate sulfate or iron reduction after soil submergence. Although gypsum and hematite largely preserved the bacterial community composition, they significantly reduced the abundance and diversity of the total bacteria (by 3-12%), as well as the relative abundance of many putative bacterial reducers and oxidizers (by 17-100%), compared to the control. The results suggested the potential hazardous effects of sulfate and iron oxide on the bacteria in paddy soil, which should be considered before applying these amendments.
Collapse
Affiliation(s)
- Chaolei Yuan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Shuo Na
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| | - Hangwei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
26
|
Mujakić I, Andrei AŞ, Shabarova T, Fecskeová LK, Salcher MM, Piwosz K, Ghai R, Koblížek M. Common Presence of Phototrophic Gemmatimonadota in Temperate Freshwater Lakes. mSystems 2021; 6:e01241-20. [PMID: 33727400 PMCID: PMC8547001 DOI: 10.1128/msystems.01241-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
Members of the bacterial phylum Gemmatimonadota are ubiquitous in most natural environments and represent one of the top 10 most abundant bacterial phyla in soil. Sequences affiliated with Gemmatimonadota were also reported from diverse aquatic habitats; however, it remains unknown whether they are native organisms or represent bacteria passively transported from sediment or soil. To address this question, we analyzed metagenomes constructed from five freshwater lakes in central Europe. Based on the 16S rRNA gene frequency, Gemmatimonadota represented from 0.02 to 0.6% of all bacteria in the epilimnion and between 0.1 and 1% in the hypolimnion. These proportions were independently confirmed using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Some cells in the epilimnion were attached to diatoms (Fragilaria sp.) or cyanobacteria (Microcystis sp.), which suggests a close association with phytoplankton. In addition, we reconstructed 45 metagenome-assembled genomes (MAGs) related to Gemmatimonadota They represent several novel lineages, which persist in the studied lakes during the seasons. Three lineages contained photosynthesis gene clusters. One of these lineages was related to Gemmatimonas phototrophica and represented the majority of Gemmatimonadota retrieved from the lakes' epilimnion. The other two lineages came from hypolimnion and probably represented novel photoheterotrophic genera. None of these phototrophic MAGs contained genes for carbon fixation. Since most of the identified MAGs were present during the whole year and cells associated with phytoplankton were observed, we conclude that they represent truly limnic Gemmatimonadota distinct from the previously described species isolated from soils or sediments.IMPORTANCE Photoheterotrophic bacterial phyla such as Gemmatimonadota are key components of many natural environments. Its first photoheterotrophic cultured member, Gemmatimonas phototrophica, was isolated in 2014 from a shallow lake in the Gobi Desert. It contains a unique type of photosynthetic complex encoded by a set of genes which were likely received via horizontal transfer from Proteobacteria We were intrigued to discover how widespread this group is in the natural environment. In the presented study, we analyzed 45 metagenome-assembled genomes (MAGs) that were obtained from five freshwater lakes in Switzerland and Czechia. Interestingly, it was found that phototrophic Gemmatimonadota are relatively common in euphotic zones of the studied lakes, whereas heterotrophic Gemmatimonadota prevail in deeper waters. Moreover, our analysis of the MAGs documented that these freshwater species contain almost the same set of photosynthesis genes identified before in Gemmatimonas phototrophica originating from the Gobi Desert.
Collapse
Affiliation(s)
- Izabela Mujakić
- Laboratory of Anoxygenic Phototrophs, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Tanja Shabarova
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Lívia Kolesár Fecskeová
- Laboratory of Anoxygenic Phototrophs, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Kasia Piwosz
- Laboratory of Anoxygenic Phototrophs, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
27
|
Chernomor O, Peters L, Schneidewind J, Loeschcke A, Knieps-Grünhagen E, Schmitz F, von Lieres E, Kutta RJ, Svensson V, Jaeger KE, Drepper T, von Haeseler A, Krauss U. Complex Evolution of Light-Dependent Protochlorophyllide Oxidoreductases in Aerobic Anoxygenic Phototrophs: Origin, Phylogeny, and Function. Mol Biol Evol 2021; 38:819-837. [PMID: 32931580 PMCID: PMC7947762 DOI: 10.1093/molbev/msaa234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Light-dependent protochlorophyllide oxidoreductase (LPOR) and dark-operative protochlorophyllide oxidoreductase are evolutionary and structurally distinct enzymes that are essential for the synthesis of (bacterio)chlorophyll, the primary pigment needed for both anoxygenic and oxygenic photosynthesis. In contrast to the long-held hypothesis that LPORs are only present in oxygenic phototrophs, we recently identified a functional LPOR in the aerobic anoxygenic phototrophic bacterium (AAPB) Dinoroseobacter shibae and attributed its presence to a single horizontal gene transfer event from cyanobacteria. Here, we provide evidence for the more widespread presence of genuine LPOR enzymes in AAPBs. An exhaustive bioinformatics search identified 36 putative LPORs outside of oxygenic phototrophic bacteria (cyanobacteria) with the majority being AAPBs. Using in vitro and in vivo assays, we show that the large majority of the tested AAPB enzymes are genuine LPORs. Solution structural analyses, performed for two of the AAPB LPORs, revealed a globally conserved structure when compared with a well-characterized cyanobacterial LPOR. Phylogenetic analyses suggest that LPORs were transferred not only from cyanobacteria but also subsequently between proteobacteria and from proteobacteria to Gemmatimonadetes. Our study thus provides another interesting example for the complex evolutionary processes that govern the evolution of bacteria, involving multiple horizontal gene transfer events that likely occurred at different time points and involved different donors.
Collapse
Affiliation(s)
- Olga Chernomor
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Lena Peters
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Judith Schneidewind
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anita Loeschcke
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Esther Knieps-Grünhagen
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Fabian Schmitz
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Eric von Lieres
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Roger Jan Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Regensburg, Germany
| | - Vera Svensson
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Thomas Drepper
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Medical University of Vienna, Vienna, Austria
- Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
28
|
Zeng Y, Nupur, Wu N, Madsen AM, Chen X, Gardiner AT, Koblížek M. Gemmatimonas groenlandica sp. nov. Is an Aerobic Anoxygenic Phototroph in the Phylum Gemmatimonadetes. Front Microbiol 2021; 11:606612. [PMID: 33519753 PMCID: PMC7844134 DOI: 10.3389/fmicb.2020.606612] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
The bacterial phylum Gemmatimonadetes contains members capable of performing bacteriochlorophyll-based phototrophy (chlorophototrophy). However, only one strain of chlorophototrophic Gemmatimonadetes bacteria (CGB) has been isolated to date, hampering our further understanding of their photoheterotrophic lifestyle and the evolution of phototrophy in CGB. By combining a culturomics strategy with a rapid screening technique for chlorophototrophs, we report the isolation of a new member of CGB, Gemmatimonas (G.) groenlandica sp. nov., from the surface water of a stream in the Zackenberg Valley in High Arctic Greenland. Distinct from the microaerophilic G. phototrophica strain AP64T, G. groenlandica strain TET16T is a strictly aerobic anoxygenic phototroph, lacking many oxygen-independent enzymes while possessing an expanded arsenal for coping with oxidative stresses. Its pigment composition and infra-red absorption properties are also different from G. phototrophica, indicating that it possesses a different photosystem apparatus. The complete genome sequence of G. groenlandica reveals unique and conserved features in the photosynthesis gene clusters of CGB. We further analyzed metagenome-assembled genomes of CGB obtained from soil and glacier metagenomes from Northeast Greenland, revealing a wide distribution pattern of CGB beyond the stream water investigated.
