1
|
Chen S, Yao C, Tian N, Zhang C, Chen Y, Wang X, Jiang Y, Zhang T, Zeng T, Song Y. The interplay between persistent pathogen infections with tumor microenvironment and immunotherapy in cancer. Cancer Med 2024; 13:e70154. [PMID: 39240588 PMCID: PMC11378724 DOI: 10.1002/cam4.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Chronic infections by pathogenic microorganisms play a significant role in cancer development, disrupting the body's immune system and microenvironment. This interference impairs the body's ability to eliminate these microorganisms promptly, allowing them to persist by evading immune defenses. AIMS This study aimed to explore how chronic pathogenic infections influence the immune microenvironment, impacting tumorigenesis, cancer progression, and treatment strategies. Additionally, it seeks to investigate the effects of these infections on specific immune checkpoints and identify potential targets for immunotherapy. METHODS We conducted searches, readings, and detailed analyses of key terms in databases like PubMed and Web of Science to evaluate the impact of chronic infections by pathogenic microorganisms on the immune microenvironment. RESULTS Our analysis demonstrates a significant association between persistent chronic infections by pathogenic microorganisms and tumorigenesis. Notable impacts on the immune microenvironment include changes in immune cell function and the regulation of immune checkpoints, offering insights into potential targets for cancer immunotherapy. DISCUSSION This study highlights the complex relationship between chronic infections and cancer development, presenting new opportunities for cancer immunotherapy by understanding their effects on the immune microenvironment. The influence of these infections on immune checkpoints emphasizes the crucial role of the immune system in cancer treatment. CONCLUSION Chronic infections by pathogenic microorganisms greatly affect the immune microenvironment, tumorigenesis, and cancer treatment. Unraveling the underlying mechanisms can unveil potential targets for immunotherapy, improving our comprehension of the immune response to cancer and potentially leading to more effective cancer treatments in the future.
Collapse
Affiliation(s)
- Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Caihong Yao
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Na Tian
- Anesthesiology Department, Qingdao Eighth People's Hospital, Qingdao, People's Republic of China
| | - Chunying Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Yuemei Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Xuting Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Yue Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Tonghao Zhang
- Department of Statistics, University of Virginia, Charlottesville, Virginia, USA
| | - Tingting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| | - Yali Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University; Sichuan Clinical Research Center for Laboratory Medicine; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Ohnezeit D, Huang J, Westerkamp U, Brinschwitz V, Schmidt C, Günther T, Czech-Sioli M, Weißelberg S, Schlemeyer T, Nakel J, Mai J, Schreiner S, Schneider C, Friedel CC, Schwanke H, Brinkmann MM, Grundhoff A, Fischer N. Merkel cell polyomavirus small tumor antigen contributes to immune evasion by interfering with type I interferon signaling. PLoS Pathog 2024; 20:e1012426. [PMID: 39110744 PMCID: PMC11333005 DOI: 10.1371/journal.ppat.1012426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/19/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the causative agent of the majority of Merkel cell carcinomas (MCC). The virus has limited coding capacity, with its early viral proteins, large T (LT) and small T (sT), being multifunctional and contributing to infection and transformation. A fundamental difference in early viral gene expression between infection and MCPyV-driven tumorigenesis is the expression of a truncated LT (LTtr) in the tumor. In contrast, sT is expressed in both conditions and contributes significantly to oncogenesis. Here, we identified novel functions of early viral proteins by performing genome-wide transcriptome and chromatin studies in primary human fibroblasts. Due to current limitations in infection and tumorigenesis models, we mimic these conditions by ectopically expressing sT, LT or LTtr, individually or in combination, at different time points. In addition to its known function in cell cycle and inflammation modulation, we reveal a fundamentally new function of sT. We show that sT regulates the type I interferon (IFN) response downstream of the type I interferon receptor (IFNAR) by interfering with the interferon-stimulated gene factor 3 (ISGF3)-induced interferon-stimulated gene (ISG) response. Expression of sT leads to a reduction in the expression of interferon regulatory factor 9 (IRF9) which is a central component of the ISGF3 complex. We further show that this function of sT is conserved in BKPyV. We provide a first mechanistic understanding of which early viral proteins trigger and control the type I IFN response, which may influence MCPyV infection, persistence and, during MCC progression, regulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Denise Ohnezeit
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jiabin Huang
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ute Westerkamp
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Veronika Brinschwitz
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Schmidt
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Manja Czech-Sioli
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samira Weißelberg
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tabea Schlemeyer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Julia Mai
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Virology, Freiburg, Germany
| | - Sabrina Schreiner
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Virology, Freiburg, Germany
| | | | - Caroline C. Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hella Schwanke
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Pedersen EA, Verhaegen ME, Joseph MK, Harms KL, Harms PW. Merkel cell carcinoma: updates in tumor biology, emerging therapies, and preclinical models. Front Oncol 2024; 14:1413793. [PMID: 39136002 PMCID: PMC11317257 DOI: 10.3389/fonc.2024.1413793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma thought to arise via either viral (Merkel cell polyomavirus) or ultraviolet-associated pathways. Surgery and radiotherapy have historically been mainstays of management, and immunotherapy has improved outcomes for advanced disease. However, there remains a lack of effective therapy for those patients who fail to respond to these established approaches, underscoring a critical need to better understand MCC biology for more effective prognosis and treatment. Here, we review the fundamental aspects of MCC biology and the recent advances which have had profound impact on management. The first genetically-engineered mouse models for MCC tumorigenesis provide opportunities to understand the potential MCC cell of origin and may prove useful for preclinical investigation of novel therapeutics. The MCC cell of origin debate has also been advanced by recent observations of MCC arising in association with a clonally related hair follicle tumor or squamous cell carcinoma in situ. These studies also suggested a role for epigenetics in the origin of MCC, highlighting a potential utility for this therapeutic avenue in MCC. These and other therapeutic targets form the basis for a wealth of ongoing clinical trials to improve MCC management. Here, we review these recent advances in the context of the existing literature and implications for future investigations.
Collapse
Affiliation(s)
| | | | - Mallory K. Joseph
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Kelly L. Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Paul W. Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Haley SA, O'Hara BA, Schorl C, Atwood WJ. JCPyV infection of primary choroid plexus epithelial cells reduces expression of critical junctional proteins and increases expression of barrier disrupting inflammatory cytokines. Microbiol Spectr 2024; 12:e0062824. [PMID: 38874395 PMCID: PMC11302677 DOI: 10.1128/spectrum.00628-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024] Open
Abstract
The human polyomavirus, JCPyV, establishes a lifelong persistent infection in the peripheral organs of a majority of the human population worldwide. Patients who are immunocompromised due to underlying infections, cancer, or to immunomodulatory treatments for autoimmune disease are at risk for developing progressive multifocal leukoencephalopathy (PML) when the virus invades the CNS and infects macroglial cells in the brain parenchyma. It is not yet known how the virus enters the CNS to cause disease. The blood-choroid plexus barrier is a potential site of virus invasion as the cells that make up this barrier are known to be infected with virus both in vivo and in vitro. To understand the effects of virus infection on these cells we challenged primary human choroid plexus epithelial cells with JCPyV and profiled changes in host gene expression. We found that viral infection induced the expression of proinflammatory chemokines and downregulated junctional proteins essential for maintaining blood-CSF and blood-brain barrier function. These data contribute to our understanding of how JCPyV infection of the choroid plexus can modulate the host cell response to neuroinvasive pathogens. IMPORTANCE The human polyomavirus, JCPyV, causes a rapidly progressing demyelinating disease in the CNS of patients whose immune systems are compromised. JCPyV infection has been demonstrated in the choroid plexus both in vivo and in vitro and this highly vascularized organ may be important in viral invasion of brain parenchyma. Our data show that infection of primary choroid plexus epithelial cells results in increased expression of pro-inflammatory chemokines and downregulation of critical junctional proteins that maintain the blood-CSF barrier. These data have direct implications for mechanisms used by JCPyV to invade the CNS and cause neurological disease.
