1
|
Hamed SM, Amer MA. Pseudocitrobacter cyperus, a novel bacterial species recovered from Cyperus alternifolius in Egypt. BMC Microbiol 2025; 25:20. [PMID: 39810106 PMCID: PMC11731565 DOI: 10.1186/s12866-024-03710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Strain Cyp38ST was isolated as an endophyte from the plant Cyperus alternifolius, collected along the banks of the River Nile in 2019. Preliminary analysis tentatively identified Cyp38ST as belonging to the genus Pseudocitrobacter. METHODS The preliminary identification of Cyp38ST was performed using the VITEK®2 identification system, MALDI-TOF-MS, and 16S rRNA gene sequencing. To confirm its taxonomic classification, the draft genome of Cyp38ST was generated using DNBseq, and the genome-based taxonomic evaluation was conducted by calculating the overall genome-relatedness indices (OGRIs) such as Average Nucleotide Identity (ANI), digital DNA-DNA hybridization (dDDH), and the tetra-nucleotide signatures (Tetra). Additionally, the biochemical features, antimicrobial susceptibility profiles, and fatty acid methyl ester content of Cyp38ST were characterized. RESULTS VITEK®2 misidentified Cyp38ST as Citrobacter werkmanii, MALDI-TOF-MS identified it as Pseudocitrobacter faecalis. While the 16S rRNA gene showed more than 99.0% similarity to other Pseudocitrobacter species, the calculated OGRIs were lower than the thresholds recommended for species assignment to all currently known Pseudocitrobacter species. Furthermore, the phylogenomic analysis revealed that Cyp38ST forms a distinct species cluster within the genus Pseudocitrobacter. Cyp38ST was predicted as a potential human pathogen and carried a unique ß-lactamase-coding gene. CONCLUSION Here we present Cyp38ST (= CCASU-2024-73T) as the type strain of a novel species within the genus Pseudocitrobacter to which we propose the name Pseudocitrobacter cyperus sp. nov. We provide a full description of the novel species and present its genome sequence and annotation. The discovery of this novel species highlights the potential of endophytic bacteria associated with unique plant hosts to harbor previously uncharacterized microbial diversity.
Collapse
Affiliation(s)
- Samira M Hamed
- Microbiology and Immunology Department, October University for Modern Sciences and Arts (MSA), Giza, Egypt.
| | - Mai A Amer
- Microbiology and Immunology Department, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
2
|
Lin X, Zhang S, Fang S, Hu X, Ma L. Pseudoalteromonas qingdaonensis sp. nov., isolated from the intestines of Ilyoplax deschampsi. Int J Syst Evol Microbiol 2025; 75. [PMID: 39786365 DOI: 10.1099/ijsem.0.006625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
A Gram-stain-negative, aerobic, motile, catalase-positive, oxidase-positive, short rod-shaped marine bacterium, designated as YIC-827T, was isolated from Qingdao, Shandong Province, China. The results showed that cells of strain YIC-827T could grow optimally at 25-35 °C, pH 6.5-7.5 and 2-7% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence showed that the strain YIC-827T was a member of the genus Pseudoalteromonas. The closest relative to this strain was Pseudoalteromonas ruthenica KMM 300T, with a similarity of 98.39%. The digital DNA-DNA hybridization value between the new isolate and phylogenetically related species is 19.6%. Strain YIC-827T could decompose sodium alginate, casein and esters (Tween 20, Tween 40, Tween 60 and Tween 80), but could not hydrolyse starch, cellulose and DNA. The fatty acid profile of a strain consists of a large number of C16:0, C18:1 ω7c and C16:1 ω7c/C16:1 ω6c. The G+C content of the DNA of this strain was determined to be 48.93%. Based on phenotypic characteristics, phylogenetic analysis and DNA-DNA correlation data, the strain YIC-827 T represents a novel species of the genus Pseudoalteromonas with the name Pseudoalteromonas qingdaonensis sp. nov. The type strain of P. qingdaonensis sp. is strain YIC-827T (=MCCC 1K08807T=CGMCC 1.62085T=KCTC 8212T).
Collapse
Affiliation(s)
- Xingyue Lin
- College of Life Science, Shenyang Normal University, Shenyang 110000, PR China
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264000, PR China
| | - Shuqian Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264000, PR China
| | - Suyun Fang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264000, PR China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264000, PR China
| | - Lianju Ma
- College of Life Science, Shenyang Normal University, Shenyang 110000, PR China
| |
Collapse
|
3
|
Dang B, Gao H, Jia W, Zhang Y, Xu Z, Han D, Yang J, Huang Y, Chen Z, Wang Y, Duan Y, Yuan R, Qiao Y, Yu H, Jin P, Ai H, Huang W. Degradation of myosmine by a novel bacterial strain Sphingopyxis sp. J-6 and its degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136996. [PMID: 39724711 DOI: 10.1016/j.jhazmat.2024.136996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
This study isolated a myosmine-degrading bacterial strain J-6 from tobacco-growing soil. The identification of this strain revealed it to be a new species within the genus Sphingopyxis. Analysis of the myosmine degradation products by HPLC, preparative HPLC, and UHPLC-MS/MS identified 8 metabolites, among which 3-pyridylacetic acid (3-PAA), 5-(3-pyridyl)tetrahydrofuranone-2 (PTHF), and 4-hydroxy-4-(3-pyridyl)butanoic acid (HPBA) were three novel metabolites that were not previously found in microbial degradation of tobacco alkaloids. Interestingly, these metabolites have been observed in the nicotine metabolic pathways of humans and animals. In addition, 3-PAA, which is believed to be the major end product of nicotine metabolism in humans, is also found to be an end product of myosmine degradation in strain J-6. Based on the identified metabolites and genomic analysis, a previously unreported bacterial degradation pathway for tobacco alkaloids was proposed. The downstream part of this pathway for converting SP to 3-PAA resembles the pathway for mammalian metabolism of SP to 3-PAA. Overall, the findings in this study offer novel insights into the degradation pathways and mechanisms of myosmine, which will deepen our understanding on the fate of myosmine both in the environment and within the human body.
Collapse
Affiliation(s)
- Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou 450002, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450002, China
| | - Hui Gao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou 450002, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450002, China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou 450002, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450002, China
| | - Yuwei Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou 450002, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450002, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou 450002, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450002, China.
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou 450002, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450002, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Yao Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zheng Chen
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou 450002, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450002, China
| | - Yadi Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yingqiu Duan
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruohua Yuan
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yimeng Qiao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Hexiang Yu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengfei Jin
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Hangting Ai
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou 450002, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450002, China.
| |
Collapse
|
4
|
León MJ, Vera-Gargallo B, de la Haba RR, Sánchez-Porro C, Ventosa A. Integrating genomic evidence for an updated taxonomy of the bacterial genus Spiribacter. Sci Rep 2024; 14:30057. [PMID: 39627276 PMCID: PMC11615355 DOI: 10.1038/s41598-024-80127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
The genus Spiribacter encompasses halophilic bacteria widely distributed in hypersaline environments worldwide. Despite their ecological significance, initially isolating Spiribacter species under laboratory settings was challenging due to the lack of knowledge of their growth and cultivation requirements. However, with improved understanding of their ecological niche and metabolic pathways, additional species of Spiribacter have been successfully isolated and identified from diverse locations around the globe. Enriched media with sodium pyruvate as carbon source facilitated the isolation of twelve new strains closely related to the genus Spiribacter from hypersaline environments in Spain. Genome sequencing and analysis of these new strains and previously described Spiribacter species provided insights into their genomic features and phylogenomic relationships, supporting the delineation of three distinct new species within this genus, designated as Spiribacter insolitus sp. nov., Spiribacter onubensis sp. nov., and Spiribacter pallidus sp. nov. In Spiribacter species, streamlined genomes enhance survival in hypersaline environments by reducing non-essential genes and optimizing resource utilization. Key genes involved in osmoprotectant mechanisms, including those for the metabolism of myo-inositol, hydroxyproline, and L-proline, were identified and numerous transporters were noted, ensuring efficient nutrient acquisition and osmotic balance. Notably, these new species, along with other Spiribacter strains, exhibit metabolic diversity in utilizing inorganic sulfur compounds, including thiosulfate and tetrathionate, for energy production and adaptation to hypersaline environments. The presence of thiosulfate dehydrogenase (TsdA) genes suggests their capability to oxidize thiosulfate to tetrathionate, potentially influencing both aerobic and anaerobic respiration. Furthermore, the prevalence of the sqr gene indicates a role for sulfide oxidation in Spiribacter metabolism, underlining their metabolic versatility in saline habitats. These adaptations allow Spiribacter to thrive in nutrient-limited, high-salinity habitats. Moreover, genome mining analysis and physiological disparities observed in the already described species Spiribacter halobius raise significant challenges to its classification within the genus Spiribacter.
Collapse
Affiliation(s)
- María José León
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Blanca Vera-Gargallo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain.
| |
Collapse
|
5
|
Li S, Liu J, Huang J, Dong L, Li WJ. Genome-based reclassification of Sphingobacterium soli Fu et al. 2017 as a later heterotypic synonym of Sphingobacterium cellulitidis Huys et al. 2017 and proposal of Sphingobacterium siyangense subsp. siyangense subsp. nov. and Sphingobacterium siyangense subsp. cladoniae subsp. nov. Int J Syst Evol Microbiol 2024; 74. [PMID: 39699946 DOI: 10.1099/ijsem.0.006610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Sphingobacterium, as the type genus of the family Sphingobacteriaceae, comprises a diverse array of species found in various environments. In this study, we aim to reassess and elucidate the taxonomic relationships of Sphingobacterium species. Based on 16S rRNA gene sequences, the phylogeny of 70 validly published Sphingobacterium species was reconstructed. Of which, 50 species with available genomes were further subjected to overall genome relatedness indices (OGRI) analysis, resulting in the identification of distinct pairs of closely related species. One such pair, consisting of the type strains of Sphingobacterium soli and Sphingobacterium cellulitidis, exhibited an average nucleotide identity (ANI) of 97.7%, a digital DNA-DNA hybridization (dDDH) of 80.1% and an average amino acid identity (AAI) of 98.3%, alongside a 16S rRNA gene sequence similarity of 99.8%. Based on the phylogenetic, OGRI and phenotypical evidence, we propose S. soli as a later heterotypic synonym of S. cellulitidis. Additionally, another pair of type strains, Sphingobacterium siyangense and Sphingobacterium cladoniae, possessed ANI, dDDH, AAI and 16S rRNA gene sequence similarity values of 96.3, 70.1, 96.0 and 99.0%, respectively. These values, together with differences in phenotypic traits, support the proposal of two subspecies within this taxonomic lineage. Thus, we propose the establishment of two new subspecies, S. siyangense subsp. siyangense subsp. nov. and S. siyangense subsp. cladoniae subsp. nov.
Collapse
Affiliation(s)
- Shuai Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Jun Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jie Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
6
|
Jiang YL, Bao WJ, Liu F, Wang GS, Yurkov A, Ma Q, Hu ZD, Chen XH, Zhao WN, Li AH, Wang QM. Proposal of one new family, seven new genera and seventy new basidiomycetous yeast species mostly isolated from Tibet and Yunnan provinces, China. Stud Mycol 2024; 109:57-153. [PMID: 39717653 PMCID: PMC11663428 DOI: 10.3114/sim.2024.109.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/17/2024] [Indexed: 12/25/2024] Open
Abstract
More than 2 000 yeast strains isolated from 1 200 samples mostly collected from Tibet and Yunnan provinces in China were identified as 462 species according to the internal transcribed spacer including the 5.8S rDNA (ITS) and the D1/D2 domains of the large subunit rDNA (LSU) sequence analyses. Among them, 70 new basidiomycetous yeast species were proposed based on the multi-locus phylogenetic analyses including the D1/D2 domains, the ITS, the small subunit rDNA (SSU), the largest subunit of RNA polymerase II (RPB1), the second largest subunit of RNA polymerase II (RPB2) and translation elongation factor 1-α (TEF1), as well as the phenotypic comparisons. The average nucleotide identity (ANI) analysis with the genomic metric was also used in the evaluation of the species delimitation for the genera Holtermannia, Mrakia and Takashimella that contain closely related species with low sequence heterogeneity in both ITS and D1/D2 regions. Forty-six new species belonged to 16 genera in the Agaricomycotina, 13 new species occurred in 12 genera in the Pucciniomycotina, three new species were distributed in three genera in the Ustilaginomycotina, and eight new species were classified in seven newly established genera. One new family was also proposed based on one of these new genera. The analyses revealed several inaccurate species names attributed to genomes deposited in GenBank, indicating the necessity of a more rigorous quality checks of the genomes deposited in the public databases. Taxonomic novelties: New family: Vankyiozymaceae Q.-M. Wang; New genera: Baiomyces Q.-M. Wang, Bauerozyma Q.-M. Wang, Fengyania Q.-M. Wang, Foliozyma Q.-M. Wang, Litoriozyma Q.-M. Wang, Nakaseozyma Q.-M. Wang, Vankyiozyma Q.-M. Wang; New species: Baiomyces sejilaensis Q.-M. Wang, Bauerozyma artemisiae Q.-M. Wang, Boekhoutia foliicola Q.-M. Wang, Buckleyzyma pseudoaurantiaca Q.-M. Wang, Carlosrosaea betulae Q.-M. Wang, Carlosrosaea rhododendri Q.-M. Wang, Carlosrosaea yunnanensis Q.-M. Wang, Chrysozyma quercicola Q.-M. Wang, Curvibasidium pini Q.-M. Wang, Cystobasidium cunninghamiae Q.-M. Wang, Derxomyces foliicola Q.-M. Wang, Derxomyces motuoensis Q.-M. Wang, Derxomyces orientalis Q.-M. Wang, Derxomyces paracylindricus Q.-M. Wang, Exobasidium lijiangense Q.-M. Wang, Fengyania pteridophytorum Q.-M. Wang, Foliozyma liliicola Q.-M. Wang, Halobasidium phyllophilum Q.-M. Wang, Hannaella artemisiae Q.-M. Wang, Hannaella pteridophytorum Q.-M. Wang, Hannaella urticae Q.-M. Wang, Holtermannia pseudosaccardoi Q.-M. Wang, Kockovaella cariosiligni Q.-M. Wang, Kockovaella foliicola Q.-M. Wang, Kondoa tibetensis Q.-M. Wang, Kwoniella hippophaes Q.-M. Wang, Kwoniella lonicerae Q.-M. Wang, Litoriozyma hainanensis Q.-M. Wang, Meira marina Q.-M. Wang, Microsporomyces betulae Q.-M. Wang, Microsporomyces foliicola Q.-M. Wang, Mrakia pini Q.-M. Wang, Mrakia rhododendri Q.-M. Wang, Nakaseozyma junci Q.-M.Wang, Nakaseozyma lonicerae Q.-M. Wang, Papiliotrema castaneae Q.-M. Wang, Papiliotrema catalpae Q.-M. Wang, Phaeotremella pini Q.-M. Wang, Phaffia paratasmanica Q.-M. Wang, Phaffia rhododendri Q.-M. Wang, Piskurozyma cuscutae Q.-M. Wang, Piskurozyma humicola Q.-M. Wang, Piskurozyma liliaceifoliae Q.-M. Wang, Piskurozyma linzhiensis Q.-M. Wang, Piskurozyma nanyiensis Q.-M. Wang, Piskurozyma terricola Q.-M. Wang, Pseudohyphozyma sanghuangpori Q.-M. Wang, Pseudotremella hippophaes Q.-M. Wang, Pseudotremella rhododendri Q.-M. Wang, Rhodotorula linzhiensis Q.-M. Wang, Slooffia terricola Q.-M. Wang, Takashimella corticis Q.-M. Wang, Teunia betulicola Q.-M. Wang, Teunia chimonanthi Q.-M. Wang, Teunia heritierae Q.-M. Wang, Teunia myricariae Q.-M. Wang, Teunia parabetulicola Q.-M. Wang, Teunia quercus Q.-M. Wang, Teunia rhododendri Q.-M. Wang, Ustilago foliicola Q.-M. Wang, Vankyiozyma motuoensis Q.-M. Wang, Vanrija silvicola Q.-M. Wang, Vishniacozyma catalpae Q.-M. Wang, Vishniacozyma marinae Q.-M. Wang, Vishniacozyma paravictoriae Q.-M. Wang, Vishniacozyma pini Q.-M. Wang, Vishniacozyma pyri Q.-M. Wang, Vishniacozyma sinopodophylli Q.-M. Wang, Vishniacozyma zhenxiongensis Q.-M. Wang, Yurkovia castaneae Q.-M. Wang. Citation: Jiang Y-L, Bao W-J, Liu F, Wang G-S, Yurkov AM, Ma Q, Hu Z-D, Chen X-H, Zhao W-N, Li A-H, Wang Q-M (2024). Proposal of one new family, seven new genera and seventy new basidiomycetous yeast species mostly isolated from Tibet and Yunnan provinces, China. Studies in Mycology 109: 57-153. doi: 10.3114/sim.2024.109.02.