Collapse
Affiliation(s)
- Yonghui Zeng
- Department of Environmental Science, Aarhus University, Roskilde, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Nupur
- Centre Algatech, Institute of Microbiology CAS, Třeboň, Czechia
| | - Naicheng Wu
- Department of Geography and Spatial Information Techniques, Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
| | - Anne Mette Madsen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Xihan Chen
- Department of Engineering, Aarhus University, Aarhus, Denmark
| | | | - Michal Koblížek
- Centre Algatech, Institute of Microbiology CAS, Třeboň, Czechia
| |
Collapse
|
29
|
Koblížek M, Dachev M, Bína D, Nupur, Piwosz K, Kaftan D. Utilization of light energy in phototrophic Gemmatimonadetes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112085. [PMID: 33220599 DOI: 10.1016/j.jphotobiol.2020.112085] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 02/03/2023]
Abstract
Gemmatimonas phototrophica is, so far, the only described phototrophic species of the bacterial phylum Gemmatimonadetes. Its cells contain a unique type of photosynthetic complex with the reaction center surrounded by a double ring antenna, however they can also grow in the dark using organic carbon substrates. Its photosynthesis genes were received via horizontal gene transfer from Proteobacteria. This raises two questions; how the horizontally transferred photosynthesis apparatus has integrated into the cellular machinery, and how much light-derived energy actually contributes to the cellular metabolism? To address these points, the photosynthetic reactions were studied on several levels, from photophysics of the reaction center to cellular growth. Flash photolysis measurements and bacteriochlorophyll fluorescence kinetic measurements documented the presence of fully functional type-2 reaction centers with a large light harvesting antenna. When illuminated, the bacterial cells reduced their respiration rate by 58 ± 5%, revealing that oxidative phosphorylation was replaced by photophosphorylation. Moreover, illumination also more than doubled the assimilation rates of glucose, a sugar that is mostly used for respiration. Finally, light increased the growth rates of Gemmatimonas phototrophica colonies on agar plates. All the presented data provide evidence that photosynthetic complexes are fully integrated into cellular metabolism of Gemmatimonas phototrophica, and are able to provide a substantial amount of energy for its metabolism and growth.
Collapse
Affiliation(s)
- Michal Koblížek
- Center Algatech, Institute of Microbiology, Czech Acad Sci, 37981 Třeboň, Czechia.
| | - Marko Dachev
- Center Algatech, Institute of Microbiology, Czech Acad Sci, 37981 Třeboň, Czechia
| | - David Bína
- University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czechia; Institute of Plant Molecular Biology, Biology Centre, Czech Acad Sci, Branišovská 1760, 370 05 České Budějovice, Czechia
| | - Nupur
- Center Algatech, Institute of Microbiology, Czech Acad Sci, 37981 Třeboň, Czechia
| | - Kasia Piwosz
- Center Algatech, Institute of Microbiology, Czech Acad Sci, 37981 Třeboň, Czechia
| | - David Kaftan
- Center Algatech, Institute of Microbiology, Czech Acad Sci, 37981 Třeboň, Czechia; University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czechia
| |
Collapse
|
30
|
Liu W, Wang F, Sun Y, Yang L, Chen H, Liu W, Zhu B, Hui C, Wang S. Influence of dragon bamboo with different planting patterns on microbial community and physicochemical property of soil on sunny and shady slopes. J Microbiol 2020; 58:906-914. [PMID: 32876912 DOI: 10.1007/s12275-020-0082-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/02/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022]
Abstract
Dragon bamboo (Dendrocalamus giganteus) is a giant sympodial bamboo species widely distributed in Asia. However, it remains unclear how dragon bamboo and soil microbes interact to affect soil properties. In this study, we investigated the planting patterns (semi-natural and artificial) on different slopes (sunny and shady) to determine the effects on soil properties and microbial community. The results showed that the soil in which dragon bamboo was grown was acidic, with a pH value of ∼5. Also, the soil organic matter content, nitrogen hydrolysate concentration, total nitrogen, available potassium, and total potassium of the dragon bamboo semi-natural forest significantly improved, especially on the sunny slope. In contrast, the available phosphorus level was higher in the artificial bamboo forest, probably owing to the phosphate fertilizer application. The bacterial and fungal diversity and the bacterial abundance were all higher on the sunny slope of the semi-natural forest than those in the other samples. The microbial operational taxonomic units (OTUs) shared between the shady and sunny slopes accounted for 47.8-62.2%, but the core OTUs of all samples were only 24.4-30.4% of each sample, suggesting that the slope type had a significant effect on the microbial community. Some acidophilic microbes, such as Acidobacteria groups, Streptomyces and Mortierella, became dominant in dragon bamboo forest soil. A PICRUSt analysis of the bacterial functional groups revealed that post-translational modification, cell division, and coenzyme transport and metabolism were abundant in the semi-natural forest. However, some microorganisms with strong stress resistance might be activated in the artificial forest. Taken together, these results illustrated the influence of dragon bamboo growth on soil physicochemical property and microbial community, which might help understand the growth status of dragon bamboo under different planting patterns.
Collapse
Affiliation(s)
- Weiyi Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, P. R. China.,Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650224, P. R. China
| | - Fang Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, P. R. China.,Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650224, P. R. China
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Lei Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, P. R. China.,Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650224, P. R. China
| | - Huihai Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Weijie Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Chaomao Hui
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, P. R. China.