Collapse
Affiliation(s)
- Sheila A. Haley
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Bethany A. O'Hara
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Christoph Schorl
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Walter J. Atwood
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
5
|
Khattri M, Amako Y, Gibbs JR, Collura JL, Arora R, Harold A, Li MY, Harms PW, Ezhkova E, Shuda M. Methyltransferase-independent function of enhancer of zeste homologue 2 maintains tumorigenicity induced by human oncogenic papillomavirus and polyomavirus. Tumour Virus Res 2023; 16:200264. [PMID: 37244352 PMCID: PMC10258072 DOI: 10.1016/j.tvr.2023.200264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
Merkel cell polyomavirus (MCV) and high-risk human papillomavirus (HPV) are human tumor viruses that cause Merkel cell carcinoma (MCC) and oropharyngeal squamous cell carcinoma (OSCC), respectively. HPV E7 and MCV large T (LT) oncoproteins target the retinoblastoma tumor suppressor protein (pRb) through the conserved LxCxE motif. We identified enhancer of zeste homolog 2 (EZH2) as a common host oncoprotein activated by both viral oncoproteins through the pRb binding motif. EZH2 is a catalytic subunit of the polycomb 2 (PRC2) complex that trimethylates histone H3 at lysine 27 (H3K27me3). In MCC tissues EZH2 was highly expressed, irrespective of MCV status. Loss-of-function studies revealed that viral HPV E6/E7 and T antigen expression are required for Ezh2 mRNA expression and that EZH2 is essential for HPV(+)OSCC and MCV(+)MCC cell growth. Furthermore, EZH2 protein degraders reduced cell viability efficiently and rapidly in HPV(+)OSCC and MCV(+)MCC cells, whereas EZH2 histone methyltransferase inhibitors did not affect cell proliferation or viability within the same treatment period. These results suggest that a methyltransferase-independent function of EZH2 contributes to tumorigenesis downstream of two viral oncoproteins, and that direct targeting of EZH2 protein expression could be a promising strategy for the inhibition of tumor growth in HPV(+)OSCC and MCV(+)MCC patients.
Collapse
Affiliation(s)
- Michelle Khattri
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yutaka Amako
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julia R Gibbs
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Joseph L Collura
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Reety Arora
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Alexis Harold
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Meng Yen Li
- Developmental and Regenerative Biology, Mt. Sinai School of Medicine, New York, NY, USA; Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Paul W Harms
- Departments of Pathology and Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Elena Ezhkova
- Developmental and Regenerative Biology, Mt. Sinai School of Medicine, New York, NY, USA; Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Masahiro Shuda
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Weber M, Nguyen MB, Li MY, Flora P, Shuda M, Ezhkova E. Merkel Cell Polyomavirus T Antigen-Mediated Reprogramming in Adult Merkel Cell Progenitors. J Invest Dermatol 2023; 143:2163-2176.e6. [PMID: 37257637 PMCID: PMC10592583 DOI: 10.1016/j.jid.2023.04.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023]
Abstract
Whether Merkel cells regenerate in adult skin and from which progenitor cells they regenerate are a subject of debate. Understanding Merkel cell regeneration is of interest to the study of Merkel cell carcinoma, a rare neuroendocrine skin cancer hypothesized to originate in a Merkel cell progenitor transformed by Merkel cell polyomavirus small and large T antigens. We sought to understand what the adult Merkel cell progenitors are and whether they can give rise to Merkel cell carcinoma. We used lineage tracing to identify SOX9-expressing cells (SOX9+ cells) as Merkel cell progenitors in postnatal murine skin. Merkel cell regeneration from SOX9+ progenitors occurs rarely in mature skin unless in response to minor mechanical injury. Merkel cell polyomavirus small T antigen and functional imitation of large T antigen in SOX9+ cells enforced neuroendocrine and Merkel cell lineage reprogramming in a subset of cells. These results identify SOX9+ cells as postnatal Merkel cell progenitors that can be reprogrammed by Merkel cell polyomavirus T antigens to express neuroendocrine markers.
Collapse
Affiliation(s)
- Madison Weber
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Minh Binh Nguyen
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Meng Yen Li
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Masahiro Shuda
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
7
|
Loke ASW, Lambert PF, Spurgeon ME. Current In Vitro and In Vivo Models to Study MCPyV-Associated MCC. Viruses 2022; 14:2204. [PMID: 36298759 PMCID: PMC9607385 DOI: 10.3390/v14102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the only human polyomavirus currently known to cause human cancer. MCPyV is believed to be an etiological factor in at least 80% of cases of the rare but aggressive skin malignancy Merkel cell carcinoma (MCC). In these MCPyV+ MCC tumors, clonal integration of the viral genome results in the continued expression of two viral proteins: the viral small T antigen (ST) and a truncated form of the viral large T antigen. The oncogenic potential of MCPyV and the functional properties of the viral T antigens that contribute to neoplasia are becoming increasingly well-characterized with the recent development of model systems that recapitulate the biology of MCPyV+ MCC. In this review, we summarize our understanding of MCPyV and its role in MCC, followed by the current state of both in vitro and in vivo model systems used to study MCPyV and its contribution to carcinogenesis. We also highlight the remaining challenges within the field and the major considerations related to the ongoing development of in vitro and in vivo models of MCPyV+ MCC.
Collapse
Affiliation(s)
| | | | - Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine & Public Health, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
8
|
Spurgeon ME, Cheng J, Ward-Shaw E, Dick FA, DeCaprio JA, Lambert PF. Merkel cell polyomavirus large T antigen binding to pRb promotes skin hyperplasia and tumor development. PLoS Pathog 2022; 18:e1010551. [PMID: 35560034 PMCID: PMC9132321 DOI: 10.1371/journal.ppat.1010551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/25/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
Clear evidence supports a causal link between Merkel cell polyomavirus (MCPyV) and the highly aggressive human skin cancer called Merkel cell carcinoma (MCC). Integration of viral DNA into the human genome facilitates continued expression of the MCPyV small tumor (ST) and large tumor (LT) antigens in virus-positive MCCs. In MCC tumors, MCPyV LT is truncated in a manner that renders the virus unable to replicate yet preserves the LXCXE motif that facilitates its binding to and inactivation of the retinoblastoma tumor suppressor protein (pRb). We previously developed a MCPyV transgenic mouse model in which MCC tumor-derived ST and truncated LT expression were targeted to the stratified epithelium of the skin, causing epithelial hyperplasia, increased proliferation, and spontaneous tumorigenesis. We sought to determine if any of these phenotypes required the association between the truncated MCPyV LT and pRb. Mice were generated in which K14-driven MCPyV ST/LT were expressed in the context of a homozygous RbΔLXCXE knock-in allele that attenuates LT-pRb interactions through LT's LXCXE motif. We found that many of the phenotypes including tumorigenesis that develop in the K14-driven MCPyV transgenic mice were dependent upon LT's LXCXE-dependent interaction with pRb. These findings highlight the importance of the MCPyV LT-pRb interaction in an in vivo model for MCPyV-induced tumorigenesis.
