1
|
Blazevic A, Edwards RL, Xia M, Eickhoff CS, Hamzabegovic F, Meza KA, Ning H, Tennant J, Mosby KJ, Ritchie JC, Girmay T, Lai L, McCullough M, Beck A, Kelley C, Edupuganti S, Kabbani S, Buchanan W, Makhene MK, Voronca D, Cherikh S, Goll JB, Rouphael NG, Mulligan MJ, Hoft DF. Phase 1 Open-Label Dose Escalation Trial for the Development of a Human Bacillus Calmette-Guérin Challenge Model for Assessment of Tuberculosis Immunity In Vivo. J Infect Dis 2024; 229:1498-1508. [PMID: 38019956 PMCID: PMC11095547 DOI: 10.1093/infdis/jiad441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND A controlled human infection model for assessing tuberculosis (TB) immunity can accelerate new vaccine development. METHODS In this phase 1 dose escalation trial, 92 healthy adults received a single intradermal injection of 2 × 106 to 16 × 106 colony-forming units of Bacillus Calmette-Guérin (BCG). The primary endpoints were safety and BCG shedding as measured by quantitative polymerase chain reaction, colony-forming unit plating, and MGIT BACTEC culture. RESULTS Doses up to 8 × 106 were safe, and there was evidence for increased BCG shedding with dose escalation. The MGIT time-to-positivity assay was the most consistent and precise measure of shedding. Power analyses indicated that 10% differences in MGIT time to positivity (area under the curve) could be detected in small cohorts (n = 30). Potential biomarkers of mycobacterial immunity were identified that correlated with shedding. Transcriptomic analysis uncovered dose- and time-dependent effects of BCG challenge and identified a putative transcriptional TB protective signature. Furthermore, we identified immunologic and transcriptomal differences that could represent an immune component underlying the observed higher rate of TB disease incidence in males. CONCLUSIONS The safety, reactogenicity, and immunogenicity profiles indicate that this BCG human challenge model is feasible for assessing in vivo TB immunity and could facilitate the vaccine development process. CLINICAL TRIALS REGISTRATION NCT01868464 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Azra Blazevic
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - Rachel L Edwards
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - Mei Xia
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | | | - Fahreta Hamzabegovic
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - Krystal A Meza
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - Huan Ning
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - Janice Tennant
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - Karla J Mosby
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| | - James C Ritchie
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Tigisty Girmay
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Lilin Lai
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Michele McCullough
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Allison Beck
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Colleen Kelley
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Srilatha Edupuganti
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Sarah Kabbani
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Wendy Buchanan
- Division of Microbiology, Immunology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mamodikoe K Makhene
- Division of Microbiology, Immunology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Delia Voronca
- The Emmes Company, LLC, Global Head Biomedical Data Science and Bioinformatics, Rockville, Maryland
| | - Sami Cherikh
- The Emmes Company, LLC, Global Head Biomedical Data Science and Bioinformatics, Rockville, Maryland
| | - Johannes B Goll
- The Emmes Company, LLC, Global Head Biomedical Data Science and Bioinformatics, Rockville, Maryland
| | - Nadine G Rouphael
- Hope Clinic, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | | | - Daniel F Hoft
- Department of Internal Medicine, School of Medicine, Saint Louis University, Missouri
| |
Collapse
|
2
|
Xiong B, Chen X, Tu J, Han Z, Meng X, Sun H. Actinidia eriantha polysaccharide exerts adjuvant activity by targeting linc-AAM. Int J Biol Macromol 2023; 252:126440. [PMID: 37611690 DOI: 10.1016/j.ijbiomac.2023.126440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/17/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Actinidia eriantha polysaccharide (AEPS) is a potent adjuvant with dual Th1 and Th2 potentiating activity. linc-AAM has been previously proved to facilitate the expression of immune response genes (IRGs) in AEPS-activated RAW264.7 macrophages. However, its role in mediating adjuvant activity of AEPS remains to be elucidated. In this study, bone marrow-derived macrophages (BMDMs) from wide-type (WT) and linc-AAM knockout C57BL/6J mice treated with AEPS were subjected to transcriptome sequencing and bioinformatic analysis. linc-AAM deficiency inhibited M1 and M2 immune responses in BMDMs induced by AEPS. In mechanisms, AEPS facilitated the expression of IRGs and activated BMDMs through NF-κB-linc-AAM-JAK/STAT axis. Furthermore, linc-AAM knockout inhibited cytokine and chemokine production, immune cell recruitment as well as immune cell migration to draining lymph nodes at peritoneal cavity in mice induced by AEPS. More importantly, linc-AAM deletion reduced the adjuvant activity of APES on antigen-specific cellular and humoral immune responses to ovalbumin in mice. This study has for the first time demonstrated the role of lncRNAs in regulating the adjuvant activity of polysaccharides and its mechanisms. These findings expanded current knowledge on the mechanism of action of adjuvant and provide a new target for the design and development of vaccine adjuvants.