Collapse
Affiliation(s)
- Y.-L. Jiang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - W.-J. Bao
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - F. Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - G.-S. Wang
- Aquatic Science Institute, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa 850000, Tibet, China
| | - A.M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Q. Ma
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - Z.-D. Hu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - X.-H. Chen
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - W.-N. Zhao
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - A.-H. Li
- China General Microbiological Culture Collection Center and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Q.-M. Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
- Engineering Research Center of Microbial Breeding and Conservation of Hebei Province, Hebei University, Baoding 071002, Hebei, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, Hebei, China
| |
Collapse
|
7
|
Wang N, Zheng X, Leptihn S, Li Y, Cai H, Zhang P, Wu W, Yu Y, Hua X. Characteristics and phylogenetic distribution of megaplasmids and prediction of a putative chromid in Pseudomonas aeruginosa. Comput Struct Biotechnol J 2024; 23:1418-1428. [PMID: 38616963 PMCID: PMC11015739 DOI: 10.1016/j.csbj.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024] Open
Abstract
Research on megaplasmids that contribute to the spread of antimicrobial resistance (AMR) in Pseudomonas aeruginosa strains has grown in recent years due to the now widely used technologies allowing long-read sequencing. Here, we systematically analyzed distinct and consistent genetic characteristics of megaplasmids found in P. aeruginosa. Our data provide information on their phylogenetic distribution and hypotheses tracing the potential evolutionary paths of megaplasmids. Most of the megaplasmids we found belong to the IncP-2-type, with conserved and syntenic genetic backbones carrying modules of genes associated with chemotaxis apparatus, tellurite resistance and plasmid replication, segregation, and transmission. Extensively variable regions harbor abundant AMR genes, especially those encoding β-lactamases such as VIM-2, IMP-45, and KPC variants, which are high-risk elements in nosocomial infection. IncP-2 megaplasmids act as effective vehicles transmitting AMR genes to diverse regions. One evolutionary model of the origin of megaplasmids claims that chromids can develop from megaplasmids. These chromids have been characterized as an intermediate between a megaplasmid and a chromosome, also containing core genes that can be found on the chromosome but not on the megaplasmid. Using in silico prediction, we identified the "PABCH45 unnamed replicon" as a putative chromid in P. aeruginosa, which shows a much higher similarity and closer phylogenetic relationship to chromosomes than to megaplasmids while also encoding plasmid-like partition genes. We propose that such a chromid could facilitate genome expansion, allowing for more rapid adaptations to novel ecological niches or selective conditions, in comparison to megaplasmids.
Collapse
Affiliation(s)
- Nanfei Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Zheng
- Department of Nephrology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Sebastian Leptihn
- HMU Health and Medical University, Am Anger 64/73 – 99084, Erfurt, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) Translational Phage-Network, Inhoffenstraße 7 – 38124, Braunschweig, Germany
- University of Southern Denmark,Department of Biochemistry and Molecular Biology, Campusvej 55 – 5230, Odense, Denmark
| | - Yue Li
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Piaopiao Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenhao Wu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Vargas Ribera PR, Kim N, Venbrux M, Álvarez-Pérez S, Rediers H. Evaluation of sequence-based tools to gather more insight into the positioning of rhizogenic agrobacteria within the Agrobacterium tumefaciens species complex. PLoS One 2024; 19:e0302954. [PMID: 39561304 PMCID: PMC11575935 DOI: 10.1371/journal.pone.0302954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/21/2024] [Indexed: 11/21/2024] Open
Abstract
Rhizogenic Agrobacterium, the causative agent of hairy root disease (HRD), is known for its high phenotypic and genetic diversity. The taxonomy of rhizogenic agrobacteria has undergone several changes in the past and is still somewhat controversial. While the classification of Agrobacterium strains was initially mainly based on phenotypic properties and the symptoms they induced on plants, more and more genetic information has been used along the years to infer Agrobacterium taxonomy. This has led to the definition of the so-called Agrobacterium tumefaciens species complex (Atsc), which comprises several genomospecies. Interestingly, the rhizogenic Agrobacterium strains are found in several of these genomospecies. Nevertheless, even up until today Agrobacterium strains, and in particular rhizogenic agrobacteria, are prone to misclassification and considerable confusion in literature. In this study, we evaluated different phylogenetic analysis approaches for their use to improve Agrobacterium taxonomy and tried to gain more insight in the classification of strains into this complex genus, with a particular focus on rhizogenic agrobacteria. The genome sequence analysis of 580 assemblies, comprising Agrobacterium, Allorhizobium and Rhizobium strains demonstrated that phylogenies based on single marker genes, such as the commonly used 16S rRNA and recA gene, do not provide sufficient resolution for proper delineation of the different genomospecies within the Atsc. Our results revealed that (in silico) multi-locus sequences analysis (MLSA) in combination with average nucleotide identity (ANIb) at a 94.0% threshold delineates genomospecies accurately and efficiently. Additionally, this latter approach permitted the identification of two new candidate genomospecies.
Collapse
Affiliation(s)
- Pablo Roberto Vargas Ribera
- Sustainable Plant Protection, Centre de Cabrils, IRTA-Institute of Agrifood Research and Technology, Cabrils, Spain
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Department Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Nuri Kim
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Department Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), Leuven, Belgium
| | - Marc Venbrux
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Department Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), Leuven, Belgium
| | - Sergio Álvarez-Pérez
- Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Hans Rediers
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Department Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), Leuven, Belgium
| |
Collapse
|
9
|
Albuquerque L, Viver T, Barroso C, Claudino R, Galvan M, Simões G, Lobo-da-Cunha A, Egas C. Halorubrum miltondacostae sp. nov., a potential polyhydroxyalkanoate producer isolated from an inland solar saltern in Rio Maior, Portugal. Syst Appl Microbiol 2024; 47:126553. [PMID: 39305563 DOI: 10.1016/j.syapm.2024.126553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 11/26/2024]
Abstract
One hundred and sixty-three extreme halophiles were recovered from a single sample collected from an inland solar saltern in Rio Maior. Based on random amplified polymorphic DNA (RAPD) profiles and partial 16S rRNA gene sequencing 125 isolates were identified as members of the Archaea domain within the genus Halorubrum. Two strains, RMP-11T and RMP-47, showed 99.1 % sequence similarity with the species Halorubrum californiense based on phylogenetic analysis of the 16S rRNA gene sequence. However, phylogenetic analysis based on five housekeeping genes, atpB, EF-2, glnA, ppsA and rpoB', showed Halorubrum coriense as the closest related species with 96.7 % similarity. The average nucleotide identity (ANI) of strains RMP-11T, RMP-47 and species Hrr. coriense were within the range of 90.0-90.5 %, supporting that strains RMP-11T and RMP-47 represent a novel species of the genus Halorubrum. These strains formed red-pigmented colonies that were able to grow in a temperature range of 25-50 °C. Polyhydroxyalkanoate (PHA) granules were detected in both strains. The polar lipid profile was identical to the neutrophilic species of the genus Halorubrum. The Rio Maior sample from which both strains were isolated was metagenome sequenced. We identified five metagenome-assembled genomes representing novel Halorubrum species but distinct from the species represented by strains RMP-11T and RMP-47. Based on phylogenetic, phylogenomic, comparative genomics, physiological and chemotaxonomic parameters, we describe a new species of the genus Halorubrum represented by strains RMP-11T (=CECT 30760T = DSM 115521T) and RMP-47 (=CECT 30761 = DSM 115541) for which we propose the name Halorubrum miltondacostae sp. nov.
Collapse
Affiliation(s)
- Luciana Albuquerque
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal.
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Cristina Barroso
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal; Genoinseq - Next Generation Sequencing Unit, Biocant, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal
| | - Ricardo Claudino
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal
| | - Mariana Galvan
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal
| | - Gabriela Simões
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal
| | - Alexandre Lobo-da-Cunha
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental - Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Conceição Egas
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal; Genoinseq - Next Generation Sequencing Unit, Biocant, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal
| |
Collapse
|
10
|
Brestovičová S, Kisková J, Nosáľová L, Piknová M, Kolesárová M, Pristaš P. Comparative genomic analysis of two putative novel Idiomarina species from hypersaline miocene deposits. BMC Genomics 2024; 25:1007. [PMID: 39468450 PMCID: PMC11514770 DOI: 10.1186/s12864-024-10900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Hypersaline habitats, as extreme environments, are a great source of well-adapted organisms with unique properties as they have evolved various strategies to cope with these extreme conditions. Bioinformatics and genomic mining may shed light on evolutionary relationships among them. Therefore, the aim of this study was to assess the biodiversity and especially the strategies evolved within the Idiomarina genus, with the primary focus on the taxonomy and genomic adaptations of two novel strains affiliated with Idiomarina genus isolated from unique environment - brines of two Early Miocene salt deposits. RESULTS Both analyzed species belonged to the Idiomarina loihiensis cluster with similarity levels of 16S rRNA gene sequences as high as 99.5% and showed a significant genome size reduction, known characteristic of Idiomarina genomes, though within the genome of Sol25 strain the lowest extent of the carbohydrate utilization genes reduction was observed t among the Idiomarina species. Moreover, the comparative genome analyses indicated that despite both strains being isolated from geographically and geologically similar environments (brines from at least 12 Ma), the species showed higher relatedness to other Idiomarina species than to each other. CONCLUSION The present findings highlighted the importance of genomic data in resolving taxonomic uncertainties and understanding of adaptation strategies of extremophiles. Geographic isolation likely contributed to population divergence of the Idiomarina genus, and the recent study offered insights into biogeographic patterns and allopatric speciation of this bacterial group.
Collapse
Grants
- VEGA 1/0779/21 The Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- VEGA 1/0779/21 The Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- VEGA 1/0779/21 The Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- VEGA 1/0779/21 The Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- VEGA 1/0779/21 The Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- VEGA 1/0779/21 The Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
Collapse
Affiliation(s)
- Soňa Brestovičová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice, 04154, Slovakia
| | - Jana Kisková
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice, 04154, Slovakia.
| | - Lea Nosáľová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice, 04154, Slovakia
- Institute of Ecology and Environmental Sciences - Paris, iEES Paris, CNRS, INRAE, IRD, Université de Paris, UPEC, UMR 7618, Sorbonne Universitè, Tour 44-45, 4 place, Jussieu, Paris, 75005, France
| | - Mária Piknová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice, 04154, Slovakia
| | - Mariana Kolesárová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice, 04154, Slovakia
| | - Peter Pristaš
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice, 04154, Slovakia
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, Košice, 04001, Slovakia
| |
Collapse
|
11
|
Peng Y, Cho DH, Humaira Z, Park YL, Kim KH, Kim CY, Lee J. Improving plant salt tolerance through Algoriphagus halophytocola sp. nov., isolated from the halophyte Salicornia europaea. Front Microbiol 2024; 15:1466733. [PMID: 39498140 PMCID: PMC11532033 DOI: 10.3389/fmicb.2024.1466733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Salicornia europaea, commonly known as glasswort, thrives in reclaimed land and coastal areas with high salinity, demonstrating remarkable adaptation to the arid conditions of such environments. Two aerobic, Gram-stain-negative, non-motile, rod-shaped bacterial strains, designated TR-M5T and TR-M9, were isolated from the root of Salicornia europaea plants. These bacteria exhibit plant growth-promoting and salt tolerance-enhancing abilities, which have not been reported in other species of the genus. Both strains produce indole-3-acetic acid (IAA), a plant growth hormone, and synthesize proline, which functions as an osmoprotectant. Additionally, they possess gelatinase and cellulase activities. Cells grow in temperatures from 4 to 42°C (optimum 25°C), pH levels from 6.0 to 9.0 (optimum 7.0), and NaCl concentrations from 0 to 8.0% (optimum 6.0%). The average nucleotide identity and digital DNA-DNA hybridization values of strain TR-M5T with the most closely related type strains for which whole genomes are publicly available were 74.05-77.78% and 18.6-23.1%, respectively. Phylogenetic analysis of their 16S rRNA gene sequences revealed that strains TR-M5T and TR-M9 belong to the genus Algoriphagus. A. locisalis exhibited the highest similarity, sharing a sequence identity of 98.1%. The genomes of TR-M5T and TR-M9 exhibit a G + C content of 43 mol%. This study specifically focuses on the identification and characterization of strain TR-M5T as a novel species within the genus Algoriphagus, which we propose to name Algoriphagus halophytocola sp. nov., highlighting its potential role in enhancing plant growth and salt tolerance in saline environments. The type strain is TR-M5T (KCTC 92720T = GDMCC 1.3797T).