Collapse
Affiliation(s)
- Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| | - Jingwei Cheng
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Frederick A. Dick
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Children’s Health Research Institute, London, Ontario, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
9
|
Fromme JE, Zigrino P. The Role of Extracellular Matrix Remodeling in Skin Tumor Progression and Therapeutic Resistance. Front Mol Biosci 2022; 9:864302. [PMID: 35558554 PMCID: PMC9086898 DOI: 10.3389/fmolb.2022.864302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix remodeling in the skin results from a delicate balance of synthesis and degradation of matrix components, ensuring tissue homeostasis. These processes are altered during tumor invasion and growth, generating a microenvironment that supports growth, invasion, and metastasis. Apart from the cellular component, the tumor microenvironment is rich in extracellular matrix components and bound factors that provide structure and signals to the tumor and stromal cells. The continuous remodeling in the tissue compartment sustains the developing tumor during the various phases providing matrices and proteolytic enzymes. These are produced by cancer cells and stromal fibroblasts. In addition to fostering tumor growth, the expression of specific extracellular matrix proteins and proteinases supports tumor invasion after the initial therapeutic response. Lately, the expression and structural modification of matrices were also associated with therapeutic resistance. This review will focus on the significant alterations in the extracellular matrix components and the function of metalloproteinases that influence skin cancer progression and support the acquisition of therapeutic resistance.
Collapse
Affiliation(s)
- Julia E. Fromme
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- *Correspondence: Paola Zigrino,
| |
Collapse
|
10
|
The Merkel Cell Polyomavirus T-Antigens and IL-33/ST2-IL1RAcP Axis: Possible Role in Merkel Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23073702. [PMID: 35409061 PMCID: PMC8998536 DOI: 10.3390/ijms23073702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a causal factor in Merkel cell carcinoma (MCC). The oncogenic potential is mediated through its viral oncoproteins large T-antigen (LT) and small T-antigen (sT). Cytokines produced by tumor cells play an important role in cancer pathogenesis, and viruses affect their expression. Therefore, we compared human cytokine and receptor transcript levels in virus positive (V+) and virus negative (V−) MCC cell lines. Increased expression of IL-33, a potent modulator of tumor microenvironment, was observed in V+ MCC cell lines when compared to V− MCC-13 cells. Transient transfection studies with luciferase reporter plasmids demonstrated that LT and sT stimulated IL-33, ST2/IL1RL1 and IL1RAcP promoter activity. The induction of IL-33 expression was confirmed by transfecting MCC-13 cells with MCPyV LT. Furthermore, recombinant human cytokine domain IL-33 induced activation of MAP kinase and NF-κB pathways, which could be blocked by a ST2 receptor antibody. Immunohistochemical analysis demonstrated a significantly stronger IL-33, ST2, and IL1RAcP expression in MCC tissues compared to normal skin. Of interest, significantly higher IL-33 and IL1RAcP protein levels were observed in MCC patient plasma compared to plasma from healthy controls. Previous studies have demonstrated the implication of the IL-33/STL2 pathway in cancer. Because our results revealed a T-antigens-dependent induction of the IL-33/ST2 axis, IL-33/ST2 may play a role in the tumorigenesis of MCPyV-positive MCC. Therefore, neutralizing the IL-33/ST2 axis may present a novel therapeutic approach for MCC patients.
Collapse
|
11
|
Inhibition of T-antigen expression promoting glycogen synthase kinase 3 impairs merkel cell carcinoma cell growth. Cancer Lett 2022; 524:259-267. [PMID: 34715251 DOI: 10.1016/j.canlet.2021.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Merkel cell carcinoma is an aggressive skin cancer frequently caused by the Merkel cell polyomavirus (MCPyV). Since proliferation of MCPyV-positive MCC tumor cells strictly depends on expression of the virus-encoded T antigens (TA), these proteins theoretically represent ideal targets for different kinds of therapeutic approaches. Here we developed a cell-based assay to identify compounds which specifically inhibit growth of MCC cells by repressing TA expression. Applying this technique we screened a kinase inhibitor library and identified six compounds targeting glycogen synthase kinase 3 (GSK3) such as CHIR99021 as suppressors of TA transcription in MCC cells. Involvement of GSK3α and -β in the regulation of TA-expression was confirmed by combining GSK3A knockout with inducible GSK3B shRNA knockdown since double knockouts could not be generated. Finally, we demonstrate that CHIR99021 exhibits in vivo antitumor activity in an MCC xenograft mouse model suggesting GSK3 inhibitors as potential therapeutics for the treatment of MCC in the future.
Collapse
|
12
|
Que L, Li Y, Dainichi T, Kukimoto I, Nishiyama T, Nakano Y, Shima K, Suzuki T, Sato Y, Horike S, Aizaki H, Watashi K, Kato T, Aly HH, Watanabe N, Kabashima K, Wakae K, Muramatsu M. Interferon-gamma induced APOBEC3B contributes to Merkel cell polyomavirus genome mutagenesis in Merkel cell carcinoma. J Invest Dermatol 2021; 142:1793-1803.e11. [DOI: 10.1016/j.jid.2021.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
|
13
|
Tanda ET, d'Amato AL, Rossi G, Croce E, Boutros A, Cecchi F, Spagnolo F, Queirolo P. Merkel Cell Carcinoma: An Immunotherapy Fairy-Tale? Front Oncol 2021; 11:739006. [PMID: 34631574 PMCID: PMC8495203 DOI: 10.3389/fonc.2021.739006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare, highly aggressive, neuroendocrine cutaneous tumor. The incidence of MCC is growing worldwide, and the disease-related mortality is about three-fold higher than melanoma. Since a few years ago, very little has been known about this disease, and chemotherapy has been the standard of care. Nowadays, new discoveries about the pathophysiology of this neoplasm and the introduction of immunotherapy allowed to completely rewrite the history of these patients. In this review, we provide a summary of the most important changes in the management of Merkel cell carcinoma, with a focus on immunotherapy and a landscape of future treatment strategies.
Collapse
Affiliation(s)
- Enrica Teresa Tanda
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy.,Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy
| | - Agostina Lagodin d'Amato
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Giovanni Rossi
- Medical Oncology, Ospedale Padre Antero Micone, Genova, Italy.,Department on Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Elena Croce
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Andrea Boutros
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Federica Cecchi
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Spagnolo
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy
| | - Paola Queirolo
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors, Istituto Europeo di Oncologia (IEO), European Institute of Oncology IRCCS, Milano, Italy
| |
Collapse
|
14
|
Dubey AR, Jagtap YA, Kumar P, Patwa SM, Kinger S, Kumar A, Singh S, Prasad A, Jana NR, Mishra A. Biochemical strategies of E3 ubiquitin ligases target viruses in critical diseases. J Cell Biochem 2021; 123:161-182. [PMID: 34520596 DOI: 10.1002/jcb.30143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/23/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Viruses are known to cause various diseases in human and also infect other species such as animal plants, fungi, and bacteria. Replication of viruses depends upon their interaction with hosts. Human cells are prone to such unwanted viral infections. Disintegration and reconstitution require host machinery and various macromolecules like DNA, RNA, and proteins are invaded by viral particles. E3 ubiquitin ligases are known for their specific function, that is, recognition of their respective substrates for intracellular degradation. Still, we do not understand how ubiquitin proteasome system-based enzymes E3 ubiquitin ligases do their functional interaction with different viruses. Whether E3 ubiquitin ligases help in the elimination of viral components or viruses utilize their molecular capabilities in their intracellular propagation is not clear. The first time our current article comprehends fundamental concepts and new insights on the different viruses and their interaction with various E3 Ubiquitin Ligases. In this review, we highlight the molecular pathomechanism of viruses linked with E3 Ubiquitin Ligases dependent mechanisms. An enhanced understanding of E3 Ubiquitin Ligase-mediated removal of viral proteins may open new therapeutic strategies against viral infections.
