1
|
Zhang X, He B, Lu J, Bao Q, Wang J, Yang Y. The crucial roles and research advances of cGAS‑STING pathway in liver diseases. Ann Med 2024; 56:2394588. [PMID: 39183465 PMCID: PMC11348815 DOI: 10.1080/07853890.2024.2394588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Inflammation responses have identified as a key mediator of in various liver diseases with high morbidity and mortality. cGAS-STING signalling is essential in innate immunity since it triggers release of type I interferons and various of proinflammatory cytokines. The potential connection between cGAS-STING pathway and liver inflammatory diseases has recently been reported widely. In our review, the impact of cGAS-STING on liver inflammation and regulatory mechanism are summarized. Furthermore, many inhibitors of cGAS-STING signalling as promising agents to cure liver inflammation are also explored in detail. A comprehensive knowledge of molecular mechanisms of cGAS-STING signalling in liver inflammation is vital for exploring novel treatments and providing recommendations and perspectives for future utilization.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiongling Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Zhang X, Yang Z, Fu C, Yao R, Li H, Peng F, Li N. Emerging roles of liquid-liquid phase separation in liver innate immunity. Cell Commun Signal 2024; 22:430. [PMID: 39227829 PMCID: PMC11373118 DOI: 10.1186/s12964-024-01787-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024] Open
Abstract
Biomolecular condensates formed by liquid-liquid phase separation (LLPS) have become an extensive mechanism of macromolecular metabolism and biochemical reactions in cells. Large molecules like proteins and nucleic acids will spontaneously aggregate and assemble into droplet-like structures driven by LLPS when the physical and chemical properties of cells are altered. LLPS provides a mature molecular platform for innate immune response, which tightly regulates key signaling in liver immune response spatially and physically, including DNA and RNA sensing pathways, inflammasome activation, and autophagy. Take this, LLPS plays a promoting or protecting role in a range of liver diseases, such as viral hepatitis, non-alcoholic fatty liver disease, liver fibrosis, hepatic ischemia-reperfusion injury, autoimmune liver disease, and liver cancer. This review systematically describes the whole landscape of LLPS in liver innate immunity. It will help us to guide a better-personalized approach to LLPS-targeted immunotherapy for liver diseases.
Collapse
Affiliation(s)
- Xinying Zhang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan Province, China
| | - Ziyue Yang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Chunmeng Fu
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Run Yao
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Huan Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Fang Peng
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
3
|
Yang YT, Deng ZC, Zhang LJ, Fu XL, Fu C, Zhan XZ, Tian YB, Liu WJ. Novel goose parvovirus VP1 targets IRF7 protein to block the type I interferon upstream signaling pathway. Poult Sci 2024; 103:104065. [PMID: 39043024 PMCID: PMC11318561 DOI: 10.1016/j.psj.2024.104065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
Outbreaks of short beak and dwarfism syndrome (SBDS), caused by a novel goose parvovirus (NGPV), have occurred in China since 2015. The NGPV, a single-stranded DNA virus, is thought to be vertically transmitted. However, the mechanism of NGPV immune evasion remains unclear. In this study, we investigated the impact of NGPV infection on the Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in duck embryonic fibroblast (DEF) cells. Our findings demonstrate that NGPV infection stimulates the mRNA expression of cGAS but results in weak IFN-β induction. NGPV impedes the expression of IFN-β and downstream interferon-stimulated genes, thereby reducing the secretion of IFN-β induced by interferon-stimulating DNA (ISD) and poly (I: C). RNA-seq results show that NGPV infection downregulates interferon mRNA expression while enhancing the mRNA expression of inflammatory factors. Additionally, the results of viral protein over-expression indicate that VP1 exhibits a remarkable ability to inhibit IFN-β expression compared to other viral proteins. Results indicated that only the intact VP1 protein could inhibit the expression of IFN-β, while the truncated proteins VP1U and VP2 do not possess such characteristics. The immunoprecipitation experiment showed that both VP1 and VP2 could interact with IRF7 protein, while VP1U does not. In summary, our findings indicate that NGPV infection impairs the host's innate immune response by potentially modulating the expression and secretion of interferons and interferon-stimulating factors via IRF7 molecules, which are regulated by the VP1 protein.
Collapse
Affiliation(s)
- You-Tian Yang
- Zhong Kai University of Agriculture and Engineering, College of Animal Science and Technology, Guangdong Guangzhou, 510225, China; Foshan University, School of Medicine, Guangdong Foshan, 528225, China
| | - Zhi-Chao Deng
- Zhong Kai University of Agriculture and Engineering, College of Animal Science and Technology, Guangdong Guangzhou, 510225, China
| | - Liu-Jun Zhang
- Zhong Kai University of Agriculture and Engineering, College of Animal Science and Technology, Guangdong Guangzhou, 510225, China
| | - Xin-Liang Fu
- Zhong Kai University of Agriculture and Engineering, College of Animal Science and Technology, Guangdong Guangzhou, 510225, China
| | - Chen Fu
- Zhong Kai University of Agriculture and Engineering, College of Animal Science and Technology, Guangdong Guangzhou, 510225, China
| | - Xiao-Zhi Zhan
- Zhong Kai University of Agriculture and Engineering, College of Animal Science and Technology, Guangdong Guangzhou, 510225, China
| | - Yun-Bo Tian
- Zhong Kai University of Agriculture and Engineering, College of Animal Science and Technology, Guangdong Guangzhou, 510225, China
| | - Wen-Jun Liu
- Zhong Kai University of Agriculture and Engineering, College of Animal Science and Technology, Guangdong Guangzhou, 510225, China.
| |
Collapse
|
4
|
Li XJY, Qu JR, Zhang YH, Liu RP. The dual function of cGAS-STING signaling axis in liver diseases. Acta Pharmacol Sin 2024; 45:1115-1129. [PMID: 38233527 PMCID: PMC11130165 DOI: 10.1038/s41401-023-01220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024] Open
Abstract
Numerous liver diseases, such as nonalcoholic fatty liver disease, hepatitis, hepatocellular carcinoma, and hepatic ischemia-reperfusion injury, have been increasingly prevalent, posing significant threats to global health. In recent decades, there has been increasing evidence linking the dysregulation of cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING)-related immune signaling to liver disorders. Both hyperactivation and deletion of STING can disrupt the immune microenvironment dysfunction, exacerbating liver disorders. Consequently, there has been a surge in research investigating medical agents or mediators targeting cGAS-STING signaling. Interestingly, therapeutic manipulation of the cGAS-STING pathway has yielded inconsistent and even contradictory effects on different liver diseases due to the distinct physiological characteristics of intrahepatic cells that express and respond to STING. In this review, we comprehensively summarize recent advancements in understanding the dual roles of the STING pathway, highlighting that the benefits of targeting STING signaling depend on the specific types of target cells and stages of liver injury. Additionally, we offer a novel perspective on the suitability of STING agonists and antagonists for clinical assessment. In conclusion, STING signaling remains a highly promising therapeutic target, and the development of STING pathway modulators holds great potential for the treatment of liver diseases.
Collapse
Affiliation(s)
- Xiao-Jiao-Yang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| | - Jiao-Rong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yin-Hao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Run-Ping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
5
|
Martínez-López MF, Muslin C, Kyriakidis NC. STINGing Defenses: Unmasking the Mechanisms of DNA Oncovirus-Mediated Immune Escape. Viruses 2024; 16:574. [PMID: 38675916 PMCID: PMC11054469 DOI: 10.3390/v16040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
DNA oncoviruses represent an intriguing subject due to their involvement in oncogenesis. These viruses have evolved mechanisms to manipulate the host immune response, facilitating their persistence and actively contributing to carcinogenic processes. This paper describes the complex interactions between DNA oncoviruses and the innate immune system, with a particular emphasis on the cGAS-STING pathway. Exploring these interactions highlights that DNA oncoviruses strategically target and subvert this pathway, exploiting its vulnerabilities for their own survival and proliferation within the host. Understanding these interactions lays the foundation for identifying potential therapeutic interventions. Herein, we sought to contribute to the ongoing efforts in advancing our understanding of the innate immune system in oncoviral pathogenesis.
Collapse
Affiliation(s)
- Mayra F Martínez-López
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| | - Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito 170503, Ecuador;
| | - Nikolaos C. Kyriakidis
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| |
Collapse
|
6
|
Zhang K, Huang Q, Li X, Zhao Z, Hong C, Sun Z, Deng B, Li C, Zhang J, Wang S. The cGAS-STING pathway in viral infections: a promising link between inflammation, oxidative stress and autophagy. Front Immunol 2024; 15:1352479. [PMID: 38426093 PMCID: PMC10902852 DOI: 10.3389/fimmu.2024.1352479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The host defence responses play vital roles in viral infection and are regulated by complex interactive networks. The host immune system recognizes viral pathogens through the interaction of pattern-recognition receptors (PRRs) with pathogen-associated molecular patterns (PAMPs). As a PRR mainly in the cytoplasm, cyclic GMP-AMP synthase (cGAS) senses and binds virus DNA and subsequently activates stimulator of interferon genes (STING) to trigger a series of intracellular signalling cascades to defend against invading pathogenic microorganisms. Integrated omic and functional analyses identify the cGAS-STING pathway regulating various host cellular responses and controlling viral infections. Aside from its most common function in regulating inflammation and type I interferon, a growing body of evidence suggests that the cGAS-STING signalling axis is closely associated with a series of cellular responses, such as oxidative stress, autophagy, and endoplasmic reticulum stress, which have major impacts on physiological homeostasis. Interestingly, these host cellular responses play dual roles in the regulation of the cGAS-STING signalling axis and the clearance of viruses. Here, we outline recent insights into cGAS-STING in regulating type I interferon, inflammation, oxidative stress, autophagy and endoplasmic reticulum stress and discuss their interactions with viral infections. A detailed understanding of the cGAS-STING-mediated potential antiviral effects contributes to revealing the pathogenesis of certain viruses and sheds light on effective solutions for antiviral therapy.
