1
|
Kincaid AE, Denkers ND, McNulty EE, Kraft CN, Bartz JC, Mathiason CK. Expression of the cellular prion protein by mast cells in white-tailed deer carotid body, cervical lymph nodes and ganglia. Prion 2024; 18:94-102. [PMID: 39285618 PMCID: PMC11409499 DOI: 10.1080/19336896.2024.2402225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Abstract
Chronic wasting disease (CWD) is a transmissible and fatal prion disease that affects cervids. While both oral and nasal routes of exposure to prions cause disease, the spatial and temporal details of how prions enter the central nervous system (CNS) are unknown. Carotid bodies (CBs) are structures that are exposed to blood-borne prions and are densely innervated by nerves that are directly connected to brainstem nuclei, known to be early sites of prion neuroinvasion. All CBs examined contained mast cells expressing the prion protein which is consistent with these cells playing a role in neuroinvasion following prionemia.
Collapse
Affiliation(s)
- Anthony E Kincaid
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| | - Nathaniel D Denkers
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Erin E McNulty
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Caitlyn N Kraft
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| | - Candace K Mathiason
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Arifin MI, Hannaoui S, Ng RA, Zeng D, Zemlyankina I, Ahmed-Hassan H, Schatzl HM, Kaczmarczyk L, Jackson WS, Benestad SL, Gilch S. Norwegian moose CWD induces clinical disease and neuroinvasion in gene-targeted mice expressing cervid S138N prion protein. PLoS Pathog 2024; 20:e1012350. [PMID: 38950080 PMCID: PMC11244775 DOI: 10.1371/journal.ppat.1012350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/12/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting deer, elk and moose in North America and reindeer, moose and red deer in Northern Europe. Pathogenesis is driven by the accumulation of PrPSc, a pathological form of the host's cellular prion protein (PrPC), in the brain. CWD is contagious among North American cervids and Norwegian reindeer, with prions commonly found in lymphatic tissue. In Nordic moose and red deer CWD appears exclusively in older animals, and prions are confined to the CNS and undetectable in lymphatic tissues, indicating a sporadic origin. We aimed to determine transmissibility, neuroinvasion and lymphotropism of Nordic CWD isolates using gene-targeted mice expressing either wild-type (138SS/226QQ) or S138N (138NN/226QQ) deer PrP. When challenged with North American CWD strains, mice expressing S138N PrP did not develop clinical disease but harbored prion seeding activity in brain and spleen. Here, we infected these models intracerebrally or intraperitoneally with Norwegian moose, red deer and reindeer CWD isolates. The moose isolate was the first CWD type to cause full-blown disease in the 138NN/226QQ model in the first passage, with 100% attack rate and shortened survival times upon second passage. Furthermore, we detected prion seeding activity or PrPSc in brains and spinal cords, but not spleens, of 138NN/226QQ mice inoculated intraperitoneally with the moose isolate, providing evidence of prion neuroinvasion. We also demonstrate, for the first time, that transmissibility of the red deer CWD isolate was restricted to transgenic mice overexpressing elk PrPC (138SS/226EE), identical to the PrP primary structure of the inoculum. Our findings highlight that susceptibility to clinical disease is determined by the conformational compatibility between prion inoculum and host PrP primary structure. Our study indicates that neuroinvasion of Norwegian moose prions can occur without, or only very limited, replication in the spleen, an unprecedented finding for CWD.
Collapse
Affiliation(s)
| | - Samia Hannaoui
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Raychal Ashlyn Ng
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Doris Zeng
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Irina Zemlyankina
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Hanaa Ahmed-Hassan
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hermann M. Schatzl
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | | | | | | | - Sabine Gilch
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Mathiason CK. Large animal models for chronic wasting disease. Cell Tissue Res 2023; 392:21-31. [PMID: 35113219 PMCID: PMC8811588 DOI: 10.1007/s00441-022-03590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022]
Abstract
Chronic wasting disease (CWD) is a fatal neurodegenerative prion disease of cervid species including deer, elk, moose and reindeer. The disease has shown both geographic and species expansion since its discovery in the late 1960's and is now recognized in captive and free-ranging cervid populations in North America, Asia and Europe. The facile transmission of CWD is unique among prion diseases and has resulted in growing concern for cervid populations and human public health. The development of native cervid host models with longitudinal monitoring has revealed new insights about CWD pathogenesis and transmission dynamics. More than 20 years of experimental studies conducted in these models, using biologically relevant routes of infection, have led to better understanding of many aspect of CWD infections. This review addresses some of these insights, including: (i) the temporal intra-host trafficking of CWD prions in tissues and bodily fluids, (ii) the presence of infectivity shed in bodily excretions that may help explain the facile transmission of CWD, (iii) mother-to-offspring CWD transmission, (iv) the influence of some Prnp polymorphisms on CWD susceptibility, and (vi) continued development of vaccine strategies to mitigate CWD.
Collapse
Affiliation(s)
- C K Mathiason
- College of Veterinary Medicine and Biomedical Sciences, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States, 80523.
| |
Collapse
|
4
|
Transmission, Strain Diversity, and Zoonotic Potential of Chronic Wasting Disease. Viruses 2022; 14:v14071390. [PMID: 35891371 PMCID: PMC9316268 DOI: 10.3390/v14071390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting several species of captive and free-ranging cervids. In the past few decades, CWD has been spreading uncontrollably, mostly in North America, resulting in a high increase of CWD incidence but also a substantially higher number of geographical regions affected. The massive increase in CWD poses risks at several levels, including contamination of the environment, transmission to animals cohabiting with cervids, and more importantly, a putative transmission to humans. In this review, I will describe the mechanisms and routes responsible for the efficient transmission of CWD, the strain diversity of natural CWD, its spillover and zoonotic potential and strategies to minimize the CWD threat.
Collapse
|
5
|
Tikhodeyev ON. Prions as Non-Canonical Hereditary Factors. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Srivastava A, Alam P, Caughey B. RT-QuIC and Related Assays for Detecting and Quantifying Prion-like Pathological Seeds of α-Synuclein. Biomolecules 2022; 12:biom12040576. [PMID: 35454165 PMCID: PMC9030929 DOI: 10.3390/biom12040576] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Various disease-associated forms or strains of α-synuclein (αSynD) can spread and accumulate in a prion-like fashion during synucleinopathies such as Parkinson’s disease (PD), Lewy body dementia (DLB), and multiple system atrophy (MSA). This capacity for self-propagation has enabled the development of seed amplification assays (SAAs) that can detect αSynD in clinical samples. Notably, α-synuclein real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA) assays have evolved as ultrasensitive, specific, and relatively practical methods for detecting αSynD in a variety of biospecimens including brain tissue, CSF, skin, and olfactory mucosa from synucleinopathy patients. However, αSyn SAAs still lack concordance in detecting MSA and familial forms of PD/DLB, and the assay parameters show poor correlations with various clinical measures. End-point dilution analysis in αSyn RT-QuIC assays allows for the quantitation of relative amounts of αSynD seeding activity that may correlate moderately with clinical measures and levels of other biomarkers. Herein, we review recent advancements in α-synuclein SAAs for detecting αSynD and describe in detail the modified Spearman–Karber quantification algorithm used with end-point dilutions.
Collapse
|
7
|
Wagner K, Pierce R, Gordon E, Hay A, Lessard A, Telling GC, Ballard JR, Moreno JA, Zabel MD. Tissue-specific biochemical differences between chronic wasting disease prions isolated from free-ranging white-tailed deer (Odocoileus virginianus). J Biol Chem 2022; 298:101834. [PMID: 35304100 PMCID: PMC9019250 DOI: 10.1016/j.jbc.2022.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 01/21/2023] Open
Abstract
Chronic wasting disease (CWD) is an invariably fatal prion disease affecting cervid species worldwide. Prions can manifest as distinct strains that can influence disease pathology and transmission. CWD is profoundly lymphotropic, and most infected cervids likely shed peripheral prions replicated in lymphoid organs. However, CWD is a neurodegenerative disease, and most research on prion strains has focused on neurogenic prions. Thus, a knowledge gap exists comparing neurogenic prions to lymphogenic prions. In this study, we compared prions from the obex and lymph nodes of naturally exposed white-tailed deer to identify potential biochemical strain differences. Here, we report biochemical evidence of strain differences between the brain and lymph node from these animals. Conformational stability assays, glycoform ratio analyses, and immunoreactivity scanning across the structured domain of the prion protein that refolds into the amyloid aggregate of the infectious prion reveal significantly more structural and glycoform variation in lymphogenic prions than neurogenic prions. Surprisingly, we observed greater biochemical differences among neurogenic prions than lymphogenic prions across individuals. We propose that the lymphoreticular system propagates a diverse array of prions from which the brain selects a more restricted pool of prions that may be quite different than those from another individual of the same species. Future work should examine the biological and zoonotic impact of these biochemical differences and examine more cervids from multiple locations to determine if these differences are conserved across species and locations.