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, 710069, P. R. China.
| |
Collapse
|
31
|
Jankowiak JG, Gobler CJ. The Composition and Function of Microbiomes Within Microcystis Colonies Are Significantly Different Than Native Bacterial Assemblages in Two North American Lakes. Front Microbiol 2020; 11:1016. [PMID: 32547511 PMCID: PMC7270213 DOI: 10.3389/fmicb.2020.01016] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/24/2020] [Indexed: 11/21/2022] Open
Abstract
The toxic cyanobacterium Microcystis is one of the most pervasive harmful algal bloom (HAB) genera and naturally occurs in large colonies known to harbor diverse heterotrophic bacterial assemblages. While colony-associated microbiomes may influence Microcystis blooms, there remains a limited understanding of the structure and functional potential of these communities and how they may be shaped by changing environmental conditions. To address this gap, we compared the dynamics of Microcystis-attached (MCA), free-living (FL), and whole water (W) microbiomes during Microcystis blooms using next-generation amplicon sequencing (16S rRNA), a predictive metagenome software, and other bioinformatic approaches. Microbiomes were monitored through high resolution spatial-temporal surveys across two North American lakes, Lake Erie (LE) and Lake Agawam (LA; Long Island, NY, United States) in 2017, providing the largest dataset of these fractions to date. Sequencing of 126 samples generated 7,922,628 sequences that clustered into 7,447 amplicon sequence variants (ASVs) with 100% sequence identity. Across lakes, the MCA microbiomes were significantly different than the FL and W fractions being significantly enriched in Gemmatimonadetes, Burkholderiaceae, Rhizobiales, and Cytophagales and depleted of Actinobacteria. Further, although MCA communities harbored > 900 unique ASVs, they were significantly less diverse than the other fractions with diversity inversely related to bloom intensity, suggesting increased selection pressure on microbial communities as blooms intensified. Despite taxonomic differences between lakes, predicted metagenomes revealed conserved functional potential among MCA microbiomes. MCA communities were significantly enriched in pathways involved in N and P cycling and microcystin-degradation. Taxa potentially capable of N2-fixation were significantly enriched (p < 0.05) and up to four-fold more abundant within the MCA faction relative to other fractions, potentially aiding in the proliferation of Microcystis blooms during low N conditions. The MCA predicted metagenomes were conserved over 8 months of seasonal changes in temperature and N availability despite strong temporal succession in microbiome composition. Collectively, these findings indicate that Microcystis colonies harbor a statistically distinct microbiome with a conserved functional potential that may help facilitate bloom persistence under environmentally unfavorable conditions.
Collapse
Affiliation(s)
- Jennifer G. Jankowiak
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| | - Christopher J. Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| |
Collapse
|
32
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020. [PMID: 31900730 DOI: 10.1007/s00709-019-01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
33
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020; 257:621-753. [PMID: 31900730 PMCID: PMC7203096 DOI: 10.1007/s00709-019-01442-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/19/2019] [Indexed: 05/02/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
34
|
Imhoff JF, Rahn T, Künzel S, Neulinger SC. Phylogeny of Anoxygenic Photosynthesis Based on Sequences of Photosynthetic Reaction Center Proteins and a Key Enzyme in Bacteriochlorophyll Biosynthesis, the Chlorophyllide Reductase. Microorganisms 2019; 7:E576. [PMID: 31752268 PMCID: PMC6920907 DOI: 10.3390/microorganisms7110576] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
Photosynthesis is a key process for the establishment and maintenance of life on earth, and it is manifested in several major lineages of the prokaryote tree of life. The evolution of photosynthesis in anoxygenic photosynthetic bacteria is of major interest as these have the most ancient roots of photosynthetic systems. The phylogenetic relations between anoxygenic phototrophic bacteria were compared on the basis of sequences of key proteins of the type-II photosynthetic reaction center, including PufLM and PufH (PuhA), and a key enzyme of bacteriochlorophyll biosynthesis, the light-independent chlorophyllide reductase BchXYZ. The latter was common to all anoxygenic phototrophic bacteria, including those with a type-I and those with a type-II photosynthetic reaction center. The phylogenetic considerations included cultured phototrophic bacteria from several phyla, including Proteobacteria (138 species), Chloroflexi (five species), Chlorobi (six species), as well as Heliobacterium modesticaldum (Firmicutes), Chloracidobacterium acidophilum (Acidobacteria), and Gemmatimonas phototrophica (Gemmatimonadetes). Whenever available, type strains were studied. Phylogenetic relationships based on a photosynthesis tree (PS tree, including sequences of PufHLM-BchXYZ) were compared with those of 16S rRNA gene sequences (RNS tree). Despite some significant differences, large parts were congruent between the 16S rRNA phylogeny and photosynthesis proteins. The phylogenetic relations demonstrated that bacteriochlorophyll biosynthesis had evolved in ancestors of phototrophic green bacteria much earlier as compared to phototrophic purple bacteria and that multiple events independently formed different lineages of aerobic phototrophic purple bacteria, many of which have very ancient roots. The Rhodobacterales clearly represented the youngest group, which was separated from other Proteobacteria by a large evolutionary gap.
Collapse
Affiliation(s)
| | - Tanja Rahn
- GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany;
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biologie, 24306 Plön, Germany;
| | | |
Collapse
|
35
|
García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T, Kyrpides NC, Hahnke RL, Göker M. Analysis of 1,000 Type-Strain Genomes Improves Taxonomic Classification of Bacteroidetes. Front Microbiol 2019; 10:2083. [PMID: 31608019 PMCID: PMC6767994 DOI: 10.3389/fmicb.2019.02083] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
Although considerable progress has been made in recent years regarding the classification of bacteria assigned to the phylum Bacteroidetes, there remains a need to further clarify taxonomic relationships within a diverse assemblage that includes organisms of clinical, piscicultural, and ecological importance. Bacteroidetes classification has proved to be difficult, not least when taxonomic decisions rested heavily on interpretation of poorly resolved 16S rRNA gene trees and a limited number of phenotypic features. Here, draft genome sequences of a greatly enlarged collection of genomes of more than 1,000 Bacteroidetes and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa proposed long ago such as Bacteroides, Cytophaga, and Flavobacterium but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which can be considered valuable taxonomic markers. We detected many incongruities when comparing the results of the present study with existing classifications, which appear to be caused by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. The few significant incongruities found between 16S rRNA gene and whole genome trees underline the pitfalls inherent in phylogenies based upon single gene sequences and the impediment in using ordinary bootstrapping in phylogenomic studies, particularly when combined with too narrow gene selections. While a significant degree of phylogenetic conservation was detected in all phenotypic characters investigated, the overall fit to the tree varied considerably, which is one of the probable causes of misclassifications in the past, much like the use of plesiomorphic character states as diagnostic features.