Collapse
Affiliation(s)
- Kunli Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xinming Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ziqiao Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Chun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zeyi Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Bo Deng
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunling Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianfeng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Sutian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
7
|
Shu D, Cheng L, Yuan K, Liu D, Wei H. RVX-208, an inducer of Apolipoprotein A-I, inhibits the particle production of hepatitis B virus through activation of cGAS-STING pathway. Antivir Ther 2023; 28:13596535231219639. [PMID: 38037795 DOI: 10.1177/13596535231219639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
BACKGROUND Previously, we have demonstrated that Apolipoprotein A-I (ApoA-I) could inhibit the secretion of Hepatitis B virus (HBV), suggesting that stimulation of ApoA-I may block particle production. In the present study, we evaluated the anti-HBV effect of RVX-208, a small-molecule stimulator of ApoA-I gene expression. METHODS RVX-208 was used to treat HepG2.2.15 cell, a HepG2 derived cell line stably producing HBV virus. Real-time PCR was performed to examine the HBV DNA levels. Magnetic particles, which were coated with anti-HBS or anti-HBE antibody, were used to examine the HBsAg and HBeAg levels in the supernatant of cultured HepG2.2.15 cells in combination with the enzyme conjugates that were prepared with horseradish peroxidase labelled anti-HBS or anti-HBE antibody in a double antibody sandwich manner. RNA-seq, immunoblots and real-time PCR were used to analyze the functional mechanism of RVX-208. RESULTS RVX-208 could elevate the ApoA-I protein levels in HepG2.2.15 cells. In the meantime, RVX-208 significantly repressed HBV DNA, HBsAg and HBeAg levels in the supernatants of HepG2.2.15 cells. RNA-seq data revealed that RVX-208 treatment not only affected the cholesterol metabolism, which is closely related to ApoA-I, but also regulated signalling pathways that are associated with antiviral immune response. Moreover, mechanistic studies demonstrated that RVX-208 could activate cGAS-STING pathway and upregulate the transcription of a series of interferons, pro-inflammatory cytokines and chemokines with antiviral potential that are at the downstream of cGAS-STING pathway. CONCLUSION Our study demonstrated that RVX-208, an inducer of ApoA-I, could suppress HBV particle production through activation of cGAS-STING pathway.
Collapse
Affiliation(s)
- Dan Shu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Lin Cheng
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kefei Yuan
- Department of Liver Surgery & Liver Transplantation, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Liu
- Department of TCM, Sichuan Province People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, China
| | - He Wei
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| |
Collapse
|
8
|
Feng J, Xu T, He M, Li J, Yao P, Ma C, Yang S, Xu Z, Yan K, Chen X, Wang H, Liu J, Zeng C, Xia Y, Yan H, Zhou L, Chen Y. NSUN2-mediated m5C modification of HBV RNA positively regulates HBV replication. PLoS Pathog 2023; 19:e1011808. [PMID: 38048324 PMCID: PMC10721180 DOI: 10.1371/journal.ppat.1011808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major cause of liver cirrhosis and liver cancer, despite strong prevention and treatment efforts. The study of the epigenetic modification of HBV has become a research hotspot, including the N6-methyladenosine (m6A) modification of HBV RNA, which plays complex roles in the HBV life cycle. In addition to m6A modification, 5-methylcytosine (m5C) is another major modification of eukaryotic mRNA. In this study, we explored the roles of m5C methyltransferase and demethyltransferase in the HBV life cycle. The results showed that m5C methyltransferase NSUN2 deficiency could negatively regulate the expression of HBV while m5C demethyltransferase TET2 deficiency positively regulates the expression of HBV. Subsequently, we combined both in vitro bisulfite sequencing and high-throughput bisulfite sequencing methods to determine the distribution and stoichiometry of m5C modification in HBV RNA. Two sites: C2017 and C131 with the highest-ranking methylation rates were identified, and mutations at these two sites could lead to the decreased expression and replication of HBV, while the mutation of the "fake" m5C site had no effect. Mechanistically, NSUN2-mediated m5C modification promotes the stability of HBV RNA. In addition, compared with wild-type HepG2-NTCP cells and primary human hepatocytes, the replication level of HBV after NSUN2 knockdown decreased, and the ability of the mutant virus to infect and replicate in wild-type HepG2-NTCP cells and PHHs was substantially impaired. Similar results were found in the experiments using C57BL/6JGpt-Nsun2+/- mice. Interestingly, we also found that HBV expression and core protein promoted the endogenous expression of NSUN2, which implied a positive feedback loop. In summary, our study provides an accurate and high-resolution m5C profile of HBV RNA and reveals that NSUN2-mediated m5C modification of HBV RNA positively regulates HBV replication by maintaining RNA stability.
Collapse
Affiliation(s)
- Jiangpeng Feng
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Tianmo Xu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Animal Bio-safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, China
| | - Miao He
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiali Li
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Peipei Yao
- Animal Bio-safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, China
- Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Chengbao Ma
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shimin Yang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Zaichao Xu
- Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Kun Yan
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xianying Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Hongyun Wang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jiejie Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Cong Zeng
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuchen Xia
- Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Huan Yan
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Animal Bio-safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, China
- Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yu Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Animal Bio-safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, China
| |
Collapse
|
9
|
Zhao J, Xu G, Hou X, Mu W, Yang H, Shi W, Wen J, Liu T, Wu Z, Bai J, Zhang P, Wang Z, Xiao X, Zou W, Bai Z, Zhan X. Schisandrin C enhances cGAS-STING pathway activation and inhibits HBV replication. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116427. [PMID: 37001770 DOI: 10.1016/j.jep.2023.116427] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/19/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra Chinensis (Turcz.) Baill. is a long-term used traditional Chinese medicine with the functions of tonifying the kidney and calming the heart, tonifying qi and engendering fluid. It can be used to treat insomnia and dreaminess, spermatorrhea, coughs, as well as liver and kidney deficiency of Yin or Yang Syndrome. Modern pharmacological studies have shown that Schisandra Chinensis regulates host immunity and exhibits anti-cancer, antiviral and liver-protecting effects. However, the specific mechanism by which Schisandra Chinensis modulates antiviral immunity is unknown. AIM OF THE STUDY We sought to explore the therapeutic effect of the active components of Schisandra Chinensis on anti-viral immunity and further investigate the underlying mechanism. MATERIALS AND METHODS Immunoblotting, quantitative real-time PCR, enzyme-linked immunosorbent assay, immunofluorescence, and immunoprecipitation were used to investigate the effect of schisandrin C (SC), one of the most abundant and biologically active components of Schisandra Chinensis, on the activation of cGAS-STING signaling pathway and the underlying mechanism. In addition, CMA-mediated STING activation and hydrodynamic injection-mediated HBV-replicating mouse model were used to investigate the effect of SC on the activation of STING signaling pathway and its antiviral effect in vivo. RESULTS SC promoted cGAS-STING pathway activation, accompanied by increased production of interferon β (IFN β) and downstream gene expression. Moreover, SC also exerted anti-HBV effects, reducing HBeAg, HBcAg, HBsAg, and HBV DNA levels in hydrodynamic injection-mediated HBV-replicating mouse model and elevating the production of IFN β and expression of interferon-stimulated genes (IFIT1, ISG15, and CXCL10). Mechanistically, SC could facilitate the interaction between TANK-binding kinase 1 (TBK1) and STING, which is important for IRF3 phosphorylation and production of IFN β. CONCLUSIONS Our study confirmed that SC enhances cGAS-STING pathway activation and inhibits HBV replication, as well as provides clues for chronic hepatitis B and other infectious diseases treated by SC.
