1
|
Assandri MH, Malamud M, Trejo FM, Serradell MDLA. S-layer proteins as immune players: tales from pathogenic and non-pathogenic bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100187. [PMID: 37064268 PMCID: PMC10102220 DOI: 10.1016/j.crmicr.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
In bacteria, as in other microorganisms, surface compounds interact with different pattern recognition receptors expressed by host cells, which usually triggers a variety of cellular responses that result in immunomodulation. The S-layer is a two-dimensional macromolecular crystalline structure formed by (glyco)-protein subunits that covers the surface of many species of Bacteria and almost all Archaea. In Bacteria, the presence of S-layer has been described in both pathogenic and non-pathogenic strains. As surface components, special attention deserves the role that S-layer proteins (SLPs) play in the interaction of bacterial cells with humoral and cellular components of the immune system. In this sense, some differences can be predicted between pathogenic and non-pathogenic bacteria. In the first group, the S-layer constitutes an important virulence factor, which in turn makes it a potential therapeutic target. For the other group, the growing interest to understand the mechanisms of action of commensal microbiota and probiotic strains has prompted the studies of the role of the S-layer in the interaction between the host immune cells and bacteria bearing this surface structure. In this review, we aim to summarize the main latest reports and the perspectives of bacterial SLPs as immune players, focusing on those from pathogenic and commensal/probiotic most studied species.
Collapse
|
2
|
Chandra H, Kovall RA, Yadav JS, Sun X. Host Immune Responses to Surface S-Layer Proteins (SLPs) of Clostridioides difficile. Microorganisms 2023; 11:380. [PMID: 36838345 PMCID: PMC9963625 DOI: 10.3390/microorganisms11020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Clostridioides difficile, a nosocomial pathogen, is an emerging gut pathobiont causing antibiotic-associated diarrhea. C. difficile infection involves gut colonization and disruption of the gut epithelial barrier, leading to the induction of inflammatory/immune responses. The expression of two major exotoxins, TcdA and TcdB is the major cause of C. difficile pathogenicity. Attachment of bacterial abundant cell wall proteins or surface S-layer proteins (SLPs) such as SlpA with host epithelial cells is critical for virulence. In addition to being toxins, these surface components have been shown to be highly immunogenic. Recent studies indicate that C. difficile SLPs play important roles in the adhesion of the bacteria to the intestinal epithelial cells, disruption of tight junctions, and modulation of the immune response of the host cells. These proteins might serve as new targets for vaccines and new therapeutic agents. This review summarizes our current understanding of the immunological role of SLPs in inducing host immunity and their use in the development of vaccines and novel therapeutics to combat C. difficile infection.
Collapse
Affiliation(s)
- Harish Chandra
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, UP, India
- Department of Molecular and Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rhett A. Kovall
- Department of Molecular and Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jagjit S. Yadav
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Frankel LR, Ardeljan A, Obaed NG, Takabe K, Rashid O. Clostridium difficile Infection Is Associated With Decreased Prostate Cancer Risk: A Retrospective Cohort Study. Cureus 2023; 15:e34398. [PMID: 36874728 PMCID: PMC9977075 DOI: 10.7759/cureus.34398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023] Open
Abstract
Background Clostridium difficile (C. difficile) is one of the most common hospital-acquired infections and causes the release of various cytokines. Prostate cancer (PC) is the second most common cancer in men worldwide. As infections have been associated with decreased cancer risk, the effects of C. difficile on the risk of developing PC were analyzed. Methodology Using the PearlDiver national database, a retrospective cohort analysis was performed to evaluate the relationship between a prior history of C. difficile infection and subsequent development of PC. International Classification of Disease Ninth and Tenth Revision codes were used to evaluate the incidence of PC between January 2010 and December 2019 in patients with and without a history of C. difficile infection. The groups were matched by age range, Charlson Comorbidity Index (CCI), and antibiotic treatment exposure. Standard statistical methods, including relative risk and odds ratio (OR) analyses, were utilized to test for significance. Demographic information was subsequently analyzed and compared between experimental and control groups. Results A total of 79,226 patients were identified in both the infected and control groups matched by age and CCI. The incidence of PC was 1,827 (2.56%) in the C. difficile group and 5,565 (7.79%) in the control group (p < 2.2 × 10-16; OR = 0.390, 95% confidence interval (CI) = 0.372-0.409). Subsequent matching by antibiotic treatment resulted in two groups of 16,772 patients. PC incidence was 272 (1.62%) in the C. difficile group and 663 (3.95%) in the control group (p < 2.2 × 10-16; OR = 0.467, 95% CI = 0.431-0.507). Conclusions Results from this retrospective cohort study demonstrate that C. difficile infection is associated with a reduced incidence of PC. Future studies are recommended to investigate the potential effect of the immune system and cytokines related to C. difficile infection on PC.
Collapse
Affiliation(s)
- Lexi R Frankel
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Amalia Ardeljan
- Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, USA
| | - Nadia G Obaed
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, USA.,Department of Surgery, The State University of New York, Buffalo, USA
| | - Omar Rashid
- Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, USA.,Leonard M. Miller School of Medicine, University of Miami, Miami, USA.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA.,Department of Surgical Oncology, Massachusetts General Hospital, Boston, USA.,Department of Surgical Oncology, Broward Health, Fort Lauderdale, USA.,Department of Surgical Oncology, TopLine MD Alliance, Fort Lauderdale, USA.,Department of Surgical Oncology, Memorial Health, Pembroke Pines, USA.,Department of Surgical Oncology, Delray Medical Center, Delray, USA
| |
Collapse
|
4
|
Noori M, Azimirad M, Eslami G, Looha MA, Yadegar A, Ghalavand Z, Zali MR. Surface layer protein A from hypervirulent Clostridioides difficile ribotypes induce significant changes in the gene expression of tight junctions and inflammatory response in human intestinal epithelial cells. BMC Microbiol 2022; 22:259. [PMID: 36303110 PMCID: PMC9608920 DOI: 10.1186/s12866-022-02665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Background
Surface layer protein A (SlpA), the primary outermost structure of Clostridioides difficile, plays an essential role in C. difficile pathogenesis, although its interaction with host intestinal cells are yet to be understood. The aim of this study was to investigate the effects of SlpA extracted from C. difficile on tight junction (TJ) proteins expression and induction of pro-inflammatory cytokines in human colon carcinoma cell line HT-29. SlpA was extracted from three toxigenic C. difficile clinical strains including RT126, RT001, RT084 as well as C. difficile ATCC 700057 as non-toxigenic strain. Cell viability was performed by MTT assay, and the mRNA expression of TJ proteins and inflammation-associated genes was determined using quantitative RT-PCR. Additionally, the secretion of IL-8, IL-1β and TNF-α cytokines was measured by ELISA. Results C. difficile SlpA from selected RTs variably downregulated the expression level of TJs-assassinated genes and increased the expression level of TLR-4 and pro-inflammatory cytokines in HT-29 treated cells. SlpA from RT126 significantly (padj<0.05) decreased the gene expression level of claudins family and JAM-A and increased the secretion of IL-8, TNF-α and IL1-β as compared to untreated cells. Moreover, only SlpA from RT001 could significantly induce the expression of IL-6 (padj<0.05). Conclusion
The results of the present study highlighted the importance of SlpA in the pathogenesis of CDI and C. difficile-induced inflammatory response in the gut. Further studies are required to unravel the significance of the observed results in promoting the intestinal inflammation and immune response induced by C. difficile SlpA from different RTs. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02665-0.
Collapse
Affiliation(s)
- Maryam Noori
- grid.411600.2Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.411600.2Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- grid.411600.2Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gita Eslami
- grid.411600.2Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Azizmohammad Looha
- grid.411600.2Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- grid.411600.2Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ghalavand
- grid.411600.2Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Surface layer protein A from hypervirulent Clostridioides difficile ribotype 001 can induce autophagy process in human intestinal epithelial cells. Microb Pathog 2022; 169:105681. [PMID: 35850375 DOI: 10.1016/j.micpath.2022.105681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022]
Abstract
Clostridioides difficile is the leading cause of nosocomial diarrhea with high morbidity and mortality worldwide. C. difficile strains produce a crystalline surface layer protein A (SlpA), which is an absolute necessity for its pathogenesis. However, its pathogenic mechanisms and its pro-inflammatory behavior are not yet fully elucidated. Herein, we report for the first time that SlpA extracted from C. difficile can induce autophagy process in Caco-2 cells. SlpA protein was purified from two C. difficile strains (RT001 and ATCC 700075). The cell viability of Caco-2 cells after exposure with different concentrations (15, 20, 25 μg/mL) of SlpA at various time points (3, 6, 12, 24 h) was measured by MTT assay. Acridine orange staining was used to visualize the hypothetical acidic vesicular organelles. The gene expression of autophagy mediators including LC3B, Atg5, Atg16L, and Beclin-1 was determined by quantitative real-time PCR assay. Western blotting assay was used to detect the expression of LC3B protein. MTT assay showed that different concentrations of SlpA did not induce significant changes in the viability of Caco-2 cells. SlpA at concentration of 20 μg/mL enhanced the formation of acidic vesicular organelles in Caco-2 cells after 12 h of exposure. Moreover, SlpA treatment significantly increased the expression of autophagy-associated genes, and increased the expression of LC3B protein in Caco-2 cells. In conclusion, our study demonstrated that SlpA is capable to induce autophagy in intestinal epithelial cells. These findings reveal a novel mechanism for the pathogenesis of C. difficile mediated by its SLPs.