Collapse
Affiliation(s)
- Marina García-López
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jan P. Meier-Kolthoff
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Richard L. Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Markus Göker
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
36
|
Valdespino-Castillo PM, Cerqueda-García D, Espinosa AC, Batista S, Merino-Ibarra M, Taş N, Alcántara-Hernández RJ, Falcón LI. Microbial distribution and turnover in Antarctic microbial mats highlight the relevance of heterotrophic bacteria in low-nutrient environments. FEMS Microbiol Ecol 2019; 94:5047302. [PMID: 29982398 DOI: 10.1093/femsec/fiy129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/04/2018] [Indexed: 11/14/2022] Open
Abstract
Maritime Antarctica has shown the highest increase in temperature in the Southern Hemisphere. Under this scenario, biogeochemical cycles may be altered, resulting in rapid environmental change for Antarctic biota. Microbes that drive biogeochemical cycles often form biofilms or microbial mats in continental meltwater environments. Limnetic microbial mats from the Fildes Peninsula were studied using high-throughput 16S rRNA gene sequencing. Mat samples were collected from 15 meltwater stream sites, comprising a natural gradient from ultraoligotrophic glacier flows to meltwater streams exposed to anthropogenic activities. Our analyses show that microbial community structure differences between mats are explained by environmental NH4+, NO3-, DIN, soluble reactive silicon and conductivity. Microbial mats living under ultraoligotrophic meltwater conditions did not exhibit a dominance of cyanobacterial photoautotrophs, as has been documented for other Antarctic limnetic microbial mats. Instead, ultraoligotrophic mat communities were characterized by the presence of microbes recognized as heterotrophs and photoheterotrophs. This suggests that microbial capabilities for recycling organic matter may be a key factor to dwell in ultra-low nutrient conditions. Our analyses show that phylotype level assemblages exhibit coupled distribution patterns in environmental oligotrophic inland waters. The evaluation of these microbes suggests the relevance of reproductive and structural strategies to pioneer these psychrophilic ultraoligotrophic environments.
Collapse
Affiliation(s)
| | - Daniel Cerqueda-García
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Ana Cecilia Espinosa
- LANCIS, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Silvia Batista
- Unidad de Microbiología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, 11600, Uruguay
| | - Martín Merino-Ibarra
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Neslihan Taş
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | | | - Luisa I Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| |
Collapse
|
37
|
Enrichment of Verrucomicrobia, Actinobacteria and Burkholderiales drives selection of bacterial community from soil by maize roots in a traditional milpa agroecosystem. PLoS One 2018; 13:e0208852. [PMID: 30571782 PMCID: PMC6301694 DOI: 10.1371/journal.pone.0208852] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/19/2018] [Indexed: 01/19/2023] Open
Abstract
Milpas are rain-fed agroecosystems involving domesticated, semi-domesticated and tolerated plant species that combine maize with a large variety of other crop, tree or shrub species. Milpas are low input and low-tillage, yet highly productive agroecosystems, which have been maintained over millennia in indigenous communities in Mexico and other countries in Central America. Thus, milpas may retain ancient plant-microorganisms interactions, which could have been lost in modern high-tillage monocultures with large agrochemical input. In this work, we performed high-throughput 16S ribosomal DNA sequencing of soil adjacent to maize roots and bulk soil sampled at 30 cm from the base of the plants. We found that the bacterial communities of maize root soil had a lower alpha diversity, suggesting selection of microorganisms by maize-roots from the bulk-soil community. Beta diversity analysis confirmed that these environments harbor two distinct microbial communities; differences were driven by members of phyla Verrucomicrobia and Actinobacteria, as well as the order Burkholderiales (Betaproteobacteria), all of which had higher relative abundance in soil adjacent to the roots. Numerous studies have shown the influence of maize plants on bacterial communities found in soil attached tightly to the roots; here we further show that the influence of maize roots at milpas on bacterial communities is detectable even in plant-free soil collected nearby. We propose that members of Verrucomicrobia and other phyla found in the rhizosphere may establish beneficial plant-microbe interactions with maize roots in milpas, and propose to address their cultivation for future studies on ecology and potential use.
Collapse
|
38
|
Canniffe DP, Thweatt JL, Gomez Maqueo Chew A, Hunter CN, Bryant DA. A paralog of a bacteriochlorophyll biosynthesis enzyme catalyzes the formation of 1,2-dihydrocarotenoids in green sulfur bacteria. J Biol Chem 2018; 293:15233-15242. [PMID: 30126840 PMCID: PMC6166724 DOI: 10.1074/jbc.ra118.004672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/17/2018] [Indexed: 12/03/2022] Open
Abstract
Chlorobaculum tepidum, a green sulfur bacterium, utilizes chlorobactene as its major carotenoid, and this organism also accumulates a reduced form of this monocyclic pigment, 1′,2′-dihydrochlorobactene. The protein catalyzing this reduction is the last unidentified enzyme in the biosynthetic pathways for all of the green sulfur bacterial pigments used for photosynthesis. The genome of C. tepidum contains two paralogous genes encoding members of the FixC family of flavoproteins: bchP, which has been shown to encode an enzyme of bacteriochlorophyll biosynthesis; and bchO, for which a function has not been assigned. Here we demonstrate that a bchO mutant is unable to synthesize 1′,2′-dihydrochlorobactene, and when bchO is heterologously expressed in a neurosporene-producing mutant of the purple bacterium, Rhodobacter sphaeroides, the encoded protein is able to catalyze the formation of 1,2-dihydroneurosporene, the major carotenoid of the only other organism reported to synthesize 1,2-dihydrocarotenoids, Blastochloris viridis. Identification of this enzyme completes the pathways for the synthesis of photosynthetic pigments in Chlorobiaceae, and accordingly and consistent with its role in carotenoid biosynthesis, we propose to rename the gene cruI. Notably, the absence of cruI in B. viridis indicates that a second 1,2-carotenoid reductase, which is structurally unrelated to CruI (BchO), must exist in nature. The evolution of this carotenoid reductase in green sulfur bacteria is discussed herein.
Collapse
Affiliation(s)
- Daniel P Canniffe
- From the Department of Molecular Biology & Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom, .,the Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - Jennifer L Thweatt
- the Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - Aline Gomez Maqueo Chew
- the Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - C Neil Hunter
- From the Department of Molecular Biology & Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Donald A Bryant
- the Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and .,the Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
39
|
Thiel V, Tank M, Bryant DA. Diversity of Chlorophototrophic Bacteria Revealed in the Omics Era. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:21-49. [PMID: 29505738 DOI: 10.1146/annurev-arplant-042817-040500] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Because of recent advances in omics methodologies, knowledge of chlorophototrophy (i.e., chlorophyll-based phototrophy) in bacteria has rapidly increased. Chlorophototrophs currently are known to occur in seven bacterial phyla: Cyanobacteria, Proteobacteria, Chlorobi, Chloroflexi, Firmicutes, Acidobacteria, and Gemmatimonadetes. Other organisms that can produce chlorophylls and photochemical reaction centers may still be undiscovered. Here we summarize the current status of the taxonomy and phylogeny of chlorophototrophic bacteria as revealed by genomic methods. In specific cases, we briefly describe important ecophysiological and metabolic insights that have been gained from the application of genomic methods to these bacteria. In the 20 years since the completion of the Synechocystis sp. PCC 6803 genome in 1996, approximately 1,100 genomes have been sequenced, which represents nearly the complete diversity of known chlorophototrophic bacteria. These data are leading to new insights into many important processes, including photosynthesis, nitrogen and carbon fixation, cellular differentiation and development, symbiosis, and ecosystem functionality.