Collapse
Affiliation(s)
- Yuxin Peng
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
- Department of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Dong Hyun Cho
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Zalfa Humaira
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
- Biosystems and Bioengineering, KRIBB School of Biotechnology Korea National University of Science and Technology (UST), Yuseong, Republic of Korea
| | - Yu Lim Park
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Ki Hyun Kim
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Cha Young Kim
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jiyoung Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
- Biosystems and Bioengineering, KRIBB School of Biotechnology Korea National University of Science and Technology (UST), Yuseong, Republic of Korea
| |
Collapse
|
12
|
Liu J, Li S, Duan X, Li H, Zhang X. Polymorphospora lycopeni sp. nov., a lycopene-producing actinomycetes isolated from lakeside soil sample of Baiyangdian. Int J Syst Evol Microbiol 2024; 74. [PMID: 39401059 DOI: 10.1099/ijsem.0.006543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
A novel actinomycetes producing lycopene, designated HBU208002T, was isolated from a lakeside soil sample collected in Baiyangdian, located in Xiong'an New Area of China, and its taxonomic position was investigated by a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that the strain HBU208002T fell within the genus Polymorphospora and was closely related to Polymorphospora rubra JCM 14904T (99.73% identity). However, the average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH) and average amino acid identity (AAI) values between the strain HBU208002T and P. rubra JCM 14904T were 91.78, 44.7 and 91.6%, respectively, which were lower than the ANI (95-96%), DDH (>70%) and AAI (>95%) thresholds of prokaryotic microbial defined species. The predominant fatty acids of the strain HBU208002T were iso-C16:0, C17:1 ω8c. The menaquinones of the strain HBU208002T were MK-8(H8) and MK9(H4), while those of P. rubra JCM 14904T were MK-10(H6), MK-10(H4), MK-9(H6) and MK-9(H4). Meanwhile, some phenotypic characterizations and antibacterial activities distinguished the strain HBU208002T from P. rubra JCM 14904T. The strain HBU208002T exhibited inhibitory effects on Fusarium graminearum, Fusarium verticillioides and Botrytis cinerea, but P. rubra JCM 14904T had no activity. Therefore, the strain HBU208002T should be assigned as representing a novel species of the genus Polymorphospora, for which the name Polymorphospora lycopeni was proposed. The type strain is HBU208002T (=KCTC49833T = GDMCC4.236T).
Collapse
Affiliation(s)
- Jiashan Liu
- College of Life Sciences, Hebei University, Baoding 071002, Hebei Province, PR China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, Hebei Province, PR China
- Engineering Research Center of Microbial Breeding and Conservation, Baoding 071002, Hebei Province, PR China
| | - Shilong Li
- College of Life Sciences, Hebei University, Baoding 071002, Hebei Province, PR China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, Hebei Province, PR China
- Engineering Research Center of Microbial Breeding and Conservation, Baoding 071002, Hebei Province, PR China
| | - Xiaomin Duan
- College of Life Sciences, Hebei University, Baoding 071002, Hebei Province, PR China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, Hebei Province, PR China
- Engineering Research Center of Microbial Breeding and Conservation, Baoding 071002, Hebei Province, PR China
| | - Hongmei Li
- College of Life Sciences, Hebei University, Baoding 071002, Hebei Province, PR China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, Hebei Province, PR China
- Engineering Research Center of Microbial Breeding and Conservation, Baoding 071002, Hebei Province, PR China
| | - Xiumin Zhang
- College of Life Sciences, Hebei University, Baoding 071002, Hebei Province, PR China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, Hebei Province, PR China
- Engineering Research Center of Microbial Breeding and Conservation, Baoding 071002, Hebei Province, PR China
| |
Collapse
|
13
|
Kang T, Choi YJ, Kim J, Park HJ, Jang WJ. Whole genome sequence and comparative genomic analysis of novel Rickettsia koreansis strain CNH17-7 isolated from human. Eur J Clin Microbiol Infect Dis 2024; 43:1909-1918. [PMID: 39031268 DOI: 10.1007/s10096-024-04876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/15/2024] [Indexed: 07/22/2024]
Abstract
PURPOSE To determine the genomic feature of novel spotted fever-causing Rickettsia koreansis strain CNH17-7, which is different from R. japonica that is a causative agent for Japanese spotted fever (JSF), and to perform its comparative genomic analysis. METHODS Whole genome sequencing (WGS) was performed on R. koreansis strain CNH17-7 by using the Illumina Miseq system. After WGS, assembly and annotation were done by SPAdes. Then, its genomic features were compared with 19 different Rickettsia species. Based on the average nucleotide identity (ANI) value, an unweighted pair group method with an arithmetic mean (UPGMA) dendrogram was generated. Following the dendrogram analysis, pan-and core-genome analysis was performed. Then additional comparative analyses with two genetically closest Rickettsia species were conducted based on gene repertoire. RESULTS R. koreansis strain CNH17-7 has a chromosome consisting of 1,392,633 bp with GC content of 32.4%. The ANI-derived UPGMA showed that R. koreansis strain CNH17-7 is genetically close to R. japonica YH and R. heilongjiangensis 054 but is distinctively differentiated. The ANI value of R. koreansis strain CNH17-7 to R. japonica YH and R. heilongjiangensis 054 are 98.14% and 98.04% respectively, indicating R. koreansis strain CNH17-7 is sufficient to be classified as a new species. Other than ANI, R. koreansis strain CNH17-7 also contains novel CDS and its COG functional category proportion which is distinct compared to R. japonica YH and R. heilongjiangensis 054. CONCLUSION We have revealed genomic features of the novel R. koreansis strain CNH17-7. Hence, we propose R. koreansis strain CNH17-7 as new Rickettsia species.
Collapse
Affiliation(s)
- Taeuk Kang
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yeon-Joo Choi
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jeoungyeon Kim
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hye-Jin Park
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Won-Jong Jang
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
14
|
Villanueva CD, Bohunická M, Johansen JR. We are doing it wrong: Putting homology before phylogeny in cyanobacterial taxonomy. JOURNAL OF PHYCOLOGY 2024; 60:1071-1089. [PMID: 39152777 DOI: 10.1111/jpy.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/19/2024]
Abstract
The rapid expansion of whole genome sequencing in bacterial taxonomy has revealed deep evolutionary relationships and speciation signals, but assembly methods often miss true nucleotide diversity in the ribosomal operons. Though it lacks sufficient phylogenetic signal at the species level, the 16S ribosomal RNA gene is still much used in bacterial taxonomy. In cyanobacterial taxonomy, comparisons of 16S-23S Internal Transcribed Spacer (ITS) regions are used to bridge this information gap. Although ITS rRNA region analyses are routinely being used to identify species, researchers often do not identify orthologous operons, which leads to improper comparisons. No method for delineating orthologous operon copies from paralogous ones has been established. A new method for recognizing orthologous ribosomal operons by quantifying the conserved paired nucleotides in a helical domain of the ITS, has been developed. The D1' Index quantifies differences in the ratio of pyrimidines to purines in paired nucleotide sequences of this helix. Comparing 111 operon sequences from 89 strains of Brasilonema, four orthologous operon types were identified. Plotting D1' Index values against the length of helices produced clear separation of orthologs. Most orthologous operons in this study were observed both with and without tRNA genes present. We hypothesize that genomic rearrangement, not gene duplication, is responsible for the variation among orthologs. This new method will allow cyanobacterial taxonomists to utilize ITS rRNA region data more correctly, preventing erroneous taxonomic hypotheses. Moreover, this work could assist genomicists in identifying and preserving evident sequence variability in ribosomal operons, which is an important proxy for evolution in prokaryotes.
Collapse
Affiliation(s)
- Chelsea D Villanueva
- Department of Biological, Geological, & Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA
- Department of Biology, John Carroll University, University Heights, Ohio, USA
| | - Markéta Bohunická
- Department of Biology, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Jeffrey R Johansen
- Department of Biology, John Carroll University, University Heights, Ohio, USA
| |
Collapse
|
15
|
Zeng J, Iizaka Y, Hamada M, Iwai A, Takeuchi R, Fukumoto A, Tamura T, Anzai Y. Actinoplanes kirromycinicus sp. nov., isolated from soil. J Antibiot (Tokyo) 2024; 77:657-664. [PMID: 38926493 DOI: 10.1038/s41429-024-00756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
A novel actinomycete, designated as TPMA0078T, was isolated from a soil sample collected in Shinjuku, Tokyo, Japan. 16S rRNA gene sequence analysis indicated that strain TPMA0078T belongs to the genus Actinoplanes and is closely related to Actinoplanes regularis IFO 12514T (99.86% 16S rRNA gene sequence similarity). The spores of strain TPMA0078T were motile, and the sporangia were cylindrical. The diamino acids in the cell wall peptidoglycan of strain TPMA0078T were meso-diaminopimelic acid and 3OH-meso-diaminopimelic acid. Whole-cell sugars were glucose and mannose, with galactose as a minor component. The major cellular fatty acids identified were iso-C15:0, iso-C16:0, and anteiso-C17:0. The predominant menaquinone was MK-9(H4), and the principal polar lipid was phosphatidylethanolamine. These chemotaxonomic properties of strain TPMA0078T were consistent with those of Actinoplanes. Meanwhile, digital DNA-DNA hybridization and average nucleotide identity values showed low relatedness between strain TPMA0078T and A. regularis NBRC 12514T. Furthermore, several phenotypic properties of strain TPMA0078T distinguished it from those of closely related species. Based on its genotypic and phenotypic characteristics, strain TPMA0078T represents a novel species of the genus Actinoplanes, for which the name Actinoplanes kirromycinicus sp. nov. is proposed. The type strain is TPMA0078T (=NBRC 116422T = TBRC 18262T).
Collapse
Affiliation(s)
- Jiahao Zeng
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yohei Iizaka
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| | - Moriyuki Hamada
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Aya Iwai
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Riku Takeuchi
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Atsushi Fukumoto
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Tomohiko Tamura
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yojiro Anzai
- Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| |
Collapse
|
16
|
Bao K, Yang M, Sun Q, Zhang K, Huang H. Genome Analysis of a Potential Novel Vibrio Species Secreting pH- and Thermo-Stable Alginate Lyase and Its Application in Producing Alginate Oligosaccharides. Mar Drugs 2024; 22:414. [PMID: 39330296 PMCID: PMC11433491 DOI: 10.3390/md22090414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Alginate lyase is an attractive biocatalyst that can specifically degrade alginate to produce oligosaccharides, showing great potential for industrial and medicinal applications. Herein, an alginate-degrading strain HB236076 was isolated from Sargassum sp. in Qionghai, Hainan, China. The low 16S rRNA gene sequence identity (<98.4%), ANI value (<71.9%), and dDDH value (<23.9%) clearly indicated that the isolate represented a potential novel species of the genus Vibrio. The genome contained two chromosomes with lengths of 3,007,948 bp and 874,895 bp, respectively, totaling 3,882,843 bp with a G+C content of 46.5%. Among 3482 genes, 3332 protein-coding genes, 116 tRNA, and 34 rRNA sequences were predicted. Analysis of the amino acid sequences showed that the strain encoded 73 carbohydrate-active enzymes (CAZymes), predicting seven PL7 (Alg1-7) and two PL17 family (Alg8, 9) alginate lyases. The extracellular alginate lyase from strain HB236076 showed the maximum activity at 50 °C and pH 7.0, with over 90% activity measured in the range of 30-60 °C and pH 6.0-10.0, exhibiting a wide range of temperature and pH activities. The enzyme also remained at more than 90% of the original activity at a wide pH range (3.0-9.0) and temperature below 50 °C for more than 2 h, demonstrating significant thermal and pH stabilities. Fe2+ had a good promoting effect on the alginate lyase activity at 10 mM, increasing by 3.5 times. Thin layer chromatography (TLC) and electrospray ionization mass spectrometry (ESI-MS) analyses suggested that alginate lyase in fermentation broth could catalyze sodium alginate to produce disaccharides and trisaccharides, which showed antimicrobial activity against Shigella dysenteriae, Aeromonas hydrophila, Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli. This research provided extended insights into the production mechanism of alginate lyase from Vibrio sp. HB236076, which was beneficial for further application in the preparation of pH-stable and thermo-stable alginate lyase and alginate oligosaccharides.
Collapse
Affiliation(s)
- Ke Bao
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (K.B.); (M.Y.)
- Hangzhou Watson Biotechnology Co., Ltd., Hangzhou 311400, China;
| | - Miao Yang
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (K.B.); (M.Y.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianhuan Sun
- Hangzhou Watson Biotechnology Co., Ltd., Hangzhou 311400, China;
| | - Kaishan Zhang
- Hangzhou Watson Biotechnology Co., Ltd., Hangzhou 311400, China;
| | - Huiqin Huang
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (K.B.); (M.Y.)
| |
Collapse
|
17
|
Nikodinoska I, Moran CA. Genome sequence data of Saccharomyces cerevisiae CBS 493.94. Data Brief 2024; 55:110557. [PMID: 38966666 PMCID: PMC11222789 DOI: 10.1016/j.dib.2024.110557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 07/06/2024] Open
Abstract
Whole genome sequencing (WGS) and data concerning identity and safety for Saccharomyces cerevisiae CBS 493.94 are reported. This strain was isolated from a British brewery in 1958 and deposited at the CBS culture collection Westerdijk Fungal Biodiversity Institute under the accession number CBS 493.94. The long-reads sequencing data, obtained via PacBio Sequel, and short-reads data, via Illumina NovaSeq 6000, were deposited at NCBI under accession number PRJNA1044661. The hybrid assembly was made publicly available via Zenodo and NCBI. For strain identification, data from 18S rRNA, ANI dendrogram and Core Genome single nucleotide polymorphism (SNP) Tree showed that the present isolate belongs to the genus Saccharomyces, species cerevisiae. The potential genes of concern, e.g. antimycotic resestance genes, were not detected. This strain is commonly used as a feed additive for animal health improvement and the present data summarise the unambiguous identity and strain's FKS1 gene does not code for any amino acid variants of concern.
Collapse
Affiliation(s)
- Ivana Nikodinoska
- Alltech European Headquarters, Sarney, Summerhill Road, Dunboyne, Co. Meath, Ireland
| | - Colm A. Moran
- Regulatory Affairs Department, Alltech SARL, 14500 Vire, France
| |
Collapse
|
18
|
Paściak M, Pawlik KJ, Martynowski D, Łaczmański Ł, Ciekot J, Szponar B, Wójcik‐Fatla A, Mackiewicz B, Farian E, Cholewa G, Cholewa A, Dutkiewicz J. Discovery of a new bacterium, Microbacterium betulae sp. nov., in birch wood associated with hypersensitivity pneumonitis in woodworkers. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13311. [PMID: 39135302 PMCID: PMC11319209 DOI: 10.1111/1758-2229.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/26/2024] [Indexed: 08/16/2024]
Abstract
A Gram-positive, aerobic, rod-shaped mesophilic bacterium was isolated from birch wood, referred to as the AB strain. Allergological tests suggest that this strain may cause allergic alveolitis in sawmill workers. Employing a polyphasic taxonomic approach, the AB strain's 16S rRNA gene sequence showed high similarity to Microbacterium barkeri and M. oryzae, with 97.25% and 96.91%, respectively, a finding supported by rpoB and gyrB sequence analysis. Further genome sequence comparison with the closely related M. barkeri type strain indicated a digital DNA-DNA hybridization value of 25.5% and an average nucleotide identity of 82.52%. The AB strain's cell wall peptidoglycan contains ornithine, and its polar lipids comprise diphosphatidylglycerol, phosphatidylglycerol, and unidentified glycolipids. Its major fatty acids include anteiso C15:0, anteiso C17:0, and iso C16:0, while MK-10 is its predominant respiratory quinone. Comprehensive analysis through 16S rRNA, whole-genome sequencing, phenotyping, chemotaxonomy, and MALDI-TOF MS profiling indicates that the AB strain represents a new species within the Microbacterium genus. It has been proposed to name this species Microbacterium betulae sp. nov., with ABT (PCM 3040T = CEST 30706T) designated as the type strain.