Collapse
|
6
|
In silico designing of vaccine candidate against Clostridium difficile. Sci Rep 2021; 11:14215. [PMID: 34244557 PMCID: PMC8271013 DOI: 10.1038/s41598-021-93305-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Clostridium difficile is a spore-forming gram-positive bacterium, recognized as the primary cause of antibiotic-associated nosocomial diarrhoea. Clostridium difficile infection (CDI) has emerged as a major health-associated infection with increased incidence and hospitalization over the years with high mortality rates. Contamination and infection occur after ingestion of vegetative spores, which germinate in the gastro-intestinal tract. The surface layer protein and flagellar proteins are responsible for the bacterial colonization while the spore coat protein, is associated with spore colonization. Both these factors are the main concern of the recurrence of CDI in hospitalized patients. In this study, the CotE, SlpA and FliC proteins are chosen to form a multivalent, multi-epitopic, chimeric vaccine candidate using the immunoinformatics approach. The overall reliability of the candidate vaccine was validated in silico and the molecular dynamics simulation verified the stability of the vaccine designed. Docking studies showed stable vaccine interactions with Toll‐Like Receptors of innate immune cells and MHC receptors. In silico codon optimization of the vaccine and its insertion in the cloning vector indicates a competent expression of the modelled vaccine in E. coli expression system. An in silico immune simulation system evaluated the effectiveness of the candidate vaccine to trigger a protective immune response.
Collapse
|
7
|
Sharma D, Malik A, Balakrishnan A, Malireddi RKS, Kanneganti TD. RIPK3 Promotes Mefv Expression and Pyrin Inflammasome Activation via Modulation of mTOR Signaling. THE JOURNAL OF IMMUNOLOGY 2020; 205:2778-2785. [PMID: 32989095 DOI: 10.4049/jimmunol.2000244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/02/2020] [Indexed: 01/15/2023]
Abstract
Mutations in MEFV, the gene encoding pyrin in humans, are associated with the autoinflammatory disorder familial Mediterranean fever. Pyrin is an innate sensor that assembles into an inflammasome complex in response to Rho-modifying toxins, including Clostridium difficile toxins A and B. Cell death pathways have been shown to intersect with and modulate inflammasome activation, thereby affecting host defense. Using bone marrow-derived macrophages and a murine model of peritonitis, we show in this study that receptor-interacting protein kinase (RIPK) 3 impacts pyrin inflammasome activation independent of its role in necroptosis. RIPK3 was instead required for transcriptional upregulation of Mefv through negative control of the mechanistic target of rapamycin (mTOR) pathway and independent of alterations in MAPK and NF-κB signaling. RIPK3 did not affect pyrin dephosphorylation associated with inflammasome activation. We further demonstrate that inhibition of mTOR was sufficient to promote Mefv expression and pyrin inflammasome activation, highlighting the cross-talk between the mTOR pathway and regulation of the pyrin inflammasome. Our study reveals a novel interaction between molecules involved in cell death and the mTOR pathway to regulate the pyrin inflammasome, which can be harnessed for therapeutic interventions.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Ankit Malik
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Arjun Balakrishnan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | | | |
Collapse
|
8
|
Chen Y, Huang K, Chen LK, Wu HY, Hsu CY, Tsai YS, Ko WC, Tsai PJ. Membrane Cholesterol Is Crucial for Clostridium difficile Surface Layer Protein Binding and Triggering Inflammasome Activation. Front Immunol 2020; 11:1675. [PMID: 32849582 PMCID: PMC7411348 DOI: 10.3389/fimmu.2020.01675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Clostridium difficile, an obligate anaerobic gram-positive bacillus, generates spores and is commonly found colonizing the human gut. Patients with C. difficile infection (CDI) often exhibit clinical manifestations of pseudomembranous colitis or antibiotic-associated diarrhea. Surface layer proteins (SLPs) are the most abundant proteins in the C. difficile cell wall, suggesting that they might involve in immune recognition. Our previous results demonstrated that C. difficile triggers inflammasome activation. Here, we found SLPs as well as C. difficile induced inflammasome activation, and in a dose-dependent manner. In addition, the cholesterol-rich microdomains on the cell membrane (also referred to as lipid rafts) are thought to be crucial for bacterial adhesion and signal transduction. We demonstrated that lipid rafts participated in C. difficile SLPs binding to the cell membrane. Fluorescence microscopy showed that membrane cholesterol depletion by methyl-β-cyclodextrin (MβCD) reduced the association of SLPs with the cell surface. The coalescence of SLPs in the cholesterol-rich microdomains was confirmed in C. difficile-infected cells. Furthermore, the inflammasome activations induced by SLPs or C. difficile were abrogated by MβCD. Our results demonstrate that SLPs recruit the lipid rafts, which may be a key step for C. difficile colonization and inducing inflammasome activation.
Collapse
Affiliation(s)
- Yu Chen
- Department of Laboratory Medicine, Mackay Memorial Hospital, New Taipei, Taiwan
| | - Kai Huang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Kuei Chen
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Hui-Yu Wu
- Department of Laboratory Medicine, Mackay Memorial Hospital, New Taipei, Taiwan
| | - Chih-Yu Hsu
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Pacyga K, Razim A, Martirosian G, Aptekorz M, Szuba A, Gamian A, Myc A, Górska S. The Bioinformatic and In Vitro Studies of Clostridioides Difficile Aminopeptidase M24 Revealed the Immunoreactive KKGIK Peptide. Cells 2020; 9:cells9051146. [PMID: 32392707 PMCID: PMC7291276 DOI: 10.3390/cells9051146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023] Open
Abstract
Clostridioides difficile (CD) is a Gram-positive pathogen responsible for CD-associated disease (CDAD), which is characterized by symptoms ranging from mild diarrhea to pseudomembranous colitis. This work is an attempt to respond to the need of novel methods for CD infection (CDI) prevention, since the number of CDI cases is still rising. A bioinformatics approach was applied to design twenty-one peptides consisting of in silico predicted linear B-cell and T-cell epitopes of aminopeptidase M24 from CD. These peptides were mapped for epitopes exploiting PEPSCAN procedure and using sera obtained from CD infected patients, umbilical cord blood, and healthy volunteers. Two new CD epitopes, 131KKGIK135 and 184KGTSTHVIT192, were identified and characterized. Immunoreactivity of the synthetic biotinylated 131KKGIK135 epitope was significantly higher compared to 184KGTSTHVIT192 epitope in Enzyme-Linked Immunosorbent Assay (ELISA) with umbilical cord blood and CDI patients' sera. Hereafter, the conjugate of bovine serum albumin and epitope 131KKGIK135 was evaluated in vitro on lung epithelial cell line. In vitro, a significant induction of IL-6 by conjugate was observed, thereby we postulate that this new 131KKGIK135 epitope possesses immunostimulating properties suggesting possibility of its use in a vaccine against Clostridioides difficile.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Agnieszka Razim
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.G.); (A.M.)
- Correspondence: (A.R.); (S.G.); Tel.: +48-71-3371-172 (ext. 183) (A.R.); +48-71-3371-172 (ext. 148) (S.G.)
| | - Gayane Martirosian
- Department of Medical Microbiology, School of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (G.M.); (M.A.)
| | - Małgorzata Aptekorz
- Department of Medical Microbiology, School of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (G.M.); (M.A.)
| | - Andrzej Szuba
- Division of Angiology, Wroclaw Medical University, 51-618 Wroclaw, Poland;
- Department of Internal Medicine, 4th Military Hospital in Wroclaw, 50-981 Wroclaw, Poland
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.G.); (A.M.)
| | - Andrzej Myc
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.G.); (A.M.)