Collapse
Affiliation(s)
- Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; ,
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; ,
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| |
Collapse
|
40
|
Pascual J, Foesel BU, Geppert A, Huber KJ, Boedeker C, Luckner M, Wanner G, Overmann J. Roseisolibacter agri gen. nov., sp. nov., a novel slow-growing member of the under-represented phylum Gemmatimonadetes. Int J Syst Evol Microbiol 2018; 68:1028-1036. [PMID: 29458671 DOI: 10.1099/ijsem.0.002619] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
A novel slow-growing bacterium, designated strain AW1220T, was isolated from agricultural floodplain soil sampled at Mashare (Kavango region, Namibia) by using a high-throughput cultivation approach. Strain AW1220T was characterized as a Gram-negative, non-motile, rod-shaped bacterium. Occasionally, some cells attained an unusual length of up to 35 µm. The strain showed positive responses for catalase and cytochrome-c oxidase and divided by binary fission and/or budding. The strain had an aerobic chemoorganoheterotrophic metabolism and was also able to grow under micro-oxic conditions. Colonies were small and pink pigmented. Strain AW1220T was found to be a mesophilic, neutrophilic and non-halophilic bacterium. Cells accumulated polyphosphate intracellularly and mainly utilized complex protein substrates for growth. 16S rRNA gene sequence comparisons revealed that strain AW1220T belonged to the class Gemmatimonadetes (=group 1). Its closest relatives were found to be Gemmatimonas aurantiaca T-27T (90.9 % gene sequence similarity), Gemmatimonas phototrophica AP64T (90.8 %) and Longimicrobiumterrae CB-286315T (84.2 %). The genomic G+C content was 73.3 mol%. The major fatty acids were iso-C15 : 0, C16 : 1ω7c and/or iso-C15 : 0 2-OH, iso-C17 : 1ω9c, iso-C15 : 0 3-OH and C16 : 0. The predominant respiratory quinone was MK-9, albeit minor amounts of MK-8 and MK-10 are also present. The polar lipids comprised major amounts of phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol and one unidentified phosphoglycolipid. On the basis of its polyphasic characterization, strain AW1220T represents a novel genus and species of the class Gemmatimonadetes for which the name Roseisolibacter agri gen. nov., sp. nov. is proposed, with the type strain AW1220T (=DSM 104292T=LMG 29977T).
Collapse
Affiliation(s)
- Javier Pascual
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Bärbel U Foesel
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,Present address: Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Alicia Geppert
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Katharina J Huber
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Christian Boedeker
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Manja Luckner
- Department of Biology I, Biozentrum Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Gerhard Wanner
- Department of Biology I, Biozentrum Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Jörg Overmann
- Department of Microbial Ecology and Diversity Research, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
41
|
Imhoff JF, Rahn T, Künzel S, Neulinger SC. Photosynthesis Is Widely Distributed among Proteobacteria as Demonstrated by the Phylogeny of PufLM Reaction Center Proteins. Front Microbiol 2018; 8:2679. [PMID: 29472894 PMCID: PMC5810265 DOI: 10.3389/fmicb.2017.02679] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/22/2017] [Indexed: 12/01/2022] Open
Abstract
Two different photosystems for performing bacteriochlorophyll-mediated photosynthetic energy conversion are employed in different bacterial phyla. Those bacteria employing a photosystem II type of photosynthetic apparatus include the phototrophic purple bacteria (Proteobacteria), Gemmatimonas and Chloroflexus with their photosynthetic relatives. The proteins of the photosynthetic reaction center PufL and PufM are essential components and are common to all bacteria with a type-II photosynthetic apparatus, including the anaerobic as well as the aerobic phototrophic Proteobacteria. Therefore, PufL and PufM proteins and their genes are perfect tools to evaluate the phylogeny of the photosynthetic apparatus and to study the diversity of the bacteria employing this photosystem in nature. Almost complete pufLM gene sequences and the derived protein sequences from 152 type strains and 45 additional strains of phototrophic Proteobacteria employing photosystem II were compared. The results give interesting and comprehensive insights into the phylogeny of the photosynthetic apparatus and clearly define Chromatiales, Rhodobacterales, Sphingomonadales as major groups distinct from other Alphaproteobacteria, from Betaproteobacteria and from Caulobacterales (Brevundimonas subvibrioides). A special relationship exists between the PufLM sequences of those bacteria employing bacteriochlorophyll b instead of bacteriochlorophyll a. A clear phylogenetic association of aerobic phototrophic purple bacteria to anaerobic purple bacteria according to their PufLM sequences is demonstrated indicating multiple evolutionary lines from anaerobic to aerobic phototrophic purple bacteria. The impact of pufLM gene sequences for studies on the environmental diversity of phototrophic bacteria is discussed and the possibility of their identification on the species level in environmental samples is pointed out.