Collapse
Affiliation(s)
- Mariola Paściak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocławPoland
| | - Krzysztof J. Pawlik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocławPoland
| | - Dariusz Martynowski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocławPoland
| | - Łukasz Łaczmański
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocławPoland
| | - Jarosław Ciekot
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocławPoland
| | - Bogumiła Szponar
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocławPoland
| | - Angelina Wójcik‐Fatla
- Department of Health Biohazards and ParasitologyInstitute of Rural HealthLublinPoland
| | - Barbara Mackiewicz
- Department of Pneumonology, Oncology and AllergologyMedical UniversityLublinPoland
| | - Ewelina Farian
- Department of Health Biohazards and ParasitologyInstitute of Rural HealthLublinPoland
| | - Grażyna Cholewa
- Department of Health Biohazards and ParasitologyInstitute of Rural HealthLublinPoland
| | - Alicja Cholewa
- Department of Health Biohazards and ParasitologyInstitute of Rural HealthLublinPoland
| | - Jacek Dutkiewicz
- Department of Health Biohazards and ParasitologyInstitute of Rural HealthLublinPoland
| |
Collapse
|
19
|
Půža V, Machado RAR. Systematics and phylogeny of the entomopathogenic nematobacterial complexes Steinernema-Xenorhabdus and Heterorhabditis-Photorhabdus. ZOOLOGICAL LETTERS 2024; 10:13. [PMID: 39020388 PMCID: PMC11256433 DOI: 10.1186/s40851-024-00235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/08/2024] [Indexed: 07/19/2024]
Abstract
Entomopathogenic nematodes of the genera Steinernema and Heterorhabditis, along with their bacterial symbionts from the genera Xenorhabdus and Photorhabdus, respectively, are important biological control agents against agricultural pests. Rapid progress in the development of genomic tools has catalyzed a transformation of the systematics of these organisms, reshaping our understanding of their phylogenetic and cophlylogenetic relationships. In this review, we discuss the major historical events in the taxonomy and systematics of this group of organisms, highlighting the latest advancements in these fields. Additionally, we synthesize information on nematode-bacteria associations and assess the existing evidence regarding their cophylogenetic relationships.
Collapse
Affiliation(s)
- Vladimír Půža
- Institute of Entomology, Biology centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic.
- Faculty of Agriculture and Technology, University of South Bohemia, Studentská 1668, České Budějovice, 37005, Czech Republic.
| | - Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology, Faculty of Sciences, University of Neuchâtel, Neuchâtel, 2000, Switzerland.
| |
Collapse
|
20
|
Kobayashi H, Tanizawa Y, Sakamoto M, Ohkuma M, Tohno M. Lacrimispora brassicae sp. nov. isolated from fermented cabbage, and proposal of Clostridium indicum Gundawar et al. 2019 and Clostridium methoxybenzovorans Mechichi et al. 1999 as heterotypic synonyms of Lacrimispora amygdalina (Parshina et al. 2003) Haas and Blanchard 2020 and Lacrimispora indolis (McClung and McCoy 1957) Haas and Blanchard 2020, respectively. Int J Syst Evol Microbiol 2024; 74:006456. [PMID: 39016536 PMCID: PMC11316579 DOI: 10.1099/ijsem.0.006456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
A Gram-stain-negative, endospore-forming, rod-shaped, indole-producing bacterial strain, designated YZC6T, was isolated from fermented cabbage. Strain YZC6T grew at 10-37 °C, pH 5.5-8.5, and with up to 2 % (w/v) NaCl. The major cellular fatty acids were C16 : 0 and C18 : 1 cis 11 dimethyl acetal. Phylogenetic analysis of the 16S rRNA gene revealed that strain YZC6T belonged to the genus Lacrimispora and was closely related to Lacrimispora aerotolerans DSM 5434T (98.3 % sequence similarity), Lacrimispora saccharolytica WM1T (98.1 %), and Lacrimispora algidixylanolytica SPL73T (98.1 %). The average nucleotide identity based on blast (below 87.8 %) and digital DNA-DNA hybridization (below 36.1 %) values between the novel isolate and its corresponding relatives showed that strain YZC6T could be readily distinguished from its closely related species. Based on genotypic, phenotypic, and chemotaxonomic data, a novel Lacrimispora species, Lacrimispora brassicae sp. nov., was proposed, with YZC6T as the type strain (=MAFF 212518T=JCM 32810T=DSM 112100T). This study also proposed Clostridium indicum Gundawar et al. 2019 as a later heterotypic synonym of Lacrimispora amygdalina (Parshina et al. 2003) Haas and Blanchard 2020 and Clostridium methoxybenzovorans Mechichi et al. 1999 as a later heterotypic synonym of Lacrimispora indolis (McClung and McCpy 1957) Haas and Blanchard 2020.
Collapse
Affiliation(s)
- Hisami Kobayashi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
| | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Mitsuo Sakamoto
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Masanori Tohno
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
- Innovative Animal Production System, University of Tsukuba, 305-8571 Tsukuba, Japan
| |
Collapse
|
21
|
Valdezate S, Medina-Pascual MJ, Villalón P, Garrido N, Monzón S, Cuesta I, Cobo F. Co-occurrence of the cephalosporinase cepA and carbapenemase cfiA genes in a Bacteroides fragilis division II strain, an unexpected finding. J Antimicrob Chemother 2024; 79:1683-1687. [PMID: 38814812 DOI: 10.1093/jac/dkae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Bacteroides fragilis, an anaerobic gut bacterium and opportunistic pathogen, comprises two genetically divergent groups (or divisions) at the species level. Differences exist both in the core and accessory genomes and the beta-lactamase genes, with the cephalosporinase gene cepA represented only in division I and the carbapenemase gene cfiA only in division II. METHODS Multidrug resistance in a clinical B. fragilis strain was examined by whole-genome sequencing. RESULTS Strain CNM20200260 carried the antimicrobial resistance genes cepA, cfiA2, ant(6'), erm(F), mef(En2), est(T), tet(Q) and cat(A), along with 82-Phe mutation in gyrA (together with 47 amino acid changes in gyrA/B and parC/parE). bexA/B and other efflux pump genes were also observed. None of the detected insertion sequences was located upstream of cfiA2. The genome-based taxonomy coefficients (average nucleotide identity, DNA-DNA hybridization similarity and difference in genomic G + C%) with respect to genomes of the strains of B. fragilis division II and the novel species Bacteroides hominis (both cfiA-positive) met the criteria for CNM20200260 to belong to either species (>95%, >70% and <1%, respectively). No such similarity was seen with type strain NCTC 9343 or the representative genome FDAARGOS 1225 of B. fragilis (division I, cfiA-negative). Strain CNM20200260 harboured four out of nine Kyoto Encyclopedia of Genes and Genomes orthologues defined for division I and one of two defined for division II. CONCLUSIONS This is the first description of the co-occurrence of cepA and cfiA in a Bacteroides strain, confirming the complexity of the taxonomy of this species.
Collapse
Affiliation(s)
- S Valdezate
- Reference and Research Laboratory for Taxonomy, National Centre of Microbiology, Instituto de Salud Carlos III, Majadahonda, Carretera Pozuelo-Majadahonda km 2.2, 28220, Madrid, Spain
| | - M J Medina-Pascual
- Reference and Research Laboratory for Taxonomy, National Centre of Microbiology, Instituto de Salud Carlos III, Majadahonda, Carretera Pozuelo-Majadahonda km 2.2, 28220, Madrid, Spain
| | - P Villalón
- Reference and Research Laboratory for Taxonomy, National Centre of Microbiology, Instituto de Salud Carlos III, Majadahonda, Carretera Pozuelo-Majadahonda km 2.2, 28220, Madrid, Spain
| | - N Garrido
- Reference and Research Laboratory for Taxonomy, National Centre of Microbiology, Instituto de Salud Carlos III, Majadahonda, Carretera Pozuelo-Majadahonda km 2.2, 28220, Madrid, Spain
| | - S Monzón
- Bioinformatics Unit, Applied Services, Training and Research, Instituto de Salud Carlos III, Majadahonda, Carretera Pozuelo-Majadahonda km 2.2, 28220, Madrid, Spain
| | - I Cuesta
- Bioinformatics Unit, Applied Services, Training and Research, Instituto de Salud Carlos III, Majadahonda, Carretera Pozuelo-Majadahonda km 2.2, 28220, Madrid, Spain
| | - F Cobo
- Department of Microbiology and Instituto Biosanitario de Granada, University Hospital of Virgen de las Nieves, Avda. Fuerzas Armadas s/n, 18014 Granada, Spain
| |
Collapse
|
22
|
de Oliveira Sant'Anna L, Dos Santos LS, Olivella JGB, da Cruz Mota M, Ramos JN, Baio PVP, da Rocha DJPG, Vieira VV, Almuzara M, Vay C, Barberis C, Castro TLDP, Seyffert N, Pacheco LGC, Mattos-Guaraldi AL. Description of Corynebacterium hiratae sp. nov. isolated from a human tissue bone a novel member of Corynebacterium Genus. Braz J Microbiol 2024; 55:1405-1414. [PMID: 38598149 PMCID: PMC11153448 DOI: 10.1007/s42770-024-01331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Corynebacterium spp. are widely disseminated in the environment, and they are part of the skin and mucosal microbiota of animals and humans. Reports of human infections by Corynebacterium spp. have increased considerably in recent years and the appearance of multidrug resistant isolates around the world has drawn attention. OBJECTIVES To describe a new species of Corynebacterium from human tissue bone is described after being misidentified using available methods. METHODS For taxonomic analyses, phylogenetic analysis of 16S rRNA and rpoB genes, in silico DNA-DNA hybridization, average nucleotide and amino acid identity, multilocus sequence analysis, and phylogenetic analysis based on the complete genome were used. FINDINGS Genomic taxonomic analyzes revealed values of in silico DNA-DNA hybridization, average nucleotide and amino acids identity below the values necessary for species characterization between the analyzed isolates and the closest phylogenetic relative Corynebacterium aurimucosum DSM 44532T. MAIN CONCLUSIONS Genomic taxonomic analyzes indicate that the isolates analyzed comprise a new species of the Corynebacterium genus, which we propose to name Corynebacterium hiratae sp. nov. with isolate 332T (= CBAS 826T = CCBH 35,014T) as the type strain.
Collapse
Affiliation(s)
- Lincoln de Oliveira Sant'Anna
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Vinte e Oito de Setembro 87, Fundos, 3º andar. Vila Isabel, Rio de Janeiro, RJ, CEP:20551-030, Brazil.
| | - Louisy Sanches Dos Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Vinte e Oito de Setembro 87, Fundos, 3º andar. Vila Isabel, Rio de Janeiro, RJ, CEP:20551-030, Brazil
| | - Julianna Giordano Botelho Olivella
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Vinte e Oito de Setembro 87, Fundos, 3º andar. Vila Isabel, Rio de Janeiro, RJ, CEP:20551-030, Brazil
| | - Mariana da Cruz Mota
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Vinte e Oito de Setembro 87, Fundos, 3º andar. Vila Isabel, Rio de Janeiro, RJ, CEP:20551-030, Brazil
| | - Juliana Nunes Ramos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Vinte e Oito de Setembro 87, Fundos, 3º andar. Vila Isabel, Rio de Janeiro, RJ, CEP:20551-030, Brazil
| | | | | | - Verônica Viana Vieira
- Faculty of Pharmacy and Biochemistry and Bacteriology, Department of Clinical Biochemistry, University of Buenos Aires, Autonomous City of Buenos Aires, Argentina
| | - Marisa Almuzara
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carlos Vay
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Claudia Barberis
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Núbia Seyffert
- Institute of Health Sciences, Department of Biotechnology, Federal University of Bahia, Salvador, Brazil
| | | | - Ana Luíza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Vinte e Oito de Setembro 87, Fundos, 3º andar. Vila Isabel, Rio de Janeiro, RJ, CEP:20551-030, Brazil
| |
Collapse
|
23
|
Cunha-Ferreira IC, Vizzotto CS, Freitas MAM, Peixoto J, Carvalho LS, Tótola MR, Thompson FL, Krüger RH. Genomic and physiological characterization of Kitasatospora sp. nov., an actinobacterium with potential for biotechnological application isolated from Cerrado soil. Braz J Microbiol 2024; 55:1099-1115. [PMID: 38605254 PMCID: PMC11153394 DOI: 10.1007/s42770-024-01324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
An Actinobacteria - Kitasatospora sp. K002 - was isolated from the soil of Cerrado, a savanna-like Brazilian biome. Herein, we conducted a phylogenetic, phenotypic and physiological characterization, revealing its potential for biotechnological applications. Kitasatospora sp. K002 is an aerobic, non-motile, Gram-positive bacteria that forms grayish-white mycelium on solid cultures and submerged spores with vegetative mycelia on liquid cultures. The strain showed antibacterial activity against Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. Genomic analysis indicated that Kitasatospora xanthocidica JCM 4862 is the closest strain to K002, with a dDDH of 32.8-37.8% and an ANI of 86.86% and the pangenome investigations identified a high number of rare genes. A total of 60 gene clusters of 22 different types were detected by AntiSMASH, and 22 gene clusters showed low similarity (< 10%) with known compounds, which suggests the potential production of novel bioactive compounds. In addition, phylogenetic analysis and morphophysiological characterization clearly distinguished Kitasatospora sp. K002 from other related species. Therefore, we propose that Kitasatospora sp. K002 should be recognized as a new species of the genus Kitasatospora - Kitasatospora brasiliensis sp. nov. (type strains = K002).
Collapse
Affiliation(s)
- I C Cunha-Ferreira
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, Brazil
| | - C S Vizzotto
- Laboratory of Environmental Sanitation, Department of Civil and Environmental Engineering, University of Brasília (UNB), Brasília, Brazil
| | - M A M Freitas
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - J Peixoto
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, Brazil
| | - L S Carvalho
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, Brazil
| | - M R Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | - F L Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - R H Krüger
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, Brazil.
| |
Collapse
|
24
|
Li AQ, Qi XQ, Zhang C, Huang XG, Wen DY, Li XG, Zhang WJ. Thalassotalea psychrophila sp. nov. , Thalassotalea nanhaiensis sp. nov. and Thalassotalea fonticola sp. nov., three psychrophilic bacteria isolated from deep-sea sediment. Int J Syst Evol Microbiol 2024; 74. [PMID: 38805025 DOI: 10.1099/ijsem.0.006399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Three psychrophilic bacteria, designated as strains SQ149T, SQ345T, and S1-1T, were isolated from deep-sea sediment from the South China Sea. All three strains were the most closely related to Thalassotalea atypica RZG4-3-1T based on the 16S rRNA gene sequence analysis (similarity ranged from 96.45 to 96.67 %). Phylogenetic analysis based on the 16S rRNA gene and core-genome sequences showed that three strains formed a cluster within the genus Thalassotalea. The average amino acid identity, average nucleotide identity, and digital DNA-DNA hybridization values among the three strains and closest Thalassotalea species were far below the cut-off value recommended for delineating species, indicating they each represented a novel species. All three strains were Gram-stain-negative, rod-shaped, and contained summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) as the predominant fatty acid, Q-8 as the major respiratory quinone, and phosphatidylethanolamine and phosphatidylglycerol as predominant polar lipids. Based on the genomic, phylogenetic, and phenotypic characterizations, each strain is considered to represent a novel species within the genus Thalassotalea, for which the names Thalassotalea psychrophila sp. nov. (type strain SQ149T=MCCC 1K04231T=JCM 33807T), Thalassotalea nanhaiensis sp. nov. (type strain SQ345T=MCCC 1K04232T=JCM 33808T), and Thalassotalea fonticola sp. nov. (type strain S1-1T=MCCC 1K06879T=JCM 34824T) are proposed.