Collapse
Affiliation(s)
- Kaitlyn Wagner
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Robyn Pierce
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth Gordon
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Arielle Hay
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Avery Lessard
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Glenn C. Telling
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jennifer R. Ballard
- Research Division, Arkansas Game and Fish Commission, Little Rock, Arkansas, USA
| | - Julie A. Moreno
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Mark D. Zabel
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA,For correspondence: Mark D. Zabel
| |
Collapse
|
8
|
Pritzkow S, Gorski D, Ramirez F, Soto C. Prion Dissemination through the Environment and Medical Practices: Facts and Risks for Human Health. Clin Microbiol Rev 2021; 34:e0005919. [PMID: 34319151 PMCID: PMC8404694 DOI: 10.1128/cmr.00059-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prion diseases are a group of fatal, infectious neurodegenerative disorders affecting various species of mammals, including humans. The infectious agent in these diseases, termed prion, is composed exclusively of a misfolded protein that can spread and multiply in the absence of genetic materials. In this article, we provide an overview of the mechanisms of prion replication, interindividual transmission, and dissemination in communities. In particular, we review the potential role of the natural environment in prion transmission, including the mechanisms and pathways for prion entry and accumulation in the environment as well as its roles in prion mutation, adaptation, evolution, and transmission. We also discuss the transmission of prion diseases through medical practices, scientific research, and use of biological products. Detailed knowledge of these aspects is crucial to limit the spreading of existing prion diseases as well as to prevent the emergence of new diseases with possible catastrophic consequences for public health.
Collapse
Affiliation(s)
- Sandra Pritzkow
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Damian Gorski
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Frank Ramirez
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| |
Collapse
|
9
|
Detection of Chronic Wasting Disease Prions in Fetal Tissues of Free-Ranging White-Tailed Deer. Viruses 2021; 13:v13122430. [PMID: 34960698 PMCID: PMC8705995 DOI: 10.3390/v13122430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The transmission of chronic wasting disease (CWD) has largely been attributed to contact with infectious prions shed in excretions (saliva, urine, feces, blood) by direct animal-to-animal exposure or indirect contact with the environment. Less-well studied has been the role that mother-to-offspring transmission may play in the facile transmission of CWD, and whether mother-to-offspring transmission before birth may contribute to the extensive spread of CWD. We thereby focused on a population of free-ranging white-tailed deer from West Virginia, USA, in which CWD has been detected. Fetal tissues, ranging from 113 to 158 days of gestation, were harvested from the uteri of CWD+ dams in the asymptomatic phase of infection. Using serial protein misfolding amplification (sPMCA), we detected evidence of prion seeds in 7 of 14 fetuses (50%) from 7 of 9 pregnancies (78%), with the earliest detection at 113 gestational days. This is the first report of CWD detection in free ranging white-tailed deer fetal tissues. Further investigation within cervid populations across North America will help define the role and impact of mother-to-offspring vertical transmission of CWD.
Collapse
|
10
|
Gallardo MJ, Delgado FO. Animal prion diseases: A review of intraspecies transmission. Open Vet J 2021; 11:707-723. [PMID: 35070868 PMCID: PMC8770171 DOI: 10.5455/ovj.2021.v11.i4.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Animal prion diseases are a group of neurodegenerative, transmissible, and fatal disorders that affect several animal species. The causative agent, prion, is a misfolded isoform of normal cellular prion protein, which is found in cells with higher concentration in the central nervous system. This review explored the sources of infection and different natural transmission routes of animal prion diseases in susceptible populations. Chronic wasting disease in cervids and scrapie in small ruminants are prion diseases capable of maintaining themselves in susceptible populations through horizontal and vertical transmission. The other prion animal diseases can only be transmitted through food contaminated with prions. Bovine spongiform encephalopathy (BSE) is the only animal prion disease considered zoonotic. However, due to its inability to transmit within a population, it could be controlled. The emergence of atypical cases of scrapie and BSE, even the recent report of prion disease in camels, demonstrates the importance of understanding the transmission routes of prion diseases to take measures to control them and to assess the risks to human and animal health.
Collapse
Affiliation(s)
- Mauro Julián Gallardo
- Instituto de Patobiología Veterinaria, IPVet, UEDD INTA-CONICET, Hurlingham, Argentina
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Oscar Delgado
- Instituto de Patobiología Veterinaria, IPVet, UEDD INTA-CONICET, Hurlingham, Argentina
- Facultad de Cs. Agrarias y Veterinarias, Universidad del Salvador, Pilar, Argentina
| |
Collapse
|
11
|
Chafin TK, Douglas MR, Martin BT, Zbinden ZD, Middaugh CR, Ballard JR, Gray MC, Don White, Douglas ME. Age structuring and spatial heterogeneity in prion protein gene ( PRNP) polymorphism in white-tailed deer. Prion 2021; 14:238-248. [PMID: 33078661 PMCID: PMC7575228 DOI: 10.1080/19336896.2020.1832947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Chronic-wasting disease (CWD) is a prion-derived fatal neurodegenerative disease that has affected wild cervid populations on a global scale. Susceptibility has been linked unambiguously to several amino acid variants within the prion protein gene (PRNP). Quantifying their distribution across landscapes can provide critical information for agencies attempting to adaptively manage CWD. Here we attempt to further define management implications of PRNP polymorphism by quantifying the contemporary geographic distribution (i.e., phylogeography) of PRNP variants in hunter-harvested white-tailed deer (WTD; Odocoileus virginianus, N = 1433) distributed across Arkansas (USA), including a focal spot for CWD since detection of the disease in February 2016. Of these, PRNP variants associated with the well-characterized 96S non-synonymous substitution showed a significant increase in relative frequency among older CWD-positive cohorts. We interpreted this pattern as reflective of a longer life expectancy for 96S genotypes in a CWD-endemic region, suggesting either decreased probabilities of infection or reduced disease progression. Other variants showing statistical signatures of potential increased susceptibility, however, seemingly reflect an artefact of population structure. We also showed marked heterogeneity across the landscape in the prevalence of ‘reduced susceptibility’ genotypes. This may indicate, in turn, that differences in disease susceptibility among WTD in Arkansas are an innate, population-level characteristic that is detectable through phylogeographic analysis.
Collapse
Affiliation(s)
- Tyler K Chafin
- Department of Biological Sciences, University of Arkansas , Fayetteville, AR, USA
| | - Marlis R Douglas
- Department of Biological Sciences, University of Arkansas , Fayetteville, AR, USA
| | - Bradley T Martin
- Department of Biological Sciences, University of Arkansas , Fayetteville, AR, USA
| | - Zachery D Zbinden
- Department of Biological Sciences, University of Arkansas , Fayetteville, AR, USA
| | - Christopher R Middaugh
- Arkansas Game and Fish Commission, Research, Evaluation, and Compliance Division , Little Rock, AR, USA
| | - Jennifer R Ballard
- Arkansas Game and Fish Commission, Research, Evaluation, and Compliance Division , Little Rock, AR, USA
| | - M Cory Gray
- Arkansas Game and Fish Commission, Research, Evaluation, and Compliance Division , Little Rock, AR, USA
| | - Don White
- University of Arkansas Agricultural Experiment Station , Monticello, AR, USA
| | - Michael E Douglas
- Department of Biological Sciences, University of Arkansas , Fayetteville, AR, USA
| |
Collapse
|
12
|
Bravo-Risi F, Soto P, Eckland T, Dittmar R, Ramírez S, Catumbela CSG, Soto C, Lockwood M, Nichols T, Morales R. Detection of CWD prions in naturally infected white-tailed deer fetuses and gestational tissues by PMCA. Sci Rep 2021; 11:18385. [PMID: 34526562 PMCID: PMC8443553 DOI: 10.1038/s41598-021-97737-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022] Open
Abstract
Chronic wasting disease (CWD) is a prevalent prion disease affecting cervids. CWD is thought to be transmitted through direct animal contact or by indirect exposure to contaminated environmental fomites. Other mechanisms of propagation such as vertical and maternal transmissions have also been suggested using naturally and experimentally infected animals. Here, we describe the detection of CWD prions in naturally-infected, farmed white-tailed deer (WTD) fetal tissues using the Protein Misfolding Cyclic Amplification (PMCA) technique. Prion seeding activity was identified in a variety of gestational and fetal tissues. Future studies should demonstrate if prions present in fetuses are at sufficient quantities to cause CWD after birth. This data confirms previous findings in other animal species and furthers vertical transmission as a relevant mechanism of CWD dissemination.