- MNIMBS, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-5648, USA
| | - Sabina Górska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Correspondence: (A.R.); (S.G.); Tel.: +48-71-3371-172 (ext. 183) (A.R.); +48-71-3371-172 (ext. 148) (S.G.)
| |
Collapse
|
10
|
Mileto S, Das A, Lyras D. Enterotoxic Clostridia: Clostridioides difficile Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0015-2018. [PMID: 31124432 PMCID: PMC11026080 DOI: 10.1128/microbiolspec.gpp3-0015-2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is a Gram-positive, anaerobic, spore forming pathogen of both humans and animals and is the most common identifiable infectious agent of nosocomial antibiotic-associated diarrhea. Infection can occur following the ingestion and germination of spores, often concurrently with a disruption to the gastrointestinal microbiota, with the resulting disease presenting as a spectrum, ranging from mild and self-limiting diarrhea to severe diarrhea that may progress to life-threating syndromes that include toxic megacolon and pseudomembranous colitis. Disease is induced through the activity of the C. difficile toxins TcdA and TcdB, both of which disrupt the Rho family of GTPases in host cells, causing cell rounding and death and leading to fluid loss and diarrhea. These toxins, despite their functional and structural similarity, do not contribute to disease equally. C. difficile infection (CDI) is made more complex by a high level of strain diversity and the emergence of epidemic strains, including ribotype 027-strains which induce more severe disease in patients. With the changing epidemiology of CDI, our understanding of C. difficile disease, diagnosis, and pathogenesis continues to evolve. This article provides an overview of the current diagnostic tests available for CDI, strain typing, the major toxins C. difficile produces and their mode of action, the host immune response to each toxin and during infection, animal models of disease, and the current treatment and prevention strategies for CDI.
Collapse
Affiliation(s)
- S Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| | - A Das
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| | - D Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| |
Collapse
|
11
|
Mamareli P, Kruse F, Friedrich C, Smit N, Strowig T, Sparwasser T, Lochner M. Epithelium-specific MyD88 signaling, but not DCs or macrophages, control acute intestinal infection with Clostridium difficile. Eur J Immunol 2019; 49:747-757. [PMID: 30802297 DOI: 10.1002/eji.201848022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/21/2019] [Accepted: 02/20/2019] [Indexed: 12/11/2022]
Abstract
Infection with Clostridium difficile is one of the major causes of health care acquired diarrhea and colitis. Signaling though MyD88 downstream of TLRs is critical for initiating the early protective host response in mouse models of C. difficile infection (CDI). In the intestine, MyD88 is expressed in various tissues and cell types, such as the intestinal epithelium and mononuclear phagocytes (MNP), including DC or macrophages. Using a genetic gain-of-function system, we demonstrate here that restricting functional MyD88 signaling to the intestinal epithelium, but also to MNPs is sufficient to protect mice during acute CDI by upregulation of the intestinal barrier function and recruitment of neutrophils. Nevertheless, we also show that mice depleted for CD11c-expressing MNPs in the intestine display no major defects in mounting an effective inflammatory response, indicating that the absence of these cells is irrelevant for inducing host protection during acute infection. Together, our results highlight the importance of epithelial-specific MyD88 signaling and demonstrate that although functional MyD88 signaling in DC and macrophages alone is sufficient to correct the phenotype of MyD88-deficiency, these cells do not seem to be essential for host protection in MyD88-sufficient animals during acute infection with C. difficile.
Collapse
Affiliation(s)
- Panagiota Mamareli
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.,Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Friederike Kruse
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Christin Friedrich
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.,Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany.,Institute of Systems Immunology, University of Würzburg, Würzburg, Germany
| | - Nathiana Smit
- Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Till Strowig
- Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.,Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| |
Collapse
|
12
|
Xu Q, Gu S, Chen Y, Quan J, Lv L, Chen D, Zheng B, Xu L, Li L. Protective Effect of Pediococcus pentosaceus LI05 Against Clostridium difficile Infection in a Mouse Model. Front Microbiol 2018; 9:2396. [PMID: 30356740 PMCID: PMC6189400 DOI: 10.3389/fmicb.2018.02396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022] Open
Abstract
Clostridium difficile infection (CDI) is a major cause of infectious diarrhea among hospitalized patients. Probiotics could be instrumental in restoring the intestinal dysbiosis caused by CDI. Here, we examined the protective effect of Pediococcus pentosaceus LI05 in a mouse CDI model. C57BL/6 mice were administrated P. pentosaceus LI05 (LI05 group) or sterile anaerobic PBS (CDI group) everyday for 14 days. Mice were exposed to antibiotics cocktail for 5 days; then challenged with C. difficile strain VPI10463. Mice were monitored daily for survival and weight loss. Colonic tissue and serum samples were assessed for intestinal histopathology, intestinal barrier function and systemic inflammation. The oral administration of P. pentosaceus LI05 improved the survival rate and alleviated the histopathological impact of C. difficile. Compared to the CDI group, the levels of inflammatory mediators in the colon as well as inflammatory cytokines and chemokines in serum were substantially attenuated in the LI05 group. P. pentosaceus LI05 alleviated the CDI-induced of disruption of ZO-1, occludin and claudin-1. Additionally, fecal microbiome analysis showed an enrichment in the abundance of the Porphyromonadaceae and Rikenellaceae, while, the relative abundance of Enterobacteriaceae were decreased. Our results demonstrated that the preventive effect of P. pentosaceus LI05 against CDI was mediated via improving tight junction proteins and down-regulating the inflammatory response. Therefore, P. pentosaceus LI05 could be a promising probiotic in CDI.
Collapse
Affiliation(s)
- Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiazheng Quan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dazhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lichen Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Vedantam G, Kochanowsky J, Lindsey J, Mallozzi M, Roxas JL, Adamson C, Anwar F, Clark A, Claus-Walker R, Mansoor A, McQuade R, Monasky RC, Ramamurthy S, Roxas B, Viswanathan VK. An Engineered Synthetic Biologic Protects Against Clostridium difficile Infection. Front Microbiol 2018; 9:2080. [PMID: 30233548 PMCID: PMC6134020 DOI: 10.3389/fmicb.2018.02080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022] Open
Abstract
Morbidity and mortality attributed to Clostridium difficile infection (CDI) have increased over the past 20 years. Currently, antibiotics are the only US FDA-approved treatment for primary C. difficile infection, and these are, ironically, associated with disease relapse and the threat of burgeoning drug resistance. We previously showed that non-toxin virulence factors play key roles in CDI, and that colonization factors are critical for disease. Specifically, a C. difficile adhesin, Surface Layer Protein A (SlpA) is a major contributor to host cell attachment. In this work, we engineered Syn-LAB 2.0 and Syn-LAB 2.1, two synthetic biologic agents derived from lactic acid bacteria, to stably and constitutively express a host-cell binding fragment of the C. difficile adhesin SlpA on their cell-surface. Both agents harbor conditional suicide plasmids expressing a codon-optimized chimera of the lactic acid bacterium's cell-wall anchoring surface-protein domain, fused to the conserved, highly adherent, host-cell-binding domain of C. difficile SlpA. Both agents also incorporate engineered biocontrol, obviating the need for any antibiotic selection. Syn-LAB 2.0 and Syn-LAB 2.1 possess positive biophysical and in vivo properties compared with their parental antecedents in that they robustly and constitutively display the SlpA chimera on their cell surface, potentiate human intestinal epithelial barrier function in vitro, are safe, tolerable and palatable to Golden Syrian hamsters and neonatal piglets at high daily doses, and are detectable in animal feces within 24 h of dosing, confirming robust colonization. In combination, the engineered strains also delay (in fixed doses) or prevent (when continuously administered) death of infected hamsters upon challenge with high doses of virulent C. difficile. Finally, fixed-dose Syn-LAB ameliorates diarrhea in a non-lethal model of neonatal piglet enteritis. Taken together, our findings suggest that the two synthetic biologics may be effectively employed as non-antibiotic interventions for CDI.
Collapse
Affiliation(s)
- Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
- Bio5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
| | - Joshua Kochanowsky
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
| | - Jason Lindsey
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Michael Mallozzi
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Chelsea Adamson
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Farhan Anwar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Andrew Clark
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rachel Claus-Walker
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Asad Mansoor
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rebecca McQuade
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Ross Calvin Monasky
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Shylaja Ramamurthy
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Bryan Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - V. K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
- Bio5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
14
|
Mori N, Takahashi T. Characteristics and Immunological Roles of Surface Layer Proteins in Clostridium difficile. Ann Lab Med 2018; 38:189-195. [PMID: 29401552 PMCID: PMC5820062 DOI: 10.3343/alm.2018.38.3.189] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/07/2017] [Accepted: 12/28/2017] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a major causative agent of antibiotic-associated diarrhea and has become the most common pathogen of healthcare-associated infection worldwide. The pathogenesis of C. difficile infection (CDI) is mediated by many factors such as colonization involving attachment to host intestinal epithelial cells, sporulation, germination, and toxin production. Bacterial cell surface components are crucial for the interaction between the bacterium and host cells. C. difficile has two distinct surface layer proteins (SLPs): a conserved high-molecular-weight SLP and a highly variable low-molecular-weight SLP. Recent studies have shown that C. difficile SLPs play roles not only in growth and survival, but also in adhesion to host epithelial cells and induction of cytokine production. Sequence typing of the variable region of the slpA gene, which encodes SLPs, is one of the methods currently used for typing C. difficile. SLPs have received much attention in recent years as vaccine candidates and new therapeutic agents in the treatment of C. difficile-associated diseases. Gaining mechanistic insights into the molecular functions of C. difficile SLPs will help advance our understanding of CDI pathogenesis and the development of vaccines and new therapeutic approaches. In this review, we summarize the characteristics and immunological roles of SLPs in C. difficile.
