1
|
Kavela S, Vyas P, CP J, Kushwaha SK, Majumdar SS, Faisal SM. Use of an Integrated Multi-Omics Approach To Identify Molecular Mechanisms and Critical Factors Involved in the Pathogenesis of Leptospira. Microbiol Spectr 2023; 11:e0313522. [PMID: 36853003 PMCID: PMC10100824 DOI: 10.1128/spectrum.03135-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
Leptospirosis, a bacterial zoonosis caused by pathogenic Leptospira spp., is prevalent worldwide and has become a serious threat in recent years. Limited understanding of Leptospira pathogenesis and host response has hampered the development of effective vaccine and diagnostics. Although Leptospira is phagocytosed by innate immune cells, it resists its destruction, and the evading mechanism involved is unclear. In the present study, we used an integrative multi-omics approach to identify the critical molecular factors of Leptospira involved in pathogenesis during interaction with human macrophages. Transcriptomic and proteomic analyses were performed at 24 h postinfection of human macrophages (phorbol-12-myristate-13-acetate differentiated THP-1 cells) with the pathogenic Leptospira interrogans serovar Icterohaemorrhagiae strain RGA (LEPIRGA). Our results identified a total of 1,528 transcripts and 871 proteins that were significantly expressed with an adjusted P value of <0.05. The correlations between the transcriptomic and proteomic data were above average (r = 0.844), suggesting the role of the posttranscriptional processes during host interaction. The conjoint analysis revealed the expression of several virulence-associated proteins such as adhesins, invasins, and secretory and chemotaxis proteins that might be involved in various processes of attachment and invasion and as effectors during pathogenesis in the host. Further, the interaction of bacteria with the host cell (macrophages) was a major factor in the differential expression of these proteins. Finally, eight common differentially expressed RNA-protein pairs, predicted as virulent, outer membrane/extracellular proteins were validated by quantitative PCR. This is the first report using integrated multi-omics approach to identify critical factors involved in Leptospira pathogenesis. Validation of these critical factors may lead to the identification of target antigens for the development of improved diagnostics and vaccines against leptospirosis. IMPORTANCE Leptospirosis is a zoonotic disease of global importance. It is caused by a Gram-negative bacterial spirochete of the genus Leptospira. The current challenge is to detect the infection at early stage for treatment or to develop potent vaccines that can induce cross-protection against various pathogenic serovars. Understanding host-pathogen interactions is important to identify the critical factors involved in pathogenesis and host defense for developing improved vaccines and diagnostics. Utilizing an integrated multi-omics approach, our study provides important insight into the interaction of Leptospira with human macrophages and identifies a few critical factors (such as virulence-associated proteins) involved in pathogenesis. These factors can be exploited for the development of novel tools for the detection, treatment, or prevention of leptospirosis.
Collapse
Affiliation(s)
- Sridhar Kavela
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Pallavi Vyas
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Jusail CP
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sandeep K. Kushwaha
- Bioinformatics Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Subeer S. Majumdar
- Gene and Protein Engineering Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Syed M. Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
2
|
Behera SK, Sabarinath T, Mishra PKK, Deneke Y, Kumar A, ChandraSekar S, Senthilkumar K, Verma M, Ganesh B, Gurav A, Hota A. Immunoinformatic Study of Recombinant LigA/BCon1-5 Antigen and Evaluation of Its Diagnostic Potential in Primary and Secondary Binding Tests for Serodiagnosis of Porcine Leptospirosis. Pathogens 2021; 10:1082. [PMID: 34578116 PMCID: PMC8466556 DOI: 10.3390/pathogens10091082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022] Open
Abstract
Leptospirosis is responsible for hampering the productivity of swine husbandry worldwide. The aim of this study was to assess the efficacy of bioinformatics tools in predicting the three-dimensional structure and immunogenicity of recombinant LigBCon1-5 (rLigBCon1-5) antigen. A battery of bioinformatics tools such as I-TASSER, ProSA and SAVES v6.0 were used for the prediction and assessment of the predicted structure of rLigBCon1-5 antigen. Bepipred-2.0, DiscoTope v2.0 and ElliPro servers were used to predict linear and conformational epitopes while T-cell epitopes were predicted using NetMHCpan 4.1 and IEDB recommended 2.22 method for MHC Class I and II peptides respectively. The results obtained using various in silico methods were then compared with wet lab experiments comprising of both primary (IgG Dot ELISA Dipstick test) and secondary-binding assays (Latex Agglutination Test [LAT]) to screen 1153 porcine serum samples. The three-dimensional structure of rLigA/BCon1-5 protein as predicted by I-TASSER was found to be reliable by Ramachandran Plot and ProSA. The ElliPro server suggested 10 and three potential linear and conformational B-cell-epitopes, respectively, on the peptide backbone of the rLigA/BCon1-5 protein. The DiscoTope prediction server suggested 47 amino acid residues to be part of B-cell antigen. Ten of the most efficient peptides for MHC-I and II grooves were predicted by NetMHCpan 4.1 and IEDB recommended 2.22 method, respectively. Of these, three peptides can serve dual functions as it can fit both MHC I and II grooves, thereby eliciting both humoral-and cell-mediated immune responses. The prediction of these computational approaches proved to be reliable since rLigBCon1-5 antigen-based IgG Dot ELISA Dipstick test and LAT gave results in concordance to gold standard test, the Microscopic Agglutination Test (MAT), for serodiagnosis of leptospirosis. Both the IgG Dot ELISA Dipstick test and LAT were serodiagnostic assays ideally suited for peripheral level of animal health care system as "point of care" tests for the detection of porcine leptospirosis.
Collapse
Affiliation(s)
- Sujit Kumar Behera
- Department of Epidemiology & Public Health, Central University of Tamil Nadu, Tiruvarur 610001, India;
| | - Thankappan Sabarinath
- Clinical Bacteriological Laboratory, Indian Council of Agricultural Research—Indian Veterinary Research Institute, Mukteshwar, Nainital 263138, India
| | - Prasanta Kumar K. Mishra
- Faculty of Veterinary and Animal Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur 231001, India;
| | - Yosef Deneke
- School of Veterinary Medicine, Jimma University, Jimma 378, Ethiopia;
| | - Ashok Kumar
- Krishi Bhawan, Indian Council of Agricultural Research, New Delhi 110001, India;
| | - Shanmugam ChandraSekar
- Biochemistry Laboratory, Indian Council of Agricultural Research—Indian Veterinary Research Institute, Mukteshwar, Nainital 263138, India;
| | - Kuppusamy Senthilkumar
- Zoonoses Research Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600051, India;
| | - MedRam Verma
- Livestock Economics & Statistics Division, Indian Council of Agricultural Research—Indian Veterinary Research Institute, Bareilly 243122, India;
| | | | - Amol Gurav
- Temperate Animal Husbandry Division, ICAR—Indian Veterinary Research Institute (IVRI), Mukteshwar, Nainital 263138, India;
| | - Abhishek Hota
- Department of Animal Science, Centurion University of Technology and Management, Paralakhemundi 761211, India;
| |
Collapse
|
3
|
Saraullo V, Grune Loffler S, Florin-Christensen M, Watanabe O, Hamer M, Martinez M, Brihuega B. Use of the Leptospira sp. ligB C-terminus coding region as a diagnostic tool of animal leptospirosis. Comp Immunol Microbiol Infect Dis 2021; 78:101689. [PMID: 34225227 DOI: 10.1016/j.cimid.2021.101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/14/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
Leptospirosis is the most widespread zoonosis worldwide, and it can cause reproductive failures in livestock, while in humans may vary from a mild fever to multi-organ failure and death. Due to this, in this study, we evaluated the usefulness of the segment encoding LigB C-terminus region, only present in pathogenic as target for a diagnostic PCR. This new PCR yielded a 100 % positivity for pathogenic Leptospira species and no cross-reactivity was found with intermediate or non-pathogenic species, or with other microorganisms, demostrating its high analytical specificity. The estimated analytical sensitivity was higher in serum samples than in blood or urine samples (6-9 × 102 lept/mL and 6-9 × 105 and 6-9 × 106 lept/mL, respectively). Multiple sequence alignment of the target region from different pathogenic Leptospira species confirmed that this gene region is highly conserved among these species, with few single nucleotide polymorphisms. The ligb-ct PCR here developed appears as a useful tool for the molecular diagnosis of leptospirosis.
Collapse
Affiliation(s)
- Vanina Saraullo
- Instituto de Patobiología- UEDD IPVET INTA CONICET, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y de los Reseros s/n, Buenos Aires, Hurlingham, B1686, Argentina.
| | - Sylvia Grune Loffler
- Instituto de Patobiología- UEDD IPVET INTA CONICET, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y de los Reseros s/n, Buenos Aires, Hurlingham, B1686, Argentina
| | - Monica Florin-Christensen
- Instituto de Patobiología- UEDD IPVET INTA CONICET, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y de los Reseros s/n, Buenos Aires, Hurlingham, B1686, Argentina
| | - Olivia Watanabe
- Instituto de Patobiología- UEDD IPVET INTA CONICET, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y de los Reseros s/n, Buenos Aires, Hurlingham, B1686, Argentina
| | - Micaela Hamer
- Instituto de Patobiología- UEDD IPVET INTA CONICET, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y de los Reseros s/n, Buenos Aires, Hurlingham, B1686, Argentina
| | - Mara Martinez
- Instituto de Patobiología- UEDD IPVET INTA CONICET, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y de los Reseros s/n, Buenos Aires, Hurlingham, B1686, Argentina
| | - Bibiana Brihuega
- Instituto de Patobiología- UEDD IPVET INTA CONICET, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto y de los Reseros s/n, Buenos Aires, Hurlingham, B1686, Argentina
| |
Collapse
|
4
|
Samrot AV, Sean TC, Bhavya KS, Sahithya CS, Chan-drasekaran S, Palanisamy R, Robinson ER, Subbiah SK, Mok PL. Leptospiral Infection, Pathogenesis and Its Diagnosis-A Review. Pathogens 2021; 10:pathogens10020145. [PMID: 33535649 PMCID: PMC7912936 DOI: 10.3390/pathogens10020145] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Leptospirosis is a perplexing conundrum for many. In the existing literature, the pathophysiological mechanisms pertaining to leptospirosis is still not understood in full. Considered as a neglected tropical zoonotic disease, leptospirosis is culminating as a serious problem worldwide, seemingly existing as co-infections with various other unrelated diseases, including dengue and malaria. Misdiagnosis is also common as non-specific symptoms are documented extensively in the literature. This can easily lead to death, as the severe form of leptospirosis (Weil's disease) manifests as a complex of systemic complications, especially renal failure. The virulence of Leptospira sp. is usually attributed to the outer membrane proteins, including LipL32. With an armament of virulence factors at their disposal, their ability to easily adhere, invade and replicate within cells calls for a swift refinement in research progress to establish their exact pathophysiological framework. As an effort to reconstitute the current knowledge on leptospirosis, the basis of leptospiral infection, including its risk factors, classification, morphology, transmission, pathogenesis, co-infections and clinical manifestations are highlighted in this review. The various diagnostic techniques are also outlined with emphasis on their respective pros and cons.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia;
- Correspondence: (A.V.S.); (P.L.M.)