Collapse
Affiliation(s)
- Francisca Bravo-Risi
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Paulina Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Thomas Eckland
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | | | - Santiago Ramírez
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Celso S G Catumbela
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | | | - Tracy Nichols
- United States Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, 80526, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA. .,Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
13
|
Otero A, Velásquez CD, Aiken J, McKenzie D. Chronic wasting disease: a cervid prion infection looming to spillover. Vet Res 2021; 52:115. [PMID: 34488900 PMCID: PMC8420063 DOI: 10.1186/s13567-021-00986-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
The spread of chronic wasting disease (CWD) during the last six decades has resulted in cervid populations of North America where CWD has become enzootic. This insidious disease has also been reported in wild and captive cervids from other continents, threatening ecosystems, livestock and public health. These CWD "hot zones" are particularly complex given the interplay between cervid PRNP genetics, the infection biology, the strain diversity of infectious prions and the long-term environmental persistence of infectivity, which hinder eradication efforts. Here, we review different aspects of CWD including transmission mechanisms, pathogenesis, epidemiology and assessment of interspecies infection. Further understanding of these aspects could help identify "control points" that could help reduce exposure for humans and livestock and decrease CWD spread between cervids.
Collapse
Affiliation(s)
- Alicia Otero
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Camilo Duque Velásquez
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada. .,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
14
|
Kincheloe JM, Horn-Delzer AR, Makau DN, Wells SJ. Chronic Wasting Disease Transmission Risk Assessment for Farmed Cervids in Minnesota and Wisconsin. Viruses 2021; 13:v13081586. [PMID: 34452450 PMCID: PMC8402894 DOI: 10.3390/v13081586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
CWD (chronic wasting disease) has emerged as one of the most important diseases of cervids and continues to adversely affect farmed and wild cervid populations, despite control and preventive measures. This study aims to use the current scientific understanding of CWD transmission and knowledge of farmed cervid operations to conduct a qualitative risk assessment for CWD transmission to cervid farms and, applying this risk assessment, systematically describe the CWD transmission risks experienced by CWD-positive farmed cervid operations in Minnesota and Wisconsin. A systematic review of literature related to CWD transmission informed our criteria to stratify CWD transmission risks to cervid operations into high-risk low uncertainty, moderate-risk high uncertainty, and negligible-risk low uncertainty categories. Case data from 34 CWD-positive farmed cervid operations in Minnesota and Wisconsin from 2002 to January 2019 were categorized by transmission risks exposure and evaluated for trends. The majority of case farms recorded high transmission risks (56%), which were likely sources of CWD, but many (44%) had only moderate or negligible transmission risks, including most of the herds (62%) detected since 2012. The presence of CWD-positive cervid farms with only moderate or low CWD transmission risks necessitates further investigation of these risks to inform effective control measures.
Collapse
Affiliation(s)
- James M. Kincheloe
- Center for Science in the Public Interest, 1220 L St. N.W., Suite 300, Washington, DC 20005, USA
- Department of Veterinary Population Medicine, University of Minnesota, 225 Vet Med Ctr, 1365 Gortner Avenue, St. Paul, MN 55108, USA; (D.N.M.); (S.J.W.)
- Correspondence:
| | - Amy R. Horn-Delzer
- Wisconsin Department of Agriculture, Trade, and Consumer Protection, 2811 Agriculture Drive, Madison, WI 53708, USA;
| | - Dennis N. Makau
- Department of Veterinary Population Medicine, University of Minnesota, 225 Vet Med Ctr, 1365 Gortner Avenue, St. Paul, MN 55108, USA; (D.N.M.); (S.J.W.)
| | - Scott J. Wells
- Department of Veterinary Population Medicine, University of Minnesota, 225 Vet Med Ctr, 1365 Gortner Avenue, St. Paul, MN 55108, USA; (D.N.M.); (S.J.W.)
| |
Collapse
|
15
|
Zink RM. Considering the use of the terms strain and adaptation in prion research. Heliyon 2021; 7:e06801. [PMID: 33898853 PMCID: PMC8060586 DOI: 10.1016/j.heliyon.2021.e06801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 04/11/2021] [Indexed: 12/20/2022] Open
Abstract
Evolutionary biologists and disease biologists use the terms strain and adaptation in Chronic Wasting Disease (CWD) research in different ways. In evolutionary biology, a strain is a nascent genetic lineage that can be described by a genealogy, and a phylogenetic nomenclature constructed to reflect that genealogy. Prion strains are described as showing distinct host range, clinical presentation, disease progression, and neuropathological and PrP biochemical profiles, and lack information that would permit phylogenetic reconstruction of their history. Prion strains are alternative protein conformations, sometimes derived from the same genotype. I suggest referring to prion strains as ecotypes, because the variant phenotypic conformations ("strains") are a function of the interaction between PRNP amino acid genotype and the host environment. In the case of CWD, a prion ecotype in white-tailed deer would be described by its genotype and the host in which it occurs, such as the H95 + ecotype. However, an evolutionary nomenclature is difficult because not all individuals with the same PRNP genotype show signs of CWD, therefore creating a nomenclature reflecting and one-to-one relationship between PRNP genealogy and CWD presence is difficult. Furthermore, very little information exists on the phylogenetic distribution of CWD ecotypes in wild deer populations. Adaptation has a clear meaning in evolutionary biology, the differential survival and reproduction of individual genotypes. If a new prion ecotype arises in a particular host and kills more hosts or kills at an earlier age, it is the antithesis of the evolutionary definition of adaptation. However, prion strains might be transmitted across generations epigenetically, but whether this represents adaptation depends on the fitness consequences of the strain. Protein phenotypes of PRNP that cause transmissible spongiform encephalopathies (TSEs), and CWD, are maladaptive and would not be propagated genetically or epigenetically via a process consistent with an evolutionary view of adaptation. I suggest terming the process of prion strain origination "phenotypic transformation", and only adaptation if evidence shows they are not maladaptive and persist over evolutionary time periods (e.g., thousands of generations) and across distinct species boundaries (via inheritance). Thus, prion biologists use strain and adaptation, historically evolutionary terms, in quite different ways.
Collapse
Affiliation(s)
- Robert M. Zink
- School of Natural Resources, School of Biological Sciences, Nebraska State Museum, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| |
Collapse
|
16
|
Denkers ND, Hoover CE, Davenport KA, Henderson DM, McNulty EE, Nalls AV, Mathiason CK, Hoover EA. Very low oral exposure to prions of brain or saliva origin can transmit chronic wasting disease. PLoS One 2020; 15:e0237410. [PMID: 32817706 PMCID: PMC7446902 DOI: 10.1371/journal.pone.0237410] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/24/2020] [Indexed: 11/19/2022] Open
Abstract
The minimum infectious dose required to induce CWD infection in cervids remains unknown, as does whether peripherally shed prions and/or multiple low dose exposures are important factors in CWD transmission. With the goal of better understand CWD infection in nature, we studied oral exposures of deer to very low doses of CWD prions and also examined whether the frequency of exposure or prion source may influence infection and pathogenesis. We orally inoculated white-tailed deer with either single or multiple divided doses of prions of brain or saliva origin and monitored infection by serial longitudinal tissue biopsies spanning over two years. We report that oral exposure to as little as 300 nanograms (ng) of CWD-positive brain or to saliva containing seeding activity equivalent to 300 ng of CWD-positive brain, were sufficient to transmit CWD disease. This was true whether the inoculum was administered as a single bolus or divided as three weekly 100 ng exposures. However, when the 300 ng total dose was apportioned as 10, 30 ng doses delivered over 12 weeks, no infection occurred. While low-dose exposures to prions of brain or saliva origin prolonged the time from inoculation to first detection of infection, once infection was established, we observed no differences in disease pathogenesis. These studies suggest that the CWD minimum infectious dose approximates 100 to 300 ng CWD-positive brain (or saliva equivalent), and that CWD infection appears to conform more with a threshold than a cumulative dose dynamic.