Collapse
Affiliation(s)
- Nobuaki Mori
- Department of General Internal Medicine, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences and Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo, Japan.
| | - Takashi Takahashi
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences and Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| |
Collapse
|
15
|
Liu YH, Chang YC, Chen LK, Su PA, Ko WC, Tsai YS, Chen YH, Lai HC, Wu CY, Hung YP, Tsai PJ. The ATP-P2X 7 Signaling Axis Is an Essential Sentinel for Intracellular Clostridium difficile Pathogen-Induced Inflammasome Activation. Front Cell Infect Microbiol 2018; 8:84. [PMID: 29616195 PMCID: PMC5864904 DOI: 10.3389/fcimb.2018.00084] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/28/2018] [Indexed: 12/12/2022] Open
Abstract
Clostridium difficile infection (CDI) is the leading cause of nosocomial infection in hospitalized patients receiving long-term antibiotic treatment. An excessive host inflammatory response is believed to be the major mechanism underlying the pathogenesis of C. difficile infection, and various proinflammatory cytokines such as IL-1β are detected in patients with C. difficile infection. IL-1β is known to be processed by caspase-1, a cysteine protease that is regulated by a protein complex called the inflammasome, which leads to a specialized form of cell death called pyroptosis. The function of inflammasome activation-induced pyroptosis is to clear or limit the spread of invading pathogens via infiltrated neutrophils. Here, we focused on inflammasome activation induced by intact C. difficile to re-evaluate the nature of inflammasome activation in CDI pathogenesis, which could provide information that leads to an alternative therapeutic strategy for the treatment of this condition in humans. First, we found that caspase-1-dependent IL-1β production was induced by C. difficile pathogens in macrophages and increased in a time-dependent manner. Moreover, intracellular toxigenic C. difficile was essential for ATP-P2X7 pathway of inflammasome activation and subsequent caspase-1-dependent pyroptotic cell death, leading to the loss of membrane integrity and release of intracellular contents such as LDH. Notably, we also observed that bacterial components such as surface layer proteins (SLPs) were released from pyroptotic cells. In addition, pro-IL-1β production was completely MyD88 and partially TLR2 dependent. Finally, to investigate the role of the caspase-1-dependent inflammasome in host defense, we found that colonic inflammasome activation was also induced by CDI and that caspase-1 inhibition by Ac-YVAD-CMK led to increased disease progression and C. difficile load. Taken together, the present results suggest that MyD88 and TLR2 are critical component in pro-IL-1β production and intracellular C. difficile following the ATP-P2X7 pathway of inflammasome activation and pyroptosis, which play important roles in host defense through the utilization of inflammation-mediated bacterial clearance mechanisms during C. difficile infection.
Collapse
Affiliation(s)
- Ya-Hui Liu
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yung-Chi Chang
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Kuei Chen
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Po-An Su
- Division of Infectious Diseases, Chi Mei Medical Center, Tainan, Taiwan.,Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Center for Infection Control, National Cheng Kung University Hospital, Tainan, Taiwan.,Department of Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan.,Cardiovascular Research Center, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsuan Chen
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Chih Lai
- Department of Medical Laboratory Science and Biotechnology, Chang Gung University, Taoyaun, Taiwan.,Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyaun, Taiwan.,Graduate Institute of Health Industry and Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyaun, Taiwan
| | - Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyaun, Taiwan.,Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyaun, Taiwan
| | - Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
16
|
Di Claudio F, Muglia CI, Smaldini PL, Orsini Delgado ML, Trejo FM, Grigera JR, Docena GH. Use of a Collagen Membrane to Enhance the Survival of Primary Intestinal Epithelial Cells. J Cell Physiol 2017; 232:2489-2496. [PMID: 27626762 DOI: 10.1002/jcp.25594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/12/2016] [Indexed: 12/24/2022]
Abstract
Intestinal epithelial cell culture is important for biological, functional, and immunological studies. Since enterocytes have a short in vivo life span due to anoikis, we aimed to establish a novel and reproducible method to prolong the survival of mouse and human cells. Cells were isolated following a standard procedure, and cultured on ordered-cow's collagen membranes. A prolonged cell life span was achieved; cells covered the complete surface of bio-membranes and showed a classical enterocyte morphology with high expression of enzymes supporting the possibility of cryopreservation. Apoptosis was dramatically reduced and cultured enterocytes expressed cytokeratin and LGR5 (low frequency). Cells exposed to LPS or flagellin showed the induction of TLR4 and TLR5 expression and a functional phenotype upon exposure to the probiotic Bifidobacterium bifidum or the pathogenic Clostridium difficile. The secretion of the homeostatic (IL-25 and TSLP), inhibitory (IL-10 and TGF-β), or pro-inflammatory mediators (IL-1β and TNF) were induced. In conclusion, this novel protocol using cow's collagen-ordered membrane provides a simple and reproducible method to maintain intestinal epithelial cells functional for cell-microorganism interaction studies and stem cell expansion. J. Cell. Physiol. 232: 2489-2496, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fiorella Di Claudio
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET y Universidad Nacional de La Plata, La Plata, Argentina
| | - Cecilia I Muglia
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET y Universidad Nacional de La Plata, La Plata, Argentina
| | - Paola L Smaldini
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET y Universidad Nacional de La Plata, La Plata, Argentina
| | - María Lucía Orsini Delgado
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET y Universidad Nacional de La Plata, La Plata, Argentina
| | - Fernando M Trejo
- Centro de Investigación y Desarrollo en Tecnología de Alimentos (CIDCA), CONICET y Universidad Nacional de La Plata, La Plata, Argentina
| | - J Raúl Grigera
- Centro de Química Inorgánica (CEQUINOR), CONICET y Universidad Nacional de La Plata, La Plata, Argentina
| | - Guillermo H Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET y Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
17
|
Candidemia in Patients with Body Temperature Below 37°C and Admitted to Internal Medicine Wards: Assessment of Risk Factors. Am J Med 2016; 129:1330.e1-1330.e6. [PMID: 27452680 DOI: 10.1016/j.amjmed.2016.06.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/12/2016] [Accepted: 06/17/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND An increasing number of candidemia episodes has been reported in patients cared for in internal medicine wards. These usually older and frail patients may not be suspected as having candidemia because they lack fever at the onset of the episode. To identify the risk factors associated with the lack of fever at the onset of candidemia (ie, the collection of the first positive blood culture for Candida spp.) in patients cared for in internal medicine wards, we compared 2 group of patients with or without fever. METHODS We retrospectively review data charts from 3 tertiary care, university hospitals in Italy, comparing patients with or without fever at onset of candidemia. Consecutive candidemic episodes in afebrile patients and matched febrile controls were identified during the 3-year study period. Patient baseline characteristics and several infection-related variables were examined. Random forest analysis was used, given the number of predictors to be considered and the potential complexity of their relations with the onset of fever. RESULTS We identified 147 candidemic episodes without fever at onset and 147 febrile candidemia episodes. Factors associated with the lack of fever at onset of candidemia were diabetes, Clostridium difficile infection, and a shorter delta time from internal medicine wards admission to the onset of candidemia. The only variable associated with fever was the use of intravascular devices. Quite unexpectedly, antifungal therapy was administered more frequently to patients without fever, and no differences on 30-day mortality rate were documented in the 2 study groups. CONCLUSIONS Clinicians should be aware that an increasing number of patients with invasive candidiasis cared for in internal medicine wards may lack fever at onset, especially those with diabetes and C. difficile infection. Candidemia should be suspected in patients with afebrile systemic inflammatory response syndrome or in worsening clinical condition: blood cultures should be taken, and a timely and appropriate antifungal therapy should be considered.