Collapse
Affiliation(s)
- Ankur R Dubey
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Yuvraj A Jagtap
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Som M Patwa
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Sarika Singh
- Department of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Nihar R Jana
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Amit Mishra
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
15
|
Krump NA, You J. From Merkel Cell Polyomavirus Infection to Merkel Cell Carcinoma Oncogenesis. Front Microbiol 2021; 12:739695. [PMID: 34566942 PMCID: PMC8457551 DOI: 10.3389/fmicb.2021.739695] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) infection causes near-ubiquitous, asymptomatic infection in the skin, but occasionally leads to an aggressive skin cancer called Merkel cell carcinoma (MCC). Epidemiological evidence suggests that poorly controlled MCPyV infection may be a precursor to MCPyV-associated MCC. Clearer understanding of host responses that normally control MCPyV infection could inform prophylactic measures in at-risk groups. Similarly, the presence of MCPyV in most MCCs could imbue them with vulnerabilities that-if better characterized-could yield targeted intervention solutions for metastatic MCC cases. In this review, we discuss recent developments in elucidating the interplay between host cells and MCPyV within the context of viral infection and MCC oncogenesis. We also propose a model in which insufficient restriction of MCPyV infection in aging and chronically UV-damaged skin causes unbridled viral replication that licenses MCC tumorigenesis.
Collapse
Affiliation(s)
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
16
|
T-Cell Responses in Merkel Cell Carcinoma: Implications for Improved Immune Checkpoint Blockade and Other Therapeutic Options. Int J Mol Sci 2021; 22:ijms22168679. [PMID: 34445385 PMCID: PMC8395396 DOI: 10.3390/ijms22168679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer with rising incidence and high mortality. Approximately 80% of the cases are caused by the human Merkel cell polyomavirus, while the remaining 20% are induced by UV light leading to mutations. The standard treatment of metastatic MCC is the use of anti-PD-1/-PD-L1-immune checkpoint inhibitors (ICI) such as Pembrolizumab or Avelumab, which in comparison with conventional chemotherapy show better overall response rates and longer duration of responses in patients. Nevertheless, 50% of the patients do not respond or develop ICI-induced, immune-related adverse events (irAEs), due to diverse mechanisms, such as down-regulation of MHC complexes or the induction of anti-inflammatory cytokines. Other immunotherapeutic options such as cytokines and pro-inflammatory agents or the use of therapeutic vaccination offer great ameliorations to ICI. Cytotoxic T-cells play a major role in the effectiveness of ICI, and tumour-infiltrating CD8+ T-cells and their phenotype contribute to the clinical outcome. This literature review presents a summary of current and future checkpoint inhibitor therapies in MCC and demonstrates alternative therapeutic options. Moreover, the importance of T-cell responses and their beneficial role in MCC treatment is discussed.
Collapse
|
17
|
Mohammadi MH, Kariminik A. CC and CXC chemokines play key roles in the development of polyomaviruses related pathological conditions. Virol J 2021; 18:111. [PMID: 34082771 PMCID: PMC8173740 DOI: 10.1186/s12985-021-01582-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
It has been reported that polyomaviruses are the microbes which can be a cause of several human pathological conditions including cancers, nephropathy, progressive multifocal leukoencephalopathy and gynaecological disease. Although investigators proposed some mechanisms used by the viruses to induce the disorders, the roles played by chemokines in the pathogenesis of polyomaviruses infections are yet to be clarified. This review article investigated recent studies regarding the roles played by chemokines in the pathogenesis of the polyomaviruses infections. The research in the literature revealed that CXC chemokines, including CXCL1, CXCL5, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12 and CXCL16, significantly participate in the pathogenesis of polyomaviruses. CC chemokines, such as CCL2, CCL5 and CCL20 also participate in the induction of the pathological conditions. Therefore, it appears that CXC chemokines may be considered as the strategic factors involved in the pathogenesis of polyomaviruses.
Collapse
Affiliation(s)
| | - Ashraf Kariminik
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran.
| |
Collapse
|
18
|
Abstract
Merkel cell polyomavirus (MCPyV) is the most recently discovered human oncogenic virus. MCPyV asymptomatically infects most of the human population. In the elderly and immunocompromised, however, it can cause a highly lethal form of human skin cancer called Merkel cell carcinoma (MCC). Distinct from the productive MCPyV infection that replicates the viral genome as episomes, MCC tumors contain replication-incompetent, integrated viral genomes. Mutant MCPyV tumor antigen genes expressed from the integrated viral genomes are essential for driving the oncogenic development of MCPyV-associated MCC. In this chapter, we summarize recent discoveries on MCPyV virology, mechanisms of MCPyV-mediated oncogenesis, and the current therapeutic strategies for MCPyV-associated MCCs.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Tokorodani M, Ichikawa H, Yuasa K, Takahashi T, Hijikata T. SV40 microRNA miR-S1-3p Downregulates the Expression of T Antigens to Control Viral DNA Replication, and TNFα and IL-17F Expression. Biol Pharm Bull 2020; 43:1715-1728. [PMID: 33132317 DOI: 10.1248/bpb.b20-00415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SV40-encoded microRNA (miRNA), miR-S1, downregulates the large and small T antigens (LTag and STag), which promote viral replication and cellular transformation, thereby presumably impairing LTag and STag functions essential for the viral life cycle. To explore the functional significance of miR-S1-mediated downregulation of LTag and STag as well as the functional roles of miR-S1, we evaluated viral DNA replication and proinflammatory cytokine induction in cells transfected with simian virus 40 (SV40) genome plasmid and its mutated form lacking miR-S1 expression. The SV40 genome encodes two mature miR-S1s, miR-S1-3p and miR-S1-5p, of which miR-S1-3p is the predominantly expressed form. MiR-S1-3p exerted strong repressive effects on a reporter containing full-length sequence complementarity, but only marginal effect on one harboring a sequence complementary to its seed sequence. Consistently, miR-S1-3p downregulated LTag and STag transcripts with complete sequence complementarity through miR-S1-3p-Ago2-mediated mRNA decay. Transfection of SV40 plasmid induced higher DNA replication and lower LTag and STag transcripts in most of the examined cells compared to that miR-S1-deficient SV40 plasmid. However, miR-S1 itself did not affect DNA replication without the downregulation of LTag transcripts. Both LTag and STag induced the expression of tumor necrosis factor α (TNFα) and interleukin (IL)-17F, which was slightly reduced by miR-S1 due to miR-S1-mediated downregulation of LTag and STag. Forced miR-S1 expression did not affect TNFα expression, but increased IL-17F expression. Overall, our findings suggest that miR-S1-3p is a latent modifier of LTag and STag functions, ensuring efficient viral replication and attenuating cytokine expression detrimental to the viral life cycle.