Collapse
Affiliation(s)
- Jia Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Guang Xu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Xiaorong Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wenqing Mu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Huijie Yang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wei Shi
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jincai Wen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Tingting Liu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhixin Wu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jun Bai
- Department of Neurosurgery, General Hospital of Chinese People Liberty Army, Beijing, 100853, China
| | - Ping Zhang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100039, China
| | - Zhongxia Wang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaohe Xiao
- China Military Institute of Chinese Materia, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiaoyan Zhan
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
10
|
Fritsch LE, Kelly C, Pickrell AM. The role of STING signaling in central nervous system infection and neuroinflammatory disease. WIREs Mech Dis 2023; 15:e1597. [PMID: 36632700 PMCID: PMC10175194 DOI: 10.1002/wsbm.1597] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023]
Abstract
The cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase-Stimulator of Interferon Genes (cGAS-STING) pathway is a critical innate immune mechanism for detecting the presence of double-stranded DNA (dsDNA) and prompting a robust immune response. Canonical cGAS-STING activation occurs when cGAS, a predominantly cytosolic pattern recognition receptor, binds microbial DNA to promote STING activation. Upon STING activation, transcription factors enter the nucleus to cause the production of Type I interferons, inflammatory cytokines whose primary function is to prime the host for viral infection by producing a number of antiviral interferon-stimulated genes. While the pathway was originally described in viral infection, more recent studies have implicated cGAS-STING signaling in a number of different contexts, including autoimmune disease, cancer, injury, and neuroinflammatory disease. This review focuses on how our understanding of the cGAS-STING pathway has evolved over time with an emphasis on the role of STING-mediated neuroinflammation and infection in the nervous system. We discuss recent findings on how STING signaling contributes to the pathology of pain, traumatic brain injury, and stroke, as well as how mitochondrial DNA may promote STING activation in common neurodegenerative diseases. We conclude by commenting on the current knowledge gaps that should be filled before STING can be an effective therapeutic target in neuroinflammatory disease. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Infectious Diseases > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lauren E. Fritsch
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, USA
| | - Colin Kelly
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, USA
| | - Alicia M. Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
11
|
Liu J, Ji S, Liu Z, Guo M, Yang G, Chen L. Deletion of Cyclic GMP-AMP Synthase Aggravates Concanavalin A-Induced Acute Hepatic Injury by Facilitating Leukocyte Chemotaxis. Inflammation 2023; 46:1118-1130. [PMID: 37095260 DOI: 10.1007/s10753-023-01798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Growing evidence demonstrates that cyclic GMP-AMP synthase (cGAS), as a cytosolic DNA sensor, is essential for activating innate immunity and regulating inflammatory response against cellular damage. However, its role in immune-mediated hepatitis remains unclear. Here by challenging the cGAS knockout (KO) and their littermate wide-type (WT) mice with intravenous ConA injection to induce acute immune-mediated liver injury, we found that lack of cGAS drastically aggravated liver damage post ConA treatment for 24 h, reflected by increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and amplified hepatic necrosis. The number of apoptotic hepatocytes was also significantly increased in the KO mice. RNA-sequencing analysis revealed that leukocyte chemotaxis and migration-related genes were remarkably upregulated in the KO livers. Consistently, immunofluorescence assays illustrated that the infiltrating F4/80-positive macrophages, Ly6G-positive neutrophils, and CD3-positive T cells were all significantly increased in the KO liver sections. The hepatic expression of the pro-inflammatory genes was elevated as well. Supporting the in vivo findings, the knockdown of cGAS in cultured macrophages showed promoted migration potential and enhanced pro-inflammatory gene expression. These results collectively demonstrated that deletion of cGAS could aggravate ConA-induced acute liver injury, at least at the 24-h time point, and its mechanism might be related to facilitating leukocyte chemotaxis and promoting liver inflammatory response.
Collapse
Affiliation(s)
- Jiaxin Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shuang Ji
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zhaiyi Liu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Meina Guo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Guangrui Yang
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Lihong Chen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
12
|
Du Y, Hu Z, Luo Y, Wang HY, Yu X, Wang RF. Function and regulation of cGAS-STING signaling in infectious diseases. Front Immunol 2023; 14:1130423. [PMID: 36825026 PMCID: PMC9941744 DOI: 10.3389/fimmu.2023.1130423] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
The efficacious detection of pathogens and prompt induction of innate immune signaling serve as a crucial component of immune defense against infectious pathogens. Over the past decade, DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signaling adaptor stimulator of interferon genes (STING) have emerged as key mediators of type I interferon (IFN) and nuclear factor-κB (NF-κB) responses in health and infection diseases. Moreover, both cGAS-STING pathway and pathogens have developed delicate strategies to resist each other for their survival. The mechanistic and functional comprehension of the interplay between cGAS-STING pathway and pathogens is opening the way for the development and application of pharmacological agonists and antagonists in the treatment of infectious diseases. Here, we briefly review the current knowledge of DNA sensing through the cGAS-STING pathway, and emphatically highlight the potent undertaking of cGAS-STING signaling pathway in the host against infectious pathogenic organisms.
Collapse
Affiliation(s)
- Yang Du
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yien Luo
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Helen Y. Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong-Fu Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
13
|
Pan J, Fei CJ, Hu Y, Wu XY, Nie L, Chen J. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zool Res 2023; 44:183-218. [PMID: 36579404 PMCID: PMC9841179 DOI: 10.24272/j.issn.2095-8137.2022.464] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The innate immune system protects the host from external pathogens and internal damage in various ways. The cGAS-STING signaling pathway, comprised of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and downstream signaling adaptors, plays an essential role in protective immune defense against microbial DNA and internal damaged-associated DNA and is responsible for various immune-related diseases. After binding with DNA, cytosolic cGAS undergoes conformational change and DNA-linked liquid-liquid phase separation to produce 2'3'-cGAMP for the activation of endoplasmic reticulum (ER)-localized STING. However, further studies revealed that cGAS is predominantly expressed in the nucleus and strictly tethered to chromatin to prevent binding with nuclear DNA, and functions differently from cytosolic-localized cGAS. Detailed delineation of this pathway, including its structure, signaling, and regulatory mechanisms, is of great significance to fully understand the diversity of cGAS-STING activation and signaling and will be of benefit for the treatment of inflammatory diseases and cancer. Here, we review recent progress on the above-mentioned perspectives of the cGAS-STING signaling pathway and discuss new avenues for further study.
Collapse
Affiliation(s)
- Jing Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Xiang-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
14
|
Yardeni D, Chang KM, Ghany MG. Current Best Practice in Hepatitis B Management and Understanding Long-term Prospects for Cure. Gastroenterology 2023; 164:42-60.e6. [PMID: 36243037 PMCID: PMC9772068 DOI: 10.1053/j.gastro.2022.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023]
Abstract
The hepatitis B virus (HBV) is a major cause of cirrhosis and hepatocellular carcinoma worldwide. Despite an effective vaccine, the prevalence of chronic infection remains high. Current therapy is effective at achieving on-treatment, but not off-treatment, viral suppression. Loss of hepatitis B surface antigen, the best surrogate marker of off-treatment viral suppression, is associated with improved clinical outcomes. Unfortunately, this end point is rarely achieved with current therapy because of their lack of effect on covalently closed circular DNA, the template of viral transcription and genome replication. Major advancements in our understanding of HBV virology along with better understanding of immunopathogenesis have led to the development of a multitude of novel therapeutic approaches with the prospect of achieving functional cure (hepatitis B surface antigen loss) and perhaps complete cure (clearance of covalently closed circular DNA and integrated HBV DNA). This review will cover current best practice for managing chronic HBV infection and emerging novel therapies for HBV infection and their prospect for cure.
Collapse
Affiliation(s)
- David Yardeni
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kyong-Mi Chang
- Medical Research, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Marc G Ghany
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
15
|
Yardeni D, Ghany MG. Review article: hepatitis B-current and emerging therapies. Aliment Pharmacol Ther 2022; 55:805-819. [PMID: 35224760 DOI: 10.1111/apt.16828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The hepatitis B virus (HBV) affects an estimated 290 million individuals worldwide and is responsible for approximately 900 000 deaths annually, mostly from complications of cirrhosis and hepatocellular carcinoma. Although current treatment is effective at preventing complications of chronic hepatitis B, it is not curative, and often must be administered long term. There is a need for safe, effective, finite duration curative therapy. AIM Our aim was to provide a concise, up to date review of all currently available and emerging treatment options for chronic hepatitis B. METHODS We conducted a search of PubMed, clinicaltrials.gov, major meeting abstracts and pharmaceutical websites for publications and communications on current and emerging therapies for HBV. RESULTS Currently approved treatment options for chronic hepatitis B include peginterferon alpha-2a and nucleos(t)ide analogues. Both options do not offer a 'complete cure' (clearance of covalently closed circular DNA (cccDNA) and integrated HBV DNA) and rarely achieve a 'functional cure' (hepatitis B surface antigen (HBsAg) loss). An improved understanding of the viral lifecycle, immunopathogenesis and recent advances in drug delivery technologies have led to many novel therapeutic approaches that are currently being evaluated in clinical trials including targeting of viral entry, cccDNA, viral transcription, core protein, and release of HBsAg and HBV polymerase. Additionally, novel immunological approaches that include targeting the innate and adaptive immune system and therapeutic vaccination are being pursued. CONCLUSION The breadth and scope of novel therapies in development hold promise for regimen/s that will achieve functional cure.
Collapse
Affiliation(s)
- David Yardeni
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marc G Ghany
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Chen H, Jiang L, Chen S, Hu Q, Huang Y, Wu Y, Chen W. HBx inhibits DNA sensing signaling pathway via ubiquitination and autophagy of cGAS. Virol J 2022; 19:55. [PMID: 35346247 PMCID: PMC8962493 DOI: 10.1186/s12985-022-01785-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyclic GMP-AMP synthase (cGAS) is a crucial DNA sensor and plays an important role in host antiviral innate immune responses. During hepatitis B virus (HBV) infection, the cGAS signaling pathway can suppress HBV replication. As an important regulatory protein of HBV, hepatitis B virus X protein (HBx) may serve as an antagonistic character to the cGAS/STING signaling pathway. In this study, we aim to investigate the functional role of HBx in the cGAS/STING signaling pathway. METHODS The effects of HBx on IFN-β promoter activity were measured by Dual-luciferase reporter assays. Ubiquitination and autophagy were analyzed by Western-blot and Co-immunoprecipitation assays. RESULTS Our results show that HBx down-regulates IFN-I production by directly promoting ubiquitination and autophagy degradation of cGAS. CONCLUSIONS HBV can antagonize host cGAS DNA sensing to promote HBV replication and provide novel insights to develop novel approaches against HBV infection.