Collapse
Affiliation(s)
- An-Qi Li
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiao-Qing Qi
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, PR China
- Present address: Hainan Research Academy of Environmental Sciences, Sanya, Hainan, PR China
| | - Chan Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, PR China
- Present address: Guangdong VTR BioTech Co., Ltd., Zhuhai, Guangdong, PR China
| | | | - Ding-Yang Wen
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Xue-Gong Li
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, PR China
- Institution of Deep-sea Life Sciences, IDSSE-BGI, Sanya, Hainan, PR China
| | - Wei-Jia Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, PR China
- Institution of Deep-sea Life Sciences, IDSSE-BGI, Sanya, Hainan, PR China
| |
Collapse
|
25
|
Huang X, Qi S, Song W, Yu X, Zhang H, Xiang W, Zhao J, Wang X. Massilia luteola sp. nov., a novel indole-producing and cellulose-degrading bacterium isolated from soil. Int J Syst Evol Microbiol 2024; 74. [PMID: 38619981 DOI: 10.1099/ijsem.0.006331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
A Gram-stain-negative, rod-shaped, indole-producing, and cellulose-degrading bacterial strain, designated NEAU-G-C5T, was isolated from soil collected from a forest in Dali city, Yunnan province, south China. 16S rRNA gene sequence analysis showed that strain NEAU-G-C5T was assigned to the genus Massilia and showed high sequence similarities to Massilia phosphatilytica 12-OD1T (98.32 %) and Massilia putida 6 NM-7T (98.41 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-G-C5T formed a lineage related to M. phosphatilytica 12-OD1T and M. putida 6 NM-7T. The major fatty acids of the strain were C16 : 0, C16 : 1 ω7c, and C17 : 0 cyclo. The respiratory quinone was Q-8. The polar lipid profile of the strain showed the presence of diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. In addition, the average nucleotide identity values between strain NEAU-G-C5T and its reference strains M. phosphatilytica 12-OD1T, M. putida 6 NM-7T, M. norwichensis NS9T, and M. kyonggiensis TSA1T were 89.7, 88.2, 81.3, and 88.0 %, respectively, and the levels of digital DNA-DNA hybridization between them were found to be 58.5 % (54.9-62.0 %), 53.2 % (49.8-56.7 %), 31.9 % (28.6-35.5 %), and 57.7 % (54.1-61.2 %), respectively, which were lower than the accepted threshold values of 95-96 % and 70 %, respectively. The DNA G+C content of strain NEAU-G-C5T was 66.5 mol%. The strain could produce indoleacetic acid and cellulase. On the basis of the phenotypic, genotypic, and chemotaxonomic characteristics, we conclude that strain NEAU-G-C5T represents a novel species of the genus Massilia, for which the name Massilia luteola sp. nov. is proposed. The type strain is NEAU-G-C5T (=MCCC 1K08668T=KCTC 8080T).
Collapse
Affiliation(s)
- Xinbing Huang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| | - Shengtao Qi
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| | - Wenshuai Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| | - Xiaoxin Yu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| | - Haifeng Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests,Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District,Harbin 150030, PR China
| |
Collapse
|
26
|
Radisic V, Grevskott DH, Junghardt N, Øvreås L, Marathe NP. Multidrug-resistant Enterococcus faecium strains enter the Norwegian marine environment through treated sewage. Microbiologyopen 2024; 13:e1397. [PMID: 38441345 PMCID: PMC10913173 DOI: 10.1002/mbo3.1397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/07/2024] Open
Abstract
This study aimed to understand the antibiotic resistance prevalence among Enterococcus spp. from raw and treated sewage in Bergen city, Norway. In total, 517 Enterococcus spp. isolates were obtained from raw and treated sewage from five sewage treatment plants (STPs) over three sampling occasions, with Enterococcus faecium as the most prevalent (n = 492) species. E. faecium strains (n = 307) obtained from the influent samples, showed the highest resistance against quinupristin/dalfopristin (67.8%). We observed reduced susceptibility to erythromycin (30.6%) and tetracycline (6.2%) in these strains. E. faecium strains (n = 185) obtained from the effluent samples showed highest resistance against quinupristin/dalfopristin (68.1%) and reduced susceptibility to erythromycin (24.9%) and tetracycline (8.6%). We did not detect resistance against last-resort antibiotics, such as linezolid, vancomycin, and tigecycline in any of the strains. Multidrug-resistant (MDR) E. faecium strains were detected in both influent (2.3%) and effluent (2.2%) samples. Whole genome sequencing of the Enterococcus spp. strains (n = 25) showed the presence of several antibiotic resistance genes, conferring resistance against aminoglycosides, tetracyclines, and macrolides, as well as several virulence genes and plasmid replicons. Two sequenced MDR strains from the effluents belonged to the hospital-associated clonal complex 17 and carried multiple virulence genes. Our study demonstrates that clinically relevant MDR Enterococcus spp. strains are entering the marine environment through treated sewage.
Collapse
Affiliation(s)
- Vera Radisic
- Department of Contaminants and BiohazardsInstitute of Marine Research (IMR)BergenNorway
- Department of Biological SciencesUniversity of Bergen (UiB)BergenNorway
| | - Didrik H. Grevskott
- Department of Contaminants and BiohazardsInstitute of Marine Research (IMR)BergenNorway
| | - Nadja Junghardt
- Department of Contaminants and BiohazardsInstitute of Marine Research (IMR)BergenNorway
| | - Lise Øvreås
- Department of Biological SciencesUniversity of Bergen (UiB)BergenNorway
| | - Nachiket P. Marathe
- Department of Contaminants and BiohazardsInstitute of Marine Research (IMR)BergenNorway
| |
Collapse
|
27
|
León MJ, Sánchez-Porro C, de la Haba RR, Pfeiffer F, Dyall-Smith M, Oksanen HM, Ventosa A. Halobacterium hubeiense sp. nov., a haloarchaeal species isolated from a bore core drilled in Hubei Province, PR China. Int J Syst Evol Microbiol 2024; 74:006296. [PMID: 38512754 PMCID: PMC11004503 DOI: 10.1099/ijsem.0.006296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Eight colonies of live microbes were isolated from an extensively surface-sterilized halite sample which had been retrieved from a depth of 2000 m from a salt mine in the Qianjiang Depression, Hubei Province, PR China. The eight colonies, obtained after 4 weeks of incubation, were named JI20-1T-JI20-8 and JI20-1T was selected as the type strain. The strains have been previously described, including a genomic analysis based on the complete genome for strain JI20-1T and draft genomes for the other strains. In that study, the name Halobacterium hubeiense was suggested, based on the location of the drilling site. Previous phylogenomic analysis showed that strain JI20-1T is most closely related to the Permian isolate Halobacterium noricense from Alpine rock salt. The orthologous average nucleotide identity (orthoANI) and digital DNA-DNA hybridization (dDDH) percentages between the eight strains are 100-99.6 % and 99.8-96.4 %, respectively. The orthoANI and dDDH values of these strains with respect to the type strains of species of the genus Halobacterium are 89.9-78.2 % and 37.3-21.6 %, respectively, supporting their placement in a novel extremely halophilic archaeal species. The phylogenomic tree based on the comparison of sequences of 632 core-orthologous proteins confirmed the novel species status for these haloarchaea. The polar lipid profile includes phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, and sulfated galactosyl mannosyl galactosyl glucosyl diether, a profile compatible with that of Halobacterium noricense. Based on genomic, phenotypic, and chemotaxonomic characterization, we propose strain JI20-1T (=DSM 114402T = HAMBI 3616T) as the type strain of a novel species in the genus Halobacterium, with the name Halobacterium hubeiense sp. nov.
Collapse
Affiliation(s)
- María José León
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- Biology II, Ulm University, 89069 Ulm, Germany
| | - Mike Dyall-Smith
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
28
|
Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2024; 74:006300. [PMID: 38512750 PMCID: PMC10963913 DOI: 10.1099/ijsem.0.006300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
The field of microbial taxonomy is dynamic, aiming to provide a stable and contemporary classification system for prokaryotes. Traditionally, reliance on phenotypic characteristics limited the comprehensive understanding of microbial diversity and evolution. The introduction of molecular techniques, particularly DNA sequencing and genomics, has transformed our perception of prokaryotic diversity. In the past two decades, advancements in genome sequencing have transitioned from traditional methods to a genome-based taxonomic framework, not only to define species, but also higher taxonomic ranks. As technology and databases rapidly expand, maintaining updated standards is crucial. This work seeks to revise the 2018 guidelines for applying genome sequencing data in microbial taxonomy, adapting minimal standards and recommendations to reflect technological progress during this period.
Collapse
Affiliation(s)
- Raúl Riesco
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, University of Salamanca, 37007 Salamanca, Spain
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Martha E. Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
29
|
Straková D, Sánchez-Porro C, de la Haba RR, Ventosa A. Decoding the Genomic Profile of the Halomicroarcula Genus: Comparative Analysis and Characterization of Two Novel Species. Microorganisms 2024; 12:334. [PMID: 38399738 PMCID: PMC10892550 DOI: 10.3390/microorganisms12020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
The genus Halomicroarcula, classified within the family Haloarculaceae, presently comprises eight haloarchaeal species isolated from diverse saline habitats, such as solar salterns, hypersaline soils, marine salt, and marine algae. Here, a detailed taxogenomic study and comparative genomic analysis of the genus Halomicroarcula was carried out. In addition, two strains, designated S1CR25-12T and S3CR25-11T, that were isolated from hypersaline soils located in the Odiel Saltmarshes in Huelva (Spain) were included in this study. The 16S rRNA and rpoB' gene sequence analyses affiliated the two strains to the genus Halomicroarcula. Typically, the species of the genus Halomicroarcula possess multiple heterogeneous copies of the 16S rRNA gene, which can lead to misclassification of the taxa and overestimation of the prokaryotic diversity. In contrast, the application of overall genome relatedness indexes (OGRIs) augments the capacity for the precise taxonomic classification and categorization of prokaryotic organisms. The relatedness indexes of the two new isolates, particularly digital DNA-DNA hybridization (dDDH), orthologous average nucleotide identity (OrthoANI), and average amino acid identity (AAI), confirmed that strains S1CR25-12T (= CECT 30620T = CCM 9252T) and S3CR25-11T (= CECT 30621T = CCM 9254T) constitute two novel species of the genus Halomicroarcula. The names Halomicroarcula saliterrae sp. nov. and Halomicroarcula onubensis sp. nov. are proposed for S1CR25-12T and S3CR25-11T, respectively. Metagenomic fragment recruitment analysis, conducted using seven shotgun metagenomic datasets, revealed that the species belonging to the genus Halomicroarcula were predominantly recruited from hypersaline soils found in the Odiel Saltmarshes and the ponds of salterns with high salt concentrations. This reinforces the understanding of the extreme halophilic characteristics associated with the genus Halomicroarcula. Finally, comparing pan-genomes across the twenty Halomicroarcula and Haloarcula species allowed for the identification of commonalities and differences between the species of these two related genera.
Collapse
Affiliation(s)
| | | | | | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (D.S.); (C.S.-P.); (R.R.d.l.H.)
| |
Collapse
|
30
|
Yang X, Cao H, Xu X, Xie J, Chen J, Xiang W, Zhao J, Wang X. Glycomyces niveus sp. nov., a novel actinomycete isolated from sandy soil. Int J Syst Evol Microbiol 2024; 74. [PMID: 38329394 DOI: 10.1099/ijsem.0.006265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
A novel mycelium-forming actinomycete, designated strain NEAU-S30T, was isolated from the sandy soil of a sea beach in Shouguang city, Shandong province, PR China. The strain developed long chains of non-motile cylindrical spores with smooth surfaces on aerial mycelia. The results of a polyphasic taxonomic study indicated that NEAU-S30T represented a member of the genus Glycomyces. The results of 16S rRNA gene sequence analysis indicated that NEAU-S30T was closely related to 'Glycomycesluteolus' (98.97 % sequence similarity), Glycomycesalgeriensis (98.90 %), 'Glycomyces tritici' (98.83 %) and Glycomyces lechevalierae (98.76 %). The average nucleotide identity (ANI) values between NEAU-S30T and 'G. luteolus' NEAU-A15, G. algeriensis DSM 44727T, 'G. tritici' NEAU-C2 and G. lechevalierae DSM 44724T were 87.77, 87.53, 87.41 and 87.80 %, respectively. The digital DNA G+C content of the genomic DNA was 70.5 %. The whole-cell sugars contained ribose and xylose. The predominant menaquinones were MK-10(H2), MK-10(H4) and MK-10(H6). The predominant fatty acids were anteiso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and iso-C15 : 0. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid, phosphatidylinositol, phosphatidylinositol mannoside and an unidentified glycolipid. On the basis of the results of comparative analysis of genotypic, phenotypic and chemotaxonomic data, the novel actinomycete strain NEAU-S30T (=JCM 33975T=CGMCC 4.7890T) represents the type strain of a novel species within the genus Glycomyces, for which the name Glycomyces niveus sp. nov. is proposed.
Collapse
Affiliation(s)
- Xilang Yang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Hanshui Cao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Xi Xu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Jiayue Xie
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Jie Chen
- School of Forestry and Biotechnology, Zhejiang A and F University, Lin'an, Hangzhou, 311300, PR China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
31
|
Sun H, Levenfors JJ, Brandt C, Schnürer A. Characterisation of meropenem-resistant Bacillus sp. FW 1 isolated from biogas digestate. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13217. [PMID: 37965980 PMCID: PMC10866066 DOI: 10.1111/1758-2229.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Recently a Bacillus sp. strain FW 1 was isolated from biogas digestate and shown to have novel resistance to meropenem (MEM), of critical importance in human medicine. MEM-resistance has so far only been described for one species within the genus Bacillus, that is, Bacillus cereus. Bacillus is an abundant representative of the microbial community in biogas digesters and consequently, the finding indicates a risk of spreading such resistance when using the digestate as fertiliser. In this study, the Bacillus strain was characterised and classified as Heyndrickxia oleronia (previous Bacillus oleronius), previously not described to harbour MEM-resistance. The mechanism of resistance was explored by metallo-β-lactamase (MBL) production, mapping of carbapenemase genes and genome analysis. The transferability of MEM-resistance in strain FW 1 was investigated by plasmid transformation/conjugation, combined with genome analysis. The results confirmed MBL production for both strain FW 1 and the type strain H. oleronia DSM 9356T . However, elevated MEM resistance was found for strain FW 1, which was suggested to be caused by the production of unclassified carbapenemase, or overexpression of MBL. Moreover, the results suggest that the MEM-resistance of strain FW 1 is not transferable, thus representing a limited risk of MEM-resistance spread to the environment when using digestate on arable land.