| | - Tan Chuan Sean
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia;
| | - Karanam Sai Bhavya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Chamarthy Sai Sahithya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - SaiPriya Chan-drasekaran
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Raji Palanisamy
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Emilin Renitta Robinson
- Department of Food Processing Technology, Karunya Institute of Technology and Science, Coimbatore, Tamil Nadu 641 114, India;
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Tamil Nadu 600 073, India
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Pooi Ling Mok
- Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Tamil Nadu 600 073, India
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Aljouf Province, Saudi Arabia
- Correspondence: (A.V.S.); (P.L.M.)
| |
Collapse
|
5
|
Prasad M, Bothammal P, Akino Mercy CS, Sumaiya K, Saranya P, Muralitharan G, Natarajaseenivasan K. Leptospiral protein LIC11334 display an immunogenic peptide KNSMP01. Microb Pathog 2020; 149:104407. [PMID: 32758519 DOI: 10.1016/j.micpath.2020.104407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
Leptospirosis is considered as a neglected tropical disease which is caused by pathogenic Leptospira spp. The precise mechanisms of leptospirosis pathogenesis are unclear and hence, the progress in development of treatment modalities has been dismal. The present study aimed to identify novel virulent factors of leptospires to understand the disease pathogenesis and to develop treatment modalities. Leptospira interrogans contains two chromosomes and encodes for ~3703 genes, but the functions of several open reading frames have not yet been explored. Among them, novel virulent associated leptospiral proteins (LIC11334, LIC11542, LIC11436, LIC11120 and LIC12539) were identified using VirulentPredict and the antigenicity of these targets was explored by VaxiJen server. Domain architecture of the pathogen specific proteins revealed that LIC11334 had potential to evoke significant immune response against leptospiral infection and LIC11436 contains four folds of immunoglobulin-like domain and plays a vital role in pathogenesis. Therefore, B-cell epitopes were predicted and the epitope of high virulence (and VaxiJen score from LIC11334) was chemically synthesized as peptide (KNSMP01) and labeled with Biotin (Biotin-SGSGEVENPDPKVAQEC). Binding affinity of KNSMP01 with MHC molecules was predicted and the molecule was discovered to have potential to elicit both humoral and cell mediated immune responses and found to interact with host components via hydrophobic interaction, hydrogen bonding and salt bridges. Rabbit antisera was raised against KNSMP01 and found to elicit antigenicity using Western, ELISA and dot blot assays. In silico and in vitro experiments show KNSMP01 to be a promising immunogen and may be a better vaccine candidate for leptospirosis.
Collapse
Affiliation(s)
- Muthu Prasad
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Palanisamy Bothammal
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Charles Solomon Akino Mercy
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Krishnamoorthi Sumaiya
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Perumal Saranya
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Gangatharan Muralitharan
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
6
|
Caimi K, Ruybal P. Leptospira spp., a genus in the stage of diversity and genomic data expansion. INFECTION GENETICS AND EVOLUTION 2020; 81:104241. [PMID: 32061688 DOI: 10.1016/j.meegid.2020.104241] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
Leptospirosis is a widespread global zoonotic bacterial disease with a noteworthy human-animal-ecosystem interface. The disease presents different clinical manifestations and a high mortality and morbidity rates in humans and animals throughout the world. Characterization and correct classification of Leptospira isolates is essential for a better understanding the epidemiological properties of the disease. In the last ten years, molecular typing tools have been developed and applied to this field. These methods together with the availability of hundreds of new whole genome sequences that belong to known and new described species are shaping the understanding and structure of the entire genus.
Collapse
Affiliation(s)
- K Caimi
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - P Ruybal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Paraguay 2155 Piso: 12, CABA 1121, Argentina
| |
Collapse
|
7
|
Chen HW, Lukas H, Becker K, Weissenberger G, Halsey ES, Guevara C, Canal E, Hall E, Maves RC, Tilley DH, Kuo L, Kochel TJ, Ching WM. An Improved Enzyme-Linked Immunoassay for the Detection of Leptospira-Specific Antibodies. Am J Trop Med Hyg 2018; 99:266-274. [PMID: 29943710 DOI: 10.4269/ajtmh.17-0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Leptospirosis is a neglected zoonotic disease with worldwide endemicity and continues to be a significant public health burden on resource-limited populations. Previously, we produced three highly purified recombinant antigens (rLipL32, rLipL41, and rLigA-Rep) and evaluated their performance of detecting Leptospira-specific antibodies in enzyme-linked immunosorbent assay (ELISA) as compared with the microscopic agglutination test (MAT). The overall sensitivity of this assay approached 90%. Recently, another recombinant antigen (rLigB-Rep) was prepared. We tested each individual antigen and a 1:1:1:1 mixture of these four antigens for the detection of Leptospira-specific antibodies in ELISA. The performance of these recombinant antigens was evaluated with a much larger febrile patient panel (337 MAT-confirmed positive sera and 92 MAT-negative sera from febrile patients). Combining the detection results of immunoglobulin M and immunoglobulin G from these four individual antigens, the overall sensitivity was close to 90% but the specificity was only 66%, based on the MAT reference method. The overall sensitivity and specificity of the four-antigen mixture were 82% and 86%, respectively. The mixture of four antigens also exhibited a broader reactivity with MAT-positive samples of 18 serovars from six major pathogenic Leptospira species. Given the limitations of MAT, the data were further analyzed by Bayesian latent class model, showing that ELISA using a 1:1:1:1 mixture still maintained high sensitivity (79%) and specificity (88%) as compared with the sensitivity (90%) and specificity (83%) of MAT. Therefore, ELISA using a mixture of these four antigens could be a very useful test for seroprevalence studies.
Collapse
Affiliation(s)
- Hua-Wei Chen
- Naval Medical Research Center, Silver Spring, Maryland
| | - Heather Lukas
- Naval Medical Research Center, Silver Spring, Maryland
| | - Kira Becker
- Naval Medical Research Center, Silver Spring, Maryland
| | | | | | | | | | - Eric Hall
- Naval Medical Research Center, Silver Spring, Maryland
| | - Ryan C Maves
- Naval Medical Center San Diego, San Diego, California.,Naval Medical Research Unit No. 6, Lima, Peru
| | | | - Lynn Kuo
- Department of Statistics, University of Connecticut, Storrs, Connecticut
| | | | - Wei-Mei Ching
- Naval Medical Research Center, Silver Spring, Maryland
| |
Collapse
|
8
|
Beriwal S, Padhiyar N, Bhatt D, Pandit PD, Ansari A, Lata KS, Saiyed ZM, Vaghasia V, Sharma P, Bhairappanavar SB, Soni S, Das J. LeptoDB: an integrated database of genomics and proteomics resource of Leptospira. Database (Oxford) 2018; 2018:5037030. [PMID: 29905762 PMCID: PMC6007218 DOI: 10.1093/database/bay057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/19/2018] [Accepted: 05/19/2018] [Indexed: 11/12/2022]
Abstract
Leptospirosis is a potentially fatal zoo-anthroponosis caused by pathogenic species of Leptospira belonging to the family of Leptospiraceae, with a worldwide distribution and effect, in terms of its burden and risk to human health. The 'LeptoDB' is a single window dedicated architecture (5 948 311 entries), modeled using heterogeneous data as a core resource for global Leptospira species. LeptoDB facilitates well-structured knowledge of genomics, proteomics and therapeutic aspects with more than 500 assemblies including 17 complete and 496 draft genomes encoding 1.7 million proteins for 23 Leptospira species with more than 250 serovars comprising pathogenic, intermediate and saprophytic strains. Also, it seeks to be a dynamic compendium for therapeutically essential components such as epitope, primers, CRISPR/Cas9 and putative drug targets. Integration of JBrowse provides elaborated locus centric description of sequence or contig. Jmol for structural visualization of protein structures, MUSCLE for interactive multiple sequence alignment annotation and analysis. The data on genomic islands will definitely provide an understanding of virulence and pathogenicity. Phylogenetics analysis integrated suggests the evolutionary division of strains. Easily accessible on a public web server, we anticipate wide use of this metadata on Leptospira for the development of potential therapeutics.Database URL: http://leptonet.org.in.