Collapse
Affiliation(s)
- Beibei Xiong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiangfeng Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jue Tu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310058, Zhejiang, China
| | - Ziyi Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiang Meng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
3
|
Ishwarlall TZ, Adeleke VT, Maharaj L, Okpeku M, Adeniyi AA, Adeleke MA. Multi-epitope vaccine candidates based on mycobacterial membrane protein large (MmpL) proteins against Mycobacterium ulcerans. Open Biol 2023; 13:230330. [PMID: 37935359 PMCID: PMC10645115 DOI: 10.1098/rsob.230330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
Buruli ulcer (BU) is a neglected tropical disease. It is caused by the bacterium Mycobacterium ulcerans and is characterized by skin lesions. Several studies were performed testing the Bacillus Calmette-Guérin (BCG) vaccine in human and animal models and M. ulcerans-specific vaccines in animal models. However, there are currently no clinically accepted vaccines to prevent M. ulcerans infection. The aim of this study was to identify T-cell and B-cell epitopes from the mycobacterial membrane protein large (MmpL) proteins of M. ulcerans. These epitopes were analysed for properties including antigenicity, immunogenicity, non-allergenicity, non-toxicity, population coverage and the potential to induce cytokines. The final 8 CD8+, 12 CD4+ T-cell and 5 B-cell epitopes were antigenic, non-allergenic and non-toxic. The estimated global population coverage of the CD8+ and CD4+ epitopes was 97.71%. These epitopes were used to construct five multi-epitope vaccine constructs with different adjuvants and linker combinations. The constructs underwent further structural analyses and refinement. The constructs were then docked with Toll-like receptors. Three of the successfully docked complexes were structurally analysed. Two of the docked complexes successfully underwent molecular dynamics simulations (MDS) and post-MDS analysis. The complexes generated were found to be stable. However, experimental validation of the complexes is required.
Collapse
Affiliation(s)
- Tamara Z. Ishwarlall
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria T. Adeleke
- Department of Chemical Engineering, Mangosuthu University of Technology, Umlazi, Durban, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adebayo A. Adeniyi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Industrial Chemistry, Federal University Oye Ekiti, Ekiti State, Nigeria
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Ali Y, Khan HU. IoT platforms assessment methodology for COVID-19 vaccine logistics and transportation: a multi-methods decision making model. Sci Rep 2023; 13:17575. [PMID: 37845382 PMCID: PMC10579304 DOI: 10.1038/s41598-023-44966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023] Open
Abstract
The supply chain management (SCM) of COVID-19 vaccine is the most daunting task for logistics and supply managers due to temperature sensitivity and complex logistics process. Therefore, several technologies have been applied but the complexity of COVID-19 vaccine makes the Internet of Things (IoT) a strong use case due to its multiple features support like excursion notification, data sharing, connectivity management, secure shipping, real-time tracking and monitoring etc. All these features can only feasible through choosing and deploying the right IoT platform. However, selection of right IoT platform is also a major concern due to lack of experience and technical knowledge of supply chain managers and diversified landscape of IoT platforms. Therefore, we introduce a decision making model for evaluation and decision making of IoT platforms that fits for logistics and transportation (L&T) process of COVID-19 vaccine. This study initially identifies the major challenges addressed during the SCM of COVID-19 vaccine and then provides reasonable solution by presenting the assessment model for selection of rational IoT platform. The proposed model applies hybrid Multi Criteria Decision Making (MCDM) approach for evaluation. It also adopts Estimation-Talk-Estimation (ETE) approach for response collection during the survey. As, this is first kind of model so the proposed model is validated and tested by conducting a survey with experts. The results of the proposed decision making model are also verified by Simple Additive Weighting (SAW) technique which indicates higher results accuracy and reliability of the proposed model. Similarly, the proposed model yields the best possible results and it can be judged by the precision, accuracy and recall values i.e. 93%, 93% and 94% respectively. The survey-based testing also suggests that this model can be adopted in practical scenarios to deal with complexities which may arise during the decision making of IoT platform for COVID-19 SCM process.