Collapse
Affiliation(s)
- He Sun
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | - Jolanta J. Levenfors
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsalaSweden
- Ultupharma ABUppsalaSweden
| | - Christian Brandt
- Institute for Infectious Diseases and Infection ControlJena University HospitalJenaGermany
| | - Anna Schnürer
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
32
|
Wang Q, Han XL, Shen JQ, Lai JD, Zhang CL, Fang ZQ, Lu T. Paenibacillus baimaensis sp. nov., a bacterium isolated from mountain soil in the habitat of Rhinopithecus bieti. Int J Syst Evol Microbiol 2024; 74. [PMID: 38334269 DOI: 10.1099/ijsem.0.006260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
A novel Gram-positive strain WQ 127069T that was isolated from the soil of Baima Snow Mountain, a habitat of highly endangered Yunnan snub-nosed monkeys (Rhinopithecus bieti), was subjected to a polyphasic taxonomic study. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the isolate belongs to the genus Paenibacillus, showing 98.4 and 96.08 % sequence similarity to the type strains Paenibacillus periandrae PM10T and Paenibacillus foliorum LMG 31456T, respectively. The G+C content of the genomic DNA of strain WQ127069T was 45.6 mol%. The predominant isoprenoid quinone was MK-7, and meso-diaminopimelic acid was present in peptidoglycan. The major cellular fatty acids were antiiso-C15 : 0, iso-C15 : 0 and C16 : 0. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylmonomethylethanolamine. The whole genome average nucleotide identity and digital DNA-DNA hybridization values between strain WQ 127069T and strain PM10T were 93.2 and 52.5 %, respectively. Growth occurred at 5-40 °C (optimally at 20-35 °C), pH 6-8 (optimally at pH7.0) and with 0.5-2 % (w/v) NaCl (optimally at 0.5 %). On the basis of the taxonomic evidence, a novel species, Paenibacillus baimaensis sp. nov., is proposed. The type strain is WQ 127069T (=KCTC 43480T=CCTCC AB 2022381T).
Collapse
Affiliation(s)
- Qiong Wang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, PR China
- Present address: Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Xiu-Lin Han
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, PR China
| | - Jian-Qiang Shen
- Weixi Sub-bureau, Baima Snow Mountain National Nature Reserve, Diqing, Yunnan 674400, PR China
| | - Jian-Dong Lai
- Wildlife Rescue and Rehabilitation Station, Baima Snow Mountain National Nature Reserve, Diqing, Yunnan 674400, PR China
| | - Chen-Lu Zhang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, PR China
| | - Zhi-Qin Fang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, PR China
| | - Tao Lu
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, PR China
| |
Collapse
|
33
|
Rana R, Sharma A, Madhavan VN, Korpole S, Sonti RV, Patel HK, Patil PB. Xanthomonas protegens sp. nov., a novel rice seed-associated bacterium, provides in vivo protection against X. oryzae pv. oryzae, the bacterial leaf blight pathogen. FEMS Microbiol Lett 2024; 371:fnae093. [PMID: 39500549 DOI: 10.1093/femsle/fnae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Historically, Xanthomonas species are primarily known for their pathogenicity against plants, but recently, there have been more findings of non-pathogenic xanthomonads. In the present study, we report isolates from healthy rice seeds that belong to a new species, Xanthomonas protegens, a protector of the rice plants against a serious pathogenic counterpart, i.e. X. oryzae pv. oryzae upon leaf clip co-inoculation. The new member species is non-pathogenic to rice and lacks a type III secretion system. The pangenome investigation revealed a large number of unique genes, including a novel lipopolysaccharide biosynthetic gene cluster, that might be important in its adaptation. The phylo-taxonogenomic analysis revealed that X. protegens is a taxonomic outlier species of X. sontii, a core, vertically transmitted rice seed endophyte with numerous probiotic properties. Interestingly, X. sontii is also reported as a keystone species of healthy rice seed microbiome. The findings and resources will help in the development of unique gene markers and evolutionary studies of X. sontii as a successful symbiont and X. oryzae as a serious pathogen. Here, we propose X. protegens sp. nov. as a novel species of the genus Xanthomonas with PPL118 = MTCC 13396 = CFBP 9164 = ICMP 25181 as the type strain. PPL117, PPL124, PPL125, and PPL126 are other strains of the species.
Collapse
Affiliation(s)
- Rekha Rana
- Bacterial Genetic, Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
- The Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Anushika Sharma
- Bacterial Genetic, Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
- The Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Suresh Korpole
- Bacterial Genetic, Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
- The Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ramesh V Sonti
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Hitendra K Patel
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Prabhu B Patil
- Bacterial Genetic, Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
- The Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
34
|
Muigg V, Seth-Smith HMB, Adam KM, Weisser M, Hinić V, Blaich A, Roloff T, Heininger U, Schmid H, Kohler M, Graf L, Winterflood DM, Schlaepfer P, Goldenberger D. Novel Organism Verification and Analysis (NOVA) study: identification of 35 clinical isolates representing potentially novel bacterial taxa using a pipeline based on whole genome sequencing. BMC Microbiol 2024; 24:14. [PMID: 38178003 PMCID: PMC10768270 DOI: 10.1186/s12866-023-03163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Reliable species identification of cultured isolates is essential in clinical bacteriology. We established a new study algorithm named NOVA - Novel Organism Verification and Analysis to systematically analyze bacterial isolates that cannot be characterized by conventional identification procedures MALDI-TOF MS and partial 16 S rRNA gene sequencing using Whole Genome Sequencing (WGS). RESULTS We identified a total of 35 bacterial strains that represent potentially novel species. Corynebacterium sp. (n = 6) and Schaalia sp. (n = 5) were the predominant genera. Two strains each were identified within the genera Anaerococcus, Clostridium, Desulfovibrio, and Peptoniphilus, and one new species was detected within Citrobacter, Dermabacter, Helcococcus, Lancefieldella, Neisseria, Ochrobactrum (Brucella), Paenibacillus, Pantoea, Porphyromonas, Pseudoclavibacter, Pseudomonas, Psychrobacter, Pusillimonas, Rothia, Sneathia, and Tessaracoccus. Twenty-seven of 35 strains were isolated from deep tissue specimens or blood cultures. Seven out of 35 isolated strains identified were clinically relevant. In addition, 26 bacterial strains that could only be identified at the species level using WGS analysis, were mainly organisms that have been identified/classified very recently. CONCLUSION Our new algorithm proved to be a powerful tool for detection and identification of novel bacterial organisms. Publicly available clinical and genomic data may help to better understand their clinical and ecological role. Our identification of 35 novel strains, 7 of which appear to be clinically relevant, shows the wide range of undescribed pathogens yet to define.
Collapse
Affiliation(s)
- Veronika Muigg
- Clinical Bacteriology and Mycology, University Hospital Basel and University of Basel, Petersgraben 4, Basel, 4031, Switzerland
| | - Helena M B Seth-Smith
- Clinical Bacteriology and Mycology, University Hospital Basel and University of Basel, Petersgraben 4, Basel, 4031, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Kai-Manuel Adam
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Maja Weisser
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Vladimira Hinić
- Clinical Bacteriology and Mycology, University Hospital Basel and University of Basel, Petersgraben 4, Basel, 4031, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Annette Blaich
- Clinical Bacteriology and Mycology, University Hospital Basel and University of Basel, Petersgraben 4, Basel, 4031, Switzerland
| | - Tim Roloff
- Clinical Bacteriology and Mycology, University Hospital Basel and University of Basel, Petersgraben 4, Basel, 4031, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Ulrich Heininger
- Infectious Diseases and Vaccinology, University of Basel Children's Hospital, Basel, Switzerland
| | - Hanna Schmid
- Infectious Diseases and Vaccinology, University of Basel Children's Hospital, Basel, Switzerland
| | - Maurus Kohler
- Kantonsspital Baselland (Bruderholz, Liestal, Laufen), Bruderholz, Switzerland
| | - Lukas Graf
- Ear, Nose and Throat Department, University Hospital Basel, Basel, Switzerland
| | - Dylan M Winterflood
- Clinical Bacteriology and Mycology, University Hospital Basel and University of Basel, Petersgraben 4, Basel, 4031, Switzerland
| | - Pascal Schlaepfer
- Laboratory Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Daniel Goldenberger
- Clinical Bacteriology and Mycology, University Hospital Basel and University of Basel, Petersgraben 4, Basel, 4031, Switzerland.
| |
Collapse
|
35
|
Sánchez-Reyes A, Fernández-López MG. Sketched reference databases for genome-based taxonomy and comparative genomics. BRAZ J BIOL 2024; 84:e256673. [DOI: 10.1590/1519-6984.256673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/15/2022] [Indexed: 12/23/2022] Open
Abstract
Abstract The analysis of curated genomic, metagenomic and proteomic data is of paramount importance in the fields of biology, medicine, education, and bioinformatics. Although this type of data is usually hosted in raw format on free international repositories, the full access requires lots of computing power and large storage disk space for the domestic user. The purpose of the study is to offer a comprehensive set of microbial genomic and proteomic reference databases in an accessible and easy-to-use form to the scientific community and demonstrate its advantages and usefulness. Also, we present a case study on the applicability of the sketched data, for the determination of overall genomic coherence between two members of the Brucellacea family, which suggests they belong to the same genomospecies that remain as discrete ecotypes. A representative set of genomes, proteomes (from type material), and metagenomes were directly collected from the NCBI Assembly database and Genome Taxonomy Database (GTDB), associated with the major groups of Bacteria, Archaea, Virus, and Fungi. Sketched databases were subsequently created and stored on handy reduced representations by using the MinHash algorithm implemented in Mash software. The obtained dataset contains more than 133 GB of space disk reduced to 883.25 MB and represents 125,110 genomics/proteomic records from eight informative contexts, which have been prefiltered to make them accessible, usable, and user-friendly with limited computational resources. Potential uses of these sketched databases are discussed, including but not limited to microbial species delimitation, estimation of genomic distances and genomic novelties, paired comparisons between proteomes, genomes, and metagenomes; phylogenetic neighbor’s exploration and selection, among others.
Collapse
|
36
|
Lee SD, Yang HL, Kim IS. Four new Microbacterium species isolated from seaweeds and reclassification of five Microbacterium species with a proposal of Paramicrobacterium gen. nov. under a genome-based framework of the genus Microbacterium. Front Microbiol 2023; 14:1299950. [PMID: 38164402 PMCID: PMC10757982 DOI: 10.3389/fmicb.2023.1299950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
The taxonomic relationships of 10 strains isolated from seaweeds collected from two beaches in Republic of Korea were studied by sequencing and analyses of 16S rRNA genes and whole genomes. For the construction of a more reliable and robust 16S rRNA gene phylogeny, the authentic and nearly complete 16S rRNA gene sequences of all the Microbacterium type strains were selected through pairwise comparison of the sequences contained in several public databases including the List of Prokaryotic names with Standing in Nomenclature (LPSN). The clustering of the ten study strains into five distinct groups was apparent in this single gene-based phylogenetic tree. In addition, the 16S rRNA gene sequences of a few type strains were shown to be incorrectly listed in LPSN. An overall phylogenomic clustering of the genus Microbacterium was performed with a total of 113 genomes by core genome analysis. As a result, nine major (≥ three type strains) and eight minor (two type strains) clusters were defined mostly at gene support index of 92 and mean intra-cluster OrthoANIu of >80.00%. All of the study strains were assigned to a Microbacterium liquefaciens clade and distributed further into four subclusters in the core genome-based phylogenetic tree. In vitro phenotypic assays for physiological, biochemical, and chemotaxonomic characteristics were also carried out with the ten study strains and seven closely related type strains. Comparison of the overall genomic relatedness indices (OGRI) including OrthoANIu and digital DNA-DNA hybridization supported that the study strains constituted four new species of the genus Microbacterium. In addition, some Microbacterium type strains were reclassified as members of preexisting species. Moreover, some of them were embedded in a new genus of the family Microbacteriaceae based on their distinct separation in the core genome-based phylogenetic tree and amino acid identity matrices. Based on the results here, four new species, namely, Microbacterium aurugineum sp. nov., Microbacterium croceum sp. nov., Microbacterium galbinum sp. nov., and Microbacterium sufflavum sp. nov., are described, along with the proposal of Paramicrobacterium gen. nov. containing five reclassified Microbacterium species from the "Microbacterium agarici clade", with Paramicrobacterium agarici gen. nov., comb. nov. as the type species.
Collapse
Affiliation(s)
- Soon Dong Lee
- Institute of Jeju Microbial Resources, BioPS Co., Ltd., Jeju, Republic of Korea
| | - Hong Lim Yang
- Institute of Jeju Microbial Resources, BioPS Co., Ltd., Jeju, Republic of Korea
| | - In Seop Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejon, Republic of Korea
- BioPS Co., Ltd., Daejeon, Republic of Korea
| |
Collapse
|
37
|
Dinçtürk E, Öndes F, Leria L, Maldonado M. Mass mortality of the keratose sponge Sarcotragus foetidus in the Aegean Sea (Eastern Mediterranean) correlates with proliferation of Vibrio bacteria in the tissues. Front Microbiol 2023; 14:1272733. [PMID: 38107859 PMCID: PMC10722426 DOI: 10.3389/fmicb.2023.1272733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/12/2023] [Indexed: 12/19/2023] Open
Abstract
In the last two decades, episodes of mass mortality in benthic communities have often been associated with climatic anomalies, but the ultimate mechanisms through which they lead to death have rarely been identified. This study reports a mass mortality of wild sponges in the Aegean Sea (Turkey, Eastern Mediterranean), which affected the keratose demosponge Sarcotragus foetidus in September 2021. We examined the occurrence of thermo-dependent bacteria of the genus Vibrio in the sponges, identified through 16S rRNA of colonies isolated from sponge tissue in specific culturing media. Six Vibrio sequences were identified from the sponges, three of them being putatively pathogenic (V. fortis, V. owensii, V. gigantis). Importantly, those Vibrios were isolated from only tissues of diseased sponges. In contrast, healthy individuals sampled in both summer and winter led to no Vibrio growth in laboratory cultures. A 50 years record of sea surface temperature (SST) data for the study area reveals a progressive increase in temperature from 1970 to 2021, with values above 24°C from May to September 2021, reaching an absolute historical maximum of 28.9°C in August 2021. We hypothesize that such elevated SST values maintained for several months in 2021 promoted proliferation of pathogenic Vibrio species (thermo-dependent bacteria) in S. foetidus, triggering or aggravating the course of sponge disease. Thus, vibrioisis emerges as one of the putative mechanisms through which global water warming in the Mediterranean Sea translates into sponge mortality. The historical time course of temperature data for the studied area in the Aegean Sea predicts that recurrent waves of elevated SST are likely to occur in the coming summers. If so, recurrent disease may eventually eliminate this abundant sponge from the sublittoral in the midterm, altering the original bathymetric distribution of the species and compromising its ecological role.