Collapse
Affiliation(s)
- Shruti Beriwal
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Nikhil Padhiyar
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Deven Bhatt
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Prabhakar D Pandit
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Afzal Ansari
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Kumari Snehkant Lata
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Zuber M Saiyed
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Vibhisha Vaghasia
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Priyanka Sharma
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Shivarudrappa B Bhairappanavar
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Subhash Soni
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Jayashankar Das
- Gujarat Biotechnology Research Centre, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| |
Collapse
|
9
|
[Differentiation of pathogenic leptospires spp by PCR of ligB gene and sequencing]. Rev Argent Microbiol 2017; 50:126-130. [PMID: 29066033 DOI: 10.1016/j.ram.2016.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 10/28/2016] [Accepted: 11/28/2016] [Indexed: 11/21/2022] Open
Abstract
Leptospirosis is a zoonosis having worldwide distribution. The objective of this work was to develop a molecular technique to differentiate pathogenic Leptospira spp. A region of adhesin ligB, present only in the pathogenic species was amplified by PCR and sequenced. ligBRpet and ligBFpet primers were used, which amplified the target DNA from pathogenic L. interrogans reference strains serovars Pomona strain Pomona, Canicola strain Hond Utrecht IV, Copenhageni strain M 20, Wolffi strain 3705, Pyrogenes strain Salinem, Hardjo strain Hardjoprajitmo, L. borgpetersenii serovar Castellonis strain Castellon 3 and 4 pathogenic strains isolated from bovines, pigs, rats and opossums. L. biflexa serovars Patoc strain Patoc I and Andamana strain Andamana were not amplified. Sequencing of the amplified products exhibited sufficient variation among serovars, which differentiates them.
Collapse
|
10
|
Benacer D, Zain SNM, Lewis JW, Khalid MKNM, Thong KL. A duplex endpoint PCR assay for rapid detection and differentiation of Leptospira strains. Rev Soc Bras Med Trop 2017; 50:239-242. [PMID: 28562762 DOI: 10.1590/0037-8682-0364-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/20/2016] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION: This study aimed to develop a duplex endpoint PCR assay for rapid detection and differentiation of Leptospira strains. METHODS: Primers were designed to target the rrs (LG1/LG2) and ligB (LP1/LP2) genes to confirm the presence of the Leptospira genus and the pathogenic species, respectively. RESULTS: The assay showed 100% specificity against 17 Leptospira strains with a limit of detection of 23.1pg/µl of leptospiral DNA and sensitivity of 103 leptospires/ml in both spiked urine and water. CONCLUSIONS: Our duplex endpoint PCR assay is suitable for rapid early detection of Leptospira with high sensitivity and specificity.
Collapse
Affiliation(s)
- Douadi Benacer
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Siti Nursheena Mohd Zain
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - John W Lewis
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, United Kingdom
| | | | - Kwai Lin Thong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Cosate MRV, Sakamoto T, de Oliveira Mendes TA, Moreira ÉC, Regis da Silva CG, Brasil BSAF, Oliveira CSF, de Azevedo VA, Ortega JM, Leite RC, Haddad JP. Molecular typing of Leptospira interrogans serovar Hardjo isolates from leptospirosis outbreaks in Brazilian livestock. BMC Vet Res 2017; 13:177. [PMID: 28619055 PMCID: PMC5471881 DOI: 10.1186/s12917-017-1081-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/30/2017] [Indexed: 12/16/2022] Open
Abstract
Background Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira spp. This zoonotic disease is distributed globally and affects domestic animals, including cattle. Leptospira interrogans serogroup Sejroe serovar Hardjo and Leptospira borgpetersenii serogroup Sejroe serovar Hardjo remain important species associated with this reproductive disease in livestock production. Previous studies on Brazilian livestock have reported that L. interrogans serovar Hardjo is the most prevalent leptospiral agent in this country and is related to clinical signs of leptospirosis, which lead to economic losses in production. Here, we described the isolation of three clinical strains (Norma, Lagoa and Bolivia) obtained from leptospirosis outbreaks that occurred in Minas Gerais state in 1994 and 2008. Results Serological and molecular typing using housekeeping (secY and 16SrRNA) and rfb locus (ORF22 and ORF36) genes were applied for the identification and comparative analysis of Leptospira spp. Our results identified the three isolates as L. interrogans serogroup Sejroe serovar Hardjo and confirmed the occurrence of this bacterial strain in Brazilian livestock. Genetic analysis using ORF22 and ORF36 grouped the Leptospira into serogroup Sejroe and subtype Hardjoprajitno. Genetic approaches were also applied to compare distinct serovars of L. interrogans strains by verifying the copy numbers of the IS1500 and IS1533 insertion sequences (ISs). The IS1500 copy number varied among the analyzed L. interrogans strains. Conclusion This study provides evidence that L. interrogans serogroup Sejroe serovar Hardjo subtype Hardjoprajitno causes bovine leptospirosis in Brazilian production. The molecular results suggested that rfb locus (ORF22 and ORF36) could improve epidemiological studies by allowing the identification of Leptospira spp. at the serogroup level. Additionally, the IS1500 and IS1533 IS copy number analysis suggested distinct genomic features among closely related leptospiral strains. Electronic supplementary material The online version of this article (doi:10.1186/s12917-017-1081-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Raquel V Cosate
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Tetsu Sakamoto
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Élvio C Moreira
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos G Regis da Silva
- Laboratório de Biologia Parasitária, Centro de Pesquisas Gonçalo Moniz- Fiocruz, Salvador, BA, Brazil
| | | | - Camila S F Oliveira
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vasco Ariston de Azevedo
- Universidade Federal de Minas Gerais, Departamento de Genética - Instituto de Ciências Biol'ogicas de Minas Gerais, Belo Horizonte, Brazil
| | - José Miguel Ortega
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rômulo C Leite
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Paulo Haddad
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
12
|
LigB subunit vaccine confers sterile immunity against challenge in the hamster model of leptospirosis. PLoS Negl Trop Dis 2017; 11:e0005441. [PMID: 28301479 PMCID: PMC5370146 DOI: 10.1371/journal.pntd.0005441] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/28/2017] [Accepted: 02/27/2017] [Indexed: 11/29/2022] Open
Abstract
Neglected tropical diseases, including zoonoses such as leptospirosis, have a major impact on rural and poor urban communities, particularly in developing countries. This has led to major investment in antipoverty vaccines that focus on diseases that influence public health and thereby productivity. While the true, global, impact of leptospirosis is unknown due to the lack of adequate laboratory diagnosis, the WHO estimates that incidence has doubled over the last 15 years to over 1 million cases that require hospitalization every year. Leptospirosis is caused by pathogenic Leptospira spp. and is spread through direct contact with infected animals, their urine or contaminated water and soil. Inactivated leptospirosis vaccines, or bacterins, are approved in only a handful of countries due to the lack of heterologous protection (there are > 250 pathogenic Leptospira serovars) and the serious side-effects associated with vaccination. Currently, research has focused on recombinant vaccines, a possible solution to these problems. However, due to a lack of standardised animal models, rigorous statistical analysis and poor reproducibility, this approach has met with limited success. We evaluated a subunit vaccine preparation, based on a conserved region of the leptospiral immunoglobulin-like B protein (LigB(131–645)) and aluminium hydroxide (AH), in the hamster model of leptospirosis. The vaccine conferred significant protection (80.0–100%, P < 0.05) against mortality in vaccinated animals in seven independent experiments. The efficacy of the LigB(131–645)/AH vaccine ranged from 87.5–100% and we observed sterile immunity (87.5–100%) among the vaccinated survivors. Significant levels of IgM and IgG were induced among vaccinated animals, although they did not correlate with immunity. A mixed IgG1/IgG2 subclass profile was associated with the subunit vaccine, compared to the predominant IgG2 profile seen in bacterin vaccinated hamsters. These findings suggest that LigB(131–645) is a vaccine candidate against leptospirosis with potential ramifications to public and veterinary health. Leptospirosis, also known as Weil’s disease, is spread by contact with infected animals or with water and soil containing pathogenic spirochaetes belonging to the Leptospira genus. Leptospirosis is a serious public health problem that can cause kidney failure, pulmonary complications and can be fatal. Due to its similarity to other tropical fevers, leptospirosis is difficult to diagnose. It occurs mainly in developing countries with tropical climates and the WHO considers it one of the most widespread zoonotic diseases in the world. Existing vaccines, known as bacterins, are not recommended for general use and cause serious side-effects. Advances in the field of leptospirosis research have identified leptospiral proteins for use in a recombinant vaccine. However, evaluations using animal models reported mixed success and this has raised doubts as to their usefulness. The current study reports, for the first time, the evaluation of a subunit vaccine that reproducibly protected hamsters against leptospirosis and that induced sterile immunity among survivors. Significant antibody levels were induced in vaccinated animals and the antibody profile was characterised and found to be different to that induced by a bacterin vaccine. These observations suggest that we have identified a potential vaccine candidate for human an animal leptospirosis.
Collapse
|
13
|
Grassmann AA, Souza JD, McBride AJA. A Universal Vaccine against Leptospirosis: Are We Going in the Right Direction? Front Immunol 2017; 8:256. [PMID: 28337203 PMCID: PMC5343615 DOI: 10.3389/fimmu.2017.00256] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/21/2017] [Indexed: 12/22/2022] Open
Abstract
Leptospirosis is the most widespread zoonosis in the world and a neglected tropical disease estimated to cause severe infection in more than one million people worldwide every year that can be combated by effective immunization. However, no significant progress has been made on the leptospirosis vaccine since the advent of bacterins over 100 years. Although protective against lethal infection, particularly in animals, bacterin-induced immunity is considered short term, serovar restricted, and the vaccine can cause serious side effects. The urgent need for a new vaccine has motivated several research groups to evaluate the protective immune response induced by recombinant vaccines. Significant protection has been reported with several promising outer membrane proteins, including LipL32 and the leptospiral immunoglobulin-like proteins. However, efficacy was variable and failed to induce a cross-protective response or sterile immunity among vaccinated animals. As hundreds of draft genomes of all known Leptospira species are now available, this should aid novel target discovery through reverse vaccinology (RV) and pangenomic studies. The identification of surface-exposed vaccine candidates that are highly conserved among infectious Leptospira spp. is a requirement for the development of a cross-protective universal vaccine. However, the lack of immune correlates is a major drawback to the application of RV to Leptospira genomes. In addition, as the protective immune response against leptospirosis is not fully understood, the rational use of adjuvants tends to be a process of trial and error. In this perspective, we discuss current advances, the pitfalls, and possible solutions for the development of a universal leptospirosis vaccine.