Collapse
Affiliation(s)
- Nathaniel D. Denkers
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Clare E. Hoover
- AstraZeneca Inc., Waltham, Massachusetts, United States of America
| | - Kristen A. Davenport
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Davin M. Henderson
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Erin E. McNulty
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Amy V. Nalls
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Candace K. Mathiason
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Edward A. Hoover
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
17
|
Zink RM. Genetic and evolutionary considerations of the Chronic Wasting Disease - Human species barrier. INFECTION GENETICS AND EVOLUTION 2020; 84:104484. [PMID: 32731042 DOI: 10.1016/j.meegid.2020.104484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 01/13/2023]
Abstract
Transmissible spongiform encephalopathies can jump species barriers. In relatively few cases is the possible route of transmission thought to be known, mostly involving humans, cattle and sheep. It is thought that sheep might be the cause of Bovine Spongiform Encephalopathy (BSE) and Chronic Wasting Disease (CWD) in cervids, and that humans might have gotten prion disease (e.g., vCJD) from eating meat from BSE+ cows. A looming societal question is whether humans will acquire a prion disease from ingesting prions from CWD+ deer. On an evolutionary tree of the PRNP gene in mammals, deer, sheep and cow are relatively closely related, whereas these three species are relatively distant from humans. If a prion disease jumped the species barrier from cow to humans, the phylogenetic gap from deer to humans is no greater, and sheer evolutionary distance alone cannot explain a CWD species barrier in humans. Aspects of the PRNP gene were compared among these species to search for genetic differences that might influence the permeability of the species barrier. Human prion disease has been associated with having more than four copies of the octarepeat unit (PHGGGWG), whereas deer, sheep and cow all have three copies. Two amino acid positions in the metal-binding region (96 and 97) have been implicated in species barriers (Breydo and Uversky, 2011), whereas no variation was detected in white-tailed deer and mule deer with and without CWD, or in black-tailed deer, Key deer or Coues deer. Four out of 10 differences between deer and human in the β2-α2 loop might preclude CWD prions from converting human PrPC to PrPSc because of disruption of a steric zipper. The reasons for a CWD species barrier between deer and humans, if there is one, is still unresolved.
Collapse
Affiliation(s)
- Robert M Zink
- School of Natural Resources, School of Biological Sciences, Nebraska State Museum, University of Nebraska-Lincoln, Lincoln, NE 68503, United States of America.
| |
Collapse
|
18
|
Escobar LE, Pritzkow S, Winter SN, Grear DA, Kirchgessner MS, Dominguez-Villegas E, Machado G, Peterson AT, Soto C. The ecology of chronic wasting disease in wildlife. Biol Rev Camb Philos Soc 2020; 95:393-408. [PMID: 31750623 PMCID: PMC7085120 DOI: 10.1111/brv.12568] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
Abstract
Prions are misfolded infectious proteins responsible for a group of fatal neurodegenerative diseases termed transmissible spongiform encephalopathy or prion diseases. Chronic Wasting Disease (CWD) is the prion disease with the highest spillover potential, affecting at least seven Cervidae (deer) species. The zoonotic potential of CWD is inconclusive and cannot be ruled out. A risk of infection for other domestic and wildlife species is also plausible. Here, we review the current status of the knowledge with respect to CWD ecology in wildlife. Our current understanding of the geographic distribution of CWD lacks spatial and temporal detail, does not consider the biogeography of infectious diseases, and is largely biased by sampling based on hunters' cooperation and funding available for each region. Limitations of the methods used for data collection suggest that the extent and prevalence of CWD in wildlife is underestimated. If the zoonotic potential of CWD is confirmed in the short term, as suggested by recent results obtained in experimental animal models, there will be limited accurate epidemiological data to inform public health. Research gaps in CWD prion ecology include the need to identify specific biological characteristics of potential CWD reservoir species that better explain susceptibility to spillover, landscape and climate configurations that are suitable for CWD transmission, and the magnitude of sampling bias in our current understanding of CWD distribution and risk. Addressing these research gaps will help anticipate novel areas and species where CWD spillover is expected, which will inform control strategies. From an ecological perspective, control strategies could include assessing restoration of natural predators of CWD reservoirs, ultrasensitive CWD detection in biotic and abiotic reservoirs, and deer density and landscape modification to reduce CWD spread and prevalence.
Collapse
Affiliation(s)
- Luis E. Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, 24061, U.S.A
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, TX, 77030, U.S.A
| | - Steven N. Winter
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, 24061, U.S.A
| | - Daniel A. Grear
- US Geological Survey National Wildlife Health Center, Madison, WI, 59711, U.S.A
| | | | | | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, U.S.A
| | - A. Townsend Peterson
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS, 66045, U.S.A
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, TX, 77030, U.S.A
| |
Collapse
|
19
|
McNulty EE, Nalls AV, Xun R, Denkers ND, Hoover EA, Mathiason CK. In vitro detection of haematogenous prions in white-tailed deer orally dosed with low concentrations of chronic wasting disease. J Gen Virol 2020; 101:347-361. [PMID: 31846418 PMCID: PMC7416609 DOI: 10.1099/jgv.0.001367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022] Open
Abstract
Infectivity associated with prion disease has been demonstrated in blood throughout the course of disease, yet the ability to detect blood-borne prions by in vitro methods remains challenging. We capitalized on longitudinal pathogenesis studies of chronic wasting disease (CWD) conducted in the native host to examine haematogenous prion load by real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification. Our study demonstrated in vitro detection of amyloid seeding activity (prions) in buffy-coat cells harvested from deer orally dosed with low concentrations of CWD positive (+) brain (1 gr and 300 ng) or saliva (300 ng RT-QuIC equivalent). These findings make possible the longitudinal assessment of prion disease and deeper investigation of the role haematogenous prions play in prion pathogenesis.
Collapse
Affiliation(s)
- Erin E. McNulty
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Amy V. Nalls
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Randy Xun
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Nathaniel D. Denkers
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Edward A. Hoover
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Candace K. Mathiason
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
20
|
Haley N, Donner R, Henderson D, Tennant J, Hoover E, Manca M, Caughey B, Kondru N, Manne S, Kanthasamay A, Hannaoui S, Chang S, Gilch S, Smiley S, Mitchell G, Lehmkuhl A, Thomsen B. Cross-validation of the RT-QuIC assay for the antemortem detection of chronic wasting disease in elk. Prion 2020; 14:47-55. [PMID: 31973662 PMCID: PMC6984646 DOI: 10.1080/19336896.2020.1716657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic wasting disease is a progressively fatal, horizontally transmissible prion disease affecting several members of the cervid species. Conventional diagnosis relies on ELISA or IHC evaluation using tissues collected post-mortem; however, recent research has focused on newly developed amplification techniques using samples collected antemortem. The present study sought to cross-validate the real-time quaking-induced conversion assay (RT-QuIC) evaluation of rectal biopsies collected from an elk herd with endemic CWD, assessing both binary positive/negative test results as well as relative rates of amplification between laboratories. We found that results were correlative in both categories across all laboratories performing RT-QuIC, as well as to conventional IHC performed at a national reference laboratory. A significantly higher number of positive samples were identified using RT-QuIC, with results seemingly unhindered by low follicle counts. These findings support the continued development and implementation of amplification assays in the diagnosis of prion diseases of veterinary importance, targeting not just antemortem sampling strategies, but post-mortem testing approaches as well.