Collapse
Affiliation(s)
- Misa Tokorodani
- Department of Anatomy and Cell Biology, Research Institute of Pharmaceutical Science, Faculty of Pharmacy, Musashino University
| | - Hirona Ichikawa
- Department of Anatomy and Cell Biology, Research Institute of Pharmaceutical Science, Faculty of Pharmacy, Musashino University
| | - Katsutoshi Yuasa
- Department of Anatomy and Cell Biology, Research Institute of Pharmaceutical Science, Faculty of Pharmacy, Musashino University
| | - Tetsuyuki Takahashi
- Department of Anatomy and Cell Biology, Research Institute of Pharmaceutical Science, Faculty of Pharmacy, Musashino University
| | - Takao Hijikata
- Department of Anatomy and Cell Biology, Research Institute of Pharmaceutical Science, Faculty of Pharmacy, Musashino University
| |
Collapse
|
20
|
Zhao J, Jia Y, Shen S, Kim J, Wang X, Lee E, Brownell I, Cho-Vega JH, Lewis C, Homsi J, Sharma RR, Wang RC. Merkel Cell Polyomavirus Small T Antigen Activates Noncanonical NF-κB Signaling to Promote Tumorigenesis. Mol Cancer Res 2020; 18:1623-1637. [PMID: 32753470 DOI: 10.1158/1541-7786.mcr-20-0587] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 01/21/2023]
Abstract
Multiple human polyomaviruses (HPyV) can infect the skin, but only Merkel cell polyomavirus (MCPyV) has been implicated in the development of a cancer, Merkel cell carcinoma (MCC). While expression of HPyV6, HPyV7, and MCPyV small T antigens (sT), all induced a senescence-associated secretory phenotype (SASP), MCPyV sT uniquely activated noncanonical NF-κB (ncNF-κB), instead of canonical NF-κB signaling, to evade p53-mediated cellular senescence. Through its large T stabilization domain, MCPyV sT activated ncNF-κB signaling both by inducing H3K4 trimethylation-mediated increases of NFKB2 and RELB transcription and also by promoting NFKB2 stabilization and activation through FBXW7 inhibition. Noncanonical NF-κB signaling was required for SASP cytokine secretion, which promoted the proliferation of MCPyV sT-expressing cells through autocrine signaling. Virus-positive MCC cell lines and tumors showed ncNF-κB pathway activation and SASP gene expression, and the inhibition of ncNF-κB signaling prevented VP-MCC cell growth in vitro and in xenografts. We identify MCPyV sT-induced ncNF-κB signaling as an essential tumorigenic pathway in MCC. IMPLICATIONS: This work is the first to identify the activation of ncNF-κB signaling by any polyomavirus and its critical role in MCC tumorigenesis.
Collapse
Affiliation(s)
- Jiawei Zhao
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas.
| | - Yuemeng Jia
- Children's Research Institute, UT Southwestern Medical Center, Dallas, Texas
| | - Shunli Shen
- Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiwoong Kim
- Department of Clinical Science, UT Southwestern Medical Center, Dallas, Texas
| | - Xun Wang
- Children's Research Institute, UT Southwestern Medical Center, Dallas, Texas
| | - Eunice Lee
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas
| | - Isaac Brownell
- Cutaneous Development and Carcinogenesis Section, NIAMS, Bethesda, Maryland
| | - Jeong Hee Cho-Vega
- Department of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center and Miller School of Medicine, University of Miami, Miami, Florida
| | - Cheryl Lewis
- Harold C. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Jade Homsi
- Harold C. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas.,Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Rohit R Sharma
- Harold C. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas.,Department of Surgery, UT Southwestern Medical Center, Dallas, Texas
| | - Richard C Wang
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas. .,Harold C. Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
21
|
Pietropaolo V, Prezioso C, Moens U. Merkel Cell Polyomavirus and Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:E1774. [PMID: 32635198 PMCID: PMC7407210 DOI: 10.3390/cancers12071774] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses are the cause of approximately 15% of all human cancers. Both RNA and DNA human tumor viruses have been identified, with Merkel cell polyomavirus being the most recent one to be linked to cancer. This virus is associated with about 80% of Merkel cell carcinomas, a rare, but aggressive cutaneous malignancy. Despite its name, the cells of origin of this tumor may not be Merkel cells. This review provides an update on the structure and life cycle, cell tropism and epidemiology of the virus and its oncogenic properties. Putative strategies to prevent viral infection or treat virus-positive Merkel cell carcinoma patients are discussed.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00166 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
22
|
Abstract
Viral infection underlies a significant share of the global cancer burden. Merkel cell polyomavirus (MCPyV) is the newest member of the human oncogenic virus family. Its discovery over a decade ago marked the beginning of an exciting era in human tumor virology. Since then, significant evidence has emerged to support the etiologic role of MCPyV in Merkel cell carcinoma (MCC), an extremely lethal form of skin cancer. MCPyV infection is widespread in the general population. MCC diagnoses have tripled over the past 20 years, but effective treatments are currently lacking. In this review, we highlight recent discoveries that have shaped our understanding of MCPyV oncogenic mechanism and host cellular tropism, as well as the molecular events occurring in the viral infectious life cycle. These insights will guide future efforts in developing novel virus-targeted therapeutic strategies for treating the devastating human cancers associated with this new tumorigenic virus.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076, USA;
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076, USA;
| |
Collapse
|
23
|
Moens U, Macdonald A. Effect of the Large and Small T-Antigens of Human Polyomaviruses on Signaling Pathways. Int J Mol Sci 2019; 20:ijms20163914. [PMID: 31408949 PMCID: PMC6720190 DOI: 10.3390/ijms20163914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022] Open
Abstract
Viruses are intracellular parasites that require a permissive host cell to express the viral genome and to produce new progeny virus particles. However, not all viral infections are productive and some viruses can induce carcinogenesis. Irrespective of the type of infection (productive or neoplastic), viruses hijack the host cell machinery to permit optimal viral replication or to transform the infected cell into a tumor cell. One mechanism viruses employ to reprogram the host cell is through interference with signaling pathways. Polyomaviruses are naked, double-stranded DNA viruses whose genome encodes the regulatory proteins large T-antigen and small t-antigen, and structural proteins that form the capsid. The large T-antigens and small t-antigens can interfere with several host signaling pathways. In this case, we review the interplay between the large T-antigens and small t-antigens with host signaling pathways and the biological consequences of these interactions.
Collapse
Affiliation(s)
- Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway.
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
24
|
Nguyen MB, Valdes VJ, Cohen I, Pothula V, Zhao D, Zheng D, Ezhkova E. Dissection of Merkel cell formation in hairy and glabrous skin reveals a common requirement for FGFR2-mediated signalling. Exp Dermatol 2019; 28:374-382. [PMID: 30758073 DOI: 10.1111/exd.13901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/30/2022]
Abstract
Merkel cells are mechanosensory cells involved in tactile discrimination. Merkel cells have been primarily studied in the murine back skin, where they are found in specialized structures called touch domes located around primary hair follicles. Yet, little is known about the morphogenesis of Merkel cells in areas of the skin devoid of hair, such as the glabrous paw skin. Here, we describe Merkel cell formation in the glabrous paw skin during embryogenesis. We first found in the glabrous paw skin that Merkel cells were specified at E15.5, 24 hours later, compared to in the back skin. Additionally, by performing lineage-tracing experiments, we found that unlike in the back skin, SOX9(+) cells do not give rise to Merkel cells in the glabrous paw skin. Finally, we compared the transcriptomes of Merkel cells in the back and the glabrous paw skin and showed that they are similar. Genetic and transcriptome studies showed that the formation of Merkel cells in both regions was controlled by similar regulators. Among them was FGFR2, an upstream factor of MAPK signalling that was reported to have a critical function in Merkel cell formation in the back skin. Here, we showed that FGFR2 is also required for Merkel cell development in the glabrous paw skin. Taken together, our results demonstrate that Merkel cells in the murine back skin and glabrous paw skin are similar, and even though their formation is controlled by a common genetic programme, their precursor cells might differ.