Collapse
Affiliation(s)
- Johannes F Imhoff
- Research Unit Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Tanja Rahn
- Research Unit Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | |
Collapse
|
42
|
Cabello-Yeves PJ, Zemskaya TI, Rosselli R, Coutinho FH, Zakharenko AS, Blinov VV, Rodriguez-Valera F. Genomes of Novel Microbial Lineages Assembled from the Sub-Ice Waters of Lake Baikal. Appl Environ Microbiol 2018; 84:e02132-17. [PMID: 29079621 PMCID: PMC5734018 DOI: 10.1128/aem.02132-17] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022] Open
Abstract
We present a metagenomic study of Lake Baikal (East Siberia). Two samples obtained from the water column under the ice cover (5 and 20 m deep) in March 2016 have been deep sequenced and the reads assembled to generate metagenome-assembled genomes (MAGs) that are representative of the microbes living in this special environment. Compared with freshwater bodies studied around the world, Lake Baikal had an unusually high fraction of Verrucomicrobia Other groups, such as Actinobacteria and Proteobacteria, were in proportions similar to those found in other lakes. The genomes (and probably cells) tended to be small, presumably reflecting the extremely oligotrophic and cold prevalent conditions. Baikal microbes are novel lineages recruiting very little from other water bodies and are distantly related to other freshwater microbes. Despite their novelty, they showed the closest relationship to genomes discovered by similar approaches from other freshwater lakes and reservoirs. Some of them were particularly similar to MAGs from the Baltic Sea, which, although it is brackish, connected to the ocean, and much more eutrophic, has similar climatological conditions. Many of the microbes contained rhodopsin genes, indicating that, in spite of the decreased light penetration allowed by the thick ice/snow cover, photoheterotrophy could be widespread in the water column, either because enough light penetrates or because the microbes are already adapted to the summer ice-less conditions. We have found a freshwater SAR11 subtype I/II representative showing striking synteny with Pelagibacterubique strains, as well as a phage infecting the widespread freshwater bacterium PolynucleobacterIMPORTANCE Despite the increasing number of metagenomic studies on different freshwater bodies, there is still a missing component in oligotrophic cold lakes suffering from long seasonal frozen cycles. Here, we describe microbial genomes from metagenomic assemblies that appear in the upper water column of Lake Baikal, the largest and deepest freshwater body on Earth. This lake is frozen from January to May, which generates conditions that include an inverted temperature gradient (colder up), decrease in light penetration due to ice, and, especially, snow cover, and oligotrophic conditions more similar to the open-ocean and high-altitude lakes than to other freshwater or brackish systems. As could be expected, most reconstructed genomes are novel lineages distantly related to others in cold environments, like the Baltic Sea and other freshwater lakes. Among them, there was a broad set of streamlined microbes with small genomes/intergenic spacers, including a new nonmarine Pelagibacter-like (subtype I/II) genome.
Collapse
Affiliation(s)
- Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Tamara I Zemskaya
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Riccardo Rosselli
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Felipe H Coutinho
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Alexandra S Zakharenko
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Vadim V Blinov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
43
|
Dachev M, Bína D, Sobotka R, Moravcová L, Gardian Z, Kaftan D, Šlouf V, Fuciman M, Polívka T, Koblížek M. Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica. PLoS Biol 2017; 15:e2003943. [PMID: 29253871 PMCID: PMC5749889 DOI: 10.1371/journal.pbio.2003943] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/02/2018] [Accepted: 11/22/2017] [Indexed: 11/29/2022] Open
Abstract
The majority of life on Earth depends directly or indirectly on the sun as a source of energy. The initial step of photosynthesis is facilitated by light-harvesting complexes, which capture and transfer light energy into the reaction centers (RCs). Here, we analyzed the organization of photosynthetic (PS) complexes in the bacterium G. phototrophica, which so far is the only phototrophic representative of the bacterial phylum Gemmatimonadetes. The isolated complex has a molecular weight of about 800 ± 100 kDa, which is approximately 2 times larger than the core complex of Rhodospirillum rubrum. The complex contains 62.4 ± 4.7 bacteriochlorophyll (BChl) a molecules absorbing in 2 distinct infrared absorption bands with maxima at 816 and 868 nm. Using femtosecond transient absorption spectroscopy, we determined the energy transfer time between these spectral bands as 2 ps. Single particle analyses of the purified complexes showed that they were circular structures with an outer diameter of approximately 18 nm and a thickness of 7 nm. Based on the obtained, we propose that the light-harvesting complexes in G. phototrophica form 2 concentric rings surrounding the type 2 RC. The inner ring (corresponding to the B868 absorption band) is composed of 15 subunits and is analogous to the inner light-harvesting complex 1 (LH1) in purple bacteria. The outer ring is composed of 15 more distant BChl dimers with no or slow energy transfer between them, resulting in the B816 absorption band. This completely unique and elegant organization offers good structural stability, as well as high efficiency of light harvesting. Our results reveal that while the PS apparatus of Gemmatimonadetes was acquired via horizontal gene transfer from purple bacteria, it later evolved along its own pathway, devising a new arrangement of its light harvesting complexes. The majority of life on Earth depends directly or indirectly on the sun as a source of energy. Phototrophic organisms use energy from light to power various cellular and metabolic processes. The initial step of photosynthesis is facilitated by light-harvesting complexes, which capture and transfer light energy into the reaction centers where it is used to power proton gradients or to form new chemical bonds. Here, we analyzed photosynthetic complexes in Gemmatimonas phototrophica, the only known phototrophic representative of the bacterial phylum Gemmatimonadetes. Using a combination of biochemical and spectroscopic techniques, we show that the light-harvesting complexes of G. phototrophica are organized in 2 concentric rings around the reaction center. This organization is unique among anoxygenic phototrophs. It offers both structural stability and high efficiency of light harvesting. The structural unit of both antenna rings is a dimer of photosynthetic pigments called bacteriochlorophyll. The inner ring is populated by more densely packed dimers, while the outer ring contains more distant dimers with a minimal excitation exchange. Such an arrangement modifies the spectral properties of bacteriochlorophylls in the complex and ensures efficient capture of light in the near-infrared part of the solar spectrum.
Collapse
Affiliation(s)
- Marko Dachev
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - David Bína
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Biology Center of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Roman Sobotka
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Lenka Moravcová
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - Zdenko Gardian
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Biology Center of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - David Kaftan
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Václav Šlouf
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Marcel Fuciman
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Tomáš Polívka
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Biology Center of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michal Koblížek
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- * E-mail:
| |
Collapse
|
44
|
Barber NA, Chantos-Davidson KM, Amel Peralta R, Sherwood JP, Swingley WD. Soil microbial community composition in tallgrass prairie restorations converge with remnants across a 27-year chronosequence. Environ Microbiol 2017; 19:3118-3131. [PMID: 28474391 DOI: 10.1111/1462-2920.13785] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/21/2017] [Accepted: 04/28/2017] [Indexed: 11/30/2022]
Abstract
Restoration and management of natural ecosystems is a critical strategy in mitigating global biodiversity loss. This is exemplified in the American Midwest by efforts aimed at reclaiming historical grasslands lost to high-yield agriculture. While restorations traditionally take the form of plant reintroduction and management, advances in microbial analyses suggest that soil communities could be indicators restoration success. However, current understanding of key microbial taxa and functional activities in both natural and restored ecosystems is limited. Here, we investigated the impact of nearly 30 years of carefully managed restoration on soil microbial communities at the Nachusa Grasslands in northern Illinois, USA. We characterized bacterial and archaeal communities in a chronosequence of restored tallgrass prairies ranging from 1 to 27 years old across a growing season and compared them to communities in pre-restoration agricultural fields and remnant prairies. Results indicate that older restorations harboured communities statistically distinct from newer restorations. These communities converged toward those in local prairie remnants, suggesting that plant-focussed restoration has yielded soil bacterial communities reflective of a successful restoration. Recovery of microbial clades within the Verrucomicrobia and Acidobacteria are an important feature of this convergence, and these groups could be targeted for future soil-focussed, bottom-up restoration studies.