Collapse
|
18
|
Péchiné S, Collignon A. Immune responses induced by Clostridium difficile. Anaerobe 2016; 41:68-78. [PMID: 27108093 DOI: 10.1016/j.anaerobe.2016.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 02/06/2023]
Abstract
The spectrum of Clostridium difficile infections is highly variable, ranging from asymptomatic carriage to fatal colitis depending on the strain virulence and on the host, its gut microbiota and its immune response. After disruption of the gut microbiota, C. difficile pathogenesis can be divided into three steps: 1) contamination by spores and their germination; 2) multiplication of vegetative cells and intestinal colonization using colonization factors; 3) production of the toxins TcdA and TcdB, and for some strains, the binary toxin, which are responsible for the clinical signs. Three lines of defense counteract C. difficile. The first line is the epithelial barrier, which is breached by the toxins. Then, a rapid innate immune response follows, which forms the second line of defense. It provides very quick defense reactions against C. difficile but is non-specific and does not confer memory. C. difficile and its virulence factors, the toxins and colonization factors, induce a highly pro-inflammatory response, which can be either beneficial or harmful, but triggers the adaptive immunity as the third line of defense required to control the infectious process. Adaptive immunity provides a highly specific immune response against C. difficile with memory and long lasting immunity. The innate and adaptive immune responses against the toxins and surface components are analyzed as well as their role in disease susceptibility, severity and recurrences.
Collapse
Affiliation(s)
- Séverine Péchiné
- Faculté de pharmacie, EA 4043 "Unité Bactéries Pathogènes et Santé", Univ. Paris-Sud, Université Paris-Saclay, 5 Rue Jean Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Anne Collignon
- Faculté de pharmacie, EA 4043 "Unité Bactéries Pathogènes et Santé", Univ. Paris-Sud, Université Paris-Saclay, 5 Rue Jean Baptiste Clément, 92296 Châtenay-Malabry Cedex, France.
| |
Collapse
|
19
|
Minami K, Sakaguchi Y, Yoshida D, Yamamoto M, Ikebe M, Morita M, Toh Y. Successful treatments with polymyxin B hemoperfusion and recombinant human thrombomodulin for fulminant Clostridium difficile-associated colitis with septic shock and disseminated intravascular coagulation: a case report. Surg Case Rep 2016; 2:76. [PMID: 27468959 PMCID: PMC4965360 DOI: 10.1186/s40792-016-0199-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/01/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Clostridium difficile (CD)-associated colitis (CDAC) is endemic and a common nosocomial enteric disease encountered by surgeons in modern hospitals due to prophylactic or therapeutic antibiotic therapies. Currently, the incidence of fulminant CDAC, which readily causes septic shock followed by multiple organ dysfunction syndromes, is increasing. Fulminant CDAC requires surgeons to perform a prompt surgery, such as subtotal colectomy, to remove the septic source. It is known that fulminant CDAC is caused by the shift from an inflammatory response at a local mucosal level to a general systemic inflammatory reaction in which CD toxin-induced mediators' cascades disseminate. Recently, it has been proven that polymyxin B hemoperfusion (PMX-HP) improves septic shock and recombinant human thrombomodulin (rhTM) controls disseminated intravascular coagulation (DIC). In addition, clinically and basically, it has been shown that these treatments can control serous chemical mediators. Therefore, it is considered that these treatments are promising ones for patients with fulminant CDAC. In the current report, we present that these treatments without surgery contributed to the improvement of sepsis due to fulminant CDAC. CASE PRESENTATION We encountered a case who developed fulminant CDAC with septic shock and DIC after laparoscopic gastrectomy for gastric cancer. At admission to the intensive care unit, his APACHE II score was 22, which indicated an estimated risk of hospital death of 42.4 %. Our therapies were not the subtotal colectomy to remove septic sources but the combination treatments with both PMX-HP and rhTM. These combination therapies resulted in excellent outcomes, namely the dramatic improvement of septic shock and DIC and the patient's survival. We speculate that these combination therapies completely inhibit the CD toxin-induced mediators' cascades and correspond to the removal of septic sources. CONCLUSIONS We recommend both PMX-HP and rhTM for patients who develop fulminant CDAC with septic shock and DIC to increase the survival benefit and replace the need for surgical treatment.
Collapse
Affiliation(s)
- Kazuhito Minami
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, Notame 3-1-1, Minami-ku, Fukuoka, 811-1395, Japan.
| | - Yoshihisa Sakaguchi
- Department of Gastroenterological Surgery, National Hospital Organization Kyushu Medical Center, Jigyohama 1-8-1, Chuo-ku, Fukuoka, 810-8563, Japan
| | - Daisuke Yoshida
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, Notame 3-1-1, Minami-ku, Fukuoka, 811-1395, Japan
| | - Manabu Yamamoto
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, Notame 3-1-1, Minami-ku, Fukuoka, 811-1395, Japan
| | - Masahiko Ikebe
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, Notame 3-1-1, Minami-ku, Fukuoka, 811-1395, Japan
| | - Masaru Morita
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, Notame 3-1-1, Minami-ku, Fukuoka, 811-1395, Japan
| | - Yasushi Toh
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, Notame 3-1-1, Minami-ku, Fukuoka, 811-1395, Japan
| |
Collapse
|
20
|
Immunogenic properties of the surface layer precursor of Clostridium difficile and vaccination assays in animal models. Anaerobe 2016; 37:78-84. [DOI: 10.1016/j.anaerobe.2015.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/01/2015] [Accepted: 10/21/2015] [Indexed: 01/01/2023]
|
21
|
Janoir C. Virulence factors of Clostridium difficile and their role during infection. Anaerobe 2016; 37:13-24. [DOI: 10.1016/j.anaerobe.2015.10.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 02/08/2023]
|
22
|
Biomarkers of Gastrointestinal Host Responses to Microbial Infections. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
von Müller L, Mock M, Halfmann A, Stahlmann J, Simon A, Herrmann M. Epidemiology of Clostridium difficile in Germany based on a single center long-term surveillance and German-wide genotyping of recent isolates provided to the advisory laboratory for diagnostic reasons. Int J Med Microbiol 2015; 305:807-13. [PMID: 26341328 DOI: 10.1016/j.ijmm.2015.08.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epidemiology of Clostridium difficile is characterized by worldwide increase of C. difficile infections (CDI) and the emergence of new epidemic outbreak strains with the capacity for global spreading. Long-term local surveillance at the University of Saarland Medical Center between 2000 and 2013 shows that the incidence rate of laboratory-confirmed CDI was influenced by local epidemiology as well as by testing strategies. Since 2008, molecular typing of C. difficile was regularly performed for symptomatic hospitalized patients by surface-layer protein A sequence typing (slpAST), which is an established highly standardized technique for genotyping of C. difficile. The results were assigned to known ribotypes for better comparison to international data. It could be demonstrated that distribution of genotypes was different between age groups. Older patients were predominantly infected with ribotype 001 and 027, whereas ribotype 027 was not detected in the pediatric population. Molecular typing of German isolates sent to the advisory laboratory between 2011 and 2013 revealed that ribotype 027 is present with high percentages in most German regions except for the very North. In conclusion, optimized testing of all hospitalized patients with diarrhea should be generally implemented to avoid under-diagnosis of C. difficile infection. Ribotype 027 is highly prevalent in Germany, but its infections are restricted to older patients, while absent in children. Molecular typing of suspected hospital outbreaks and of patients with severe or recurrent disease may help to better understand virulence and epidemic spreading of C. difficile.
Collapse
Affiliation(s)
- Lutz von Müller
- Institute of Medical Microbiology and Hygiene, State of Saarland Laboratory of Hygiene, Consultant Laboratory for Clostridium difficile, University of Saarland Medical Center, Kirrberger Straße, Building 43, Homburg D-66421 Saarland, Germany.