Collapse
Affiliation(s)
- Hong Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjing Road, Yuzhong District, Chongqing, 400010, China
| | - Linshan Jiang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjing Road, Yuzhong District, Chongqing, 400010, China
| | - Shu Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjing Road, Yuzhong District, Chongqing, 400010, China
| | - Qin Hu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjing Road, Yuzhong District, Chongqing, 400010, China
| | - Ying Huang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Wu
- Clinical Medicine Research Centre, Liuzhou People's Hospital, Guangxi Medical University, Liuzhou, China.
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjing Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
17
|
Fan YM, Zhang YL, Luo H, Mohamud Y. Crosstalk between RNA viruses and DNA sensors: Role of the cGAS‐STING signalling pathway. Rev Med Virol 2022; 32:e2343. [DOI: 10.1002/rmv.2343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Yiyun Michelle Fan
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Cellular & Physiological Sciences University of British Columbia Vancouver British Columbia Canada
| | - Yizhuo Lyanne Zhang
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Cellular & Physiological Sciences University of British Columbia Vancouver British Columbia Canada
| | - Honglin Luo
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine University of British Columbia Vancouver British Columbia Canada
| | - Yasir Mohamud
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
18
|
Leoni S, Casabianca A, Biagioni B, Serio I. Viral hepatitis: Innovations and expectations. World J Gastroenterol 2022; 28:517-531. [PMID: 35316960 PMCID: PMC8905017 DOI: 10.3748/wjg.v28.i5.517] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Viral hepatitis is a significant health problem worldwide, associated with morbidity and mortality. Hepatitis B, C, D, and occasionally E viruses (HBV, HCV, HDV, and HEV) can evolve in chronic infections, whereas hepatitis A virus (HAV) frequently produces acute self-limiting hepatitis. In the last years, different studies have been performed to introduce new antiviral therapies. The most important goal in the treatment of viral hepatitis is to avoid chronic liver disease and complications. This review analyzes currently available therapies, in particular for viruses associated with chronic liver disease. The focus is especially on HBV and HCV therapies, investigating new drugs already introduced in clinical practice and clinical trials. We also describe new entry inhibitors, developed for the treatment of chronic HDV and HBV and currently available treatments for HEV. The last drugs introduced have shown important efficacy in HCV, with achievable target HCV elimination by 2030. Concurrently, renewed interest in curative HBV therapies has been registered; current nucleotide/ nucleoside analogs positively impact liver-related complications, ensuring high safety and tolerability. Novel approaches to HBV cure are based on new antivirals, targeting different steps of the HBV life cycle and immune modulators. The improved knowledge of the HDV life cycle has facilitated the development of some direct-acting agents, as bulevirtide, the first drug conditionally approved in Europe for HDV associated compensated liver disease. Further studies are required to identify a new therapeutic approach in hepatitis E, especially in immunosuppressed patients.
Collapse
Affiliation(s)
- Simona Leoni
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Alberto Casabianca
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Benedetta Biagioni
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Ilaria Serio
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| |
Collapse
|
19
|
Xu C, Chen J, Chen X. Host Innate Immunity Against Hepatitis Viruses and Viral Immune Evasion. Front Microbiol 2021; 12:740464. [PMID: 34803956 PMCID: PMC8598044 DOI: 10.3389/fmicb.2021.740464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatitis viruses are primary causative agents of hepatitis and represent a major source of public health problems in the world. The host innate immune system forms the first line of defense against hepatitis viruses. Hepatitis viruses are sensed by specific pathogen recognition receptors (PRRs) that subsequently trigger the innate immune response and interferon (IFN) production. However, hepatitis viruses evade host immune surveillance via multiple strategies, which help compromise the innate immune response and create a favorable environment for viral replication. Therefore, this article reviews published findings regarding host innate immune sensing and response against hepatitis viruses. Furthermore, we also focus on how hepatitis viruses abrogate the antiviral effects of the host innate immune system.
Collapse
Affiliation(s)
- Chonghui Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
20
|
Anwar S, Ul Islam K, Azmi MI, Iqbal J. cGAS-STING-mediated sensing pathways in DNA and RNA virus infections: crosstalk with other sensing pathways. Arch Virol 2021; 166:3255-3268. [PMID: 34622360 DOI: 10.1007/s00705-021-05211-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/04/2021] [Indexed: 12/25/2022]
Abstract
Viruses cause a variety of diseases in humans and other organisms. The most important defense mechanism against viral infections is initiated when the viral genome is sensed by host proteins, and this results in interferon production and pro-inflammatory cytokine responses. The sensing of the viral genome or its replication intermediates within host cells is mediated by cytosolic proteins. For example, cGAS and IFI16 recognize non-self DNA, and RIG-I and MDA5 recognize non-self RNA. Once these sensors are activated, they trigger a cascade of reactions activating downstream molecules, which eventually results in the transcriptional activation of type I and III interferons, which play a critical role in suppressing viral propagation, either by directly limiting their replication or by inducing host cells to inhibit viral protein synthesis. The immune response against viruses relies solely upon sensing of viral genomes and their downstream signaling molecules. Although DNA and RNA viruses are sensed by distinct classes of receptor proteins, there is a possibility of overlap between the viral DNA and viral RNA sensing mechanisms. In this review, we focus on various host sensing molecules and discuss the associated signaling pathways that are activated in response to different viral infections. We further highlight the possibility of crosstalk between the cGAS-STING and the RIG-I-MAVS pathways to limit viral infections. This comprehensive review delineates the mechanisms by which different viruses evade host cellular responses to sustain within the host cells.
Collapse
Affiliation(s)
- Saleem Anwar
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Khursheed Ul Islam
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Iqbal Azmi
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Jawed Iqbal
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
21
|
Chen B, Rao X, Wang X, Luo Z, Wang J, Sheng S, Liu Y, Zhang N, Jin S, Chen H, Sun C, Xu T, Du Y. cGAS-STING Signaling Pathway and Liver Disease: From Basic Research to Clinical Practice. Front Pharmacol 2021; 12:719644. [PMID: 34483930 PMCID: PMC8416453 DOI: 10.3389/fphar.2021.719644] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
The cGAS-STING signaling pathway is an autoimmune inflammatory pathway that can trigger the expression of a series of inflammatory factors represented by type 1 interferon. Recent studies have found that the cGAS-STING signaling pathway played a significant role in liver physiology and was closely related to the progress of liver diseases. For example, activating the cGAS-STING signaling pathway could significantly inhibit hepatitis B virus (HBV) replication in vivo. Moreover, the cGAS-STING signaling pathway was also closely associated with tumor immunity in hepatocellular carcinoma (HCC). This review summarized the role of the cGAS-STING signaling pathway in several common liver diseases, especially the current application of the cGAS-STING signaling pathway in liver disease treatment, and prospected its future research, which provided a new idea for understanding and treating liver diseases.
Collapse
Affiliation(s)
- Bangjie Chen
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xianyue Rao
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinyi Wang
- First Clinical Medical College, Anhui Medical University, Heifei, China
| | - Zhipan Luo
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianpeng Wang
- First Clinical Medical College, Anhui Medical University, Heifei, China
| | - Shuyan Sheng
- First Clinical Medical College, Anhui Medical University, Heifei, China
| | - Yuchen Liu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ning Zhang
- First Clinical Medical College, Anhui Medical University, Heifei, China
| | - Shiyu Jin
- First Clinical Medical College, Anhui Medical University, Heifei, China
| | - Haosong Chen
- First Clinical Medical College, Anhui Medical University, Heifei, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, IL, United States
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.,School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yingying Du
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
Sikdar A, Gupta R, Boura E. Reviewing Antiviral Research Against Viruses Causing Human Diseases - A Structure Guided Approach. Curr Mol Pharmacol 2021; 15:306-337. [PMID: 34348638 DOI: 10.2174/1874467214666210804152836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/22/2022]
Abstract
The littlest of all the pathogens, viruses have continuously been the foremost strange microorganisms to consider. Viral Infections can cause extreme sicknesses as archived by the HIV/AIDS widespread or the later Ebola or Zika episodes. Apprehensive framework distortions are too regularly watched results of numerous viral contaminations. Besides, numerous infections are oncoviruses, which can trigger different sorts of cancer. Nearly every year a modern infection species rises debilitating the world populace with an annihilating episode. Subsequently, the need of creating antivirals to combat such rising infections. In any case, from the innovation of to begin with antiviral medicate Idoxuridine in 1962 to the revelation of Baloxavir marboxil (Xofluza) that was FDA-approved in 2018, the hone of creating antivirals has changed significantly. In this article, different auxiliary science strategies have been described that can be referral for therapeutics innovation.
Collapse
Affiliation(s)
- Arunima Sikdar
- Department of Hematology and Oncology, School of Medicine, The University of Tennessee Health Science Center, 920 Madison Ave, P.O.Box-38103, Memphis, Tennessee. United States
| | - Rupali Gupta
- Department of Neurology, Duke University Medical Center, Durham, North Carolina. United States
| | - Evzen Boura
- Department of Molecular Biology and Biochemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, P.O. Box:16000, Prague. Czech Republic
| |
Collapse
|
23
|
Wang Z, Chen N, Li Z, Xu G, Zhan X, Tang J, Xiao X, Bai Z. The Cytosolic DNA-Sensing cGAS-STING Pathway in Liver Diseases. Front Cell Dev Biol 2021; 9:717610. [PMID: 34386500 PMCID: PMC8353273 DOI: 10.3389/fcell.2021.717610] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
Inflammation is regulated by the host and is a protective response activated by the evolutionarily conserved immune system in response to harmful stimuli, such as dead cells or pathogens. cGAS-STING pathway is a vital natural sensor of host immunity that can defend various tissues and organs against pathogenic infection, metabolic syndrome, cellular stress and cancer metastasis. The potential impact of cGAS-STING pathway in hepatic ischemia reperfusion (I/R) injury, alcoholic/non-alcoholic steatohepatitis (ASH), hepatic B virus infection, and other liver diseases has recently attracted widespread attention. In this review, the relationship between cGAS-STING pathway and the pathophysiological mechanisms and progression of liver diseases is summarized. Additionally, we discuss various pharmacological agonists and antagonists of cGAS-STING signaling as novel therapeutics for the treatment of liver diseases. A detailed understanding of mechanisms and biology of this pathway will lay a foundation for the development and clinical application of therapies for related liver diseases.