Collapse
Affiliation(s)
- Nicholas A Barber
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA.,Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, DeKalb, IL, USA
| | | | | | | | - Wesley D Swingley
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA.,Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
45
|
Yang C, Wang Q, Simon PN, Liu J, Liu L, Dai X, Zhang X, Kuang J, Igarashi Y, Pan X, Luo F. Distinct Network Interactions in Particle-Associated and Free-Living Bacterial Communities during a Microcystis aeruginosa Bloom in a Plateau Lake. Front Microbiol 2017; 8:1202. [PMID: 28713340 PMCID: PMC5492469 DOI: 10.3389/fmicb.2017.01202] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/13/2017] [Indexed: 12/23/2022] Open
Abstract
Particle-associated bacteria (PAB) and free-living bacteria (FLB) from aquatic environments during phytoplankton blooms differ in their physical distance from algae. Both the interactions within PAB and FLB community fractions and their relationship with the surrounding environmental properties are largely unknown. Here, by using high-throughput sequencing and network-based analyses, we compared the community and network characteristics of PAB and FLB from a plateau lake during a Microcystis aeruginosa bloom. Results showed that PAB and FLB differed significantly in diversity, structure and microbial connecting network. PAB communities were characterized by highly similar bacterial community structure in different sites, tighter network connections, important topological roles for the bloom-causing M. aeruginosa and Alphaproteobacteria, especially for the potentially nitrogen-fixing (Pleomorphomonas) and algicidal bacteria (Brevundimonas sp.). FLB communities were sensitive to the detected environmental factors and were characterized by significantly higher bacterial diversity, less connectivity, larger network size and marginal role of M. aeruginosa. In both networks, covariation among bacterial taxa was extensive (>88% positive connections), and bacteria potentially affiliated with biogeochemical cycling of nitrogen (i.e., denitrification, nitrogen-fixation and nitrite-oxidization) were important in occupying module hubs, such as Meganema, Pleomorphomonas, and Nitrospira. These findings highlight the importance of considering microbial network interactions for the understanding of blooms.
Collapse
Affiliation(s)
- Caiyun Yang
- Research Center of Bioenergy and Bioremediation, Southwest UniversityChongqing, China
| | - Qi Wang
- Research Center of Bioenergy and Bioremediation, Southwest UniversityChongqing, China
| | - Paulina N Simon
- Research Center of Bioenergy and Bioremediation, Southwest UniversityChongqing, China
| | - Jinyu Liu
- Research Center of Bioenergy and Bioremediation, Southwest UniversityChongqing, China
| | - Lincong Liu
- Research Center of Bioenergy and Bioremediation, Southwest UniversityChongqing, China
| | - Xianzhu Dai
- Research Center of Bioenergy and Bioremediation, Southwest UniversityChongqing, China
| | - Xiaohui Zhang
- Research Center of Bioenergy and Bioremediation, Southwest UniversityChongqing, China
| | - Jialiang Kuang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen UniversityGuangzhou, China
| | - Yasuo Igarashi
- Research Center of Bioenergy and Bioremediation, Southwest UniversityChongqing, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and TechnologyKunming, China
| | - Feng Luo
- Research Center of Bioenergy and Bioremediation, Southwest UniversityChongqing, China
| |
Collapse
|
46
|
Nitrous Oxide Reduction by an Obligate Aerobic Bacterium, Gemmatimonas aurantiaca Strain T-27. Appl Environ Microbiol 2017; 83:AEM.00502-17. [PMID: 28389533 DOI: 10.1128/aem.00502-17] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
N2O-reducing organisms with nitrous oxide reductases (NosZ) are known as the only biological sink of N2O in the environment. Among the most abundant nosZ genes found in the environment are nosZ genes affiliated with the understudied Gemmatimonadetes phylum. In this study, a unique regulatory mechanism of N2O reduction in Gemmatimonas aurantiaca strain T-27, an isolate affiliated with the Gemmatimonadetes phylum, was examined. Strain T-27 was incubated with N2O and/or O2 as the electron acceptor. Significant N2O reduction was observed only when O2 was initially present. When batch cultures of strain T-27 were amended with O2 and N2O, N2O reduction commenced after O2 was depleted. In a long-term incubation with the addition of N2O upon depletion, the N2O reduction rate decreased over time and came to an eventual stop. Spiking of the culture with O2 resulted in the resuscitation of N2O reduction activity, supporting the hypothesis that N2O reduction by strain T-27 required the transient presence of O2 The highest level of nosZ transcription (8.97 nosZ transcripts/recA transcript) was observed immediately after O2 depletion, and transcription decreased ∼25-fold within 85 h, supporting the observed phenotype. The observed difference between responses of strain T-27 cultures amended with and without N2O to O2 starvation suggested that N2O helped sustain the viability of strain T-27 during temporary anoxia, although N2O reduction was not coupled to growth. The findings in this study suggest that obligate aerobic microorganisms with nosZ genes may utilize N2O as a temporary surrogate for O2 to survive periodic anoxia.IMPORTANCE Emission of N2O, a potent greenhouse gas and ozone depletion agent, from the soil environment is largely determined by microbial sources and sinks. N2O reduction by organisms with N2O reductases (NosZ) is the only known biological sink of N2O at environmentally relevant concentrations (up to ∼1,000 parts per million by volume [ppmv]). Although a large fraction of nosZ genes recovered from soil is affiliated with nosZ found in the genomes of the obligate aerobic phylum Gemmatimonadetes, N2O reduction has not yet been confirmed in any of these organisms. This study demonstrates that N2O is reduced by an obligate aerobic bacterium, Gemmatimonas aurantiaca strain T-27, and suggests a novel regulation mechanism for N2O reduction in this organism, which may also be applicable to other obligate aerobic organisms possessing nosZ genes. We expect that these findings will significantly advance the understanding of N2O dynamics in environments with frequent transitions between oxic and anoxic conditions.