Collapse
Affiliation(s)
- Minh Binh Nguyen
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, The Tisch Cancer Institute, New York City, New York.,Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Victor Julian Valdes
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, The Tisch Cancer Institute, New York City, New York.,Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Idan Cohen
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, The Tisch Cancer Institute, New York City, New York.,Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Venu Pothula
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, The Tisch Cancer Institute, New York City, New York.,Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Dejian Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Deyou Zheng
- Departments of Genetics, Neurology, and Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Elena Ezhkova
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, The Tisch Cancer Institute, New York City, New York.,Icahn School of Medicine at Mount Sinai, New York City, New York
| |
Collapse
|
25
|
Bridge JA, Lee JC, Daud A, Wells JW, Bluestone JA. Cytokines, Chemokines, and Other Biomarkers of Response for Checkpoint Inhibitor Therapy in Skin Cancer. Front Med (Lausanne) 2018; 5:351. [PMID: 30631766 PMCID: PMC6315146 DOI: 10.3389/fmed.2018.00351] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy for skin malignancies has ushered in a new era for cancer treatments by demonstrating unprecedented durable responses in the setting of metastatic Melanoma. Consequently, checkpoint inhibitors are now the first-line treatment of metastatic melanoma and widely used as adjuvant therapy for stage III disease. With the observation that higher tumor mutational burden correlates with a better response, checkpoint inhibitors are tested in other skin cancer types of known high tumor mutational burden with promising results and recently became the first-ever FDA-approved treatment for metastatic Merkel cell carcinoma. The emerging new standards-of-care will necessitate more precise biomarkers and predictors for treatment response and immune-related adverse events. Measurable immune-related mediators are currently under investigation as factors that promote or block the response to cancer immunotherapy and may provide insights into the underlying immune response to the tumor. Cytokines and chemokines are such mediators and are crucial for facilitating the recruitment and activation of specific subsets of leukocytes within the microenvironment of skin cancers. The exact mechanisms of how these meditators, both immunological and non-immunological, operate in the tumor microenvironment is an area of active research, so to reliable biomarkers of responses to cancer immunotherapy. Here, we will review and summarize the expanding body of literature for immune-related biomarkers pertaining to Melanoma, Basal cell carcinoma, Squamous cell carcinoma, and Merkel cell carcinoma, highlighting clinically relevant checkpoint inhibitor therapy biomarker advancements.
Collapse
Affiliation(s)
- Jennifer A Bridge
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - James C Lee
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, United States
| | - Adil Daud
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, United States
| | - James W Wells
- The Faculty of Medicine, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Jeffrey A Bluestone
- Sean N. Parker Autoimmune Research Laboratory, Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
26
|
Kumar S, Xie H, Scicluna P, Lee L, Björnhagen V, Höög A, Larsson C, Lui WO. MiR-375 Regulation of LDHB Plays Distinct Roles in Polyomavirus-Positive and -Negative Merkel Cell Carcinoma. Cancers (Basel) 2018; 10:E443. [PMID: 30441870 PMCID: PMC6267432 DOI: 10.3390/cancers10110443] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNA-375 (miR-375) is deregulated in multiple tumor types and regulates important targets involved in tumorigenesis and metastasis. This miRNA is highly expressed in Merkel cell carcinoma (MCC) compared to normal skin and other non-MCC skin cancers, and its expression is high in Merkel cell polyomavirus (MCPyV)-positive (MCPyV+) and low in MCPyV-negative (MCPyV-) MCC tumors. In this study, we characterized the function and target of miR-375 in MCPyV+ and MCPyV- MCC cell lines. Ectopic expression of miR-375 in MCPyV- MCC cells resulted in decreased cell proliferation and migration, as well as increased cell apoptosis and cell cycle arrest. However, in MCPyV+ MCC cells, inhibition of miR-375 expression reduced cell growth and induced apoptosis. Additionally, the expression of lactate dehydrogenase B (LDHB), a known target of miR-375, was inversely correlated with miR-375. Silencing of LDHB reduced cell growth in MCPyV- cell lines, while its silencing in MCPyV+ cell lines rescued the cell growth effect mediated by miR-375 inhibition. Together, our results suggest dual roles of miR-375 and LDHB in MCPyV and non-MCPyV-associated MCCs. We propose that LDHB could be a therapeutic target in MCC and different strategies should be applied in virus- and non-virus-associated MCCs.
Collapse
Affiliation(s)
- Satendra Kumar
- Department of Oncology-Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden.
- Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
| | - Hong Xie
- Department of Oncology-Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden.
- Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Patrick Scicluna
- Department of Oncology-Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden.
- Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17165 Stockholm, Sweden.
| | - Linkiat Lee
- Department of Oncology-Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden.
- Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
| | - Viveca Björnhagen
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
| | - Anders Höög
- Department of Oncology-Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden.
- Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden.
- Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden.
- Cancer Center Karolinska, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
| |
Collapse
|
27
|
Akhbari P, Tobin D, Poterlowicz K, Roberts W, Boyne JR. MCV-miR-M1 Targets the Host-Cell Immune Response Resulting in the Attenuation of Neutrophil Chemotaxis. J Invest Dermatol 2018; 138:2343-2354. [PMID: 29777657 DOI: 10.1016/j.jid.2018.03.1527] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/02/2018] [Accepted: 03/28/2018] [Indexed: 01/07/2023]
Abstract
Virus-encoded microRNAs are emerging as key regulators of persistent infection and host-cell immune evasion. Merkel cell polyomavirus, the predominant etiological agent of Merkel cell carcinoma, encodes a single microRNA, MCV-miR-M1, which targets the oncogenic Merkel cell polyomavirus large T antigen. MCV-miR-M1 has previously been shown to play an important role in the establishment of long-term infection, however, the underlying mechanism is not fully understood. A key unanswered question is whether, in addition to autoregulating large T antigen, MCV-miR-M1 also targets cellular transcripts to orchestrate an environment conducive to persistent infection. To address this, we adopted an RNA sequencing-based approach to identify cellular targets of MCV-miR-M1. Intriguingly, bioinformatics analysis of transcripts that are differentially expressed in cells expressing MCV-miR-M1 revealed several genes implicated in immune evasion. Subsequent target validation led to the identification of the innate immunity protein, SP100, as a direct target of MCV-miR-M1. Moreover, MCV-miR-M1-mediated modulation of SP100 was associated with a significant decrease in CXCL8 secretion, resulting in the attenuation of neutrophil chemotaxis toward Merkel cells harboring synthetic Merkel cell polyomavirus. Based on these observations, we propose that MCV-miR-M1 targets key immune response regulators to help facilitate persistent infection, which is a prerequisite for cellular transformation in Merkel cell carcinoma.