Collapse
Affiliation(s)
- Zhilei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Liver Diseases, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nian Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhiyong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guang Xu
- Department of Liver Diseases, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Zhan
- Department of Liver Diseases, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohe Xiao
- Department of Liver Diseases, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhaofang Bai
- Department of Liver Diseases, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
24
|
Chen R, Du J, Zhu H, Ling Q. The role of cGAS-STING signalling in liver diseases. JHEP Rep 2021; 3:100324. [PMID: 34381984 PMCID: PMC8340306 DOI: 10.1016/j.jhepr.2021.100324] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/20/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
The recently identified novel cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) activates the downstream adaptor protein stimulator of interferon genes (STING) by catalysing the synthesis of cyclic GMP-AMP. This in turn initiates an innate immune response through the release of various cytokines, including type I interferon. Foreign DNA (microbial infection) or endogenous DNA (nuclear or mitochondrial leakage) can serve as cGAS ligands and lead to the activation of cGAS-STING signalling. Therefore, the cGAS-STING pathway plays essential roles in infectious diseases, sterile inflammation, tumours, and autoimmune diseases. In addition, cGAS-STING signalling affects the progression of liver inflammation through other mechanisms, such as autophagy and metabolism. In this review, we summarise recent advances in our understanding of the role of cGAS-STING signalling in the innate immune modulation of different liver diseases. Furthermore, we discuss the therapeutic potential of targeting the cGAS-STING pathway in the treatment of liver diseases.
Collapse
Key Words
- AIM2, absent in melanoma 2
- ALD, alcohol-related liver disease
- APCs, antigen-presenting cells
- CDNs, cyclic dinucleotides
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- ER, endoplasmic reticulum
- GVHD, graft-versus-host disease
- HCC, hepatocellular carcinoma
- HSCs, hepatic stellate cells
- IFN-I, type I interferon
- IL, interleukin
- IRF3, interferon regulatory factor 3
- IRI, ischaemia refusion injury
- KCs, Kupffer cells
- LSECs, liver sinusoidal endothelial cells
- MHC, major histocompatibility complex
- NAFLD, non-alcoholic fatty liver disease
- NK cells, natural killer cells
- NPCs, non-parenchymal cells
- PAMPs, pathogen-associated molecular patterns
- PD-1, programmed cell death protein-1
- PD-L1, programmed cell death protein ligand-1
- PPRs, pattern recognition receptors
- SAVI, STING-associated vasculopathy with onset in infancy
- STING, stimulator of interferon genes
- TBK1, TANK-binding kinase 1
- TGF-β1, transforming growth factor-β1
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- XRCC, X-ray repair cross complementing
- aHSCT, allogeneic haematopoietic stem cell transplantation
- cGAMP, cyclic guanosine monophosphate-adenosine monophosphate
- cGAS, cyclic guanosine monophosphate-adenosine monophosphate synthase
- cGAS-STING signalling
- dsDNA, double-strand DNA
- hepatocellular carcinoma
- innate immune response
- liver injury
- mTOR, mammalian target of rapamycin
- mtDNA, mitochondrial DNA
- nonalcoholic fatty liver disease
- siRNA, small interfering RNA
- ssRNA, single-stranded RNA
- viral hepatitis
Collapse
Affiliation(s)
- Ruihan Chen
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiamin Du
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Ling
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Golsaz-Shirazi F, Shokri F. Cross talk between hepatitis B virus and innate immunity of hepatocytes. Rev Med Virol 2021; 32:e2256. [PMID: 34021666 DOI: 10.1002/rmv.2256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Innate immunity plays a major role in controlling viral infections. Recent exploration of sodium taurocholate co-transporting polypeptide receptor as specific hepatitis B virus (HBV) receptor in human hepatocytes has provided appropriate cell culture tools to study the innate immunity of hepatocytes and its cross talk with HBV. In this review, we give a brief update on interaction between HBV and innate immunity using the currently available in vitro cellular models that support the complete life cycle of HBV. We will discuss how HBV can act as a 'stealth' virus to counteract the innate immune responses mediated by the pathogen recognition receptors of hepatocytes and escape the first line of surveillance of the host immune system. We give an overview of the cellular components of innate immunity that present in these in vitro models and discuss how activating these innate immunity components may contribute to the eradication of HBV infection.
Collapse
Affiliation(s)
- Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Xu D, Tian Y, Xia Q, Ke B. The cGAS-STING Pathway: Novel Perspectives in Liver Diseases. Front Immunol 2021; 12:682736. [PMID: 33995425 PMCID: PMC8117096 DOI: 10.3389/fimmu.2021.682736] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Liver diseases represent a major global health burden accounting for approximately 2 million deaths per year worldwide. The liver functions as a primary immune organ that is largely enriched with various innate immune cells, including macrophages, dendritic cells, neutrophils, NK cells, and NKT cells. Activation of these cells orchestrates the innate immune response and initiates liver inflammation in response to the danger signal from pathogens or injured cells and tissues. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is a crucial signaling cascade of the innate immune system activated by cytosol DNA. Recognizing DNA as an immune-stimulatory molecule is an evolutionarily preserved mechanism in initiating rapid innate immune responses against microbial pathogens. The cGAS is a cytosolic DNA sensor eliciting robust immunity via the production of cyclic GMP-AMPs that bind and activate STING. Although the cGAS-STING pathway has been previously considered to have essential roles in innate immunity and host defense, recent advances have extended the role of the cGAS-STING pathway to liver diseases. Emerging evidence indicates that overactivation of cGAS-STING may contribute to the development of liver disorders, implying that the cGAS-STING pathway is a promising therapeutic target. Here, we review and discuss the role of the cGAS-STING DNA-sensing signaling pathway in a variety of liver diseases, including viral hepatitis, nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), primary hepatocellular cancer (HCC), and hepatic ischemia-reperfusion injury (IRI), with highlights on currently available therapeutic options.
Collapse
Affiliation(s)
- Dongwei Xu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yizhu Tian
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
27
|
Ullah H, Sajid M, Yan K, Feng J, He M, Shereen MA, Li Q, Xu T, Hao R, Guo D, Chen Y, Zhou L, Zhou L. Antiviral Activity of Interferon Alpha-Inducible Protein 27 Against Hepatitis B Virus Gene Expression and Replication. Front Microbiol 2021; 12:656353. [PMID: 33868214 PMCID: PMC8044325 DOI: 10.3389/fmicb.2021.656353] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the availability of effective vaccines, hepatitis B virus (HBV) is still a major health issue, and approximately 350 million people have been chronically infected with HBV throughout the world. Interferons (IFNs) are the key molecules in the innate immune response that restrict several kinds of viral infections via the induction of hundreds of IFN-stimulated genes (ISGs). The objective of this study was to confirm if interferon alpha-inducible protein 27 (IFI27) as an ISG could inhibit HBV gene expression and DNA replication both in cell culture and in a mouse model. In human hepatoma cells, IFI27 was highly induced by the stimulation of IFN-alpha (IFN-α), and it potentiated the anti-HBV activity. The overexpression of IFI27 inhibited, while its silencing enhanced the HBV replication in HepG2 cell. However, the knocking out of IFI27 in HepG2 cells robustly increases the formation of viral DNA, RNA, and proteins. Detailed mechanistic analysis of the HBV genome showed that a sequence [nucleotide (nt) 1715-1815] of the EnhII/Cp promoter was solely responsible for viral inhibition. Similarly, the hydrodynamic injection of IFI27 expression constructs along with the HBV genome into mice resulted in a significant reduction in viral gene expression and DNA replication. In summary, our studies suggested that IFI27 contributed a vital role in HBV gene expression and replication and IFI27 may be a potential antiviral agent for the treatment of HBV.
Collapse
Affiliation(s)
- Hafiz Ullah
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Sajid
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kun Yan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Miao He
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- MOE Key Laboratory of Tropical Disease Control, The Infection and Immunity Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiaohong Li
- Animal Biosafety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan, China
| | - Tianmo Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ruidong Hao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Deyin Guo
- MOE Key Laboratory of Tropical Disease Control, The Infection and Immunity Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Limin Zhou
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Abstract
STING (stimulator of interferon genes) also known as transmembrane protein 173 (TMEM173) is a cytoplasmic DNA sensor which can be activated by the upstream cyclic dinucleotides (CDNs). This activation produces cytokines such as interferons and pro-inflammatory factors via the downstream IRF3 and NF-κB pathways, triggering an innate immune response and adaptive immunity to maintain homeostasis. STING is mainly expressed and activated in non-parenchymal cells, thus exerting a corresponding effect to maintain the homeostasis of the liver. In viral hepatitis, interferons and pro-inflammatory factors produced after STING activation initiate the immune response to inhibit virus replication and assembly. In the case of metabolic diseases of the liver, the activation of STING in kupffer cells and hepatic stellate cells leads to inflammation, the proliferation of connective tissue, and metabolic disorders in the hepatocytes, promoting the occurrence and development of the disease. In hepatocellular carcinoma, STING has two contradictory roles. When STING is activated in dendritic cells and macrophages, a large number of cytokines can be produced to initiate innate immune effects directly and to exert adaptive immunity through the recruitment and activation of T cells; however, aberrant activation of the STING pathway leads to a weakening of immune function and promotes oncogenesis and metastasis. Here, we summarize the interactions between STING and liver disease that have currently been identified and how to achieve therapeutic goals by modulating the activity of the STING pathway.