Collapse
Affiliation(s)
- Yasir Ali
- Shahzeb Shaheed Government Degree College Razzar, Swabi, Higher Education Department, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Habib Ullah Khan
- Accounting and Information Systems, College of Business and Economics, Qatar University, Doha, Qatar.
| |
Collapse
|
5
|
Kotwal SB, Orekondey N, Saradadevi GP, Priyadarshini N, Puppala NV, Bhushan M, Motamarry S, Kumar R, Mohannath G, Dey RJ. Multidimensional futuristic approaches to address the pandemics beyond COVID-19. Heliyon 2023; 9:e17148. [PMID: 37325452 PMCID: PMC10257889 DOI: 10.1016/j.heliyon.2023.e17148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Globally, the impact of the coronavirus disease 2019 (COVID-19) pandemic has been enormous and unrelenting with ∼6.9 million deaths and ∼765 million infections. This review mainly focuses on the recent advances and potentially novel molecular tools for viral diagnostics and therapeutics with far-reaching implications in managing the future pandemics. In addition to briefly highlighting the existing and recent methods of viral diagnostics, we propose a couple of potentially novel non-PCR-based methods for rapid, cost-effective, and single-step detection of nucleic acids of viruses using RNA mimics of green fluorescent protein (GFP) and nuclease-based approaches. We also highlight key innovations in miniaturized Lab-on-Chip (LoC) devices, which in combination with cyber-physical systems, could serve as ideal futuristic platforms for viral diagnosis and disease management. We also discuss underexplored and underutilized antiviral strategies, including ribozyme-mediated RNA-cleaving tools for targeting viral RNA, and recent advances in plant-based platforms for rapid, low-cost, and large-scale production and oral delivery of antiviral agents/vaccines. Lastly, we propose repurposing of the existing vaccines for newer applications with a major emphasis on Bacillus Calmette-Guérin (BCG)-based vaccine engineering.
Collapse
Affiliation(s)
- Shifa Bushra Kotwal
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Nidhi Orekondey
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | | | - Neha Priyadarshini
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Navinchandra V Puppala
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Mahak Bhushan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, West Bengal 741246, India
| | - Snehasri Motamarry
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Rahul Kumar
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Gireesha Mohannath
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Ruchi Jain Dey
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| |
Collapse
|
6
|
Ranade D, Jena R, Patil K, Dogar V, Sancheti S, Deore V, Ashtagi S, Gairola S. A novel high throughput plate-based method for 2-PE quantification in novel multidose vaccines (R21 malaria, Covishield and Covovax) and combination vaccines (Hexavalent). Vaccine 2023; 41:1979-1988. [PMID: 36803871 DOI: 10.1016/j.vaccine.2023.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/11/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
Multidose presentation of vaccines is the most preferred choice, for mass immunization particularly during pandemics. WHO also recommends multidose containers of fill finished vaccines for programmatic suitability and global immunizations programmes. However, multidose vaccine presentations requires inclusion of preservatives to prevent contaminations. 2-Phenoxy ethanol (2-PE) is one such preservative which is being used in numerous cosmetics and many vaccines recently. Estimation of 2-PE content in multidose vials is a crucial quality control parameter to ensure in use stability of the vaccines. Presently available conventional methods, have their own limitation in terms of being time consuming, requiring sample extraction, large sample volume requirement etc. Therefore, a robust, simple, high-throughput method with a low turnaround time was required, which can quantitate 2-PE content in the conventional combination vaccines as well as new generation complex VLP based vaccines. In order to address this issue, a novel absorbance-based method has been developed. This novel method specifically detects 2-PE content in Matrix M1 adjuvanted R21 malaria vaccine, nano particle and viral vector based covid vaccines and combination vaccines like Hexavalent vaccine. The method has been validated for parameters such as linearity, accuracy and precision. Importantly, this method works even in presence of high amounts of proteins and residual DNA. Considering the advantages associated with method under study, this method can be used as an important in process or release quality parameter to estimate the 2-PE content in various vaccines containing 2-PE in multidose presentations.