Collapse
Affiliation(s)
- Pouria Akhbari
- Centre for Skin Sciences, School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Desmond Tobin
- Centre for Skin Sciences, School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Krzysztof Poterlowicz
- Centre for Skin Sciences, School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Wayne Roberts
- Pharmacology and Experimental Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK; School of Clinical and Applied Science, Leeds Beckett University, Leeds, UK
| | - James R Boyne
- Centre for Skin Sciences, School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
28
|
Krump NA, Liu W, You J. Mechanisms of persistence by small DNA tumor viruses. Curr Opin Virol 2018; 32:71-79. [PMID: 30278284 DOI: 10.1016/j.coviro.2018.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Virus infection contributes to nearly 15% of human cancers worldwide. Many of the oncogenic viruses tend to cause cancer in immunosuppressed individuals, but maintain asymptomatic, persistent infection for decades in the general population. In this review, we discuss the tactics employed by two small DNA tumor viruses, Human papillomavirus (HPV) and Merkel cell polyomavirus (MCPyV), to establish persistent infection. We will also highlight recent key findings as well as outstanding questions regarding the mechanisms by which HPV and MCPyV evade host immune control to promote their survival. Since persistent infection enables virus-induced tumorigenesis, identifying the mechanisms by which small DNA tumor viruses achieve latent infection may inform new approaches for preventing and treating their respective human cancers.
Collapse
Affiliation(s)
- Nathan A Krump
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Rasheed K, Abdulsalam I, Fismen S, Grimstad Ø, Sveinbjørnsson B, Moens U. CCL17/TARC and CCR4 expression in Merkel cell carcinoma. Oncotarget 2018; 9:31432-31447. [PMID: 30140381 PMCID: PMC6101144 DOI: 10.18632/oncotarget.25836] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare, highly aggressive neuroendocrine skin cancer. In more than 80% of the cases, Merkel cell polyomavirus (MCPyV) is a causal factor. The oncogenic potential of MCPyV is mediated through its viral oncoproteins, large T antigen (LT) and small t antigen (sT). To investigate the role of cytokines in MCC, a PCR array analysis for genes encoding inflammatory cytokines and receptors was performed on MCPyV-negative and MCPyV-positive MCC cell lines, respectively. We detected an increased expression of CCL17/TARC in the MCPyV-positive MKL2 cell line compared to the MCPyV-negative MCC13 cell line. Transfection studies in MCC13 cells with LT expression plasmid, and a luciferase reporter plasmid containing the CCL17/TARC promoter, exhibited stimulated promoter activity. Interestingly, the ectopic expression of CCL17/TARC upregulated MCPyV early and late promoter activities in MCC13 cells. Furthermore, recombinant CCL17/TARC activated both the mitogen-activated protein kinase and the NF-κB pathways. Finally, immunohistochemical staining on human MCC tissues showed a strong staining of CCL17/TARC and its receptor CCR4 in both LT-positive and -negative MCC. Taken together, CCL17/TARC and CCR4 may be a potential target in MCC therapy providing MCC patients with a better overall survival outcome.
Collapse
Affiliation(s)
- Kashif Rasheed
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, N-9037, Tromsø, Norway
| | - Ibrahim Abdulsalam
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, N-9037, Tromsø, Norway
| | - Silje Fismen
- Department of Pathology, University Hospital of Northern Norway, N-9038, Tromsø, Norway
| | - Øystein Grimstad
- Department of Dermatology, University Hospital of Northern Norway, N-9038, Tromsø, Norway
| | - Baldur Sveinbjørnsson
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, N-9037, Tromsø, Norway
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, N-9037, Tromsø, Norway
| |
Collapse
|
30
|
Colunga A, Pulliam T, Nghiem P. Merkel Cell Carcinoma in the Age of Immunotherapy: Facts and Hopes. Clin Cancer Res 2018; 24:2035-2043. [PMID: 29217527 PMCID: PMC5932211 DOI: 10.1158/1078-0432.ccr-17-0439] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 12/01/2017] [Indexed: 11/16/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare (∼2,000 U.S. cases/year) but aggressive neuroendocrine tumor of the skin. For advanced MCC, cytotoxic chemotherapy only infrequently (<10% of cases) offers durable clinical responses (>1 year), suggesting a great need for improved therapeutic options. In 2008, the Merkel cell polyomavirus (MCPyV) was discovered and is clonally integrated in approximately 80% of MCC tumors. The remaining 20% of MCC tumors have large numbers of UV-associated mutations. Importantly, both the UV-induced neoantigens in virus-negative tumors and the MCPyV T antigen oncogenes that are required for virus-positive tumor growth are immunogenic. Indeed, antigen-specific T cells detected in patients are frequently dysfunctional/"exhausted," and the inhibitory ligand, PD-L1, is often present in MCC tumors. These findings led to recent clinical trials involving PD-1 pathway blockade in advanced MCC. The combined data from these trials involving three PD-1 pathway blocking agents-avelumab, pembrolizumab, and nivolumab-indicated a high frequency of durable responses in treated patients. Of note, prior treatment with chemotherapy was associated with decreased response rates to PD-1 checkpoint blockade. Over the past year, these striking data led to major changes in advanced MCC therapy, including the first-ever FDA drug approval for this disease. Despite these successes, approximately 50% of patients with MCC do not persistently benefit from PD-1 pathway blockade, underscoring the need for novel strategies to broaden antitumor immune responses in these patients. Here, we highlight recent progress in MCC including the underlying mechanisms of immune evasion and emerging approaches to augment the efficacy of PD-1 pathway blockade. Clin Cancer Res; 24(9); 2035-43. ©2017 AACR.
Collapse
Affiliation(s)
- Aric Colunga
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Thomas Pulliam
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington.
- Seattle Cancer Care Alliance, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
31
|
Becker JC, Stang A, Hausen AZ, Fischer N, DeCaprio JA, Tothill RW, Lyngaa R, Hansen UK, Ritter C, Nghiem P, Bichakjian CK, Ugurel S, Schrama D. Epidemiology, biology and therapy of Merkel cell carcinoma: conclusions from the EU project IMMOMEC. Cancer Immunol Immunother 2018; 67:341-351. [PMID: 29188306 PMCID: PMC6015651 DOI: 10.1007/s00262-017-2099-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/24/2017] [Indexed: 01/23/2023]
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive, often lethal neuroendocrine cancer. Its carcinogenesis may be either caused by the clonal integration of the Merkel cell polyomavirus into the host genome or by UV-induced mutations. Notably, virally-encoded oncoproteins and UV-induced mutations affect comparable signaling pathways such as RB restriction of cell cycle progression or p53 inactivation. Despite its low incidence, MCC recently received much attention based on its exquisite immunogenicity and the resulting major success of immune modulating therapies. Here, we summarize current knowledge on epidemiology, biology and therapy of MCC as conclusion of the project 'Immune Modulating strategies for treatment of Merkel Cell Carcinoma', which was funded over a 5-year period by the European Commission to investigate innovative immunotherapies for MCC.