Collapse
Affiliation(s)
- Ezgi Dinçtürk
- Fish Disease and Biotechnology Laboratory, Department of Aquaculture, Faculty of Fisheries, Izmir Katip Celebi University, Izmir, Türkiye
| | - Fikret Öndes
- Fisheries Laboratory, Department of Fisheries and Seafood Processing Technology, Faculty of Fisheries, Izmir Katip Celebi University, Izmir, Türkiye
- Department of Marine Sciences and Applied Biology, Faculty of Science, University of Alicante, Alicante, Spain
| | - Laia Leria
- Department of Aquatic Ecology, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Girona, Spain
| | - Manuel Maldonado
- Department of Aquatic Ecology, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Girona, Spain
| |
Collapse
|
38
|
Wang J, Wang Y, Zhang Q, Kong D, Xing Z, Zhang W, Ruan Z. Chryseobacterium pyrolae sp. nov., isolated from the rhizosphere soil of Pyrola calliantha H. Int J Syst Evol Microbiol 2023; 73. [PMID: 38054475 DOI: 10.1099/ijsem.0.006068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
A novel Gram-stain-negative, aerobic, non-motile, rod-shaped bacterium, designated pc2-12T, was isolated from the rhizosphere soil of the herb Pyrola calliantha collected from arid areas of Tibet. The strain grew most vigorously with 1 % (w/v) NaCl, at pH 7.0 and at 25 °C. According to the results of 16S rRNA gene sequence analysis, pc2-12T was closely related to the members of the genus Chryseobacterium, with highest levels of sequence similarity to Chryseobacterium viscerum 687B-08T (98.42 %), Chryseobacterium oncorhynchi 701B-08T (98.11 %) and Chryseobacterium ureilyticum DSM 18017T (97.98 %). The average nucleotide identity values between pc2-12T and C. viscerum 687B-08T, C. oncorhynchi 701B-08T and C. ureilyticum DSM 18017T were 79.71, 79.49 and 79.26 %, respectively. The in silico DNA-DNA hybridisation values between pc2-12T and C. viscerum 687B-08T, C. oncorhynchi 701B-08T and C. ureilyticum DSM 18017T were 23.30, 23.00 and 22.90 %, respectively. The draft genome sequence of pc2-12T was 4.64 Mb long, with DNA G+C content of 37.0 mol%. The fatty acids contained in the cells of pc2-12T were mainly composed of iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c). The main polar lipid was phosphatidylethanolamine. MK-6 was the sole respiratory quinone. On the basis of the results of analysis of all the data described, pc2-12T is considered to represent a novel species of the genus Chryseobacterium, for which the name Chryseobacterium pyrolae sp. nov., is proposed. The type strain is pc2-12T (=GDMCC 1.3256T= JCM 35712T).
Collapse
Affiliation(s)
- Jie Wang
- College of Life Science, Xinjiang Normal University, Urumqi 830054, PR China
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yan Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
- College of Resources and Environment, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, PR China
| | - Qi Zhang
- Xinjiang Urumqi Maternal and Child Care Hospital, Urumqi 830001, PR China
| | - Delong Kong
- College of Life Science, Xinjiang Normal University, Urumqi 830054, PR China
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Zhen Xing
- College of Resources and Environment, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, PR China
| | - Wei Zhang
- College of Life Science, Xinjiang Normal University, Urumqi 830054, PR China
| | - Zhiyong Ruan
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
- College of Resources and Environment, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, PR China
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| |
Collapse
|
39
|
Ebu SM, Ray L, Panda AN, Gouda SK. De novo assembly and comparative genome analysis for polyhydroxyalkanoates-producing Bacillus sp. BNPI-92 strain. J Genet Eng Biotechnol 2023; 21:132. [PMID: 37991636 PMCID: PMC10665291 DOI: 10.1186/s43141-023-00578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Certain Bacillus species play a vital role in polyhydroxyalkanoate (PHA) production. However, most of these isolates did not properly identify to species level when scientifically had been reported. RESULTS From NGS analysis, 5719 genes were predicted in the de novo genome assembly. Based on genome annotation using RAST server, 5,527,513 bp sequences were predicted with 5679 bp number of protein-coding sequence. Its genome sequence contains 35.1% and 156 GC content and contigs, respectively. In RAST server analysis, subsystem (43%) and non-subsystem coverage (57%) were generated. Ortho Venn comparative genome analysis indicated that Bacillus sp. BNPI-92 shared 2930 gene cluster (core gene) with B. cereus ATCC 14579 T (AE016877), B. paranthracis Mn5T (MACE01000012), B. thuringiensis ATCC 10792 T (ACNF01000156), and B. antrics Amen T (AE016879) strains. For our strain, the maximum gene cluster (190) was shared with B. cereus ATCC 14579 T (AE016877). For Ortho Venn pair wise analysis, the maximum overlapping gene clusters thresholds have been detected between Bacillus s p.BNPI-92 and Ba. cereus ATCC 14579 T (5414). Average nucleotide identity (ANI) such as OriginalANI and OrthoANI, in silicon digital DND-DNA hybridization (isDDH), Type (Strain) Genome Server (TYGS), and Genome-Genome Distance Calculator (GGDC) were more essentially related Bacillus sp. BNPI-92 with B. cereus ATCC 14579 T strain. Therefore, based on the combination of RAST annotation, OrthoVenn server, ANI and isDDH result Bacillus sp.BNPI-92 strain was strongly confirmed to be a B. cereus type strain. It was designated as B. cereus BNPI-92 strain. In B. cereus BNPI-92 strain whole genome sequence, PHA biosynthesis encoding genes such as phaP, phaQ, phaR (PHA synthesis repressor phaR gene sequence), phaB/phbB, and phaC were predicted on the same operon. These gene clusters were designated as phaPQRBC. However, phaA was located on other operons. CONCLUSIONS This newly obtained isolate was found to be new a strain based on comparative genomic analysis and it was also observed as a potential candidate for PHA biosynthesis.
Collapse
Affiliation(s)
- Seid Mohammed Ebu
- Department of Applied Biology, SoANS, Adama Science and Technology University, Oromia, Ethiopia.
| | - Lopamudra Ray
- School of Law, Campus -16 Adjunct Faculty, School of Biotech, Campus-11 KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Ananta N Panda
- School of Biotechnology, Campus-11 KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Sudhansu K Gouda
- School of Biotechnology, Campus-11 KIIT University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
40
|
de la Haba RR, Arahal DR, Sánchez-Porro C, Chuvochina M, Wittouck S, Hugenholtz P, Ventosa A. A long-awaited taxogenomic investigation of the family Halomonadaceae. Front Microbiol 2023; 14:1293707. [PMID: 38045027 PMCID: PMC10690426 DOI: 10.3389/fmicb.2023.1293707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 12/05/2023] Open
Abstract
The family Halomonadaceae is the largest family composed of halophilic bacteria, with more than 160 species with validly published names as of July 2023. Several classifications to circumscribe this family are available in major resources, such as those provided by the List of Prokaryotic names with Standing in Nomenclature (LPSN), NCBI Taxonomy, Genome Taxonomy Database (GTDB), and Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB), with some degree of disagreement between them. Moreover, regardless of the classification adopted, the genus Halomonas is not phylogenetically consistent, likely because it has been used as a catch-all for newly described species within the family Halomonadaceae that could not be clearly accommodated in other Halomonadaceae genera. In the past decade, some taxonomic rearrangements have been conducted on the Halomonadaceae based on ribosomal and alternative single-copy housekeeping gene sequence analysis. High-throughput technologies have enabled access to the genome sequences of many type strains belonging to the family Halomonadaceae; however, genome-based studies specifically addressing its taxonomic status have not been performed to date. In this study, we accomplished the genome sequencing of 17 missing type strains of Halomonadaceae species that, together with other publicly available genome sequences, allowed us to re-evaluate the genetic relationship, phylogeny, and taxonomy of the species and genera within this family. The approach followed included the estimate of the Overall Genome Relatedness Indexes (OGRIs) such as the average amino acid identity (AAI), phylogenomic reconstructions using amino acid substitution matrices customized for the family Halomonadaceae, and the analysis of clade-specific signature genes. Based on our results, we conclude that the genus Halovibrio is obviously out of place within the family Halomonadaceae, and, on the other hand, we propose a division of the genus Halomonas into seven separate genera and the transfer of seven species from Halomonas to the genus Modicisalibacter, together with the emendation of the latter. Additionally, data from this study demonstrate the existence of various synonym species names in this family.
Collapse
Affiliation(s)
- Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - David R. Arahal
- Departament of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, Australia
| | - Stijn Wittouck
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, Australia
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
41
|
Zhang G, Cheng Y, Li W, Chen Y, Yang J, Jin D, Lu S, Xu J. Arthrobacter zhaoxinii sp. nov. and Arthrobacter jinronghuae sp. nov., isolated from Marmota himalayana. Int J Syst Evol Microbiol 2023; 73. [PMID: 38018813 DOI: 10.1099/ijsem.0.006168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Four yellow-coloured strains (zg-Y815T/zg-Y108 and zg-Y859T/zg-Y826) were isolated from the intestinal contents of Marmota himalayana and assigned to the 'Arthrobacter citreus group'. The four strains grew optimally on brain heart infusion agar with 5 % defibrinated sheep blood plate at 30 °C, pH 7.0 and with 0.5 % NaCl (w/v). Comparative analysis of their 16S rRNA genes indicated that the two strain pairs belong to the genus Arthrobacter, showing the highest similarity to Arthrobacter yangruifuii 785T (99.52 %), which was further confirmed by the 16S rRNA gene and genome-based phylogenetic analysis. The comparative genomic analysis [digital DNA-DNA hybridization, (dDDH) and average nucleotide identity (ANI)] proved that the four strains are two different species (zg-Y815T/zg-Y108, 71.7 %/96.8 %; zg-Y859T/zg-Y826, 87.3 %/98.5 %) and differ from other known species within the genus Arthrobacter (zg-Y815T, 19.6-32.3 %/77.2-88.0 %; zg-Y859T, 19.5-29.3 %/77.4-86.3 %). Strain pairs zg-Y815T/zg-Y108 and zg-Y859T/zg-Y826 had the same major cellular fatty acids (iso-C16 : 0 and anteiso-C15 : 0), with MK-8(H2) as their dominant respiratory quinone (70.6 and 61.7 %, respectively). The leading polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylinositol. The detected amino acids and cell-wall sugars of the two new species were identical (amino acids: alanine, glutamic acid, and lysine; sugars: rhamnose, galactose, mannose, glucose, and ribose). According to the phylogenetic, phenotypic, and chemotaxonomic analyses, we concluded that the four new strains represented two different novel species in the genus Arthrobacter, for which the names Arthrobacter zhaoxinii sp. nov. (zg-Y815T= GDMCC 1.3494T = JCM 35821T) and Arthrobacter jinronghuae sp. nov. (zg-Y859T = GDMCC 1.3493T = JCM 35822T) are proposed.
Collapse
Affiliation(s)
- Gui Zhang
- Department of Infection Control, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Yanpeng Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, PR China
| | - Weiguang Li
- Department of Infection Control, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Yulu Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Jing Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Dong Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Shan Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Jianguo Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- Institute of Public Health, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
42
|
Straková D, Galisteo C, de la Haba RR, Ventosa A. Characterization of Haloarcula terrestris sp. nov. and reclassification of a Haloarcula species based on a taxogenomic approach. Int J Syst Evol Microbiol 2023; 73. [PMID: 37990990 DOI: 10.1099/ijsem.0.006157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
An extremely halophilic archaeon, strain S1AR25-5AT, was isolated from a hypersaline soil sampled in Odiel Saltmarshes Natural Area (Huelva, Spain). The cells were Gram-stain-negative, motile, pleomorphic rods. Cell growth was observed in the presence of 15-30 % (w/v) NaCl [optimum, 25 % (w/v) NaCl], at pH 6.0-9.0 (optimum, pH 6.5-7.5) and at 25-50 °C (optimum, 37 °C). Based on the 16S rRNA and rpoB' gene sequence comparisons, strain S1AR25-5AT was affiliated to the genus Haloarcula. Taxogenomic analysis, including comparison of the genomes and the phylogenomic tree based on the core-orthologous proteins, together with the genomic indices, i.e., orthologous average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity, confirmed that strain S1AR25-5AT (=CCM 9249T=CECT 30619T) represents a new species of the genus Haloarcula, for which we propose the name Haloarcula terrestris sp. nov. The major polar lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulphate and an unidentified glycolipid, which correlated with the lipid profile of species of the genus Haloarcula. In addition, based on the modern approach in description of species in taxonomy of prokaryotes, the above mentioned genomic indexes indicated that the species Haloarcula tradensis should be considered as a heterotypic synonym of Haloarcula argentinensis.
Collapse
Affiliation(s)
- Dáša Straková
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Cristina Galisteo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
43
|
Guliayeva D, Akhremchuk A, Sikolenko M, Evdokimova O, Valentovich L, Sidarenka A. Roseateles amylovorans sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2023; 73. [PMID: 37917535 DOI: 10.1099/ijsem.0.006133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
A Gram-stain-negative, rod-shaped, amylolytic bacterial strain, designated as bsSlp3-1T, was isolated from the Slepian water system, a freshwater reservoir. Strain bsSlp3-1T was found to be aerobic, oxidase-positive and catalase-negative, grew at 5-37 °C (optimum, 28 °C), pH 5.0-9.5 (optimum, pH 7.0) and low NaCl concentration (up to 1.0 %). Comparative analysis of 16S rRNA gene sequence similarity revealed that strain bsSlp3-1T clustered with Roseateles species and is closely related to Roseateles depolymerans KCTC 42856T (98.7 %) and Roseateles terrae CCUG 52222T (98.6 %). Whole-genome comparisons using average nucleotide identity and digital DNA-DNA hybridization values suggested that strain bsSlp3-1T represents a novel species within the genus Roseateles and is most closely related to Roseateles aquatilis CCUG 48205T (81.2 and 25.6 %, respectively). The genome of strain bsSlp3-1T consisted of a single circular chromosome with size 6 289 366 bp and DNA G+C content of 66.8 mol%. The predominant cellular fatty acids of bsSlp3-1T were cis-9-hexadecanoic and hexadecenoic acids. According to the data obtained in this work, strain bsSlp3-1T represents a novel Roseateles species for which the name Roseateles amylovorans sp. nov. is proposed. The type strain is bsSlp3-1T (=BIM B-1768T=NBIMCC 9098T=VKM B-3671T).
Collapse
Affiliation(s)
- Darya Guliayeva
- The Institute of Microbiology of the National Academy of Sciences of Belarus, Kuprevich Str., 2, 220084, Minsk, Belarus
| | - Artur Akhremchuk
- The Institute of Microbiology of the National Academy of Sciences of Belarus, Kuprevich Str., 2, 220084, Minsk, Belarus
| | - Maxim Sikolenko
- The Institute of Microbiology of the National Academy of Sciences of Belarus, Kuprevich Str., 2, 220084, Minsk, Belarus
| | - Olesya Evdokimova
- The Institute of Microbiology of the National Academy of Sciences of Belarus, Kuprevich Str., 2, 220084, Minsk, Belarus
| | - Leonid Valentovich
- The Institute of Microbiology of the National Academy of Sciences of Belarus, Kuprevich Str., 2, 220084, Minsk, Belarus
| | - Anastasiya Sidarenka
- The Institute of Microbiology of the National Academy of Sciences of Belarus, Kuprevich Str., 2, 220084, Minsk, Belarus
| |
Collapse
|
44
|
Gattoni G, Di Costanzo F, de la Haba RR, Fernández AB, Guerrero-Flores S, Selem-Mojica N, Ventosa A, Corral P. Biosynthetic gene profiling and genomic potential of the novel photosynthetic marine bacterium Roseibaca domitiana. Front Microbiol 2023; 14:1238779. [PMID: 37860137 PMCID: PMC10584327 DOI: 10.3389/fmicb.2023.1238779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 10/21/2023] Open
Abstract
Shifting the bioprospecting targets toward underexplored bacterial groups combined with genome mining studies contributes to avoiding the rediscovery of known compounds by revealing novel, promising biosynthetic gene clusters (BGCs). With the aim of determining the biosynthetic potential of a novel marine bacterium, strain V10T, isolated from the Domitian littoral in Italy, a comparative phylogenomic mining study was performed across related photosynthetic bacterial groups from an evolutionary perspective. Studies on polyphasic and taxogenomics showed that this bacterium constitutes a new species, designated Roseibaca domitiana sp. nov. To date, this genus has only one other validly described species, which was isolated from a hypersaline Antarctic lake. The genomic evolutionary study linked to BGC diversity revealed that there is a close relationship between the phylogenetic distance of the members of the photosynthetic genera Roseibaca, Roseinatronobacter, and Rhodobaca and their BGC profiles, whose conservation pattern allows discriminating between these genera. On the contrary, the rest of the species related to Roseibaca domitiana exhibited an individual species pattern unrelated to genome size or source of isolation. This study showed that photosynthetic strains possess a streamlined content of BGCs, of which 94.34% of the clusters with biotechnological interest (NRPS, PKS, RRE, and RiPP) are completely new. Among these stand out T1PKS, exclusive of R. domitiana V10T, and RRE, highly conserved only in R. domitiana V10T and R. ekhonensis, both categories of BGCs involved in the synthesis of plant growth-promoting compounds and antitumoral compounds, respectively. In all cases, with very low homology with already patented molecules. Our findings reveal the high biosynthetic potential of infrequently cultured bacterial groups, suggesting the need to redirect attention to microbial minorities as a novel and vast source of bioactive compounds still to be exploited.