Collapse
|
29
|
Crosse KM, Monson EA, Dumbrepatil AB, Smith M, Tseng YY, Van der Hoek KH, Revill PA, Saker S, Tscharke DC, G Marsh EN, Beard MR, Helbig KJ. Viperin binds STING and enhances the type-I interferon response following dsDNA detection. Immunol Cell Biol 2020; 99:373-391. [PMID: 33131099 DOI: 10.1111/imcb.12420] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 01/01/2023]
Abstract
Viperin is an interferon-inducible protein that is pivotal for eliciting an effective immune response against an array of diverse viral pathogens. Here we describe a mechanism of viperin's broad antiviral activity by demonstrating the protein's ability to synergistically enhance the innate immune dsDNA signaling pathway to limit viral infection. Viperin co-localized with the key signaling molecules of the innate immune dsDNA sensing pathway, STING and TBK1; binding directly to STING and inducing enhanced K63-linked polyubiquitination of TBK1. Subsequent analysis identified viperin's necessity to bind the cytosolic iron-sulfur assembly component 2A, to prolong its enhancement of the type-I interferon response to aberrant dsDNA. Here we show that viperin facilitates the formation of a signaling enhanceosome, to coordinate efficient signal transduction following activation of the dsDNA signaling pathway, which results in an enhanced antiviral state. We also provide evidence for viperin's radical SAM enzymatic activity to self-limit its immunomodulatory functions. These data further define viperin's role as a positive regulator of innate immune signaling, offering a mechanism of viperin's broad antiviral capacity.
Collapse
Affiliation(s)
- Keaton M Crosse
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Ebony A Monson
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Arti B Dumbrepatil
- Department of Chemistry and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Monique Smith
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Yeu-Yang Tseng
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Kylie H Van der Hoek
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Peter A Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Subir Saker
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - E Neil G Marsh
- Department of Chemistry and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Michael R Beard
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Karla J Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
30
|
Chen H, He G, Chen Y, Zhang X. Hepatitis B Virus Might Be Sensed by STING-Dependent DNA Sensors and Attenuates the Response of STING-Dependent DNA Sensing Pathway in Humans with Acute and Chronic Hepatitis B Virus Infection. Viral Immunol 2020; 33:642-651. [PMID: 33170089 DOI: 10.1089/vim.2020.0096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DNA-dependent activator of interferon regulatory factors (DAIs), interferon gamma inducible protein 16 (IFI16), DEAD-box polypeptide 41 (DDX41), DNA-dependent protein kinase (DNA-PK), meiotic recombination 11 homolog A (MRE11), and cyclic GMP-AMP synthase (cGAS) have been identified as intracellular STING-dependent DNA sensors in recent years. Studies have shown that the DNA sensor-STING-interferon (IFN)-β pathway plays an important role in the defense against intracellular invasion of many DNA viruses. However, the intracellular recognition of hepatitis B virus (HBV) DNA by DNA sensors is still largely unclear. In this study, we aimed to determine whether the DNA sensor-STING pathway in peripheral blood mononuclear cells (PBMCs) can be activated by acute and chronic HBV infections in humans. We first evaluated the expression of these DNA sensors in PBMCs of acute and chronic HBV-infected patients by quantitative real-time polymerase chain reaction. We next compared the expression of the upregulated DNA sensor between monocytes and nonmonocytes to find its cellular source. Finally, by in vitro stimulation, we analyzed the IFN-β response of the DNA sensor-STING pathway in PBMCs and monocytes from chronic HBV-infected patients. The results showed that IFI16, DDX41, MRE11, and the adaptor STING were upregulated in chronic HBV-infected patients, whereas only IFI16 was upregulated in acute HBV-infected patients. However, IFN-β expression was not changed in PBMCs from acute and chronic HBV-infected patients. We next found IFI16 was mainly expressed in monocytes of acute and chronic hepatitis B patients. Finally, by stimulation of monocytes with VACV ds 70mer, a ligand for IFI16, we confirmed the attenuated response of the IFI16-STING pathway. Taken together, our results suggest that HBV might be sensed by DNA sensors in PBMCs of acute and chronic HBV-infected patients, and meanwhile HBV infection attenuates the response of the DNA sensor-STING pathway in PBMCs and monocytes, which may facilitate the persistence of HBV infection.
Collapse
Affiliation(s)
- Hongtao Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Infectious Diseases, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China.,Key Laboratory of Pathogenic Microorganisms of Shenzhen, Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Guirong He
- Department of Clinical Laboratory, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Yue Chen
- Department of Clinical Laboratory, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Alexopoulou A, Vasilieva L, Karayiannis P. New Approaches to the Treatment of Chronic Hepatitis B. J Clin Med 2020; 9:jcm9103187. [PMID: 33019573 PMCID: PMC7601587 DOI: 10.3390/jcm9103187] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
The currently recommended treatment for chronic hepatitis B virus (HBV) infection achieves only viral suppression whilst on therapy, but rarely hepatitis B surface antigen (HBsAg) loss. The ultimate therapeutic endpoint is the combination of HBsAg loss, inhibition of new hepatocyte infection, elimination of the covalently closed circular DNA (cccDNA) pool, and restoration of immune function in order to achieve virus control. This review concentrates on new antiviral drugs that target different stages of the HBV life cycle (direct acting antivirals) and others that enhance both innate and adaptive immunity against HBV (immunotherapy). Drugs that block HBV hepatocyte entry, compounds that silence or deplete the cccDNA pool, others that affect core assembly, agents that degrade RNase-H, interfering RNA molecules, and nucleic acid polymers are likely interventions in the viral life cycle. In the immunotherapy category, molecules that activate the innate immune response such as Toll-like-receptors, Retinoic acid Inducible Gene-1 (RIG-1) and stimulator of interferon genes (STING) agonists or checkpoint inhibitors, and modulation of the adaptive immunity by therapeutic vaccines, vector-based vaccines, or adoptive transfer of genetically-engineered T cells aim towards the restoration of T cell function. Future therapeutic trends would likely be a combination of one or more of the aforementioned drugs that target the viral life cycle and at least one immunomodulator.
Collapse
Affiliation(s)
- Alexandra Alexopoulou
- Department of Medicine, Medical School, National & Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-2132-088-178; Fax: +30-2107-706-871
| | - Larisa Vasilieva
- Department of Medicine, Medical School, National & Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece;
| | - Peter Karayiannis
- Department of Basic and Clinical Sciences, Medical School, University of Nicosia, Engomi, CY-1700 Nicosia, Cyprus;
| |
Collapse
|
32
|
Abstract
Abstract
Purpose of Review
Chronic Hepatitis B Virus (HBV) Infection is a major global health burden. Currently, a curative therapy does not exist; thus, there is an urgent need for new therapeutical options. Viral elimination in the natural course of infection results from a robust and multispecific T and B cell response that, however, is dysfunctional in chronically infected patients. Therefore, immunomodulatory therapies that strengthen the immune responses are an obvious approach trying to control HBV infection. In this review, we summarize the rationale and current options of immunological cure of chronic HBV infection.
Recent Findings
Recently, among others, drugs that stimulate the innate immune system or overcome CD8+ T cell exhaustion by checkpoint blockade, and transfer of HBV-specific engineered CD8+ T cells emerged as promising approaches.
Summary
HBV-specific immunity is responsible for viral control, but also for immunopathogenesis. Thus, the development of immunomodulatory therapies is a difficult process on a thin line between viral control and excessive immunopathology. Some promising agents are under investigation. Nevertheless, further research is indispensable in order to optimally orchestrate immunostimulation.
Collapse
|
33
|
Abstract
Currently, despite the use of a preventive vaccine for several decades as well as the use of effective and well-tolerated viral suppressive medications since 1998, approximately 250 million people remain infected with the virus that causes hepatitis B worldwide. Hepatitis C virus (HCV) and hepatitis B virus (HBV) are the leading causes of liver cancer and overall mortality globally, surpassing malaria and tuberculosis. Linkage to care is estimated to be very poor both in developing countries and in high-income countries, such as the United States, countries in Western Europe, and Japan. In the United States, by CDC estimates, only one-third of HBV-infected patients or less are aware of their infection. Some reasons for these low rates of surveillance, diagnosis, and treatment include the asymptomatic nature of chronic hepatitis B until the very late stages, a lack of curative therapy with a finite treatment duration, a complex natural history, and a lack of knowledge about the disease by both care providers and patients. In the last 5 years, more attention has been focused on the important topics of HBV screening, diagnosis of HBV infection, and appropriate linkage to care. There have also been rapid clinical developments toward a functional cure of HBV infection, with novel compounds currently being in various phases of progress. Despite this knowledge, many of the professional organizations provide guidelines focused only on specific questions related to the treatment of HBV infection. This focus leaves a gap for care providers on the other HBV-related issues, which include HBV's epidemiological profile, its natural history, how it interacts with other viral hepatitis diseases, treatments, and the areas that still need to be addressed in order to achieve HBV elimination by 2030. Thus, to fill these gaps and provide a more comprehensive and relevant document to regions worldwide, we have taken a global approach by using the findings of global experts on HBV as well as citing major guidelines and their various approaches to addressing HBV and its disease burden.