Collapse
Affiliation(s)
- Dnyanesh Ranade
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028 India
| | - Rajender Jena
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028 India
| | - Kundan Patil
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028 India
| | - Vikas Dogar
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028 India
| | - Shubham Sancheti
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028 India
| | - Vicky Deore
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028 India
| | - Siddharam Ashtagi
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028 India
| | - Sunil Gairola
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028 India.
| |
Collapse
|
7
|
Konje JC, Al Beloushi M, Ahmed B. Immunisation against COVID-19 in Pregnancy and of Women Planning Pregnancy. Viruses 2023; 15:v15030621. [PMID: 36992330 PMCID: PMC10059008 DOI: 10.3390/v15030621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Following reports of the first human SARS-CoV2 infection in December 2019 from Wuhan Province, China, there was such rapid spread that by March 2021, the World Health Organization (WHO) had declared a pandemic. Over 6.5 million people have died from this infection worldwide, although this is most likely an underestimate. Until vaccines became available, mortality and severe morbidity were costly in terms of life lost as well as the cost of supporting the severely and acutely ill. Vaccination changed the landscape, and following worldwide adoption, life has gradually been returning to normal. The speed of production of the vaccines was unprecedented and undoubtedly ushered in a new era in the science of fighting infections. The developed vaccines were on the already known platforms for vaccine delivery: inactivated virus, virus vector, virus-like particles (VLP) subunit, DNA and mRNA. The mRNA platform was used for the first time to deliver vaccines to humans. An understanding of these platforms and the pros and cons of each are important for clinicians who are often challenged by the recipients on the advantages and risks of these vaccines. These vaccines have so far and reassuringly been shown to be safe in reproduction (with no effect on gametes) and pregnancy (not associated with congenital malformations). However, safety remains paramount and continuing vigilance is critical, especially against rare fatal complications such as vaccine-induced thrombocytopenia and myocarditis. Finally, the waning immunity months after vaccination means repeated immunisation is likely to be ongoing, but just how often and how many such revaccinations should be recommended remains uncertain. Research into other vaccines and alternate delivery methods should continue as this infection is likely to be around for a long time.
Collapse
Affiliation(s)
- Justin C. Konje
- Feto-Maternal Centre Al Markhiya, Doha P.O. Box 34181, Qatar
- Obstetrics and Gynecology Department, Weill Cornell Medicine Qatar, Doha P.O. Box 24144, Qatar
- Obstetrics and Gynaecology, Department of Health Sciences, University of Leicester, Leicester LE2 7LX, UK
- Correspondence: ; Tel.: +974-7777-8375
| | - Mariam Al Beloushi
- Women’s Wellness and Research Centre, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar
| | - Badreldeen Ahmed
- Feto-Maternal Centre Al Markhiya, Doha P.O. Box 34181, Qatar
- Obstetrics and Gynecology Department, Weill Cornell Medicine Qatar, Doha P.O. Box 24144, Qatar
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
8
|
Margaroni M, Agallou M, Tsanaktsidou E, Kammona O, Kiparissides C, Karagouni E. Immunoinformatics Approach to Design a Multi-Epitope Nanovaccine against Leishmania Parasite: Elicitation of Cellular Immune Responses. Vaccines (Basel) 2023; 11:304. [PMID: 36851182 PMCID: PMC9960668 DOI: 10.3390/vaccines11020304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Leishmaniasis is a vector-borne disease caused by an intracellular parasite of the genus Leishmania with different clinical manifestations that affect millions of people worldwide, while the visceral form may be fatal if left untreated. Since the available chemotherapeutic agents are not satisfactory, vaccination emerges as the most promising strategy for confronting leishmaniasis. In the present study, a reverse vaccinology approach was adopted to design a pipeline starting from proteome analysis of three different Leishmania species and ending with the selection of a pool of MHCI- and MHCII-binding epitopes. Epitopes from five parasite proteins were retrieved and fused to construct a multi-epitope chimeric protein, named LeishChim. Immunoinformatics analyses indicated that LeishChim was a stable, non-allergenic and immunogenic protein that could bind strongly onto MHCI and MHCII molecules, suggesting it as a potentially safe and effective vaccine candidate. Preclinical evaluation validated the in silico prediction, since the LeishChim protein, encapsulated simultaneously with monophosphoryl lipid A (MPLA) into poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles, elicited specific cellular immune responses when administered to BALB/c mice. These were characterized by the development of memory CD4+ T cells, as well as IFNγ- and TNFα-producing CD4+ and CD8+ T cells, supporting the potential of LeishChim as a vaccine candidate.