Collapse
Affiliation(s)
- N.J. Haley
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA,CONTACT N.J. Haley Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - R. Donner
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - D.M. Henderson
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - J. Tennant
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - E.A. Hoover
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - M. Manca
- TSE/Prion Biochemistry Section, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - B. Caughey
- TSE/Prion Biochemistry Section, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - N. Kondru
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - S. Manne
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - A. Kanthasamay
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - S. Hannaoui
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - S.C. Chang
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - S. Gilch
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - S. Smiley
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection, Agency, Ottawa Laboratory-Fallowfield, Ottawa, Ontario, Canada
| | - G. Mitchell
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection, Agency, Ottawa Laboratory-Fallowfield, Ottawa, Ontario, Canada
| | - A.D. Lehmkuhl
- United States Department of Agriculture, APHIS, VS, National Veterinary Services Laboratories, Ames, IA, USA
| | - B.V. Thomsen
- United States Department of Agriculture, APHIS, VS, National Veterinary Services Laboratories, Ames, IA, USA,United States Department of Agriculture, APHIS, VS, Center for Veterinary Biologics, Ames, IA, USA
| |
Collapse
|
21
|
Bistaffa E, Vuong TT, Cazzaniga FA, Tran L, Salzano G, Legname G, Giaccone G, Benestad SL, Moda F. Use of different RT-QuIC substrates for detecting CWD prions in the brain of Norwegian cervids. Sci Rep 2019; 9:18595. [PMID: 31819115 PMCID: PMC6901582 DOI: 10.1038/s41598-019-55078-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic wasting disease (CWD) is a highly contagious prion disease affecting captive and free-ranging cervid populations. CWD has been detected in United States, Canada, South Korea and, most recently, in Europe (Norway, Finland and Sweden). Animals with CWD release infectious prions in the environment through saliva, urine and feces sustaining disease spreading between cervids but also potentially to other non-cervids ruminants (e.g. sheep, goats and cattle). In the light of these considerations and due to CWD unknown zoonotic potential, it is of utmost importance to follow specific surveillance programs useful to minimize disease spreading and transmission. The European community has already in place specific surveillance measures, but the traditional diagnostic tests performed on nervous or lymphoid tissues lack sensitivity. We have optimized a Real-Time Quaking-Induced Conversion (RT-QuIC) assay for detecting CWD prions with high sensitivity and specificity to try to overcome this problem. In this work, we show that bank vole prion protein (PrP) is an excellent substrate for RT-QuIC reactions, enabling the detection of trace-amounts of CWD prions, regardless of prion strain and cervid species. Beside supporting the traditional diagnostic tests, this technology could be exploited for detecting prions in peripheral tissues from live animals, possibly even at preclinical stages of the disease.
Collapse
Affiliation(s)
- Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | | | - Federico Angelo Cazzaniga
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | - Linh Tran
- Norwegian Veterinary Institute, Oslo, Norway
| | - Giulia Salzano
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Department of Neuroscience, Trieste, Italy
| | - Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Department of Neuroscience, Trieste, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | | | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy.
| |
Collapse
|
22
|
Trone‐Launer EK, Wang J, Lu G, Mateus‐Pinilla NE, Zick PR, Lamer JT, Shelton PA, Jacques CN. Differential gene expression in chronic wasting disease-positive white-tailed deer ( Odocoileus virginianus). Ecol Evol 2019; 9:12600-12612. [PMID: 31788200 PMCID: PMC6875659 DOI: 10.1002/ece3.5724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) that affects cervid species throughout North America. We evaluated gene expression in white-tailed deer collected by Illinois Department of Natural Resource wildlife managers during annual population reduction (e.g., sharpshooting) and disease monitoring efforts throughout the CWD-endemic area of northcentral Illinois. We conducted comparative transcriptomic analysis of liver and retropharyngeal lymph node tissue samples between CWD-positive (n = 5) and CWD-not detected (n = 5) deer. A total of 74,479 transcripts were assembled, and 51,661 (69.36%) transcripts were found to have matched proteins in NCBI-NR and UniProt. Our analysis of functional categories showed 40,308 transcripts were assigned to at least one Gene Ontology term and 37,853 transcripts were involved in at least one pathway. We identified a total of 59 differentially expressed genes (DEGs) in CWD-positive deer, of which 36 and 23 were associated with liver and retropharyngeal lymph node tissues, respectively. Functions of DEGs lend support to previous relationships between misfolded PrP and cellular membranes (e.g., STXBP5), and internal cellular components. We identified several genes that suggest a link between CWD and retroviruses and identified the gene ADIPOQ that acts as a tumor necrosis factor (TNF) antagonist. This gene may lead to reduced production of TNF and impact disease progression and clinical symptoms associated with CWD (i.e., wasting syndrome). Use of candidate genes identified in this study suggests the activation of endogenous processes in CWD-positive deer, which in turn may enable earlier detection of the disease.
Collapse
Affiliation(s)
- Emma K. Trone‐Launer
- Department of Biological SciencesWestern Illinois UniversityMacombILUSA
- Present address:
Illinois Department of Natural ResourcesCoffeenILUSA
| | - Jun Wang
- Key Laboratory of Freshwater Fisheries Germplasm ResourcesMinistry of AgricultureShanghai Ocean UniversityShanghaiChina
| | - Guoqing Lu
- Department of Biology and School of Interdisciplinary InformaticsUniversity of Nebraska OmahaOmahaNEUSA
| | - Nohra E. Mateus‐Pinilla
- Illinois Natural History Survey—Prairie Research InstituteUniversity of Illinois Urbana‐ChampaignChampaignILUSA
| | - Paige R. Zick
- Department of Biological SciencesWestern Illinois UniversityMacombILUSA
| | - James T. Lamer
- Illinois River Biological StationIllinois Natural History SurveyHavanaILUSA
| | | | | |
Collapse
|
23
|
Rivera NA, Brandt AL, Novakofski JE, Mateus-Pinilla NE. Chronic Wasting Disease In Cervids: Prevalence, Impact And Management Strategies. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2019; 10:123-139. [PMID: 31632898 PMCID: PMC6778748 DOI: 10.2147/vmrr.s197404] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022]
Abstract
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) that affects members of the cervidae family. The infectious agent is a misfolded isoform (PrPSC) of the host prion protein (PrPC). The replication of PrPSC initiates a cascade of developmental changes that spread from cell to cell, individual to individual, and that for some TSEs, has crossed the species barrier. CWD can be transmitted horizontally and vertically, and it is the only TSE that affects free-ranging wildlife. While other TSEs are under control and even declining, infection rates of CWD continue to grow and the disease distribution continues to expand in North America and around the world. Since the first reported case in 1967, CWD has spread infecting captive and free-ranging cervids in 26 states in the US, 3 Canadian provinces, 3 European countries and has been found in captive cervids in South Korea. CWD causes considerable ecologic, economic and sociologic impact, as this is a 100% fatal highly contagious infectious disease, with no treatment or cure available. Because some TSEs have crossed the species barrier, the zoonotic potential of CWD is a concern for human health and continues to be investigated. Here we review the characteristics of the CWD prion protein, mechanisms of transmission and the role of genetics. We discuss the characteristics that contribute to prevalence and distribution. We also discuss the impact of CWD and review the management strategies that have been used to prevent and control the spread of CWD.
Collapse
Affiliation(s)
- Nelda A Rivera
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Adam L Brandt
- Division of Natural Sciences, St. Norbert College, De Pere, WI, USA
| | - Jan E Novakofski
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nohra E Mateus-Pinilla
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
24
|
McNulty E, Nalls AV, Mellentine S, Hughes E, Pulscher L, Hoover EA, Mathiason CK. Comparison of conventional, amplification and bio-assay detection methods for a chronic wasting disease inoculum pool. PLoS One 2019; 14:e0216621. [PMID: 31071138 PMCID: PMC6508678 DOI: 10.1371/journal.pone.0216621] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/24/2019] [Indexed: 11/18/2022] Open
Abstract
Longitudinal studies of chronic wasting disease (CWD) in the native host have provided considerable understanding of how this prion disease continues to efficiently spread among cervid species. These studies entail great cost in animal, time and financial support. A variety of methods have emerged including transgenic mouse bioassay, western blot, enzyme-linked immunoassay (ELISA), immunohistochemistry (IHC), serial protein misfolding cyclic amplification (sPMCA) and real time quaking-induced conversion (RT-QuIC), that deepen our understanding of this and other protein misfolding disorders. To further characterize an inoculum source used for ongoing CWD studies and to determine how the readouts from each of these assays compare, we assayed a CWD-positive brain pool homogenate (CBP6) and a mouse dilutional bioassay of this homogenate using the above detection methods. We demonstrate that: (i) amplification assays enhanced detection of amyloid seeding activity in the CWD+ cervid brain pool to levels beyond mouse LD50, (ii) conventional detection methods (IHC and western blot) performed well in identifying the presence of PrPSc in terminal brain tissue yet lack sufficient detection sensitivity to identify all CWD-infected mice, and (iii) the incorporation of amplification assays enhanced detection of CWD-infected mice near the LD50. This cross-platform analysis provides a basis to calibrate the relative sensitivities of CWD detection assays.