Collapse
Affiliation(s)
- Giuliano Gattoni
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Ana B. Fernández
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, Pamplona, Spain
- Research & Development Department, Bioinsectis SL, Navarre, Spain
| | - Shaday Guerrero-Flores
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México UNAM, Morelia, Mexico
| | - Nelly Selem-Mojica
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México UNAM, Morelia, Mexico
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Paulina Corral
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
45
|
Kumar S, Agyeman-Duah E, Ujor VC. Whole-Genome Sequence and Fermentation Characteristics of Enterobacter hormaechei UW0SKVC1: A Promising Candidate for Detoxification of Lignocellulosic Biomass Hydrolysates and Production of Value-Added Chemicals. Bioengineering (Basel) 2023; 10:1090. [PMID: 37760192 PMCID: PMC10525534 DOI: 10.3390/bioengineering10091090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Enterobacter hormaechei is part of the Enterobacter cloacae complex (ECC), which is widespread in nature. It is a facultative Gram-negative bacterium of medical and industrial importance. We assessed the metabolic and genetic repertoires of a new Enterobacter isolate. Here, we report the whole-genome sequence of a furfural- and 5-hydroxymethyl furfural (HMF)-tolerant strain of E. hormaechei (UW0SKVC1), which uses glucose, glycerol, xylose, lactose and arabinose as sole carbon sources. This strain exhibits high tolerance to furfural (IC50 = 34.2 mM; ~3.3 g/L) relative to Escherichia coli DH5α (IC50 = 26.0 mM; ~2.5 g/L). Furfural and HMF are predominantly converted to their less-toxic alcohols. E. hormaechei UW0SKVC1 produces 2,3-butanediol, acetoin, and acetol, among other compounds of industrial importance. E. hormaechei UW0SKVC1 produces as high as ~42 g/L 2,3-butanediol on 60 g/L glucose or lactose. The assembled genome consists of a 4,833,490-bp chromosome, with a GC content of 55.35%. Annotation of the assembled genome revealed 4586 coding sequences and 4516 protein-coding genes (average length 937-bp) involved in central metabolism, energy generation, biodegradation of xenobiotic compounds, production of assorted organic compounds, and drug resistance. E. hormaechei UW0SKVC1 shows considerable promise as a biocatalyst and a genetic repository of genes whose protein products may be harnessed for the efficient bioconversion of lignocellulosic biomass, abundant glycerol and lactose-replete whey permeate to value-added chemicals.
Collapse
Affiliation(s)
| | | | - Victor C. Ujor
- Metabolic Engineering and Fermentation Science Group, Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI 53706, USA; (S.K.); (E.A.-D.)
| |
Collapse
|
46
|
Li AQ, Zhang C, Li DH, Qi XQ, Meng L, Wu LF, Li XG, Zhang WJ. Parasedimentitalea psychrophila sp. nov., a psychrophilic bacterium isolated from deep-sea sediment. Int J Syst Evol Microbiol 2023; 73. [PMID: 37755238 DOI: 10.1099/ijsem.0.006046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
A novel bacterium, strain QS115T, was isolated from deep-sea sediment collected from the South China Sea at a depth of 1151 m. Phylogenetic analyses based on 16S rRNA gene sequences indicated that QS115T was most closely related to Parasedimentitalea marina W43T, with similarity of 98.21 %. Strain QS115T shared 82.39 % average nucleotide identity, 26.3 % digital DNA-DNA hybridization and 85.32 % average amino acid identity with P. marina W43T. Cells of strain QS115T were Gram-stain-negative, rod-shaped and grew optimally at 10 °C, pH 7.5 and 2 % (w/v) NaCl. The principal fatty acids were summed feature 8 (C18 : 1 ω7c/ω6c), the major respiratory quinone was ubiquinone-10 and predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, glycophospholipid, phosphatidylglycerol and phosphatidylcholine. Polyphasic analyses of physiological and phenotypic characteristics and genomic studies suggested that strain QS115T represents a novel species of the genus Parasedimentitalea, for which the name Parasedimentitalea psychrophila sp. nov. is proposed (type strain QS115T=MCCC 1K04395T=JCM 34219T).
Collapse
Affiliation(s)
- An-Qi Li
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Chan Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, PR China
- Present address: Guangdong VTR BioTech Co., Ltd, Zhuhai, Guangdong, PR China
| | - Deng-Hui Li
- BGI Research, Qingdao, PR China
- Institution of Deep-sea Life Sciences, IDSSE-BGI, Sanya, Hainan, PR China
| | - Xiao-Qing Qi
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, PR China
- Present address: Hainan Research Academy of Environmental Sciences, Sanya, Hainan, PR China
| | - Liang Meng
- BGI Research, Qingdao, PR China
- Institution of Deep-sea Life Sciences, IDSSE-BGI, Sanya, Hainan, PR China
| | - Long-Fei Wu
- Aix Marseille Univ, CNRS, LCB, IMM, IM2B, Marseille, France
| | - Xue-Gong Li
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, PR China
- Institution of Deep-sea Life Sciences, IDSSE-BGI, Sanya, Hainan, PR China
| | - Wei-Jia Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, PR China
- Institution of Deep-sea Life Sciences, IDSSE-BGI, Sanya, Hainan, PR China
| |
Collapse
|
47
|
Straková D, Sánchez-Porro C, de la Haba RR, Ventosa A. Natrinema salsiterrestre sp. nov., an extremely halophilic archaeon isolated from a hypersaline soil. Int J Syst Evol Microbiol 2023; 73. [PMID: 37578894 DOI: 10.1099/ijsem.0.005960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
An extremely halophilic archaeal strain, designated S1CR25-10T, was isolated from hypersaline soil sampled in the Odiel Saltmarshes Natural Area in Southwestern Spain (Huelva) and subjected to a polyphasic taxonomic characterization. The cells were Gram-stain-negative, motile and their colonies were pink-pigmented. It was a strictly aerobic haloarchaeon that could grow at 25-55 °C (optimum, 37 °C), at pH 6.0-9.0 (optimum, pH 7.0-8.0) and in the presence of 12-30 % (w/v) total salts (optimum, 20-25 %, w/v). The phylogenetic analysis based on the comparison of the 16S rRNA gene sequences revealed that strain S1CR25-10T belongs to the genus Natrinema, with 98.9 % similarity to Natrinema salinisoli SLN56T. In addition, the values of orthologous average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity were below the threshold limits accepted for prokaryotic species delineation, with N. salinisoli SLN56T showing the highest relatedness values (92.6 % and 48.4 %, respectively). The major polar lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and a glycolipid chromatographically identical to sulfated diglycosyl diether. The DNA G+C content of the isolate was 63.8 mol%. Based on the phylogenetic, phenotypic and chemotaxonomic characterization and the whole genome results, strain S1CR25-10T represents a new species within the genus Natrinema, for which the name Natrinema salsiterrestre sp. nov., with type strain S1CR25-10T (=CECT 30623T=CCM 9251T), is proposed.
Collapse
Affiliation(s)
- Dáša Straková
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
48
|
Na SI, Bailey MJ, Chalita M, Cho JH, Chun J. UACG: Up-to-Date Archaeal Core Genes and Software for Phylogenomic Tree Reconstruction. J Microbiol 2023; 61:683-692. [PMID: 37566173 DOI: 10.1007/s12275-023-00064-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 08/12/2023]
Abstract
In the post-genomic era, phylogenomics is a powerful and routinely-used tool to discover evolutionary relationships between microorganisms. Inferring phylogenomic trees by concatenating core gene sequences into a supermatrix is the standard method. The previously released up-to-date bacterial core gene (UBCG) tool provides a pipeline to infer phylogenomic trees using single-copy core genes for the Bacteria domain. In this study, we established up-to-date archaeal core gene (UACG), comprising 128 genes suitable for inferring archaeal phylogenomic trees. To test the gene set, we selected the Haloarcula genus and scrutinized its phylogeny. The phylogeny inferred using the UACG tool was consistent with the orthoANIu dendrogram, whereas the 16S rRNA gene phylogeny showed high intragenomic heterogeneity resulting in phylogenetic discrepancies. The software tool using the UACG set is available at https://www.ezbiocloud.net/tools/uacg .
Collapse
Affiliation(s)
- Seong-In Na
- CJ Bioscience, Seoul, 04527, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 00826, Republic of Korea
| | | | | | | | - Jongsik Chun
- CJ Bioscience, Seoul, 04527, Republic of Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 00826, Republic of Korea.
| |
Collapse
|
49
|
Cao W, Deng X, Jiang M, Zeng Z, Chang F. Muricauda okinawensis sp. Nov. and Muricauda yonaguniensis sp. Nov., Two Marine Bacteria Isolated from the Sediment Core near Hydrothermal Fields of Southern Okinawa Trough. Microorganisms 2023; 11:1580. [PMID: 37375082 DOI: 10.3390/microorganisms11061580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Two strains, 81s02T and 334s03T, were isolated from the sediment core near the hydrothermal field of southern Okinawa Trough. The cells of both strains were observed to be rod-shaped, non-gliding, Gram-staining negative, yellow-pigmented, facultatively anaerobic, catalase and oxidase positive, and showing optimum growth at 30 °C and pH 7.5. The strains 81s02T and 334s03T were able to tolerate up to 10% and 9% (w/v) NaCl concentration, respectively. Based on phylogenomic analysis, the average nucleotide identity (ANI) and the digital DNA-DNA hybridization (dDDH) values between the two strains and the nearest phylogenetic neighbors of the genus Muricauda were in range of 78.0-86.3% and 21.5-33.9%, respectively. The strains 81s02T and 334s03T shared 98.1% 16S rRNA gene sequence similarity to each other but were identified as two distinct species based on 81.4-81.5% ANIb, 85.5-85.6% ANIm and 25.4% dDDH values calculated using whole genome sequences. The strains 81s02T and 334s03T shared the highest 16S rRNA gene sequence similarity to M. lutimaris SMK-108T (98.7%) and M. aurea BC31-1-A7T (98.8%), respectively. The major fatty acid of strains 81s02T and 334s03T were identified similarly as iso-C15:0, iso-C17:0 3-OH and iso-C15:1 G, and the major polar lipids of the both strains consisted of phosphatidylethanolamine and two unidentified lipids. The strains contained MK-6 as their predominant menaquinone. The genomic G+C contents of strains 81s02T and 334s03T were determined to be 41.6 and 41.9 mol%, respectively. Based on the phylogenetic and phenotypic characteristics, both strains are considered to represent two novel species of the genus Muricauda, and the names Muricauda okinawensis sp. nov. and Muricauda yonaguniensis sp. nov. are proposed for strains 81s02T (=KCTC 92889T = MCCC 1K08502T) and 334s03T (=KCTC 92890T = MCCC 1K08503T).
Collapse
Affiliation(s)
- Wenrui Cao
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xingyu Deng
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Mingyu Jiang
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhigang Zeng
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fengming Chang
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
50
|
Dang B, Jia W, Ma S, Zhang X, Huang Y, Huang W, Han D, Zhang K, Zhao F, Zhang Y, Xu Z. Characterization of a novel nornicotine-degrading strain Mycolicibacterium sp. SMGY-1XX from a nornicotine-degrading consortium and preliminary elucidation of its biodegradation pathway by multi-omics analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131777. [PMID: 37290356 DOI: 10.1016/j.jhazmat.2023.131777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/14/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Nicotine and nornicotine are all toxic alkaloids involved in the formation of carcinogenic tobacco-specific nitrosamines. Microbes play an important role in removing these toxic alkaloids and their derivatives from tobacco-polluted environments. By now, microbial degradation of nicotine has been well studied. However, limited information is available on the microbial catabolism of nornicotine. In the present study, a nornicotine-degrading consortium was enriched from a river sediment sample and characterized by metagenomic sequencing using a combination of Illumina and Nanopore technologies. The metagenomic sequencing analysis demonstrated that Achromobacter, Azospirillum, Mycolicibacterium, Terrimonas, and Mycobacterium were the dominant genera in the nornicotine-degrading consortium. A total of 7 morphologically distinct bacterial strains were isolated from the nornicotine-degrading consortium. These 7 bacterial strains were characterized by whole genome sequencing and examined for their ability to degrade nornicotine. Based on a combination of 16 S rRNA gene similarity comparisons, 16 S rRNA gene-based phylogenetic analysis, and ANI analysis, the accurate taxonomies of these 7 isolated strains were identified. These 7 strains were identified as Mycolicibacterium sp. strain SMGY-1XX, Shinella yambaruensis strain SMGY-2XX, Sphingobacterium soli strain SMGY-3XX, Runella sp. strain SMGY-4XX, Chitinophagaceae sp. strain SMGY-5XX, Terrimonas sp. strain SMGY-6XX, Achromobacter sp. strain SMGY-8XX. Among these 7 strains, Mycolicibacterium sp. strain SMGY-1XX, which has not been reported previously to have the ability to degrade nornicotine or nicotine, was found to be capable of degrading nornicotine, nicotine as well as myosmine. The degradation intermediates of nornicotine and myosmine by Mycolicibacterium sp. strain SMGY-1XX were determined and the nornicotine degradation pathway in strain SMGY-1XX was proposed. Three novel intermediates, myosmine, pseudooxy-nornicotine, and γ-aminobutyrate, were identified during the nornicotine degradation process. Further, the most likely candidate genes responsible for nornicotine degradation in Mycolicibacterium sp. strain SMGY-1XX were identified by integrating genomic analysis, transcriptomic analysis, and proteomic analysis. The findings in this study will help to expand our understanding on the microbial catabolism of nornicotine and nicotine and provide new insights into the nornicotine degradation mechanism by consortia and pure culture, laying a foundation for the application of strain SMGY-1XX for the removal, biotransformation, or detoxification of nornicotine.
Collapse
Affiliation(s)
- Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoping Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Zhengzhou 450002, China
| | - Yao Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Kai Zhang
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Fanchong Zhao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuwei Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|