Collapse
Affiliation(s)
- Maritsa Margaroni
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, 125 21 Athens, Greece
| | - Maria Agallou
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, 125 21 Athens, Greece
| | - Evgenia Tsanaktsidou
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, 57 001 Thessaloniki, Greece
| | - Olga Kammona
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, 57 001 Thessaloniki, Greece
| | - Costas Kiparissides
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, 57 001 Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| | - Evdokia Karagouni
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, 125 21 Athens, Greece
| |
Collapse
|
9
|
Mathew M, Thomas J. Tobacco-Based Vaccines, Hopes, and Concerns: A Systematic Review. Mol Biotechnol 2022:10.1007/s12033-022-00627-5. [PMID: 36528727 PMCID: PMC9759281 DOI: 10.1007/s12033-022-00627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Emerging infectious diseases have vigorously devastated the global economy and health sector; cost-effective plant-based vaccines (PBV) can be the potential solution to withstand the current health economic crisis. The prominent role of tobacco as an efficient expression system for PBV has been well-established for decades, through this review we highlight the importance of tobacco-based vaccines (TBV) against evolving infectious diseases in humans. Studies focusing on the use of TBV for human infectious diseases were searched in PubMed, Google Scholar, and science direct from 1995 to 2021 using the keywords Tobacco-based vaccines OR transgenic tobacco OR Nicotiana benthamiana vaccines AND Infectious diseases or communicable diseases. We carried out a critical review of the articles and studies that fulfilled the eligibility criteria and were included in this review. Of 976 studies identified, only 63 studies fulfilling the eligibility criteria were included, which focused on either the in vitro, in vivo, or clinical studies on TBV for human infectious diseases. Around 43 in vitro studies of 23 different infectious pathogens expressed in tobacco-based systems were identified and 23 in vivo analysis studies were recognized to check the immunogenicity of vaccine candidates while only 10 of these were subjected to clinical trials. Viral infectious pathogens were studied more than bacterial pathogens. From our review, it was evident that TBV can be an effective health strategy to combat the emerging viral infectious diseases which are very difficult to manage with the current health facilities. The timely administration of cost-effective TBV can prevent the outburst of viral infections, thereby can protect the global healthcare system to a greater extent.
Collapse
Affiliation(s)
- Mintu Mathew
- Department of Pharmacology, Amrita School of Pharmacy, Kochi, Kerala India
| | - Jaya Thomas
- Department of Pharmacology, Amrita School of Pharmacy, Kochi, Kerala India
| |
Collapse
|
10
|
Thorn CR, Sharma D, Combs R, Bhujbal S, Romine J, Zheng X, Sunasara K, Badkar A. The journey of a lifetime - development of Pfizer's COVID-19 vaccine. Curr Opin Biotechnol 2022; 78:102803. [PMID: 36162187 PMCID: PMC9433349 DOI: 10.1016/j.copbio.2022.102803] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
It would be apt to say that one of the greatest accomplishments in modern medicine has been the development of vaccines against COVID-19, which had paralyzed the entire world for more than a year. Pfizer and BioNTech codeveloped the first COVID-19 vaccine that was granted emergency-use authorization or conditional approval in several regions globally. This article is an attempt to go 'behind-the-scenes' of this development process and highlight key factors that allowed us to move with this unprecedented speed, while adhering to normal vaccine-development requirements to generate the information the regulatory authorities needed to assess the safety and effectiveness of a vaccine to prevent an infectious disease, including quality and manufacturing standards. This is also a story of how Pfizer and BioNTech leveraged our combined skill sets and experience to respond to the global health crisis to progress this program swiftly while ensuring the compliance with our high-quality standards and keeping patient safety at the forefront. We will also highlight multiple other factors that were instrumental in our success.