Collapse
Affiliation(s)
- Erin McNulty
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Amy V. Nalls
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Samuel Mellentine
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Erin Hughes
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Laura Pulscher
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Edward A. Hoover
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Candace K. Mathiason
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
25
|
Gavin C, Henderson D, Benestad SL, Simmons M, Adkin A. Estimating the amount of Chronic Wasting Disease infectivity passing through abattoirs and field slaughter. Prev Vet Med 2019; 166:28-38. [PMID: 30935503 DOI: 10.1016/j.prevetmed.2019.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 12/23/2022]
Abstract
Chronic Wasting Disease (CWD) is a highly infectious, naturally occurring, transmissible spongiform encephalopathy (TSE, or prion disease) affecting many cervid species. CWD has been widely circulating in North America since it was first reported in 1967. In 2016, the first European case of prion disease in deer was reported and confirmed in Norway. There have since been several confirmed several cases in reindeer and moose and in one red deer in Norway, and recently in a moose in Finland. There is concern over the susceptibility of certain species, especially domestic livestock, to CWD. Recently, a study was presented showing transmission to cynomolgus macaques. Although preliminary, these results raise concerns that CWD may be transmissible to humans. This quantitative risk assessment estimates, by stochastic simulation, the titre of infectivity (herein referred to as "infectivity"), that would pass into the human food chain and environment (in the UK) as a result of a single CWD positive red deer passing through an abattoir, or being field dressed. The model estimated that around 11,000 mouse i.c. log ID50 units would enter the human food chain through the farmed route or wild route. The model estimated that there are around 83,000 mouse i.c. log ID50 units in a deer carcase, compared to around 22,000 in a sheep carcase infected with scrapie, mainly due to the size difference between a red deer and a sheep. For farmed deer, the model estimated that 87% of total carcase infectivity would become animal by-product category 3 material, with only 13% going to the food chain and a small amount to wastewater via the abattoir floor. For wild deer, the model estimated that on average, 85% of total carcase infectivity would be buried in the environment, with 13% going to the food chain and 2% to category 3 material which may be used as a protein source in other industries. Results indicate that if CWD was found in the UK there would be a risk of prions entering the human food chain and the environment. However, it is unclear if humans would be susceptible to CWD following consumption of contaminated meat, or what the environmental impact would be. This risk assessment highlights the need for further research in order to quantify the infectivity in all tissue types, in particular blood, gastrointestinal (GI) tract and skeletal muscle.
Collapse
Affiliation(s)
- Christine Gavin
- Department of Epidemiological Sciences, Animal & Plant Health Agency, Woodham Lane, Weybridge, KT15 3NB, United Kingdom.
| | - Davin Henderson
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sylvie L Benestad
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway
| | - Marion Simmons
- Department of Pathology, Animal & Plant Health Agency, Woodham Lane, Weybridge, KT15 3NB, United Kingdom
| | - Amie Adkin
- Department of Epidemiological Sciences, Animal & Plant Health Agency, Woodham Lane, Weybridge, KT15 3NB, United Kingdom
| |
Collapse
|
26
|
Cotterill GG, Cross PC, Cole EK, Fuda RK, Rogerson JD, Scurlock BM, du Toit JT. Winter feeding of elk in the Greater Yellowstone Ecosystem and its effects on disease dynamics. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 29531148 PMCID: PMC5882999 DOI: 10.1098/rstb.2017.0093] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Providing food to wildlife during periods when natural food is limited results in aggregations that may facilitate disease transmission. This is exemplified in western Wyoming where institutional feeding over the past century has aimed to mitigate wildlife–livestock conflict and minimize winter mortality of elk (Cervus canadensis). Here we review research across 23 winter feedgrounds where the most studied disease is brucellosis, caused by the bacterium Brucella abortus. Traditional veterinary practices (vaccination, test-and-slaughter) have thus far been unable to control this disease in elk, which can spill over to cattle. Current disease-reduction efforts are being guided by ecological research on elk movement and density, reproduction, stress, co-infections and scavengers. Given the right tools, feedgrounds could provide opportunities for adaptive management of brucellosis through regular animal testing and population-level manipulations. Our analyses of several such manipulations highlight the value of a research–management partnership guided by hypothesis testing, despite the constraints of the sociopolitical environment. However, brucellosis is now spreading in unfed elk herds, while other diseases (e.g. chronic wasting disease) are of increasing concern at feedgrounds. Therefore experimental closures of feedgrounds, reduced feeding and lower elk populations merit consideration. This article is part of the theme issue ‘Anthropogenic resource subsidies and host–parasite dynamics in wildlife’.
Collapse
Affiliation(s)
- Gavin G Cotterill
- Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT 84322, USA
| | - Paul C Cross
- U.S. Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way, Suite 2, Bozeman, MT 59715, USA
| | - Eric K Cole
- U.S. Fish and Wildlife Service, National Elk Refuge, PO Box 510, Jackson, WY 83001, USA
| | - Rebecca K Fuda
- Wyoming Game and Fish Department, 432 Mill Street, Pinedale, WY 82941, USA
| | - Jared D Rogerson
- Wyoming Game and Fish Department, 432 Mill Street, Pinedale, WY 82941, USA
| | - Brandon M Scurlock
- Wyoming Game and Fish Department, 432 Mill Street, Pinedale, WY 82941, USA
| | - Johan T du Toit
- Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT 84322, USA
| |
Collapse
|
27
|
Ellis CK, Volker SF, Griffin DL, VerCauteren KC, Nichols TA. Use of faecal volatile organic compound analysis for ante-mortem discrimination between CWD-positive, -negative exposed, and -known negative white-tailed deer (Odocoileus virginianus). Prion 2019; 13:94-105. [PMID: 31032718 PMCID: PMC7000150 DOI: 10.1080/19336896.2019.1607462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022] Open
Abstract
Chronic wasting disease (CWD) is a naturally occurring infectious, fatal, transmissible spongiform encephalopathy of cervids. Currently, disease confirmation relies on post-mortem detection of infectious prions in the medial retropharyngeal lymph nodes or obex in the brain via immunohistochemistry (IHC). Detection of CWD in living animals using this method is impractical, and IHC and other experimental assays are not reliable in detecting low concentrations of prion present in biofluids or faeces. Here, we evaluate the capability of faecal volatile organic compound analysis to discriminate between CWD-positive and -exposed white-tailed deer located at two positive cervid farms, and two groups of CWD-negative deer from two separate disease-free farms.
Collapse
Affiliation(s)
- Christine K. Ellis
- Feral Swine Project, USDA-APHIS-WS-National Wildlife Research Center, Fort Collins, CO, USA
| | - Steven F. Volker
- Analytical Chemistry Department, USDA-APHIS-WS-National Wildlife Research Center, Fort Collins, CO, USA
| | - Doreen L. Griffin
- BioLaboratories, USDA-APHIS-WS-National Wildlife Research Center, Fort Collins, CO, USA
| | - Kurt C. VerCauteren
- Feral Swine Project, USDA-APHIS-WS-National Wildlife Research Center, Fort Collins, CO, USA
| | | |
Collapse
|
28
|
Brandt AL, Green ML, Ishida Y, Roca AL, Novakofski J, Mateus-Pinilla NE. Influence of the geographic distribution of prion protein gene sequence variation on patterns of chronic wasting disease spread in white-tailed deer (Odocoileus virginianus). Prion 2018; 12:204-215. [PMID: 30041562 PMCID: PMC6277178 DOI: 10.1080/19336896.2018.1474671] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Managing and controlling the spread of diseases in wild animal populations is challenging, especially for social and mobile species. Effective management benefits from information about disease susceptibility, allowing limited resources to be focused on areas or populations with a higher risk of infection. Chronic wasting disease (CWD), a transmissible spongiform encephalopathy that affects cervids, was detected in Colorado in the late 1960s. CWD was detected in Illinois and Wisconsin in 2002 and has since spread through many counties. Specific nucleotide variations in the prion protein gene (PRNP) sequence have been associated with reduced susceptibility to CWD in white-tailed deer. Though genetic resistance is incomplete, the frequency of deer possessing these mutations in a population is an important factor in disease spread (i.e. herd immunity). In this study we sequenced 625 bp of the PRNP gene from a sampling of 2433 deer from Illinois and Wisconsin. In north-central Illinois where CWD was first detected, counties had a low frequency of protective haplotypes (frequency <0.20); whereas in northwestern Illinois counties, where CWD cases have only more recently been detected, the frequency of protective haplotypes (frequency >0.30) was much higher (p < 0.05). Protective haplotype frequencies varied significantly among infected and uninfected geographic areas. The frequency of protective PRNP haplotypes may contribute to population level susceptibility and may shape the way CWD has spread through Illinois. Analysis of PRNP haplotype distribution could be a useful tool to assess CWD risk and allocate resources to contain and reduce the spread of infection.