Collapse
|
47
|
Shlyk O, Samish I, Matěnová M, Dulebo A, Poláková H, Kaftan D, Scherz A. A single residue controls electron transfer gating in photosynthetic reaction centers. Sci Rep 2017; 7:44580. [PMID: 28300167 PMCID: PMC5353731 DOI: 10.1038/srep44580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/10/2017] [Indexed: 12/31/2022] Open
Abstract
Interquinone QA− → QB electron-transfer (ET) in isolated photosystem II reaction centers (PSII-RC) is protein-gated. The temperature-dependent gating frequency “k” is described by the Eyring equation till levelling off at T ≥ 240 °K. Although central to photosynthesis, the gating mechanism has not been resolved and due to experimental limitations, could not be explored in vivo. Here we mimic the temperature dependency of “k” by enlarging VD1-208, the volume of a single residue at the crossing point of the D1 and D2 PSII-RC subunits in Synechocystis 6803 whole cells. By controlling the interactions of the D1/D2 subunits, VD1-208 (or 1/T) determines the frequency of attaining an ET-active conformation. Decelerated ET, impaired photosynthesis, D1 repair rate and overall cell physiology upon increasing VD1-208 to above 130 Å3, rationalize the >99% conservation of small residues at D1-208 and its homologous motif in non-oxygenic bacteria. The experimental means and resolved mechanism are relevant for numerous transmembrane protein-gated reactions.
Collapse
Affiliation(s)
- Oksana Shlyk
- The Weizmann Institute of Science, Department of Plant and Environmental Sciences, 76100 Rehovot, Israel
| | - Ilan Samish
- The Weizmann Institute of Science, Department of Plant and Environmental Sciences, 76100 Rehovot, Israel
| | - Martina Matěnová
- University of South Bohemia in České Budějovice, Faculty of Science, 37005 České Budějovice, Czech Republic
| | - Alexander Dulebo
- University of South Bohemia in České Budějovice, Faculty of Science, 37005 České Budějovice, Czech Republic
| | - Helena Poláková
- University of South Bohemia in České Budějovice, Faculty of Science, 37005 České Budějovice, Czech Republic
| | - David Kaftan
- University of South Bohemia in České Budějovice, Faculty of Science, 37005 České Budějovice, Czech Republic.,Institute of Microbiology CAS, Department of Phototrophic Microorganisms, 37981 Trebon, Czech Republic
| | - Avigdor Scherz
- The Weizmann Institute of Science, Department of Plant and Environmental Sciences, 76100 Rehovot, Israel
| |
Collapse
|
48
|
Hanada S. Anoxygenic Photosynthesis -A Photochemical Reaction That Does Not Contribute to Oxygen Reproduction. Microbes Environ 2016; 31:1-3. [PMID: 27021204 PMCID: PMC4791109 DOI: 10.1264/jsme2.me3101rh] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Satoshi Hanada
- Graduate School of Science and Engineering, Tokyo Metropolitan University
| |
Collapse
|
49
|
Novel acsF Gene Primers Revealed a Diverse Phototrophic Bacterial Population, Including Gemmatimonadetes, in Lake Taihu (China). Appl Environ Microbiol 2016; 82:5587-94. [PMID: 27401973 DOI: 10.1128/aem.01063-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Anoxygenic phototrophs represent an environmentally important and phylogenetically diverse group of organisms. They harvest light using bacteriochlorophyll-containing reaction centers. Recently, a novel phototrophic bacterium, Gemmatimonas phototrophica, belonging to a rarely studied phylum, Gemmatimonadetes, was isolated from a freshwater lake in the Gobi Desert. To obtain more information about the environmental distribution of phototrophic Gemmatimonadetes, we collected microbial samples from the water column, upper sediment, and deeper anoxic sediment of Lake Taihu, China. MiSeq sequencing of the 16S rRNA, pufM, and bchY genes was carried out to assess the diversity of local phototrophic communities. In addition, we designed new degenerate primers of aerobic cyclase gene acsF, which serves as a convenient marker for both phototrophic Gemmatimonadetes and phototrophic Proteobacteria Our results showed that most of the phototrophic species in Lake Taihu belong to Alpha- and Betaproteobacteria Sequences of green sulfur and green nonsulfur bacteria (phototrophic Chlorobi and Chloroflexi, respectively) were found in the sediment. Using the newly designed primers, we identified a diverse community of phototrophic Gemmatimonadetes forming 30 operational taxonomic units. These species represented 10.5 and 17.3% of the acsF reads in the upper semiaerobic sediment and anoxic sediment, whereas their abundance in the water column was <1%. IMPORTANCE Photosynthesis is one of the most fundamental biological processes on Earth. Recently, the presence of photosynthetic reaction centers has been reported from a rarely studied bacterial phylum, Gemmatimonadetes, but almost nothing is known about the diversity and environmental distribution of these organisms. The newly designed acsF primers were used to identify phototrophic Gemmatimonadetes from planktonic and sediment samples collected in Lake Taihu, China. The Gemmatimonadetes sequences were found mostly in the upper sediments, documenting the preference of Gemmatimonadetes for semiaerobic conditions. Our results also show that the phototrophic Gemmatimonadetes present in Lake Taihu were relatively diverse, encompassing 30 operational taxonomic units.
Collapse
|
50
|
Hirose S, Matsuura K, Haruta S. Phylogenetically Diverse Aerobic Anoxygenic Phototrophic Bacteria Isolated from Epilithic Biofilms in Tama River, Japan. Microbes Environ 2016; 31:299-306. [PMID: 27453124 PMCID: PMC5017807 DOI: 10.1264/jsme2.me15209] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The diversity of aerobic anoxygenic phototrophic (AAP) bacteria in freshwater environments, particularly in rivers, has not been examined in as much detail as in ocean environments. In the present study, we investigated the phylogenetic and physiological diversities of AAP bacteria in biofilms that developed on submerged stones in a freshwater river using culture methods. The biofilms collected were homogenized and inoculated on solid media and incubated aerobically in the dark. Sixty-eight red-, pink-, yellow-, orange-, or brown-colored colonies were isolated, and, of these, 28 isolates contained the photosynthetic pigment, bacteriochlorophyll (BChl) a. Phylogenetic analyses based on 16S rRNA gene sequences showed that the isolates were classified into 14 groups in 8 operational taxonomic units (OTUs) and distributed in the orders Rhodospirillales, Rhodobacterales, and Sphingomonadales of Alphaproteobacteria and in Betaproteobacteria. Physiological analyses confirmed that none of the representative isolates from any of the groups grew under anaerobic phototrophic conditions. Seven isolates in 4 OTUs showed a 16S rRNA gene sequence identity of 98.0% or less with any established species, suggesting the presence of previously undescribed species of AAP bacteria. Six isolates in 2 other OTUs had the closest relatives, which have not been reported to be AAP bacteria. Physiological comparisons among the isolates revealed differences in preferences for nutrient concentrations, BChl contents, and light-harvesting proteins. These results suggest that diverse and previously unknown AAP bacteria inhabit river biofilms.
Collapse
Affiliation(s)
- Setsuko Hirose
- Department of Biological Sciences, Tokyo Metropolitan University
| | | | | |
Collapse
|