Collapse
Affiliation(s)
- André Alex Grassmann
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas , Pelotas , Brazil
| | - Jéssica Dias Souza
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas , Pelotas , Brazil
| | - Alan John Alexander McBride
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Ministry of Health, Salvador, Brazil
| |
Collapse
|
14
|
Fouts DE, Matthias MA, Adhikarla H, Adler B, Amorim-Santos L, Berg DE, Bulach D, Buschiazzo A, Chang YF, Galloway RL, Haake DA, Haft DH, Hartskeerl R, Ko AI, Levett PN, Matsunaga J, Mechaly AE, Monk JM, Nascimento ALT, Nelson KE, Palsson B, Peacock SJ, Picardeau M, Ricaldi JN, Thaipandungpanit J, Wunder EA, Yang XF, Zhang JJ, Vinetz JM. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira. PLoS Negl Trop Dis 2016; 10:e0004403. [PMID: 26890609 PMCID: PMC4758666 DOI: 10.1371/journal.pntd.0004403] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/03/2016] [Indexed: 12/20/2022] Open
Abstract
Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts.
Collapse
Affiliation(s)
- Derrick E. Fouts
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Michael A. Matthias
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Haritha Adhikarla
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Ben Adler
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Clayton, Australia
| | - Luciane Amorim-Santos
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Douglas E. Berg
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Dieter Bulach
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Alejandro Buschiazzo
- Institut Pasteur de Montevideo, Laboratory of Molecular and Structural Microbiology, Montevideo, Uruguay
- Institut Pasteur, Department of Structural Biology and Chemistry, Paris, France
| | - Yung-Fu Chang
- Department of Population Medicine & Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Renee L. Galloway
- Centers for Disease Control and Prevention (DHHS, CDC, OID, NCEZID, DHCPP, BSPB), Atlanta, Georgia, United States of America
| | - David A. Haake
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Daniel H. Haft
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rudy Hartskeerl
- WHO/FAO/OIE and National Collaborating Centre for Reference and Research on Leptospirosis, KIT Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, The Netherlands
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Paul N. Levett
- Government of Saskatchewan, Disease Control Laboratory Regina, Canada
| | - James Matsunaga
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Ariel E. Mechaly
- Institut Pasteur de Montevideo, Laboratory of Molecular and Structural Microbiology, Montevideo, Uruguay
| | - Jonathan M. Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Ana L. T. Nascimento
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, São Paulo, SP, Brazil
| | - Karen E. Nelson
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Sharon J. Peacock
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mathieu Picardeau
- Institut Pasteur, Biology of Spirochetes Unit, National Reference Centre and WHO Collaborating Center for Leptospirosis, Paris, France
| | - Jessica N. Ricaldi
- Instituto de Medicina Tropical Alexander von Humboldt; Facultad de Medicina Alberto Hurtado, Universidd Peruana Cayetano Heredia, Lima, Peru
| | | | - Elsio A. Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jun-Jie Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Instituto de Medicina Tropical Alexander von Humboldt; Facultad de Medicina Alberto Hurtado, Universidd Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina “Alexander von Humboldt,” Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
15
|
Grune Loffler S, Rago V, Martínez M, Uhart M, Florin-Christensen M, Romero G, Brihuega B. Isolation of a Seawater Tolerant Leptospira spp. from a Southern Right Whale (Eubalaena australis). PLoS One 2015; 10:e0144974. [PMID: 26714322 PMCID: PMC4700976 DOI: 10.1371/journal.pone.0144974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/26/2015] [Indexed: 01/21/2023] Open
Abstract
Leptospirosis is the most widespread zoonotic disease in the world. It is caused by pathogenic spirochetes of the genus Leptospira spp. and is maintained in nature through chronic renal infection of carrier animals. Rodents and other small mammals are the main reservoirs. Information on leptospirosis in marine mammals is scarce; however, cases of leptospirosis have been documented in pinniped populations from the Pacific coast of North America from southern California to British Columbia. We report the isolation of a Leptospira spp. strain, here named Manara, from a kidney sample obtained from a Southern Right Whale (Eubalaena australis) calf, which stranded dead in Playa Manara, Península Valdés, Argentina. This strain showed motility and morphology typical of the genus Leptospira spp. under dark-field microscopy; and grew in Ellinghausen-McCullough-Johnson-Harris (EMJH) medium and Fletcher medium after 90 days of incubation at 28°C. Considering the source of this bacterium, we tested its ability to grow in Fletcher medium diluted with seawater at different percentages (1%, 3%, 5%, 7% and 10% v/v). Bacterial growth was detected 48 h after inoculation of Fletcher medium supplemented with 5% sea water, demonstrating the halophilic nature of the strain Manara. Phylogenetic analysis of 16S rRNA gene sequences placed this novel strain within the radiation of the pathogenic species of the genus Leptospira spp., with sequence similarities within the range 97-100%, and closely related to L. interrogans. Two different PCR protocols targeting genus-specific pathogenic genes (G1-G2, B64I-B64II and LigB) gave positive results, which indicates that the strain Manara is likely pathogenic. Further studies are needed to confirm this possibility as well as determine its serogroup. These results could modify our understanding of the epidemiology of this zoonosis. Until now, the resistance and ability to grow in seawater for long periods of time had been proven for the strain Muggia of L. biflexa, a saprophytic species. To the best of our knowledge, this is the first isolation of a Leptospira sp. from cetaceans. Our phenotypic data indicate that strain Manara represents a novel species of the genus Leptospira, for which the name Leptospira brihuegai sp. nov. is proposed.
Collapse
Affiliation(s)
- Sylvia Grune Loffler
- Institute of Pathobiology, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
- National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Virginia Rago
- Institute of Ecology, Genetics and Evolution, National Research Council of Argentina (CONICET), University of Buenos Aires, Buenos Aires, Argentina
- Southern Right Whale Health Monitoring Program, Puerto Madryn, Chubut, Argentina
| | - Mara Martínez
- Institute of Pathobiology, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
| | - Marcela Uhart
- Southern Right Whale Health Monitoring Program, Puerto Madryn, Chubut, Argentina
- One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Monica Florin-Christensen
- Institute of Pathobiology, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
- National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Graciela Romero
- Institute of Pathobiology, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
| | - Bibiana Brihuega
- Institute of Pathobiology, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
16
|
Pappas CJ, Picardeau M. Control of Gene Expression in Leptospira spp. by Transcription Activator-Like Effectors Demonstrates a Potential Role for LigA and LigB in Leptospira interrogans Virulence. Appl Environ Microbiol 2015; 81:7888-92. [PMID: 26341206 PMCID: PMC4616954 DOI: 10.1128/aem.02202-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/01/2015] [Indexed: 12/16/2022] Open
Abstract
Leptospirosis is a zoonotic disease that affects ∼1 million people annually, with a mortality rate of >10%. Currently, there is an absence of effective genetic manipulation tools for targeted mutagenesis in pathogenic leptospires. Transcription activator-like effectors (TALEs) are a recently described group of repressors that modify transcriptional activity in prokaryotic and eukaryotic cells by directly binding to a targeted sequence within the host genome. To determine the applicability of TALEs within Leptospira spp., two TALE constructs were designed. First, a constitutively expressed TALE gene specific for the lacO-like region upstream of bgaL was trans inserted in the saprophyte Leptospira biflexa (the TALEβgal strain). Reverse transcriptase PCR (RT-PCR) analysis and enzymatic assays demonstrated that BgaL was not expressed in the TALEβgal strain. Second, to study the role of LigA and LigB in pathogenesis, a constitutively expressed TALE gene with specificity for the homologous promoter regions of ligA and ligB was cis inserted into the pathogen Leptospira interrogans (TALElig). LigA and LigB expression was studied by using three independent clones: TALElig1, TALElig2, and TALElig3. Immunoblot analysis of osmotically induced TALElig clones demonstrated 2- to 9-fold reductions in the expression levels of LigA and LigB, with the highest reductions being noted for TALElig1 and TALElig2, which were avirulent in vivo and nonrecoverable from animal tissues. This study reconfirms galactosidase activity in the saprophyte and suggests a role for LigA and LigB in pathogenesis. Collectively, this study demonstrates that TALEs are effective at reducing the expression of targeted genes within saprophytic and pathogenic strains of Leptospira spp., providing an additional genetic manipulation tool for this genus.
Collapse
Affiliation(s)
- Christopher J Pappas
- Institut Pasteur, Unité de Biologie des Spirochètes, Paris, France Manhattanville College, Department of Biology, Purchase, New York, USA
| | | |
Collapse
|
17
|
Abstract
We report herein the investigation of a leptospirosis outbreak occurring in triathlon competitors on Réunion Island, Indian Ocean. All participants were contacted by phone or email and answered a questionnaire. Detection and molecular characterization of pathogenic Leptospira was conducted in inpatients and in rodents trapped at the vicinity of the event. Of the 160 athletes competing, 101 (63·1%) agreed to participate in the study. Leptospirosis was biologically confirmed for 9/10 suspected cases either by real-time PCR or serological tests (MAT or ELISA). The total attack rate, children's attack rate, swimmers' attack rate, and the attack rate in adult swimmers were respectively estimated at 8·1% [95% confidence interval (CI) 4·3-14·7], 0%, 12·7% (95% CI 6·8-22·4) and 23·1% (95% CI 12·6-33·8). Leptospirosis cases reported significantly more wounds [risk ratio (RR) 4·5, 95% CI 1·6-13], wore complete neoprene suits less often (RR 4·3, 95% CI 1·3-14·5) and were most frequently unlicensed (RR 6·6, 95% CI 2·9-14·8). The epidemiological investigation supported that some measures such as the use of neoprene suits proved efficient in protecting swimmers against infection. PCR detection in rats revealed high Leptospira infection rates. Partial sequencing of the 16S gene and serology on both human and animal samples strongly suggests that rats were the main contaminators and were likely at the origin of the infection in humans.