| | - Markus Mock
- Institute of Medical Microbiology and Hygiene, State of Saarland Laboratory of Hygiene, Consultant Laboratory for Clostridium difficile, University of Saarland Medical Center, Kirrberger Straße, Building 43, Homburg D-66421 Saarland, Germany
| | - Alexander Halfmann
- Institute of Medical Microbiology and Hygiene, State of Saarland Laboratory of Hygiene, Consultant Laboratory for Clostridium difficile, University of Saarland Medical Center, Kirrberger Straße, Building 43, Homburg D-66421 Saarland, Germany
| | - Julia Stahlmann
- Institute of Medical Microbiology and Hygiene, State of Saarland Laboratory of Hygiene, Consultant Laboratory for Clostridium difficile, University of Saarland Medical Center, Kirrberger Straße, Building 43, Homburg D-66421 Saarland, Germany
| | - Arne Simon
- Paediatric Hematology and Oncology, Children's Hospital Medical Center, University Hospital of Saarland, Kirrberger Straße, Building 9, Homburg, Saarland, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, State of Saarland Laboratory of Hygiene, Consultant Laboratory for Clostridium difficile, University of Saarland Medical Center, Kirrberger Straße, Building 43, Homburg D-66421 Saarland, Germany
| |
Collapse
|
24
|
Targeting surface-layer proteins with single-domain antibodies: a potential therapeutic approach against Clostridium difficile-associated disease. Appl Microbiol Biotechnol 2015; 99:8549-62. [PMID: 25936376 PMCID: PMC4768215 DOI: 10.1007/s00253-015-6594-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/01/2015] [Accepted: 04/05/2015] [Indexed: 02/07/2023]
Abstract
Clostridium difficile is a leading cause of death from gastrointestinal infections in North America. Antibiotic therapy is effective, but the high incidence of relapse and the rise in hypervirulent strains warrant the search for novel treatments. Surface layer proteins (SLPs) cover the entire C. difficile bacterial surface, are composed of high-molecular-weight (HMW) and low-molecular-weight (LMW) subunits, and mediate adherence to host cells. Passive and active immunization against SLPs has enhanced hamster survival, suggesting that antibody-mediated neutralization may be an effective therapeutic strategy. Here, we isolated a panel of SLP-specific single-domain antibodies (VHHs) using an immune llama phage display library and SLPs isolated from C. difficile hypervirulent strain QCD-32g58 (027 ribotype) as a target antigen. Binding studies revealed a number of VHHs that bound QCD-32g58 SLPs with high affinity (KD = 3–6 nM) and targeted epitopes located on the LMW subunit of the SLP. The VHHs demonstrated melting temperatures as high as 75 °C, and a few were resistant to the gastrointestinal protease pepsin at physiologically relevant concentrations. In addition, we demonstrated the binding specificity of the VHHs to the major C. difficile ribotypes by whole cell ELISA, where all VHHs were found to bind 001 and 027 ribotypes, and a subset of antibodies were found to be broadly cross-reactive in binding cells representative of 012, 017, 023, and 078 ribotypes. Finally, we showed that several of the VHHs inhibited C. difficile QCD-32g58 motility in vitro. Targeting SLPs with VHHs may be a viable therapeutic approach against C. difficile-associated disease.
Collapse
|
25
|
Rizzardi K, Åkerlund T. High Molecular Weight Typing with MALDI-TOF MS - A Novel Method for Rapid Typing of Clostridium difficile. PLoS One 2015; 10:e0122457. [PMID: 25923527 PMCID: PMC4414534 DOI: 10.1371/journal.pone.0122457] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/11/2015] [Indexed: 11/19/2022] Open
Abstract
Clostridium difficile strains were typed by a newly developed MALDI-TOF method, high molecular weight typing, and compared to PCR ribotyping. Among 500 isolates representing 59 PCR ribotypes a total of 35 high molecular weight types could be resolved. Although less discriminatory than PCR ribotyping, the method is extremely fast and simple, and supports for cost-effective screening of isolates during outbreak situations.
Collapse
Affiliation(s)
- Kristina Rizzardi
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Thomas Åkerlund
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
- * E-mail:
| |
Collapse
|
26
|
Abstract
Clostridium difficile is associated with a spectrum of clinical manifestations ranging from asymptomatic carriage to severe life-threatening pseudomembranous colitis. Current perspectives indicate that C difficile pathogenesis is a multifactorial disease process dictated by pathogenic toxin production, gut microbial dysbiosis, and altered host inflammatory responses. This article summarizes recent findings underpinning the cellular and molecular mechanisms regulating bacterial virulence and sheds new light on the critical roles of the host immune response, intestinal microbiota, and metabolome in mediating disease pathogenesis.
Collapse
Affiliation(s)
- Tanya M Monaghan
- Biomedical Research Unit, NIHR Nottingham Digestive Diseases Centre, Nottingham University Hospitals NHS Trust, Derby Road, Nottingham NG7 2UH, UK.
| |
Collapse
|
27
|
Abstract
Clostridium difficile infection (CDI) after total colectomy has been increasingly recognized over the past decade. C. difficile enteritis (CDE) is a rare occurrence, whereas C. difficile pouchitis (CDP) has been reported in approximately 10% of symptomatic patients seen at a referral center for pouch dysfunction. Similar to colonic CDI in the general population, antibiotic use and comorbid diseases may be risk factors for CDE. In contrast, the postoperative use of antibiotics does not seem to be associated with CDP, whereas male gender, recent hospitalization, and presurgery antibiotic use were shown to be risk factors for CDP. C. difficile is capable of colonizing all intestinal sites, including the ileal pouch. Similarities with the colon at physiological and cellular levels may contribute to the susceptibility of the ileal pouch to CDI. Postcolectomy CDI likely represents a disease spectrum from asymptomatic colonization to severe symptomatic infection. CDI should be considered in ostomy patients with fever and increased ileostomy output and in ileal pouch patients with a change in "normal" symptom pattern or chronic antibiotic-refractory pouchitis. Sensitive and specific methods for detection of CDI are available, and endoscopy is useful in evaluating the patient with suspected CDE or CDP, although pseudomembranes are typically absent. Vancomycin is used as the first-line therapy for CDP and may be warranted for patients with inflammatory bowel disease with CDE. Fecal microbiota transplantation has found its use in the management of severe or antibiotic refractory CDP, but this approach requires evaluation for the management of refractory CDE.
Collapse
|
28
|
Mizrahi A, Collignon A, Péchiné S. Passive and active immunization strategies against Clostridium difficile infections: State of the art. Anaerobe 2014; 30:210-9. [DOI: 10.1016/j.anaerobe.2014.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/07/2014] [Accepted: 07/18/2014] [Indexed: 02/04/2023]
|
29
|
Awad MM, Johanesen PA, Carter GP, Rose E, Lyras D. Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen. Gut Microbes 2014; 5:579-93. [PMID: 25483328 PMCID: PMC4615314 DOI: 10.4161/19490976.2014.969632] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The worldwide emergence of epidemic strains of Clostridium difficile linked to increased disease severity and mortality has resulted in greater research efforts toward determining the virulence factors and pathogenesis mechanisms used by this organism to cause disease. C. difficile is an opportunist pathogen that employs many factors to infect and damage the host, often with devastating consequences. This review will focus on the role of the 2 major virulence factors, toxin A (TcdA) and toxin B (TcdB), as well as the role of other putative virulence factors, such as binary toxin, in C. difficile-mediated infection. Consideration is given to the importance of spores in both the initiation of disease and disease recurrence and also to the role that surface proteins play in host interactions.
Collapse
Key Words
- AAD, antibiotic associated diarrhea
- C. difficile,Clostridium difficile
- CDI, C. difficile infection
- CDT, Clostridium difficile transferase
- CDTLoc, CDT locus
- CDTa, CDT enzymatic component
- CDTb, CDT binding/translocation component
- CST, Clostridium spiroforme toxin
- CWPs, cell wall protein
- Clostridium
- ECF, extracytoplasmic function
- HMW, high molecular weight
- LMW, low molecular weight
- LSR, lipolysis-stimulated lipoprotein receptor
- PCR, polymerase chain reaction
- PFGE, pulsed field gel electrophoresis
- PaLoc, pathogenicity locus
- REA, restriction endonuclease analysis
- S-layer, surface layer
- SLPs, S-layer proteins
- TcdA, toxin A
- TcdB, toxin B
- antibiotic
- colitis
- difficile
- infection
- nosocomial
- toxin
- virulence factor
- ι-toxin, iota toxin
Collapse
Affiliation(s)
- Milena M Awad
- Department of Microbiology; Monash University; Clayton, Victoria, Australia
| | | | - Glen P Carter
- Department of Microbiology; Monash University; Clayton, Victoria, Australia
| | - Edward Rose
- Department of Microbiology; Monash University; Clayton, Victoria, Australia
| | - Dena Lyras
- Department of Microbiology; Monash University; Clayton, Victoria, Australia,Correspondence to: Dena Lyras;
| |
Collapse
|
30
|
Yacyshyn MB, Reddy TN, Plageman LR, Wu J, Hollar AR, Yacyshyn BR. Clostridium difficile recurrence is characterized by pro-inflammatory peripheral blood mononuclear cell (PBMC) phenotype. J Med Microbiol 2014; 63:1260-1273. [PMID: 25001105 PMCID: PMC7304883 DOI: 10.1099/jmm.0.075382-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/06/2014] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile infection (CDI) is a prevalent nosocomial and increasingly community-acquired problem. Little is known about the productive cellular response in patients. We used flow cytometry to define inflammatory (Th1 and Th17) and regulatory [Foxp3(+) T-regulatory (Treg)] cells present in circulating peripheral blood mononuclear cells (PBMC) from CDI patients. We consented 67 inpatients that tested either positive or negative for CDI and 16 healthy controls and compared their PBMC phenotypes. PBMC were collected, isolated, and stained for CD3, CD8 and either IL17 (Th17), IFN-γ (Th1) or Foxp3 (Treg) and analysed using flow cytometry. Twenty thousand events were collected in the lymphocyte gate (gate 1) and T-cell phenotypes were defined. CDI patients who clear the primary initial infection have greater numbers of non-CD3 PBMC. CDI patients who develop recurrence of CDI have a greater percentage of CD3(+)CD8(+), CD3(+)CD4(+)Foxp3 and fewer low granular CD3(-)Foxp3(+) PBMC. These patients have greater numbers of IFN-γ-producing lymphocytes, as well as PBMC phenotypes represented by increased IFN-γ- and IL17-co-expressing CD4(+)CD3(+). This initial pro-inflammatory phenotype decreases with repeated recurrence, demonstrating importance of timing of sample collection and history of symptoms. Patients with a history of recurrence had increased Foxp3(+)CD3(+)CD4(+) and IL17(+)CD3(+)CD4(+) populations. Hence, CDI recurrence is hallmarked by greater numbers of circulating CD3(+) lymphocytes skewed towards a Th1/Th17 inflammatory population as well as possible immune plasticity (Th17/Treg).