Collapse
Affiliation(s)
- Chelsea R Thorn
- Pharmaceutical Research and Development, Biotherapeutics Pharm Sci, Pfizer Inc., USA
| | - Divya Sharma
- Pharmaceutical Research and Development, Biotherapeutics Pharm Sci, Pfizer Inc., USA
| | - Rodney Combs
- Bioprocess Research and Development, Biotherapeutics Pharm Sci, Pfizer Inc., USA
| | - Sonal Bhujbal
- Pharmaceutical Research and Development, Biotherapeutics Pharm Sci, Pfizer Inc., USA
| | - Jennifer Romine
- Bioprocess Research and Development, Biotherapeutics Pharm Sci, Pfizer Inc., USA
| | - Xiaolu Zheng
- Bioprocess Research and Development, Biotherapeutics Pharm Sci, Pfizer Inc., USA
| | - Khurram Sunasara
- Bioprocess Research and Development, Biotherapeutics Pharm Sci, Pfizer Inc., USA
| | - Advait Badkar
- Pharmaceutical Research and Development, Biotherapeutics Pharm Sci, Pfizer Inc., USA.
| |
Collapse
|
11
|
Oke MA, Afolabi FJ, Oyeleke OO, Kilani TA, Adeosun AR, Olanbiwoninu AA, Adebayo EA. Ganoderma lucidum: Unutilized natural medicine and promising future solution to emerging diseases in Africa. Front Pharmacol 2022; 13:952027. [PMID: 36071846 PMCID: PMC9441938 DOI: 10.3389/fphar.2022.952027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Ganoderma lucidum is a well-known medicinal mushroom that has been used for the prevention and treatment of different ailments to enhance longevity and health specifically in China, Japan, and Korea. It was known as "God's herb" in ancient China as it was believed to prolong life, enhance the youthful spirit and sustain/preserve vitality. G. lucidum is seldom collected from nature and is substantially cultivated on wood logs and sawdust in plastic bags or bottles to meet the international market demand. Both in vitro and in vivo studies on the copious metabolic activities of G. lucidum have been carried out. Varied groups of chemical compounds including triterpenoids, polysaccharides, proteins, amino acids, nucleosides, alkaloids, steroids, lactones, lectins, fatty acids, and enzymes with potent pharmacological activities have been isolated from the mycelia and fruiting bodies of G. lucidum. Several researchers have reported the abundance and diversification of its biological actions triggered by these chemical compounds. Triterpenoids and polysaccharides of G. lucidum have been reported to possess cytotoxic, hepatoprotective, antihypertensive, hypocholesterolemic, antihistaminic effects, antioxidant, antimicrobial, anti-inflammatory, hypoglycemic antiallergic, neuroprotective, antitumor, immunomodulatory and antiangiogenic activities. Various formulations have been developed, patented, and utilized as nutraceuticals, cosmeceuticals, and pharmaceuticals from G. lucidum extracts and active compounds. Thus, this review presents current updates on emerging infectious diseases and highlights the scope, dynamics, and advances in infectious disease management with a particular focus on Ganoderma lucidum, an unutilized natural medicine as a promising future solution to emerging diseases in Africa. However, details such as the chemical compound and mode of action of each bioactive against different emerging diseases were not discussed in this study.