Collapse
|
18
|
Naze F, Desvars A, Picardeau M, Bourhy P, Michault A. Use of a New High Resolution Melting Method for Genotyping Pathogenic Leptospira spp. PLoS One 2015; 10:e0127430. [PMID: 26154161 PMCID: PMC4496072 DOI: 10.1371/journal.pone.0127430] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 04/15/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Leptospirosis is a worldwide zoonosis that is endemic in tropical areas, such as Reunion Island. The species Leptospira interrogans is the primary agent in human infections, but other pathogenic species, such as L. kirschner and L. borgpetersenii, are also associated with human leptospirosis. METHODS AND FINDINGS In this study, a melting curve analysis of the products that were amplified with the primer pairs lfb1 F/R and G1/G2 facilitated an accurate species classification of Leptospira reference strains. Next, we combined an unsupervised high resolution melting (HRM) method with a new statistical approach using primers to amplify a two variable-number tandem-repeat (VNTR) for typing at the subspecies level. The HRM analysis, which was performed with ScreenClust Software, enabled the identification of genotypes at the serovar level with high resolution power (Hunter-Gaston index 0.984). This method was also applied to Leptospira DNA from blood samples that were obtained from Reunion Island after 1998. We were able to identify a unique genotype that is identical to that of the L. interrogans serovars Copenhageni and Icterohaemorrhagiae, suggesting that this genotype is the major cause of leptospirosis on Reunion Island. CONCLUSIONS Our simple, rapid, and robust genotyping method enables the identification of Leptospira strains at the species and subspecies levels and supports the direct genotyping of Leptospira in biological samples without requiring cultures.
Collapse
Affiliation(s)
- Florence Naze
- Department of Microbiology, CHU de La Reunion, Saint-Pierre, La Réunion, France
| | - Amélie Desvars
- Department of Microbiology, CHU de La Reunion, Saint-Pierre, La Réunion, France
| | - Mathieu Picardeau
- Unité de Biologie des Spirochètes, National Reference Center and WHO Collaborating Center for Leptospirosis, Institut Pasteur, Paris, France
| | - Pascale Bourhy
- Unité de Biologie des Spirochètes, National Reference Center and WHO Collaborating Center for Leptospirosis, Institut Pasteur, Paris, France
| | - Alain Michault
- Department of Microbiology, CHU de La Reunion, Saint-Pierre, La Réunion, France
- * E-mail:
| |
Collapse
|
19
|
Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:965-73. [PMID: 26108285 DOI: 10.1128/cvi.00285-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022]
Abstract
Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigA(C)) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigA(C), either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigA(C) or LigA(C) coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen.
Collapse
|
20
|
Abstract
The mechanisms of disease pathogenesis in leptospirosis are poorly defined. Recent developments in the application of genetic tools in the study of Leptospira have advanced our understanding by allowing the assessment of mutants in animal models. As a result, a small number of essential virulence factors have been identified, though most do not have a clearly defined function. Significant advances have also been made in the in vitro characterization of leptospiral interaction with host structures, including extracellular matrix proteins (such as laminin, elastin, fibronectin, collagens), proteins related to hemostasis (fibrinogen, plasmin), and soluble mediators of complement resistance (factor H, C4b-binding protein), although none of these in vitro findings has been translated to the host animal. Binding to host structures may permit colonization of the host, prevention of blood clotting may contribute to hemorrhage, while interaction with complement resistance mediators may contribute to survival in serum. While not a classical intracellular pathogen, the interaction of leptospires and phagocytic cells appears complex, with bacteria surviving uptake and promoting apoptosis; mutants relating to these processes (such as cell invasion and oxidative stress resistance) are attenuated in vivo. Another feature of leptospiral biology is the high degree of functional redundancy and the surprising lack of attenuation of mutants in what appear to be certain virulence factors, such as LipL32 and LigB. While many advances have been made, there remains a lack of understanding of how Leptospira causes tissue pathology. It is likely that leptospires have many novel pathogenesis mechanisms that are yet to be identified.
Collapse
|
21
|
Kitashoji E, Koizumi N, Lacuesta TLV, Usuda D, Ribo MR, Tria ES, Go WS, Kojiro M, Parry CM, Dimaano EM, Villarama JB, Ohnishi M, Suzuki M, Ariyoshi K. Diagnostic Accuracy of Recombinant Immunoglobulin-like Protein A-Based IgM ELISA for the Early Diagnosis of Leptospirosis in the Philippines. PLoS Negl Trop Dis 2015; 9:e0003879. [PMID: 26110604 PMCID: PMC4482399 DOI: 10.1371/journal.pntd.0003879] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/05/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Leptospirosis is an important but largely under-recognized public health problem in the tropics. Establishment of highly sensitive and specific laboratory diagnosis is essential to reveal the magnitude of problem and to improve treatment. This study aimed to evaluate the diagnostic accuracy of a recombinant LigA protein based IgM ELISA during outbreaks in the clinical-setting of a highly endemic country. METHODOLOGY/PRINCIPAL FINDINGS A prospective study was conducted from October 2011 to September 2013 at a national referral hospital for infectious diseases in Manila, Philippines. Patients who were hospitalized with clinically suspected leptospirosis were enrolled. Plasma and urine were collected on admission and/or at discharge and tested using the LigA-IgM ELISA and a whole cell-based IgM ELISA. Sensitivity and specificity of these tests were evaluated with cases diagnosed by microscopic agglutination test (MAT), culture and LAMP as the composite reference standard and blood bank donors as healthy controls: the mean+3 standard deviation optical density value of healthy controls was used as the cut-off limit (0.062 for the LigA-IgM ELISA and 0.691 for the whole cell-based IgM ELISA). Of 304 patients enrolled in the study, 270 (89.1%) were male and the median age was 30.5 years; 167 (54.9%) were laboratory confirmed. The sensitivity and ROC curve AUC for the LigA-IgM ELISA was significantly greater than the whole cell-based IgM ELISA (69.5% vs. 54.3%, p<0.01; 0.90 vs. 0.82, p<0.01) on admission, but not at discharge. The specificity of LigA-IgM ELISA and whole cell-based IgM ELISA were not significantly different (98% vs. 97%). Among 158 MAT negative patients, 53 and 28 were positive by LigA- and whole cell-based IgM ELISA, respectively; if the laboratory confirmation was re-defined by LigA-IgM ELISA and LAMP, the clinical findings were more characteristic of leptospirosis than the diagnosis based on MAT/culture/LAMP. CONCLUSIONS/SIGNIFICANCE The newly developed LigA-IgM ELISA is more sensitive than the whole cell-based IgM based ELISA. Although the final diagnosis must be validated by more specific tests, LigA-IgM ELISA could be a useful diagnostic test in a real clinical-setting, where diagnosis is needed in the early phase of infection.
Collapse
Affiliation(s)
- Emi Kitashoji
- Department of Clinical Tropical Medicine, Institute of Tropical Medicine, Nagasaki University Graduate School of Biomedical Science, Sakamoto, Nagasaki, Japan
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
- * E-mail: (NK); (KA)
| | | | - Daisuke Usuda
- Department of Clinical Tropical Medicine, Institute of Tropical Medicine, Nagasaki University Graduate School of Biomedical Science, Sakamoto, Nagasaki, Japan
- Department of Community Medicine, Kanazawa Medical University Himi Municipal Hospital, Himi City, Toyama, Japan
| | - Maricel R. Ribo
- San Lazaro Hospital, Santa Cruz, Manila, Republic of the Philippines
| | - Edith S. Tria
- San Lazaro Hospital, Santa Cruz, Manila, Republic of the Philippines
| | - Winston S. Go
- San Lazaro Hospital, Santa Cruz, Manila, Republic of the Philippines
| | - Maiko Kojiro
- Department of Infectious Diseases, Nagasaki University Hospital, Sakamoto, Nagasaki, Japan
| | - Christopher M. Parry
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki, Japan
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Efren M. Dimaano
- San Lazaro Hospital, Santa Cruz, Manila, Republic of the Philippines
| | - Jose B. Villarama
- San Lazaro Hospital, Santa Cruz, Manila, Republic of the Philippines
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Motoi Suzuki
- Department of Clinical Tropical Medicine, Institute of Tropical Medicine, Nagasaki University Graduate School of Biomedical Science, Sakamoto, Nagasaki, Japan
| | - Koya Ariyoshi
- Department of Clinical Tropical Medicine, Institute of Tropical Medicine, Nagasaki University Graduate School of Biomedical Science, Sakamoto, Nagasaki, Japan
- * E-mail: (NK); (KA)
| |
Collapse
|
22
|
Evolution of the RNase P RNA structural domain in Leptospira spp. Res Microbiol 2014; 165:813-25. [PMID: 25463388 DOI: 10.1016/j.resmic.2014.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/11/2014] [Accepted: 10/15/2014] [Indexed: 11/22/2022]
Abstract
We have employed the RNase P RNA (RPR) gene, which is present as single copy in chromosome I of Leptospira spp. to investigate the phylogeny of structural domains present in the RNA subunit of the tRNA processing enzyme, RNase P. RPR gene sequences of 150 strains derived from NCBI database along with sequences determined from 8 reference strains were examined to fathom strain specific structural differences present in leptospiral RPR. Sequence variations in the RPR gene impacted on the configuration of loops, stems and bulges found in the RPR highlighting species and strain specific structural motifs. In vitro transcribed leptospiral RPR ribozymes are demonstrated to process pre-tRNA into mature tRNA in consonance with the positioning of Leptospira in the taxonomic domain of bacteria. RPR sequence datasets used to construct a phylogenetic tree exemplified the segregation of strains into their respective lineages with a (re)speciation of strain SH 9 to Leptospira borgpetersenii, strains Fiocruz LV 3954 and Fiocruz LV 4135 to Leptospira santarosai, strain CBC 613 to Leptospira kirschneri and strain HAI 1536 to Leptospira noguchii. Furthermore, it allowed characterization of an isolate P2653, presumptively characterized as either serovar Hebdomadis, Kremastos or Longnan to Leptospira weilii, serovar Longnan.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW In the past years, the importance of studying leptospirosis in a translational context has become more evident. This review addresses recent findings in the study of leptospirosis infection, focusing on those applicable to public health, or that will affect management and diagnosis of cases of leptospirosis. RECENT FINDINGS We review here recent findings regarding translational aspects of leptospirosis research. Briefly, PCR or a combination of serology and PCR seem to have a higher sensitivity than the current gold standard (microagglutination test). More clinical trials are needed to determine the best treatment for mild and severe leptospirosis. Dendritic cells and γδ T cells seem to have an important role in the immune response to leptospirosis. Environmental assessment is emerging as a very useful tool. SUMMARY In order to understand leptospirosis, multiple aspects need to be considered, including host, pathogen and environment. In this review, we will address newer diagnostics, current advances in immunology and treatment and the growing role of environmental assessment.