Collapse
Affiliation(s)
- Mary B. Yacyshyn
- Division of Digestive Diseases, Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Tara N. Reddy
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lauren R. Plageman
- Division of Digestive Diseases, Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jiang Wu
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Amy R. Hollar
- Division of Digestive Diseases, Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Bruce R. Yacyshyn
- Division of Digestive Diseases, Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
31
|
Sun X, Hirota SA. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection. Mol Immunol 2014; 63:193-202. [PMID: 25242213 DOI: 10.1016/j.molimm.2014.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 02/08/2023]
Abstract
Clostridium difficile (C. difficile) is the most common cause of nosocomial antibiotic-associated diarrhea and the etiologic agent of pseudomembranous colitis. The clinical manifestation of C. difficile infection (CDI) is highly variable, from asymptomatic carriage, to mild self-limiting diarrhea, to the more severe pseudomembranous colitis. Furthermore, in extreme cases, colonic inflammation and tissue damage can lead to toxic megacolon, a condition requiring surgical intervention. C. difficile expresses two key virulence factors; the exotoxins, toxin A (TcdA) and toxin B (TcdB), which are glucosyltransferases that target host-cell monomeric GTPases. In addition, some hypervirulent strains produce a third toxin, binary toxin or C. difficile transferase (CDT), which may contribute to the pathogenesis of CDI. More recently, other factors such as surface layer proteins (SLPs) and flagellin have also been linked to the inflammatory responses observed in CDI. Although the adaptive immune response can influence the severity of CDI, the innate immune responses to C. difficile and its toxins play crucial roles in CDI onset, progression, and overall prognosis. Despite this, the innate immune responses in CDI have drawn relatively little attention from clinical researchers. Targeting these responses may prove useful clinically as adjuvant therapies, especially in refractory and/or recurrent CDI. This review will focus on recent advances in our understanding of how C. difficile and its toxins modulate innate immune responses that contribute to CDI pathogenesis.
Collapse
Affiliation(s)
- Xingmin Sun
- Tufts University Cummings School of Veterinary Medicine, Department of Infectious Diseases and Global Health, North Grafton, MA 01536, USA; Tufts University, Clinical and Translational Science Institute, Boston, MA 02111, USA.
| | - Simon A Hirota
- University of Calgary, Snyder Institute for Chronic Diseases, Departments of Physiology & Pharmacology and Microbiology, Immunology & Infectious Diseases, Calgary, AB T2N4N1, Canada
| |
Collapse
|
32
|
Abstract
Clostridium difficile infection (CDI) is the most common infectious cause of healthcare-acquired diarrhoea. Outcomes of C. difficile colonization are varied, from asymptomatic carriage to fulminant colitis and death, due in part to the interplay between the pathogenic virulence factors of the bacterium and the counteractive immune responses of the host. Secreted toxins A and B are the major virulence factors of C. difficile and induce a profound inflammatory response by intoxicating intestinal epithelial cells causing proinflammatory cytokine release. Host cell necrosis, vascular permeability and neutrophil infiltration lead to an elevated white cell count, profuse diarrhoea and in severe cases, dehydration, hypoalbuminaemia and toxic megacolon. Other bacterial virulence factors, including surface layer proteins and flagella proteins, are detected by host cell surface signal molecules that trigger downstream cell-mediated immune pathways. Human studies have identified a role for serum and faecal immunoglobulin levels in protection from disease, but the recent development of a mouse model of CDI has enabled studies into the precise molecular interactions that trigger the immune response during infection. Key effector molecules have been identified that can drive towards a protective anti-inflammatory response or a damaging proinflammatory response. The limitations of current antimicrobial therapies for CDI have led to the development of both active and passive immunotherapies, none of which have, as yet been formally approved for CDI. However, recent advances in our understanding of the molecular basis of host immune protection against CDI may provide an exciting opportunity for novel therapeutic developments in the future.
Collapse
Affiliation(s)
- Katie Solomon
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| |
Collapse
|
33
|
Jafari NV, Kuehne SA, Bryant CE, Elawad M, Wren BW, Minton NP, Allan E, Bajaj-Elliott M. Clostridium difficile modulates host innate immunity via toxin-independent and dependent mechanism(s). PLoS One 2013; 8:e69846. [PMID: 23922820 PMCID: PMC3726775 DOI: 10.1371/journal.pone.0069846] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/13/2013] [Indexed: 11/30/2022] Open
Abstract
Clostridium difficile infection (CDI) is the leading cause of hospital and community-acquired antibiotic-associated diarrhoea and currently represents a significant health burden. Although the role and contribution of C. difficile toxins to disease pathogenesis is being increasingly understood, at present other facets of C. difficile-host interactions, in particular, bacterial-driven effects on host immunity remain less studied. Using an ex-vivo model of infection, we report that the human gastrointestinal mucosa elicits a rapid and significant cytokine response to C. difficile. Marked increase in IFN-γ with modest increase in IL-22 and IL-17A was noted. Significant increase in IL-8 suggested potential for neutrophil influx while presence of IL-12, IL-23, IL-1β and IL-6 was indicative of a cytokine milieu that may modulate subsequent T cell immunity. Majority of C. difficile-driven effects on murine bone-marrow-derived dendritic cell (BMDC) activation were toxin-independent; the toxins were however responsible for BMDC inflammasome activation. In contrast, human monocyte-derived DCs (mDCs) released IL-1β even in the absence of toxins suggesting host-specific mediation. Infected DC-T cell crosstalk revealed the ability of R20291 and 630 WT strains to elicit a differential DC IL-12 family cytokine milieu which culminated in significantly greater Th1 immunity in response to R20291. Interestingly, both strains induced a similar Th17 response. Elicitation of mucosal IFN-γ/IL-17A and Th1/Th17 immunity to C. difficile indicates a central role for this dual cytokine axis in establishing antimicrobial immunity to CDI.
Collapse
Affiliation(s)
- Nazila V. Jafari
- Infectious Diseases and Microbiology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Sarah A. Kuehne
- Clostridia Research Group, Nottingham Digestive Diseases Centre NIHR Biomedical Research Unit, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Clare E. Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mamoun Elawad
- Gastroenterology Department, Great Ormond Street Hospital, London, United Kingdom
| | - Brendan W. Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nigel P. Minton
- Clostridia Research Group, Nottingham Digestive Diseases Centre NIHR Biomedical Research Unit, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Elaine Allan
- Research Department of Microbial Diseases, Eastman Dental Institute, University College London, London, United Kingdom
| | - Mona Bajaj-Elliott
- Infectious Diseases and Microbiology Unit, Institute of Child Health, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Cairns MD, Stabler RA, Shetty N, Wren BW. The continually evolving Clostridium difficile species. Future Microbiol 2013; 7:945-57. [PMID: 22913354 DOI: 10.2217/fmb.12.73] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Clostridium difficile is a spore-forming Gram-positive bacterium that causes chronic diarrhea and sometimes life-threatening disease mainly in elderly and hospitalized patients. The reported incidence of C. difficile infection has changed dramatically over the last decade and has been related to the emergence of distinct clonal lineages that appear more transmissible and cause more severe infection. These include PCR ribotypes 027, 017 and more recently 078. Population biology studies using multilocus sequence typing and whole-genome comparisons has helped to define the C. difficile species into four clonal complexes that include PCR ribotypes 027, 017, 078 and 023, as well as a general grouping of most other PCR ribotypes. Further analysis of strains from diverse sources and geographical origins reveal significant microdiversity of clonal complexes and confirms that C. difficile is continuing to evolve. The study of C. difficile represents a real-time global evolutionary experiment where the pathogen is responding to a range of selective pressures created by human activity and practices in healthcare settings. The advent of whole-genome sequencing coupled with phylogeny (phylogeography and phylohistory) will provide unprecedented detail on the local and global emergence and disappearance of C. difficile clones, and facilitate more rational approaches to disease control. This review will highlight the emergence of virulent C. difficile clones and our current understanding of molecular epidemiology of the species.