Collapse
Affiliation(s)
- Jürgen C Becker
- Translational Skin Cancer Research (tscr), German Cancer Consortium (DKTK), University Hospital of Essen, Universitätsstrasse 1, S05 T05 B, 45141, Essen, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Dermatology, University Hospital of Essen, Essen, Germany.
| | - Andreas Stang
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center of Clinical Epidemiology; c/o Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Axel Zur Hausen
- Department of Pathology, Academisch Ziekenhuis Maastricht, Maastricht, The Netherlands
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - James A DeCaprio
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | - Rikke Lyngaa
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Ulla Kring Hansen
- George F. Odland Endowed Chair in Dermatology, University of Washington, Seattle, WA, USA
| | - Cathrin Ritter
- Translational Skin Cancer Research (tscr), German Cancer Consortium (DKTK), University Hospital of Essen, Universitätsstrasse 1, S05 T05 B, 45141, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Nghiem
- George F. Odland Endowed Chair in Dermatology, University of Washington, Seattle, WA, USA
| | | | - Selma Ugurel
- Department of Dermatology, University Hospital of Essen, Essen, Germany
| | - David Schrama
- Department of Dermatology, University Hospital Wuerzburg, Würzburg, Germany
| |
Collapse
|
32
|
Hesbacher S, Pfitzer L, Wiedorfer K, Angermeyer S, Borst A, Haferkamp S, Scholz CJ, Wobser M, Schrama D, Houben R. RB1 is the crucial target of the Merkel cell polyomavirus Large T antigen in Merkel cell carcinoma cells. Oncotarget 2018; 7:32956-68. [PMID: 27121059 PMCID: PMC5078066 DOI: 10.18632/oncotarget.8793] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
The pocket protein (PP) family consists of the three members RB1, p107 and p130 all possessing tumor suppressive properties. Indeed, the PPs jointly control the G1/S transition mainly by inhibiting E2F transcription factors. Notably, several viral oncoproteins are capable of binding and inhibiting PPs. Merkel cell polyomavirus (MCPyV) is considered as etiological factor for Merkel cell carcinoma (MCC) with expression of the viral Large T antigen (LT) harboring an intact PP binding domain being required for proliferation of most MCC cells. Therefore, we analyzed the interaction of MCPyV-LT with the PPs. Co-IP experiments indicate that MCPyV-LT binds potently only to RB1. Moreover, MCPyV-LT knockdown-induced growth arrest in MCC cells can be rescued by knockdown of RB1, but not by p107 or p130 knockdown. Accordingly, cell cycle arrest and E2F target gene repression mediated by the single PPs can only in the case of RB1 be significantly reverted by MCPyV-LT expression. Moreover, data from an MCC patient indicate that loss of RB1 rendered the MCPyV-positive MCC cells LT independent. Thus, our results suggest that RB1 is the dominant tumor suppressor PP in MCC, and that inactivation of RB1 by MCPyV-LT is largely sufficient for its growth supporting function in established MCPyV-positive MCC cells.
Collapse
Affiliation(s)
- Sonja Hesbacher
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Lisa Pfitzer
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany.,Department of Pharmacy, Center for Drug Research, University of Munich (Ludwigs-Maximilians-Universität), Munich, Germany
| | - Katharina Wiedorfer
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Sabrina Angermeyer
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Borst
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | | | | | - Marion Wobser
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
33
|
Schadendorf D, Nghiem P, Bhatia S, Hauschild A, Saiag P, Mahnke L, Hariharan S, Kaufman HL. Immune evasion mechanisms and immune checkpoint inhibition in advanced merkel cell carcinoma. Oncoimmunology 2017; 6:e1338237. [PMID: 29123950 DOI: 10.1080/2162402x.2017.1338237] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 12/22/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare skin cancer caused by Merkel cell polyomavirus (MCPyV) infection and/or ultraviolet radiation-induced somatic mutations. The presence of tumor-infiltrating lymphocytes is evidence that an active immune response to MCPyV and tumor-associated neoantigens occurs in some patients. However, inhibitory immune molecules, including programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1), within the MCC tumor microenvironment aid in tumor evasion of T-cell-mediated clearance. Unlike chemotherapy, treatment with anti-PD-L1 (avelumab) or anti-PD-1 (pembrolizumab) antibodies leads to durable responses in MCC, in both virus-positive and virus-negative tumors. As many tumors are established through the evasion of infiltrating immune-cell clearance, the lessons learned in MCC may be broadly relevant to many cancers.
Collapse
Affiliation(s)
- Dirk Schadendorf
- Department of Dermatology, Essen University Hospital, Germany and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| | - Paul Nghiem
- Department of Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Shailender Bhatia
- Department of Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Axel Hauschild
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Philippe Saiag
- Head of Service de Dermatologie Générale et Oncologique, University of Versailles-SQY, CHU A Paré, Boulogne Cedex, France
| | - Lisa Mahnke
- EMD Serono, Inc., Billerica, Boston, MA, USA
| | | | - Howard L Kaufman
- Department of Surgery and Medicine, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
34
|
Liu W, Yang R, Payne AS, Schowalter RM, Spurgeon ME, Lambert PF, Xu X, Buck CB, You J. Identifying the Target Cells and Mechanisms of Merkel Cell Polyomavirus Infection. Cell Host Microbe 2016; 19:775-87. [PMID: 27212661 DOI: 10.1016/j.chom.2016.04.024] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/10/2016] [Accepted: 04/15/2016] [Indexed: 12/20/2022]
Abstract
Infection with Merkel cell polyomavirus (MCPyV) can lead to Merkel cell carcinoma (MCC), a lethal form of skin cancer. However, the skin cell type productively infected by MCPyV remains a central question. We combined cell culture and ex vivo approaches to identify human dermal fibroblasts as natural host cells that support productive MCPyV infection. Based on this, we established a cell culture model for MCPyV infection, which will facilitate investigation of the oncogenic mechanisms for this DNA virus. Using this model, we discovered that induction of matrix metalloproteinase (MMP) genes by the WNT/β-catenin signaling pathway and other growth factors stimulates MCPyV infection. This suggests that MCC risk factors such as UV radiation and aging, which are known to stimulate WNT signaling and MMP expression, may promote viral infection and thus drive MCC. Our study also introduces the FDA-approved MEK antagonist trametinib as an effective inhibitor for controlling MCPyV infection.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruifeng Yang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel M Schowalter
- Tumor Virus Molecular Biology Section, Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Megan E Spurgeon
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Paul F Lambert
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher B Buck
- Tumor Virus Molecular Biology Section, Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Mirvish ED, Shuda M. Strategies for Human Tumor Virus Discoveries: From Microscopic Observation to Digital Transcriptome Subtraction. Front Microbiol 2016; 7:676. [PMID: 27242703 PMCID: PMC4865503 DOI: 10.3389/fmicb.2016.00676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/26/2016] [Indexed: 01/07/2023] Open
Abstract
Over 20% of human cancers worldwide are associated with infectious agents, including viruses, bacteria, and parasites. Various methods have been used to identify human tumor viruses, including electron microscopic observations of viral particles, immunologic screening, cDNA library screening, nucleic acid hybridization, consensus PCR, viral DNA array chip, and representational difference analysis. With the Human Genome Project, a large amount of genetic information from humans and other organisms has accumulated over the last decade. Utilizing the available genetic databases, Feng et al. (2007) developed digital transcriptome subtraction (DTS), an in silico method to sequentially subtract human sequences from tissue or cellular transcriptome, and discovered Merkel cell polyomavirus (MCV) from Merkel cell carcinoma. Here, we review the background and methods underlying the human tumor virus discoveries and explain how DTS was developed and used for the discovery of MCV.
Collapse
Affiliation(s)
- Ezra D Mirvish
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh PA, USA
| | - Masahiro Shuda
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|