Collapse
|
24
|
Loffler SG, Pavan ME, Vanasco B, Samartino L, Suarez O, Auteri C, Romero G, Brihuega B. Genotypes of pathogenic Leptospira spp isolated from rodents in Argentina. Mem Inst Oswaldo Cruz 2014; 109:163-7. [PMID: 24676656 PMCID: PMC4015264 DOI: 10.1590/0074-0276140295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/27/2013] [Indexed: 12/28/2022] Open
Abstract
Leptospirosis is the most widespread zoonosis in the world and significant efforts
have been made to determine and classify pathogenic Leptospira
strains. This zoonosis is maintained in nature through chronic renal
infections of carrier animals, with rodents and other small mammals serving as the
most important reservoirs. Additionally, domestic animals, such as livestock and
dogs, are significant sources of human infection. In this study, a
multiple-locus variable-number tandem repeat analysis (MLVA) was
applied to genotype 22 pathogenic Leptospira strains isolated from
urban and periurban rodent populations from different regions of Argentina. Three
MLVA profiles were identified in strains belonging to the species Leptospira
interrogans (serovars Icterohaemorrhagiae and Canicola); one profile was
observed in serovar Icterohaemorrhagiae and two MLVA profiles were observed in
isolates of serovars Canicola and Portlandvere. All strains belonging to
Leptospira borgpetersenii serovar Castellonis exhibited the same
MLVA profile. Four different genotypes were isolated from urban populations of
rodents, including both mice and rats and two different genotypes were isolated from
periurban populations.
Collapse
Affiliation(s)
- Sylvia Grune Loffler
- Laboratorio de Leptospirosis, Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria Castelar, Buenos Aires, Argentina
| | - Maria Elisa Pavan
- Laboratorio de Biología Molecular, Biochemiq SA, Buenos Aires, Argentina
| | - Bibiana Vanasco
- Instituto Nacional de Enfermedades Respiratorias Dr E Coni, Administración Nacional de Laboratorios e Institutos de Salud Dr Carlos G Malbrán, Santa Fe, Argentina
| | - Luis Samartino
- Laboratorio de Leptospirosis, Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria Castelar, Buenos Aires, Argentina
| | - Olga Suarez
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Naturales y Exactas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carmelo Auteri
- Laboratorio de Leptospirosis, Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria Castelar, Buenos Aires, Argentina
| | - Graciela Romero
- Laboratorio de Leptospirosis, Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria Castelar, Buenos Aires, Argentina
| | - Bibiana Brihuega
- Laboratorio de Leptospirosis, Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria Castelar, Buenos Aires, Argentina
| |
Collapse
|
25
|
Abstract
Aeromonas species are inhabitants of aquatic environments and are able to cause disease in humans and fish among other animals. In aquaculture, they are responsible for the economically important diseases of furunculosis and motile Aeromonas septicaemia (MAS). Whereas gastroenteritis and wound infections are the major human diseases associated with the genus. As they inhabit and survive in diverse environments, aeromonads possess a wide range of colonisation factors. The motile species are able to swim in liquid environments through the action of a single polar flagellum, the flagellin subunits of which are glycosylated; although essential for function the biological role of glycan addition is yet to be determined. Approximately 60% of aeromonads possess a second lateral flagella system that is expressed in viscous environments for swarming over surfaces; both flagellar systems have been shown to be important in the initial colonisation of surfaces. Subsequently, other non-flagellar colonisation factors are employed; these can be both filamentous and non-filamentous. The aeromonads possess a number of fimbrial systems with the bundle-forming MSHA type IV pilus system, having a major role in human cell adherence. Furthermore, a series of outer-membrane proteins have also been implicated in the aeromonad adhesion process. A number of strains are also capable of cell invasion and that maybe linked with the more invasive diseases of bacteraemia or wound infections. These strains employ cell surface factors that allow the colonisation of these niches that protect them from the host's immune system such as S-layers, capsules or particular lipopolysaccharides.
Collapse
Affiliation(s)
- Rebecca Lowry
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Sabela Balboa
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom; Departamento de Microbiología y Parasitología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jennifer L Parker
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
26
|
Balamurugan V, Gangadhar NL, Mohandoss N, Thirumalesh SRA, Dhar M, Shome R, Krishnamoorthy P, Prabhudas K, Rahman H. Characterization of leptospira isolates from animals and humans: phylogenetic analysis identifies the prevalence of intermediate species in India. SPRINGERPLUS 2013; 2:362. [PMID: 23961424 PMCID: PMC3736078 DOI: 10.1186/2193-1801-2-362] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/29/2013] [Indexed: 11/10/2022]
Abstract
In this study, 191 culture isolates were recovered from suspected samples of animals and humans in Ellinghausen McCullough Johnson and Harris (EMJH) medium and assessed for its morphological features by dark field microscopy. Extracted DNA from individual culture was subjected to different PCR assays for identification and characterization of leptospira. Out of 99 positive leptospira cultures, 52 pathogenic leptospira isolates were characterized at species level by using partial RNA polymerase β-subunit (rpoB) gene sequences. Phylogenetic analysis of the nucleotide sequences revealed that 30, 8, and 14 isolates belong to L. borgpetersenii / L. interrogans, L. kirschneri, and Leptospira intermediate species, respectively. Based on analysis of 99 leptospira isolates, the prevalent Leptospira species were L. borgpetersenii or L. interrogans (30.30%), L. kirschneri (8%) and Leptospira intermediate species (14.14%) in animals and humans. To the best of authors knowledge, this is the first study to use rpoB gene nucleotide sequence based phylogenetic analysis to identify/detect Leptospira intermediate species (L. wolffii) in animals and humans in India. Hence, the prevalence of this species will surely emphasize the importance of consideration of Leptospira intermediate species and formulate a way for further studies especially in understanding the newly emerging Leptospira in animals and humans and to combat the problem associated with the disease conditions.
Collapse
Affiliation(s)
- Vinayagamurthy Balamurugan
- Project Directorate on Animal Disease Monitoring and Surveillance (PD_ADMAS), Hebbal, HA Farm Post, Bengaluru, 560 024 Karnataka India
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Djelouadji Z, Roux V, Raoult D, Kodjo A, Drancourt M. Rapid MALDI-TOF mass spectrometry identification of Leptospira organisms. Vet Microbiol 2012; 158:142-6. [PMID: 22386673 DOI: 10.1016/j.vetmic.2012.01.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/19/2012] [Accepted: 01/26/2012] [Indexed: 01/02/2023]
Abstract
Leptospirosis is a worldwide deadly zoonotic disease. Accurate identification of the causative Leptospira spp. spirochetes ascertains the pathogenic status of the isolates, identifies potential source of infection and recognises outbreaks. Species identification is currently based on technically demanding, time and resources consuming serological and molecular methods. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) recently emerged as a first-line method for the accurate identification of bacteria, yet no data issued for Leptospira spp. We investigated the potential of MALDI-TOF-MS for the rapid identification of Leptospira isolates. Starting from a 10(5)organisms/mL suspension, MALDI-TOF-MS yielded an unique protein profile for each one of 19 Leptospira species reference isolates with a 100% reproducibility over 12 repeats, allowing to create a Leptopsira database. MALDI-TOF-MS further accurately identified 20/21 additional reference isolates representative of various serogroups at the species level as Leptospira interrogans (n=12), Leptospira kirschneri (n=5), Leptospira borgpetersenii (n=3), Leptospira noguchii (n=1) with identification score value of 2-2.5. Furthermore, six clinical isolates previously identified by rpoB sequencing, were correctly identified by MALDI-TOF-MS as L. interrogans (n=5) and L. borgpetersenii (n=1) with identification score value of 2-2.6. Identification was achieved in 40 min starting from the Leptospira suspension. MALDI-TOF-MS could complement serological and sequencing-based methods for the first line, rapid identification of Leptospira isolates in the clinical microbiology laboratory.
Collapse
Affiliation(s)
- Zoheira Djelouadji
- UMR1233 INRA, Equipe PERS, Etablissement VetAgro Sup, Campus Lyon, France.
| | | | | | | | | |
Collapse
|
28
|
Dellagostin OA, Grassmann AA, Hartwig DD, Félix SR, da Silva ÉF, McBride AJA. Recombinant vaccines against leptospirosis. HUMAN VACCINES 2011; 7:1215-24. [PMID: 22048111 DOI: 10.4161/hv.7.11.17944] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leptospirosis is an important neglected infectious disease that occurs in urban environments, as well as in rural regions worldwide. Rodents, the principal reservoir hosts of pathogenic Leptospira spp., and other infected animals shed the bacteria in their urine. During occupational or even recreational activities, humans that come into direct contact with infected animals or with a contaminated environment, particularly water, are at risk of infection. Prevention of urban leptospirosis is largely dependent on sanitation measures that are often difficult to implement, especially in developing countries. Vaccination with inactivated whole-cell preparations (bacterins) has limited efficacy due to the wide antigenic variation of the pathogen. Intensive efforts towards developing improved recombinant vaccines are ongoing. During the last decade, many reports on the evaluation of recombinant vaccines have been published. Partial success has been obtained with some surface-exposed protein antigens. The combination of protective antigens and new adjuvants or delivery systems may result in the much-needed effective vaccine.