Collapse
|
34
|
Meng Z, Chen Y, Lu M. Advances in Targeting the Innate and Adaptive Immune Systems to Cure Chronic Hepatitis B Virus Infection. Front Immunol 2020; 10:3127. [PMID: 32117201 PMCID: PMC7018702 DOI: 10.3389/fimmu.2019.03127] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
“Functional cure” is being pursued as the ultimate endpoint of antiviral treatment in chronic hepatitis B (CHB), which is characterized by loss of HBsAg whether or not anti-HBs antibodies are present. “Functional cure” can be achieved in <10% of CHB patients with currently available therapeutic agents. The dysfunction of specific immune responses to hepatitis B virus (HBV) is considered the major cause of persistent HBV infection. Thus, modulating the host immune system to strengthen specific cellular immune reactions might help eliminate HBV. Strategies are needed to restore/enhance innate immunity and induce HBV-specific adaptive immune responses in a coordinated way. Immune and resident cells express pattern recognition receptors like TLRs and RIG I/MDA5, which play important roles in the induction of innate immunity through sensing of pathogen-associated molecular patterns (PAMPs) and bridging to adaptive immunity for pathogen-specific immune control. TLR/RIG I agonists activate innate immune responses and suppress HBV replication in vitro and in vivo, and are being investigated in clinical trials. On the other hand, HBV-specific immune responses could be induced by therapeutic vaccines, including protein (HBsAg/preS and HBcAg), DNA, and viral vector-based vaccines. More than 50 clinical trials have been performed to assess therapeutic vaccines in CHB treatment, some of which display potential effects. Most recently, using genetic editing technology to generate CAR-T or TCR-T, HBV-specific T cells have been produced to efficiently clear HBV. This review summarizes the progress in basic and clinical research investigating immunomodulatory strategies for curing chronic HBV infection, and critically discusses the rather disappointing results of current clinical trials and future strategies.
Collapse
Affiliation(s)
- Zhongji Meng
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuanyuan Chen
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, Essen, Germany
| |
Collapse
|
35
|
Wu CS, Zhao Q, Zhang J, Wang JW, Qian Y, Fan YC, Wang K. Methylation status of the stimulator of interferon genes promoter in patients with chronic hepatitis B. Medicine (Baltimore) 2018; 97:e13904. [PMID: 30593207 PMCID: PMC6314766 DOI: 10.1097/md.0000000000013904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The stimulator of interferon genes (STING) plays a crucial role in the recognition of a viral infection and subsequent stimulation of an immune response. However, it is unclear whether methylation of the STING promoter affects STING transcription and response to antiviral therapy. The present study determined the methylation status of the STING promoter in patients with chronic hepatitis B (CHB).This study included 198 participants, of which 159 participants had CHB and 39 were healthy controls (HCs). Methylation-specific polymerase chain reaction was performed to detect the methylation status of the STING promoter. Reverse transcription-quantitative polymerase chain reaction was performed to determine STING mRNA level in peripheral blood mononuclear cells.The methylation frequency of the STING promoter was significantly higher and STING mRNA level was lower in the patients with CHB than in the HCs. Presence of hepatitis B virus (HBV) DNA was independently correlated with an increased risk of STING promoter methylation. Virological response frequency was higher in the patients with CHB receiving entecavir (ETV) than in those receiving adefovir (ADV). In the ETV group, the virological response frequency was evidently lower in the patients with CHB having methylated STING promoters than in those having unmethylated STING promoters. However, there was no significant difference in the virological response frequency between ADV-treated patients having methylated and unmethylated STING promoters.These results indicate that the hypermethylation of the STING promoter and thus the transcriptional repression of STING weaken the effect of STING in inhibiting HBV replication and decreases the effectiveness of antiviral therapy.
Collapse
Affiliation(s)
- Chen-Si Wu
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Qian Zhao
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Jun Zhang
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Jing-Wen Wang
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Yu Qian
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University
- Institute of Hepatology, Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University
- Institute of Hepatology, Shandong University, Jinan, China
| |
Collapse
|
36
|
Verrier ER, Yim SA, Heydmann L, El Saghire H, Bach C, Turon-Lagot V, Mailly L, Durand SC, Lucifora J, Durantel D, Pessaux P, Manel N, Hirsch I, Zeisel MB, Pochet N, Schuster C, Baumert TF. Hepatitis B Virus Evasion From Cyclic Guanosine Monophosphate-Adenosine Monophosphate Synthase Sensing in Human Hepatocytes. Hepatology 2018; 68:1695-1709. [PMID: 29679386 PMCID: PMC6195855 DOI: 10.1002/hep.30054] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a major cause of chronic liver disease and cancer worldwide. The mechanisms of viral genome sensing and the evasion of innate immune responses by HBV infection are still poorly understood. Recently, the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) was identified as a DNA sensor. In this study, we investigated the functional role of cGAS in sensing HBV infection and elucidate the mechanisms of viral evasion. We performed functional studies including loss-of-function and gain-of-function experiments combined with cGAS effector gene expression profiling in an infectious cell culture model, primary human hepatocytes, and HBV-infected human liver chimeric mice. Here, we show that cGAS is expressed in the human liver, primary human hepatocytes, and human liver chimeric mice. While naked relaxed-circular HBV DNA is sensed in a cGAS-dependent manner in hepatoma cell lines and primary human hepatocytes, host cell recognition of viral nucleic acids is abolished during HBV infection, suggesting escape from sensing, likely during packaging of the genome into the viral capsid. While the hepatocyte cGAS pathway is functionally active, as shown by reduction of viral covalently closed circular DNA levels in gain-of-function studies, HBV infection suppressed cGAS expression and function in cell culture models and humanized mice. Conclusion: HBV exploits multiple strategies to evade sensing and antiviral activity of cGAS and its effector pathways.
Collapse
Affiliation(s)
- Eloi R. Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France,Corresponding authors: Prof. Thomas F. Baumert, MD, , Dr. Catherine Schuster, PhD, , and Dr. Eloi R. Verrier, PhD, , Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000 Strasbourg, France. Tel: +33 3 68 85 37 03; fax: +33 3 68 85 37 24
| | - Seung-Ae Yim
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France
| | - Laura Heydmann
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France
| | - Houssein El Saghire
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France
| | - Charlotte Bach
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France
| | - Vincent Turon-Lagot
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France
| | - Laurent Mailly
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France
| | - Sarah C. Durand
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France
| | - Julie Lucifora
- Inserm, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - David Durantel
- Inserm, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, Lyon, France
| | - Patrick Pessaux
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France,Pôle Hépato-Digestif, Institut Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, F-75005 Paris, France,Inserm, U932, F-75005 Paris, France
| | - Ivan Hirsch
- Department of Genetics and Microbiology, Faculty of Science, Biocev, Charles University, 12844 Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry, CAS, IOCB & Gilead Research Center, 16610 Prague
| | - Mirjam B. Zeisel
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France
| | - Nathalie Pochet
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA, Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France,Corresponding authors: Prof. Thomas F. Baumert, MD, , Dr. Catherine Schuster, PhD, , and Dr. Eloi R. Verrier, PhD, , Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000 Strasbourg, France. Tel: +33 3 68 85 37 03; fax: +33 3 68 85 37 24
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS 1110, F-67000 Strasbourg, France,Pôle Hépato-Digestif, Institut Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France,Corresponding authors: Prof. Thomas F. Baumert, MD, , Dr. Catherine Schuster, PhD, , and Dr. Eloi R. Verrier, PhD, , Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000 Strasbourg, France. Tel: +33 3 68 85 37 03; fax: +33 3 68 85 37 24
| |
Collapse
|
37
|
Dusheiko G. Current and future directions of management of hepatitis B: steps toward a cure. Future Virol 2018. [DOI: 10.2217/fvl-2017-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Universal hepatitis B virus vaccination has been effective in reducing incident chronic hepatitis B but will not have the requisite effect on the prevalence of end-stage liver disease in chronically infected persons. The natural history and immunological stages of hepatitis B virus infection are still being defined. Over three decades, current therapies have reduced morbidity from chronic hepatitis B. The majority require nucleoside analog maintenance therapy. The preferential preservation of covalently closed circular DNA (cccDNA), and capsid reverse transcriptase–cccDNA interactions currently precludes cure in most. A functional cure in the host may require several synergistic antiviral and immunological intercessions. The correct sequencing and combinations of treatment with either host or viral targeting agents have yet to be determined. Proven surrogates for cccDNA for clinical trials are required. Different strategies may become apparent for patients at different stages of the disease. Curative therapies will require affordability. This review focuses on steps toward a cure.