Collapse
Affiliation(s)
- Adam L Brandt
- a Illinois Natural History Survey-Prairie Research Institute , University of Illinois at Urbana-Champaign , Urbana , IL , USA.,b Division of Natural Sciences , St. Norbert College , De Pere , Wisconsin , USA
| | - Michelle L Green
- a Illinois Natural History Survey-Prairie Research Institute , University of Illinois at Urbana-Champaign , Urbana , IL , USA.,c Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Yasuko Ishida
- c Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Alfred L Roca
- a Illinois Natural History Survey-Prairie Research Institute , University of Illinois at Urbana-Champaign , Urbana , IL , USA.,c Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Jan Novakofski
- c Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Nohra E Mateus-Pinilla
- a Illinois Natural History Survey-Prairie Research Institute , University of Illinois at Urbana-Champaign , Urbana , IL , USA.,c Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| |
Collapse
|
29
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Skandamis P, Snary E, Speybroeck N, Kuile BT, Threlfall J, Wahlström H, Benestad S, Gavier-Widen D, Miller MW, Telling GC, Tryland M, Latronico F, Ortiz-Pelaez A, Stella P, Simmons M. Scientific opinion on chronic wasting disease (II). EFSA J 2018; 16:e05132. [PMID: 32625679 PMCID: PMC7328883 DOI: 10.2903/j.efsa.2018.5132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The European Commission asked EFSA for a scientific opinion on chronic wasting disease in two parts. Part one, on surveillance, animal health risk-based measures and public health risks, was published in January 2017. This opinion (part two) addresses the remaining Terms of Reference, namely, 'are the conclusions and recommendations in the EFSA opinion of June 2004 on diagnostic methods for chronic wasting disease still valid? If not, an update should be provided', and 'update the conclusions of the 2010 EFSA opinion on the results of the European Union survey on chronic wasting disease in cervids, as regards its occurrence in the cervid population in the European Union'. Data on the performance of authorised rapid tests in North America are not comprehensive, and are more limited than those available for the tests approved for statutory transmissible spongiform encephalopathies surveillance applications in cattle and sheep. There are no data directly comparing available rapid test performances in cervids. The experience in Norway shows that the Bio-Rad TeSeE™ SAP test, immunohistochemistry and western blotting have detected reindeer, moose and red deer cases. It was shown that testing both brainstem and lymphoid tissue from each animal increases the surveillance sensitivity. Shortcomings in the previous EU survey limited the reliability of inferences that could be made about the potential disease occurrence in Europe. Subsequently, testing activity in Europe was low, until the detection of the disease in Norway, triggering substantial testing efforts in that country. Available data neither support nor refute the conclusion that chronic wasting disease does not occur widely in the EU and do not preclude the possibility that the disease was present in Europe before the survey was conducted. It appears plausible that chronic wasting disease could have become established in Norway more than a decade ago.
Collapse
|
30
|
Assessment of Chronic Wasting Disease Prion Shedding in Deer Saliva with Occupancy Modeling. J Clin Microbiol 2017; 56:JCM.01243-17. [PMID: 29118163 DOI: 10.1128/jcm.01243-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/31/2017] [Indexed: 01/06/2023] Open
Abstract
The detection of prions is difficult due to the peculiarity of the pathogen, which is a misfolded form of a normal protein. The specificity and sensitivity of detection methods are imperfect in complex samples, including in excreta. Here, we combined optimized prion amplification procedures with a statistical method that accounts for false-positive and false-negative errors to test deer saliva for chronic wasting disease (CWD) prions. This approach enabled us to discriminate the shedding of prions in saliva and the detection of prions in saliva-a distinction crucial to understanding the role of prion shedding in disease transmission and for diagnosis. We found that assay sensitivity and specificity were indeed imperfect, and we were able to draw several conclusions pertinent to CWD biology from our analyses: (i) the shedding of prions in saliva increases with time postinoculation, but is common throughout the preclinical phase of disease; (ii) the shedding propensity is influenced neither by sex nor by prion protein genotype at codon 96; and (iii) the source of prion-containing inoculum used to infect deer affects the likelihood of prion shedding in saliva; oral inoculation of deer with CWD-positive saliva resulted in 2.77 times the likelihood of prion shedding in saliva compared to that from inoculation with CWD-positive brain. These results are pertinent to horizontal CWD transmission in wild cervids. Moreover, the approach described is applicable to other diagnostic assays with imperfect detection.
Collapse
|
31
|
Dorak SJ, Green ML, Wander MM, Ruiz MO, Buhnerkempe MG, Tian T, Novakofski JE, Mateus-Pinilla NE. Clay content and pH: soil characteristic associations with the persistent presence of chronic wasting disease in northern Illinois. Sci Rep 2017; 7:18062. [PMID: 29273783 PMCID: PMC5741720 DOI: 10.1038/s41598-017-18321-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/08/2017] [Indexed: 01/13/2023] Open
Abstract
Environmental reservoirs are important to infectious disease transmission and persistence, but empirical analyses are relatively few. The natural environment is a reservoir for prions that cause chronic wasting disease (CWD) and influences the risk of transmission to susceptible cervids. Soil is one environmental component demonstrated to affect prion infectivity and persistence. Here we provide the first landscape predictive model for CWD based solely on soil characteristics. We built a boosted regression tree model to predict the probability of the persistent presence of CWD in a region of northern Illinois using CWD surveillance in deer and soils data. We evaluated the outcome for possible pathways by which soil characteristics may increase the probability of CWD transmission via environmental contamination. Soil clay content and pH were the most important predictive soil characteristics of the persistent presence of CWD. The results suggest that exposure to prions in the environment is greater where percent clay is less than 18% and soil pH is greater than 6.6. These characteristics could alter availability of prions immobilized in soil and contribute to the environmental risk factors involved in the epidemiological complexity of CWD infection in natural populations of white-tailed deer.
Collapse
Affiliation(s)
- Sheena J Dorak
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S Oak Street, Champaign, IL, 61820, USA
| | - Michelle L Green
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S Oak Street, Champaign, IL, 61820, USA.,Department of Animal Sciences, University of Illinois Urbana-Champaign, 1503 S Maryland Drive, Urbana, IL, 61801, USA
| | - Michelle M Wander
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
| | - Marilyn O Ruiz
- Department of Pathobiology, University of Illinois Urbana-Champaign, 2001 S Lincoln Avenue, Urbana, IL, 61802, USA
| | - Michael G Buhnerkempe
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S Oak Street, Champaign, IL, 61820, USA
| | - Ting Tian
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S Oak Street, Champaign, IL, 61820, USA
| | - Jan E Novakofski
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1503 S Maryland Drive, Urbana, IL, 61801, USA
| | - Nohra E Mateus-Pinilla
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S Oak Street, Champaign, IL, 61820, USA.
| |
Collapse
|
32
|
Mabbott NA. How do PrP Sc Prions Spread between Host Species, and within Hosts? Pathogens 2017; 6:pathogens6040060. [PMID: 29186791 PMCID: PMC5750584 DOI: 10.3390/pathogens6040060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
Prion diseases are sub-acute neurodegenerative diseases that affect humans and some domestic and free-ranging animals. Infectious prion agents are considered to comprise solely of abnormally folded isoforms of the cellular prion protein known as PrPSc. Pathology during prion disease is restricted to the central nervous system where it causes extensive neurodegeneration and ultimately leads to the death of the host. The first half of this review provides a thorough account of our understanding of the various ways in which PrPSc prions may spread between individuals within a population, both horizontally and vertically. Many natural prion diseases are acquired peripherally, such as by oral exposure, lesions to skin or mucous membranes, and possibly also via the nasal cavity. Following peripheral exposure, some prions accumulate to high levels within the secondary lymphoid organs as they make their journey from the site of infection to the brain, a process termed neuroinvasion. The replication of PrPSc prions within secondary lymphoid organs is important for their efficient spread to the brain. The second half of this review describes the key tissues, cells and molecules which are involved in the propagation of PrPSc prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. This section also considers how additional factors such as inflammation and aging might influence prion disease susceptibility.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
33
|
Mathiason CK. Scrapie, CWD, and Transmissible Mink Encephalopathy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:267-292. [PMID: 28838664 DOI: 10.1016/bs.pmbts.2017.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), or prions, are neurodegenerative diseases that affect a variety of animal species, including humans. Cruetzfeldt-Jakob disease (CJD) in humans, sheep and goat scrapie, chronic wasting disease (CWD) of cervids, and transmissible mink encephalopathy (TME) of mink are classified as TSEs. According to the "protein-only" hypothesis (Prusiner, 1982),1 prions are devoid of nucleic acids and consist of assemblies of misfolded host-encoded normal protein, the prion protein (PrPC). Prion propagation is thought to occur by a templating mechanism during which PrPC is recruited, converted to a disease-associated isoform (PrPD), and assembled onto the growing amyloid fibril. This fibular assembly is infectious, with ability to initiate disease processes similar to other pathogenic agents. Evidence indicates that scrapie, CWD, and TME disease processes follow this rule.