Collapse
Affiliation(s)
- Odir A Dellagostin
- Unidade de Biotecnologia, Centro de Desenvolvimento Tecnológico, Salvador, BA, Brazil.
| | | | | | | | | | | |
Collapse
|
29
|
Ahmed A, Thaipadungpanit J, Boonsilp S, Wuthiekanun V, Nalam K, Spratt BG, Aanensen DM, Smythe LD, Ahmed N, Feil EJ, Hartskeerl RA, Peacock SJ. Comparison of two multilocus sequence based genotyping schemes for Leptospira species. PLoS Negl Trop Dis 2011; 5:e1374. [PMID: 22087342 PMCID: PMC3210738 DOI: 10.1371/journal.pntd.0001374] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 09/13/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Several sequence based genotyping schemes have been developed for Leptospira spp. The objective of this study was to genotype a collection of clinical and reference isolates using the two most commonly used schemes and compare and contrast the results. METHODS AND FINDINGS A total of 48 isolates consisting of L. interrogans (n = 40) and L. kirschneri (n = 8) were typed by the 7 locus MLST scheme described by Thaipadungpanit et al., and the 6 locus genotyping scheme described by Ahmed et al., (termed 7L and 6L, respectively). Two L. interrogans isolates were not typed using 6L because of a deletion of three nucleotides in lipL32. The remaining 46 isolates were resolved into 21 sequence types (STs) by 7L, and 30 genotypes by 6L. Overall nucleotide diversity (based on concatenated sequence) was 3.6% and 2.3% for 7L and 6L, respectively. The D value (discriminatory ability) of 7L and 6L were comparable, i.e. 92.0 (95% CI 87.5-96.5) vs. 93.5 (95% CI 88.6-98.4). The dN/dS ratios calculated for each locus indicated that none were under positive selection. Neighbor joining trees were reconstructed based on the concatenated sequences for each scheme. Both trees showed two distinct groups corresponding to L. interrogans and L. kirschneri, and both identified two clones containing 10 and 7 clinical isolates, respectively. There were six instances in which 6L split single STs as defined by 7L into closely related clusters. We noted two discrepancies between the trees in which the genetic relatedness between two pairs of strains were more closely related by 7L than by 6L. CONCLUSIONS This genetic analysis indicates that the two schemes are comparable. We discuss their practical advantages and disadvantages.
Collapse
Affiliation(s)
- Ahmed Ahmed
- WHO/FAO/OIE and National Collaborating Centre for Reference and Research on Leptospirosis, Department of Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cerqueira GM, Souza NM, Araújo ER, Barros AT, Morais ZM, Vasconcellos SA, Nascimento ALTO. Development of transcriptional fusions to assess Leptospira interrogans promoter activity. PLoS One 2011; 6:e17409. [PMID: 21445252 PMCID: PMC3060810 DOI: 10.1371/journal.pone.0017409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/31/2011] [Indexed: 11/29/2022] Open
Abstract
Background Leptospirosis is a zoonotic infectious disease that affects both humans and animals. The existing genetic tools for Leptospira spp. have improved our understanding of the biology of this spirochete as well as the interaction of pathogenic leptospires with the mammalian host. However, new tools are necessary to provide novel and useful information to the field. Methodology and Principal Findings A series of promoter-probe vectors carrying a reporter gene encoding green fluorescent protein (GFP) were constructed for use in L. biflexa. They were tested by constructing transcriptional fusions between the lipL41, Leptospiral Immunoglobulin-like A (ligA) and Sphingomielynase 2 (sph2) promoters from L. interrogans and the reporter gene. ligA and sph2 promoters were the most active, in comparison to the lipL41 promoter and the non-induced controls. The results obtained are in agreement with LigA expression from the L. interrogans Fiocruz L1-130 strain. Conclusions The novel vectors facilitated the in vitro evaluation of L. interrogans promoter activity under defined growth conditions which simulate the mammalian host environment. The fluorescence and rt-PCR data obtained closely reflected transcriptional regulation of the promoters, thus demonstrating the suitability of these vectors for assessing promoter activity in L. biflexa.
Collapse
|
31
|
Perez J, Goarant C. Rapid Leptospira identification by direct sequencing of the diagnostic PCR products in New Caledonia. BMC Microbiol 2010; 10:325. [PMID: 21176235 PMCID: PMC3022709 DOI: 10.1186/1471-2180-10-325] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 12/22/2010] [Indexed: 11/13/2022] Open
Abstract
Background Most of the current knowledge of leptospirosis epidemiology originates from serological results obtained with the reference Microscopic Agglutination Test (MAT). However, inconsistencies and weaknesses of this diagnostic technique are evident. A growing use of PCR has improved the early diagnosis of leptospirosis but a drawback is that it cannot provide information on the infecting Leptospira strain which provides important epidemiologic data. Our work is aimed at evaluating if the sequence polymorphism of diagnostic PCR products could be used to identify the infecting Leptospira strains in the New Caledonian environment. Results Both the lfb1 and secY diagnostic PCR products displayed a sequence polymorphism that could prove useful in presumptively identifying the infecting leptospire. Using both this polymorphism and MLST results with New Caledonian isolates and clinical samples, we confirmed the epidemiological relevance of the sequence-based identification of Leptospira strains. Additionally, we identified one cluster of L. interrogans that contained no reference strain and one cluster of L. borgpetersenii found only in the introduced Rusa deer Cervus timorensis russa that is its probable reservoir. Conclusions The sequence polymorphism of diagnostic PCR products proved useful in presumptively identifying the infecting Leptospira strains. This could contribute to a better understanding of leptospirosis epidemiology by providing epidemiological information that cannot be directly attained from the use of PCR as an early diagnostic test for leptospirosis.
Collapse
Affiliation(s)
- Julie Perez
- Institut Pasteur de Nouvelle-Calédonie, Réseau International des Instituts Pasteur, Laboratoire de Recherche en Bactériologie, BP61, 98845 Nouméa cedex, New Caledonia
| | | |
Collapse
|
32
|
Xue F, Dong H, Wu J, Wu Z, Hu W, Sun A, Troxell B, Yang XF, Yan J. Transcriptional responses of Leptospira interrogans to host innate immunity: significant changes in metabolism, oxygen tolerance, and outer membrane. PLoS Negl Trop Dis 2010; 4:e857. [PMID: 21049008 PMCID: PMC2964297 DOI: 10.1371/journal.pntd.0000857] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/27/2010] [Indexed: 12/31/2022] Open
Abstract
Background Leptospira interrogans is the major causative agent of leptospirosis. Phagocytosis plays important roles in the innate immune responses to L. interrogans infection, and L. interrogans can evade the killing of phagocytes. However, little is known about the adaptation of L. interrogans during this process. Methodology/Principal Findings To better understand the interaction of pathogenic Leptospira and innate immunity, we employed microarray and comparative genomics analyzing the responses of L. interrogans to macrophage-derived cells. During this process, L. interrogans altered expressions of many genes involved in carbohydrate and lipid metabolism, energy production, signal transduction, transcription and translation, oxygen tolerance, and outer membrane proteins. Among them, the catalase gene expression was significantly up-regulated, suggesting it may contribute to resisting the oxidative pressure of the macrophages. The expressions of several major outer membrane protein (OMP) genes (e.g., ompL1, lipL32, lipL41, lipL48 and ompL47) were dramatically down-regulated (10–50 folds), consistent with previous observations that the major OMPs are differentially regulated in vivo. The persistent down-regulations of these major OMPs were validated by immunoblotting. Furthermore, to gain initial insight into the gene regulation mechanisms in L. interrogans, we re-defined the transcription factors (TFs) in the genome and identified the major OmpR TF gene (LB333) that is concurrently regulated with the major OMP genes, suggesting a potential role of LB333 in OMPs regulation. Conclusions/Significance This is the first report on global responses of pathogenic Leptospira to innate immunity, which revealed that the down-regulation of the major OMPs may be an immune evasion strategy of L. interrogans, and a putative TF may be involved in governing these down-regulations. Alterations of the leptospiral OMPs up interaction with host antigen-presenting cells (APCs) provide critical information for selection of vaccine candidates. In addition, genome-wide annotation and comparative analysis of TFs set a foundation for further studying regulatory networks in Leptospira spp. Leptospirosis is an important tropical disease around the world, particularly in humid tropical and subtropical countries. As a major pathogen of this disease, Leptospira interrogans can be shed from the urine of reservoir hosts, survive in soil and water, and infect humans through broken skin or mucous membranes. Recently, host adaptability and immune evasion of L. interrogans to host innate immunity was partially elucidated in infection or animal models. A better understanding of the molecular mechanisms of L. interrogans in response to host innate immunity is required to learn the nature of early leptospirosis. This study focused on the transcriptome of L. interrogans during host immune cells interaction. Significant changes in energy metabolism, oxygen tolerance and outer membrane protein profile were identified as potential immune evasion strategies by pathogenic Leptospira during the early stage of infection. The major outer membrane proteins (OMPs) of L. interrogans may be regulated by the major OmpR specific transcription factor (LB333). These results provide a foundation for further studying the pathogenesis of leptospirosis, as well as identifying gene regulatory networks in Leptospira spp.
Collapse
Affiliation(s)
- Feng Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Medical College, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyan Dong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Medical College, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyu Wu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Institute of Biomedical Informatics, Wenzhou Medical College, Wenzhou, China
| | - Zuowei Wu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Weilin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Medical College, Zhejiang University School of Medicine, Hangzhou, China
| | - Aihua Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Medical College, Zhejiang University School of Medicine, Hangzhou, China
| | - Bryan Troxell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jie Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
- Department of Medical Microbiology and Parasitology, Medical College, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail:
| |
Collapse
|
33
|
Cerqueira GM, McBride AJA, Hartskeerl RA, Ahmed N, Dellagostin OA, Eslabão MR, Nascimento ALTO. Bioinformatics describes novel Loci for high resolution discrimination of leptospira isolates. PLoS One 2010; 5:e15335. [PMID: 21124728 PMCID: PMC2955542 DOI: 10.1371/journal.pone.0015335] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 08/09/2010] [Indexed: 11/19/2022] Open
Abstract
Background Leptospirosis is one of the most widespread zoonoses in the world and with over 260 pathogenic serovars there is an urgent need for a molecular system of classification. The development of multilocus sequence typing (MLST) schemes for Leptospira spp. is addressing this issue. The aim of this study was to identify loci with potential to enhance Leptospira strain discrimination by sequencing-based methods. Methodology and Principal Findings We used bioinformatics to evaluate pre-existing loci with the potential to increase the discrimination of outbreak strains. Previously deposited sequence data were evaluated by phylogenetic analyses using either single or concatenated sequences. We identified and evaluated the applicability of the ligB, secY, rpoB and lipL41 loci, individually and in combination, to discriminate between 38 pathogenic Leptospira strains and to cluster them according to the species they belonged to. Pairwise identity among the loci ranged from 82.0–92.0%, while interspecies identity was 97.7–98.5%. Using the ligB-secY-rpoB-lipL41 superlocus it was possible to discriminate 34/38 strains, which belong to six pathogenic Leptospira species. In addition, the sequences were concatenated with the superloci from 16 sequence types from a previous MLST scheme employed to study the association of a leptospiral clone with an outbreak of human leptospirosis in Thailand. Their use enhanced the discriminative power of the existing scheme. The lipL41 and rpoB loci raised the resolution from 81.0–100%, but the enhanced scheme still remains limited to the L. interrogans and L. kirschneri species. Conclusions As the first aim of our study, the ligB-secY-rpoB-lipL41 superlocus demonstrated a satisfactory level of discrimination among the strains evaluated. Second, the inclusion of the rpoB and lipL41 loci to a MLST scheme provided high resolution for discrimination of strains within L. interrogans and L. kirschneri and might be useful in future epidemiological studies.