Collapse
Affiliation(s)
- Geoffrey Dusheiko
- Kings College Hospital & University College London Medical School, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
38
|
Wang X, Liu C. WITHDRAWN: Research progress of cGAS-STING pathway in infectious diseases. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018:S1567-1348(18)30059-5. [PMID: 29447986 DOI: 10.1016/j.meegid.2018.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/10/2018] [Indexed: 11/16/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Xiaohu Wang
- Department of Respiratory and Critical Care Medicine, Sichuan University, China
| | - Chuntao Liu
- Department of Respiratory and Critical Care Medicine, Sichuan University, China.
| |
Collapse
|
39
|
Guo F, Zhao Q, Sheraz M, Cheng J, Qi Y, Su Q, Cuconati A, Wei L, Du Y, Li W, Chang J, Guo JT. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways. PLoS Pathog 2017; 13:e1006658. [PMID: 28945802 PMCID: PMC5629035 DOI: 10.1371/journal.ppat.1006658] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/05/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or “empty” capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B. Persistent HBV infection relies on stable maintenance of a nuclear episomal viral genome called covalently closed circular (ccc) DNA, the sole transcriptional template supporting viral replication. The currently available antiviral therapeutics fail to cure chronic HBV infection due to their failure to eradicate or inactivate cccDNA. In addition to packaging viral pregenomic (pg) RNA and DNA polymerase complex into nucleocapsids for reverse transcriptional DNA replication to take place, HBV core protein also participates in and regulates virion particle assembly, capsid uncoating and cccDNA formation. We report herein an intriguing observation that selected core protein allosteric modulators not only inhibit nucleocapsid assembly, but can also act on assembled, nucleus-bound nucleocapsids to promote their uncoating and consequentially interfere with cccDNA biosynthesis. This finding establishes molecular basis for development of novel core protein targeting antiviral agents with improved efficacy of suppressing cccDNA synthesis and curing chronic HBV infection.
Collapse
Affiliation(s)
- Fang Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Qiong Zhao
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Muhammad Sheraz
- Microbiology and Immunology graduate program, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Junjun Cheng
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Yonghe Qi
- National Institute of Biological Sciences, Beijing, China
| | - Qing Su
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Andrea Cuconati
- Arbutus Biopharma Inc., Doylestown, Pennsylvania, United States of America
| | - Lai Wei
- Hepatology Institute, Peking University People’s Hospital, Beijing, China
| | - Yanming Du
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
- * E-mail: (JTG); (JC)
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
- * E-mail: (JTG); (JC)
| |
Collapse
|
40
|
Activation of Stimulator of Interferon Genes in Hepatocytes Suppresses the Replication of Hepatitis B Virus. Antimicrob Agents Chemother 2017; 61:AAC.00771-17. [PMID: 28717041 DOI: 10.1128/aac.00771-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Induction of interferon and proinflammatory cytokines is a hallmark of the infection of many different viruses. However, hepatitis B virus (HBV) does not elicit a detectable cytokine response in infected hepatocytes. In order to investigate the molecular mechanism underlying the innate immune evasion, a functional cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway was reconstituted in a human hepatoma cell line supporting tetracycline-inducible HBV replication. It was demonstrated that induction of HBV replication neither activated nor inhibited this cytosolic DNA sensing pathway. However, human hepatoma cells, as well as immortalized mouse hepatocytes, express low levels of STING, which upon activation by cGAMP, the natural ligand of STING, led to induction of a proinflammatory cytokine response. Treatment of immortalized mouse hepatocytes supporting HBV replication with either cGAMP or a small molecule pharmacologic STING agonist significantly reduced viral DNA in a STING- and Janus kinase 1-dependent manner. Moreover, cGAMP treatment was able to induce inflammatory cytokine gene expression and inhibit the transcription of covalently closed circular DNA in HBV-infected human hepatoma cells expressing sodium taurocholate cotransporting polypeptide, an essential receptor for HBV infection of hepatocytes. The studies reported here and previously (F. Guo et al., Antimicrob Agents Chemother 59:1273-1281, 2015, https://doi.org/10.1128/AAC.04321-14) thus support the notion that pharmacological activation of STING in macrophages and hepatocytes induces host innate responses that can efficiently control HBV replication. Hence, despite not playing a significant role in host innate immune response to HBV infection of hepatocytes, STING is potentially a valuable target for immunotherapy of chronic hepatitis B.
Collapse
|
41
|
Gehring AJ. New treatments to reach functional cure: Rationale and challenges for emerging immune-based therapies. Best Pract Res Clin Gastroenterol 2017; 31:337-345. [PMID: 28774416 DOI: 10.1016/j.bpg.2017.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/03/2017] [Accepted: 05/13/2017] [Indexed: 01/31/2023]
Abstract
The landscape for chronic HBV therapy is rapidly evolving. The latest generation of antiviral drugs provide robust virus suppression with a high barrier to resistance that facilitates long-term treatment. However, low rates of HBsAg loss demonstrate that additional strategies are needed to consistency achieve a functional cure. The immune system can clear HBV and establish long-term control over the virus. Sufficiently boosting HBV immunity in chronic patients has been very difficult due to immune exhaustion, immune dysregulation, and inhibitory pathways suppressing the immune response. Therapeutic vaccines employing new technology, vectors and new immunomodulatory drugs that can elicit direct antiviral effects and cancel inhibitory mechanism may be able to overcome exhaustion. This review will discuss the justification for immunotherapy, lessons from previous trials and new vaccines/drugs in early stage clinical trials. The challenges of correlating immune responses induced by these drugs to clinical efficacy will also be addressed.
Collapse
Affiliation(s)
- Adam J Gehring
- Toronto Centre for Liver Disease and Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Canada.
| |
Collapse
|
42
|
Kayesh MEH, Ezzikouri S, Chi H, Sanada T, Yamamoto N, Kitab B, Haraguchi T, Matsuyama R, Nkogue CN, Hatai H, Miyoshi N, Murakami S, Tanaka Y, Takano JI, Shiogama Y, Yasutomi Y, Kohara M, Tsukiyama-Kohara K. Interferon-β response is impaired by hepatitis B virus infection in Tupaia belangeri. Virus Res 2017; 237:47-57. [PMID: 28551415 DOI: 10.1016/j.virusres.2017.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/25/2017] [Accepted: 05/18/2017] [Indexed: 01/03/2023]
Abstract
To date, the chimpanzee has been used as the natural infection model for hepatitis B virus (HBV). However, as this model is very costly and difficult to use because of ethical and animal welfare issues, we aimed to establish the tupaia (Tupaia belangeri) as a new model for HBV infection and characterized its intrahepatic innate immune response upon HBV infection. First, we compared the propagation of HBV genotypes A2 and C in vivo in tupaia hepatocytes. At 8-10days post infection (dpi), the level of HBV-A2 propagation in the tupaia liver was found to be higher than that of HBV-C. Abnormal architecture of liver cell cords and mitotic figures were also observed at 8 dpi with HBV-A2. Moreover, we found that HBV-A2 established chronic infection in some tupaias. We then aimed to characterize the intrahepatic innate immune response in this model. First, we infected six tupaias with HBV-A2 (strains JP1 and JP4). At 28 dpi, intrahepatic HBV-DNA and serum hepatitis B surface antigens (HBsAg) were detected in all tupaias. The levels of interferon (IFN)-β were found to be significantly suppressed in the three tupaias infected with HBV A2_JP4, while no significant change was observed in the three infected with HBV A2_JP1. Expression of toll-like receptor (TLR) 1 was suppressed, while that of TLR3 and TLR9 were induced, in HBV A2_JP1-infected tupaias. Expression of TLR8 was induced in all tupaias. Next, we infected nine tupaias with HBV-A2 (JP1, JP2, and JP4), and characterized the infected animals after 31 weeks. Serum HBsAg levels were detected at 31 weeks post-infection (wpi) and IFN-β was found to be significantly suppressed in all tupaias. TLR3 was not induced, except in tupaia #93 and #96. Suppression of TLR9 was observed in all tupaias, except tupaia #93. Also, we investigated the expression levels of cyclic GMP-AMP synthase, which was found to be induced in all tupaias at 28 dpi and in four tupaias at 31 wpi. Additionally, we evaluated the expression levels of sodium-taurocholate cotransporting polypeptide, which was found to be suppressed during chronic HBV infection. Thus, the tupaia infection model of HBV clearly indicated the suppression of IFN-β at 31 wpi, which might have contributed to the establishment of chronic HBV infection.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Sayeh Ezzikouri
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Haiying Chi
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Naoki Yamamoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Bouchra Kitab
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Takumi Haraguchi
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Rika Matsuyama
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Chimène Nze Nkogue
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Hitoshi Hatai
- Department of Animal Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Noriaki Miyoshi
- Department of Animal Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Shuko Murakami
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jun-Ichiro Takano
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Yumiko Shiogama
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Kyoko Tsukiyama-Kohara
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
43
|
Interplay between the Hepatitis B Virus and Innate Immunity: From an Understanding to the Development of Therapeutic Concepts. Viruses 2017; 9:v9050095. [PMID: 28452930 PMCID: PMC5454408 DOI: 10.3390/v9050095] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
The hepatitis B virus (HBV) infects hepatocytes, which are the main cell type composing a human liver. However, the liver is enriched with immune cells, particularly innate cells (e.g., myeloid cells, natural killer and natural killer T-cells (NK/NKT), dendritic cells (DCs)), in resting condition. Hence, the study of the interaction between HBV and innate immune cells is instrumental to: (1) better understand the conditions of establishment and maintenance of HBV infections in this secondary lymphoid organ; (2) define the role of these innate immune cells in treatment failure and pathogenesis; and (3) design novel immune-therapeutic concepts based on the activation/restoration of innate cell functions and/or innate effectors. This review will summarize and discuss the current knowledge we have on this interplay between HBV and liver innate immunity.
Collapse
|