Collapse
|
34
|
Bistaffa E, Rossi M, De Luca CMG, Moda F. Biosafety of Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:455-485. [PMID: 28838674 DOI: 10.1016/bs.pmbts.2017.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prions are the infectious agents that cause devastating and untreatable disorders known as Transmissible Spongiform Encephalopathies (TSEs). The pathologic events and the infectious nature of these transmissible agents are not completely understood yet. Due to the difficulties in inactivating prions, working with them requires specific recommendations and precautions. Moreover, with the advent of innovative technologies, such as the Protein Misfolding Cyclic Amplification (PMCA) and the Real Time Quaking-Induced Conversion (RT-QuIC), prions could be amplified in vitro and the infectious features of the amplified products need to be carefully assessed.
Collapse
Affiliation(s)
- Edoardo Bistaffa
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy; Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Martina Rossi
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Chiara M G De Luca
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy; Università degli Studi di Pavia, Pavia, Italy
| | - Fabio Moda
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy.
| |
Collapse
|
35
|
Infectious Prions in the Pregnancy Microenvironment of Chronic Wasting Disease-Infected Reeves' Muntjac Deer. J Virol 2017; 91:JVI.00501-17. [PMID: 28539446 DOI: 10.1128/jvi.00501-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/05/2017] [Indexed: 11/20/2022] Open
Abstract
Ample evidence exists for the presence of infectious agents at the maternal-fetal interface, often with grave outcomes to the developing fetus (i.e., Zika virus, brucella, cytomegalovirus, and toxoplasma). While less studied, pregnancy-related transmissible spongiform encephalopathies (TSEs) have been implicated in several species, including humans. Our previous work has shown that prions can be transferred from mother to offspring, resulting in the development of clinical TSE disease in offspring born to muntjac dams infected with chronic wasting disease (CWD) (1). We further demonstrated protein misfolding cyclic amplification (PMCA)-competent prions within the female reproductive tract and in fetal tissues harvested from CWD experimentally and naturally exposed cervids (1, 2). To assess whether the PMCA-competent prions residing at the maternal-fetal interface were infectious and to determine if the real-time quaking-induced conversion (RT-QuIC) methodology may enhance our ability to detect amyloid fibrils within the pregnancy microenvironment, we employed a mouse bioassay and RT-QuIC. In this study, we have demonstrated RT-QuIC seeding activity in uterus, placentome, ovary, and amniotic fluid but not in allantoic fluids harvested from CWD-infected Reeves' muntjac dams showing clinical signs of infection (clinically CWD-infected) and in some placentomes from pre-clinically CWD-infected dams. Prion infectivity was confirmed within the uterus, amniotic fluid, and the placentome, the semipermeable interface that sustains the developing fetus, of CWD-infected dams. This is the first report of prion infectivity within the cervid pregnancy microenvironment, revealing a source of fetal CWD exposure prior to the birthing process, maternal grooming, or encounters with contaminated environments.IMPORTANCE The facile dissemination of chronic wasting disease within captive and free-range cervid populations has led to questions regarding the transmission dynamics of this disease. Direct contact with infected animals and indirect contact with infectious prions in bodily fluids and contaminated environments are suspected to explain the majority of this transmission. A third mode of transmission, from mother to offspring, may be underappreciated. The presence of pregnancy-related prion infectivity within the uterus, amniotic fluid, and the placental structure reveals that the developing fetus is exposed to a source of prions long before exposure to the infectious agent during and after the birthing process or via contact with contaminated environments. These findings have impact on our current concept of CWD disease transmission.
Collapse
|
36
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Sanaa M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Benestad S, Gavier-Widen D, Miller MW, Ru G, Telling GC, Tryland M, Ortiz Pelaez A, Simmons M. Chronic wasting disease (CWD) in cervids. EFSA J 2017; 15:e04667. [PMID: 32625260 PMCID: PMC7010154 DOI: 10.2903/j.efsa.2017.4667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In April and May of 2016, Norway confirmed two cases of chronic wasting disease (CWD) in a wild reindeer and a wild moose, respectively. In the light of this emerging issue, the European Commission requested EFSA to recommend surveillance activities and, if necessary, additional animal health risk-based measures to prevent the introduction of the disease and the spread into/within the EU, specifically Estonia, Finland, Iceland, Latvia, Lithuania, Norway, Poland and Sweden, and considering seven wild, semidomesticated and farmed cervid species (Eurasian tundra reindeer, Finnish (Eurasian) forest reindeer, moose, roe deer, white-tailed deer, red deer and fallow deer). It was also asked to assess any new evidence on possible public health risks related to CWD. A 3-year surveillance system is proposed, differing for farmed and wild or semidomesticated cervids, with a two-stage sampling programme at the farm/geographically based population unit level (random sampling) and individual level (convenience sampling targeting high-risk animals). The current derogations of Commission Implementing Decision (EU) 2016/1918 present a risk of introduction of CWD into the EU. Measures to prevent the spread of CWD within the EU are dependent upon the assumption that the disease is already present; this is currently unknown. The measures listed are intended to contain (limit the geographic extent of a focus) and/or to control (actively stabilise/reduce infection rates in an affected herd or population) the disease where it occurs. With regard to the zoonotic potential, the human species barrier for CWD prions does not appear to be absolute. These prions are present in the skeletal muscle and other edible tissues, so humans may consume infected material in enzootic areas. Epidemiological investigations carried out to date make no association between the occurrence of sporadic Creutzfeldt-Jakob disease in humans and exposure to CWD prions.
Collapse
|
37
|
Seeded Amplification of Chronic Wasting Disease Prions in Nasal Brushings and Recto-anal Mucosa-Associated Lymphoid Tissues from Elk by Real-Time Quaking-Induced Conversion. J Clin Microbiol 2016; 54:1117-26. [PMID: 26888899 DOI: 10.1128/jcm.02700-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/06/2016] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, was first documented nearly 50 years ago in Colorado and Wyoming and has since been detected across North America and the Republic of Korea. The expansion of this disease makes the development of sensitive diagnostic assays and antemortem sampling techniques crucial for the mitigation of its spread; this is especially true in cases of relocation/reintroduction or prevalence studies of large or protected herds, where depopulation may be contraindicated. This study evaluated the sensitivity of the real-time quaking-induced conversion (RT-QuIC) assay of recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsy specimens and nasal brushings collected antemortem. These findings were compared to results of immunohistochemistry (IHC) analysis of ante- and postmortem samples. RAMALT samples were collected from populations of farmed and free-ranging Rocky Mountain elk (Cervus elaphus nelsoni;n= 323), and nasal brush samples were collected from a subpopulation of these animals (n= 205). We hypothesized that the sensitivity of RT-QuIC would be comparable to that of IHC analysis of RAMALT and would correspond to that of IHC analysis of postmortem tissues. We found RAMALT sensitivity (77.3%) to be highly correlative between RT-QuIC and IHC analysis. Sensitivity was lower when testing nasal brushings (34%), though both RAMALT and nasal brush test sensitivities were dependent on both thePRNPgenotype and disease progression determined by the obex score. These data suggest that RT-QuIC, like IHC analysis, is a relatively sensitive assay for detection of CWD prions in RAMALT biopsy specimens and, with further investigation, has potential for large-scale and rapid automated testing of antemortem samples for CWD.
Collapse
|