Collapse
Affiliation(s)
- Michelle D Cairns
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | | | | | | |
Collapse
|
35
|
Madan R, Petri WA. Immune responses to Clostridium difficile infection. Trends Mol Med 2012; 18:658-66. [PMID: 23084763 PMCID: PMC3500589 DOI: 10.1016/j.molmed.2012.09.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 08/30/2012] [Accepted: 09/14/2012] [Indexed: 01/24/2023]
Abstract
Clostridium difficile is the causal agent of antibiotic-associated diarrhea and is a leading cause of hospital-acquired infections in the US. C. difficile has been known to cause severe diarrhea and colitis for more than 30 years, but the emergence of a newer, hypervirulent strain of C. difficile (BI/NAP1) has further compounded the problem, and recently both the number of cases and mortality associated with C. difficile-associated diarrhea have been increasing. One of the major drivers of disease pathogenesis is believed to be an excessive host inflammatory response. A better understanding of the host inflammation and immune mechanisms that modulate the course of disease and control host susceptibility to C. difficile could lead to novel (host-targeted) strategies for combating the challenges posed by this deadly infection. This review summarizes our current knowledge of the host inflammatory response during C. difficile infection.
Collapse
Affiliation(s)
- Rajat Madan
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908-1337, USA
| | | |
Collapse
|
36
|
Vohra P, Poxton IR. Induction of cytokines in a macrophage cell line by proteins of Clostridium difficile. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2012; 65:96-104. [PMID: 22409477 DOI: 10.1111/j.1574-695x.2012.00952.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/09/2012] [Accepted: 03/01/2012] [Indexed: 12/18/2022]
Abstract
Clostridium difficile is a major cause of nosocomial diarrhoea. The toxins produced by C. difficile are responsible for the characteristic pathology observed in C. difficile disease, but several surface-associated proteins of C. difficile are also recognized by the immune system and could modulate the immune response in infection. The aim of this study was to assess the induction of cytokines in a macrophage cell line in response to different antigens prepared from five C. difficile strains: the hypervirulent ribotype 027, ribotypes 001 and 106 and reference strains VPI 10463 and 630 (ribotype 012). PMA-activated THP-1 cells were challenged with surface-layer proteins, flagella, heat-shock proteins induced at 42 and 60 °C and culture supernatants of the five C. difficile strains. The production of the pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, IL-8 and IL-12p70 was observed in response to the surface-associated proteins, and high levels of TNF-α, IL-1β and IL-8 were detected in response to challenge with culture supernatants. The immune response triggered by the surface-associated proteins was independent of the strain from which the antigens were derived, suggesting that these proteins might not be related to the varying virulence of the hypervirulent ribotype 027 or ribotypes 001 and 106. There was no interstrain difference observed in response to the culture supernatants of the tested C. difficile strains, but this was perhaps due to toxicity induced in the macrophages by large amounts of toxin A and toxin B.
Collapse
Affiliation(s)
- Prerna Vohra
- Medical Microbiology, University of Edinburgh College of Medicine and Veterinary Medicine, Edinburgh, UK
| | | |
Collapse
|
37
|
Vedantam G, Clark A, Chu M, McQuade R, Mallozzi M, Viswanathan VK. Clostridium difficile infection: toxins and non-toxin virulence factors, and their contributions to disease establishment and host response. Gut Microbes 2012; 3:121-34. [PMID: 22555464 PMCID: PMC3370945 DOI: 10.4161/gmic.19399] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Clostridium difficile infection is the leading cause of antibiotic- and healthcare-associated diarrhea, and its containment and treatment imposes a significant financial burden, estimated to be over $3 billion in the USA alone. Since the year 2000, CDI epidemics/outbreaks have occurred in North America, Europe and Asia. These outbreaks have been variously associated with, or attributed to, the emergence of Clostridium difficile strains with increased virulence, an increase in resistance to commonly used antimicrobials such as the fluoroquinolones, or host susceptibilities, including the use of gastric acid suppressants, to name a few. Efforts to elucidate C. difficile pathogenic mechanisms have been hampered by a lack of molecular tools, manipulatable animal models, and genetic intractability of clinical C. difficile isolates. However, in the past 5 y, painstaking efforts have resulted in the unraveling of multiple C. difficile virulence-associated pathways and mechanisms. We have recently reviewed the disease, its associated risk factors, transmission and interventions (Viswanathan, Gut Microbes 2010). This article summarizes genetics, non-toxin virulence factors, and host-cell biology associated with C. difficile pathogenesis as of 2011, and highlights those findings/factors that may be of interest as future intervention targets.
Collapse
Affiliation(s)
- Gayatri Vedantam
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA,Department of Immunobiology; University of Arizona; Tucson, AZ USA,BIO5 Research Institute; University of Arizona; Tucson, AZ USA,Southern Arizona VA Healthcare System; Tucson, AZ USA,Correspondence to: Gayatri Vedantam,
| | - Andrew Clark
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA
| | - Michele Chu
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA
| | - Rebecca McQuade
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA
| | - Michael Mallozzi
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA
| | - V. K. Viswanathan
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA,Department of Immunobiology; University of Arizona; Tucson, AZ USA,BIO5 Research Institute; University of Arizona; Tucson, AZ USA
| |
Collapse
|
38
|
Carter GP, Rood JI, Lyras D. The role of toxin A and toxin B in the virulence of Clostridium difficile. Trends Microbiol 2011; 20:21-9. [PMID: 22154163 DOI: 10.1016/j.tim.2011.11.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/08/2011] [Accepted: 11/10/2011] [Indexed: 12/21/2022]
Abstract
During the past decade, there has been a striking increase in Clostridium difficile nosocomial infections worldwide predominantly due to the emergence of epidemic or hypervirulent isolates, leading to an increased research focus on this bacterium. Particular interest has surrounded the two large clostridial toxins encoded by most virulent isolates, known as toxin A and toxin B. Toxin A was thought to be the major virulence factor for many years; however, it is becoming increasingly evident that toxin B plays a much more important role than anticipated. It is clear that further experiments are required to accurately determine the relative roles of each toxin in disease, especially in more clinically relevant current epidemic isolates.
Collapse
Affiliation(s)
- Glen P Carter
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
39
|
Balassiano IT, Yates EA, Domingues RMCP, Ferreira EO. Clostridium difficile: a problem of concern in developed countries and still a mystery in Latin America. J Med Microbiol 2011; 61:169-179. [PMID: 22116982 DOI: 10.1099/jmm.0.037077-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile-associated disease (CDAD) is caused by a spore-forming bacterium and can result in highly variable disease, ranging from mild diarrhoea to severe clinical manifestations. Infections are most commonly seen in hospital settings and are often associated with on-going antibiotic therapy. Incidences of CDAD have shown a sustained increase worldwide over the last ten years and a hypervirulent C. difficile strain, PCR ribotype 027/REA type BI/North American pulsed-field (NAP) type 1 (027/BI/NAP-1), has caused outbreaks in North America and Europe. In contrast, only a few reports of cases in Latin America have been published and the hypervirulent strain 027/BI/NAP-1 has, so far, only been reported in Costa Rica. The potential worldwide spread of this infection calls for epidemiological studies to characterize currently circulating strains and also highlights the need for increased awareness and vigilance among healthcare professionals in currently unaffected areas, such as Latin America. This review attempts to summarize reports of C. difficile infection worldwide, especially in Latin America, and aims to provide an introduction to the problems associated with this pathogen for those countries that might face outbreaks of epidemic strains of C. difficile for the first time in the near future.
Collapse
Affiliation(s)
- I T Balassiano
- Leptospira Collection, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,WHO Collaborating Center for Leptospirosis, Oswaldo Cruz Foundation, Pavilhão Rocha Lima, 302 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - E A Yates
- School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - R M C P Domingues
- Universidade Federal do Rio de Janeiro, CCS, Bloco I, 2° andar, Laboratório de Biologia de Anaeróbios, Rio de Janeiro 20941-901, Brazil
| | - E O Ferreira
- Universidade Federal do Rio de Janeiro, CCS, Bloco I, 2° andar, Laboratório de Biologia de Anaeróbios, Rio de Janeiro 20941-901, Brazil
| |
Collapse
|
40
|
Poxton IR, Rupnik M. International Clostridium
difficile Symposium 2010 – Special Issue. J Med Microbiol 2011; 60:1055-1056. [DOI: 10.1099/jmm.0.033985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ian R. Poxton
- Medical Microbiology, Centre for Infectious Diseases, University of Edinburgh College of Medicine and Veterinary Medicine, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Maja Rupnik
- University of Maribor, Faculty of Medicine; Center of Excellence CIPKEBIP, Ljubljana; Institute of Public Health Maribor, Centre for Microbiology, Prvomajska 1, 2000 Maribor, Slovenia
| |
Collapse
|