Collapse
|
34
|
Bourhy P, Collet L, Clément S, Huerre M, Ave P, Giry C, Pettinelli F, Picardeau M. Isolation and characterization of new Leptospira genotypes from patients in Mayotte (Indian Ocean). PLoS Negl Trop Dis 2010; 4:e724. [PMID: 20582311 PMCID: PMC2889827 DOI: 10.1371/journal.pntd.0000724] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 04/30/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Leptospirosis has been implicated as a severe and fatal form of disease in Mayotte, a French-administrated territory located in the Comoros archipelago (southwestern Indian Ocean). To date, Leptospira isolates have never been isolated in this endemic region. METHODS AND FINDINGS Leptospires were isolated from blood samples from 22 patients with febrile illness during a 17-month period after a PCR-based screening test was positive. Strains were typed using hyper-immune antisera raised against the major Leptospira serogroups: 20 of 22 clinical isolates were assigned to serogroup Mini; the other two strains belonged to serogroups Grippotyphosa and Pyrogenes, respectively. These isolates were further characterized using partial sequencing of 16S rRNA and ligB gene, Multi Locus VNTR Analysis (MLVA), and pulsed field gel electrophoresis (PFGE). Of the 22 isolates, 14 were L. borgpetersenii strains, 7 L. kirschneri strains, and 1, belonging to serogoup Pyrogenes, was L. interrogans. Results of the genotyping methods were consistent. MLVA defined five genotypes, whereas PFGE allowed the recognition of additional subgroups within the genotypes. PFGE fingerprint patterns of clinical strains did not match any of the patterns in the reference strains belonging to the same serogroup, suggesting that the strains were novel serovars. CONCLUSIONS Preliminary PCR screening of blood specimen allowed a high isolation frequency of leptospires among patients with febrile illness. Typing of leptospiral isolates showed that causative agents of leptospirosis in Mayotte have unique molecular features.
Collapse
Affiliation(s)
- Pascale Bourhy
- Unité de Biologie des Spirochètes, Institut Pasteur, Paris, France
| | | | - Sabine Clément
- Unité de Biologie des Spirochètes, Institut Pasteur, Paris, France
| | - Michel Huerre
- Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Institut Pasteur, Paris, France
| | - Patrick Ave
- Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Institut Pasteur, Paris, France
| | - Claude Giry
- Centre Hospitalier de Mayotte, Mayotte, France
| | | | - Mathieu Picardeau
- Unité de Biologie des Spirochètes, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
35
|
Ahmed A, Anthony RM, Hartskeerl RA. A simple and rapid molecular method for Leptospira species identification. INFECTION GENETICS AND EVOLUTION 2010; 10:955-62. [PMID: 20547247 DOI: 10.1016/j.meegid.2010.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/28/2010] [Accepted: 06/02/2010] [Indexed: 11/30/2022]
Abstract
Serological and DNA-based classification systems only have little correlation. Currently serological and molecular methods for characterizing Leptospira are complex and costly restricting their world-wide distribution and use. Ligation mediated amplification combined with microarray analysis avoids many of these drawbacks. We demonstrated that this approach used in the Check-Points (CP) assay can successfully applied for the generic detection of Leptospira and can discriminate between saprophytic, intermediate and pathogenic species. In addition, the CP assay could unambiguously detect strains of seven pathogenic species and revealed discrepancies in previous speciation and culture collections. The method provides a valuable tool adding to the molecular study of leptospires and their local and global distribution.
Collapse
Affiliation(s)
- Ahmed Ahmed
- WHO/FAO/OIE and National Collaborating Centre for Reference and Research on Leptospirosis, Department of Biomedical Research, Royal Tropical Institute (KIT), Meibergdreef 39, 1105 AZ Amsterdam, The Netherlands
| | | | | |
Collapse
|
36
|
Eslabão MR, Dellagostin OA, Cerqueira GM. LepBank: a Leptospira sequence repository and a portal for phylogenetic studies. INFECTION GENETICS AND EVOLUTION 2010; 10:586-90. [PMID: 20215003 DOI: 10.1016/j.meegid.2010.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/20/2010] [Accepted: 02/26/2010] [Indexed: 11/30/2022]
Abstract
Leptospirosis is a neglected infectious disease that constitutes a threat to both humans and animals. Comprehension about the epidemiological behavior and population dynamics of Leptospira may be helpful for the development of control measures. Thus, an effort was made to organize leptospiral sequences in a new and specific database. In addition, online bioinformatics tools were clustered in a web portal to facilitate sequences manipulation by scientists. LepBank (http://.lepbank.ufpel.edu.br) is a Leptospira sequences repository and a suite for systematics, which brings simplicity to leptospirosis research, integrating sophisticated online programs to a sequence database. We intend the database to be useful for the leptospirosis scientific community, providing standardized and high quality information and facilitating research into key aspects of the Leptospira taxonomy and phylogeny.
Collapse
Affiliation(s)
- Marcus R Eslabão
- Centro de Biotecnologia, Universidade Federal de Pelotas, 96010900 Pelotas, RS, Brazil
| | | | | |
Collapse
|
37
|
Cerqueira GM, McBride AJA, Queiroz A, Pinto LS, Silva EF, Hartskeerl RA, Reis MG, Ko AI, Dellagostin OA. Monitoring Leptospira strain collections: the need for quality control. Am J Trop Med Hyg 2010; 82:83-7. [PMID: 20065000 PMCID: PMC2803514 DOI: 10.4269/ajtmh.2010.09-0558] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 10/26/2009] [Indexed: 11/07/2022] Open
Abstract
The purpose of this study was to perform a 16S sequence-based quality control of two Leptospira strain collections. 16S rRNA gene sequencing was used to verify two Leptospira reference collections provided by the World Health Organization and maintained at a reference laboratory for leptospirosis in Brazil. Among the 89 serovars evaluated, four conflicting strains were identified in one of the collections. Although 16S rRNA gene sequencing cannot identify Leptospira beyond the species level, it is suitable for the identification of contamination and quality control of leptospiral reference collections. This study highlights the importance of the availability of high-quality 16S rRNA sequences in public databases. In addition, it emphasizes the need for periodical verifications and quality control of Leptospira reference collections.
Collapse
|
38
|
Chagas-Junior AD, McBride AJA, Athanazio DA, Figueira CP, Medeiros MA, Reis MG, Ko AI, McBride FWC. An imprint method for detecting leptospires in the hamster model of vaccine-mediated immunity for leptospirosis. J Med Microbiol 2009; 58:1632-1637. [PMID: 19679685 PMCID: PMC2887544 DOI: 10.1099/jmm.0.014050-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/10/2009] [Indexed: 11/18/2022] Open
Abstract
In determining the efficacy of new vaccine candidates for leptospirosis, the primary end point is death and an important secondary end point is sterilizing immunity. However, evaluation of this end point is often hampered by the time-consuming demands and complexity of methods such as culture isolation (CI). In this study, we evaluated the use of an imprint (or touch preparation) method (IM) in detecting the presence of leptospires in tissues of hamsters infected with Leptospira interrogans serovar Copenhageni. In a dissemination study, compared to CI, the IM led to equal or improved detection of leptospires in kidney, liver, lung and blood samples collected post-infection and overall concordance was good (kappa=0.61). Furthermore, in an evaluation of hamsters immunized with a recombinant leptospiral protein-based vaccine candidate and subsequently challenged, the agreement between the CI and IM was very good (kappa=0.84). These findings indicate that the IM is a rapid method for the direct observation of Leptospira spp. that can be readily applied to evaluating infection in experimental animals and determining sterilizing immunity when screening potential vaccine candidates.
Collapse
Affiliation(s)
- Adenizar D. Chagas-Junior
- Gonçalo Moniz Research Centre, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, BA, Brazil
| | - Alan J. A. McBride
- Gonçalo Moniz Research Centre, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, BA, Brazil
| | - Daniel A. Athanazio
- Gonçalo Moniz Research Centre, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, BA, Brazil
- Department of Biointeraction, Health Sciences Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Cláudio P. Figueira
- Gonçalo Moniz Research Centre, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, BA, Brazil
| | - Marco A. Medeiros
- Bio-Manguinhos, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Rio de Janeiro, RJ, Brazil
| | - Mitermayer G. Reis
- Gonçalo Moniz Research Centre, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, BA, Brazil
| | - Albert I. Ko
- Gonçalo Moniz Research Centre, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, BA, Brazil
- Division of Infectious Diseases, Weill Medical College of Cornell University, NY, USA
| | - Flávia W. C. McBride
- Gonçalo Moniz Research Centre, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, BA, Brazil
- Department of Biointeraction, Health Sciences Institute, Federal University of Bahia, Salvador, BA, Brazil
| |
Collapse
|
39
|
A century of Leptospira strain typing. INFECTION GENETICS AND EVOLUTION 2009; 9:760-8. [DOI: 10.1016/j.meegid.2009.06.009] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
|