Collapse
Affiliation(s)
- M. A. Oke
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - F. J. Afolabi
- Mushrooms Department, National Biotechnology Development Centre, Ogbomoso, Nigeria
| | - O. O. Oyeleke
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - T. A. Kilani
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - A. R. Adeosun
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - A. A. Olanbiwoninu
- Department of Biological Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - E. A. Adebayo
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
- Mushrooms Department, National Biotechnology Development Centre, Ogbomoso, Nigeria
| |
Collapse
|
12
|
De Micco P, Maraghini MP, Spadafina T. The costs of introducing a vaccine in sub-Saharan Africa: a systematic review of the literature. INTERNATIONAL JOURNAL OF HEALTH GOVERNANCE 2022. [DOI: 10.1108/ijhg-01-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeThis study provides a systematic literature review and categorization of the costs reported in the literature for the introduction of new vaccines, focusing on sub-Saharan Africa within LMICs, where vaccines are highly needed, financial resources are scarce and data are lacking and scattered.Design/methodology/approachA systematic literature search of PubMed and Web of Science databases was conducted according to the PRISMA requirements. Searches also included the relevant grey literature. In total, 39 studies were selected and nine cost categories were investigated to build a comprehensive framework.FindingsThe paper considers nine cost categories that cover the whole life of the vaccine, from its initial study to its full implementation, including for each of them the relevant subcategories. The systematic review, besides providing specific quantitative data and allowing to assess their variability within each category, points out that delivery, program preparation, administration and procurement costs are the most frequently estimated categories, while the cost of the good sold, costs borne by households and costs associated to AEFI are usually overlooked. Data reported on R&D costs and investment in the production plant differ significantly among the selected contributions.Originality/valueThe literature contributions on cost estimation tend to focus on a precise vaccine, a specific geographic area, or to adopt a narrow approach that captures only a subset of the costs. This article presents a rich and inclusive set of the economic quantitative data on immunization costs in limited-resource countries.
Collapse
|
13
|
Chew K, Lee B, van Haren SD, Nanishi E, O’Meara T, Splaine JB, DeLeon M, Soni D, Seo HS, Dhe-Paganon S, Ozonoff A, Smith JA, Levy O, Dowling DJ. Adjuvant Discovery via a High Throughput Screen using Human Primary Mononuclear Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.17.496630. [PMID: 35860217 PMCID: PMC9298130 DOI: 10.1101/2022.06.17.496630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Motivation Vaccines are a key biomedical intervention to prevent the spread of infectious diseases, but their efficacy can be limited by insufficient immunogenicity and nonuniform reactogenic profiles. Adjuvants are molecules that potentiate vaccine responses by inducing innate immune activation. However, there are a limited number of adjuvants in approved vaccines, and current approaches for preclinical adjuvant discovery and development are inefficient. To enhance adjuvant identification, we developed a protocol based on in vitro screening of human primary leukocytes. Summary We describe a methodology utilizing high-throughput and high-content screening for novel adjuvant candidates that was used to screen a library of ~2,500 small molecules via a 384-well quantitative combined cytokine and flow cytometry immunoassay in primary human peripheral blood mononuclear cells (PBMCs) from 4 healthy adult study participants. Hits were identified based on their induction of soluble cytokine (TNF, IFNg and IL-10) secretion and PBMC maturation (CD 80/86, Ox40, and HLA-DR) in at least two of the four donors screened. From an initial set of 197 compounds identified using these biomarkers-an 8.6% hit rate-we downselected to five scaffolds that demonstrated robust efficacy and potency in vitro and evaluated the top hit, vinblastine sulfate, for adjuvanticity in vivo. Vinblastine sulfate significantly enhanced murine humoral responses to recombinant SARS-CoV-2 spike protein, including a four-fold enhancement of IgG titer production when compared to treatment with the spike antigen alone. Overall, we outline a methodology for discovering immunomodulators with adjuvant potential via high-throughput screening of PBMCs in vitro that yielded a lead compound with in vivo adjuvanticity.
Collapse
Affiliation(s)
- Katherine Chew
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Branden Lee
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Timothy O’Meara
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | | | - Maria DeLeon
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Jennifer A. Smith
- ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - David J. Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
PDAUG: a Galaxy based toolset for peptide library analysis, visualization, and machine learning modeling. BMC Bioinformatics 2022; 23:197. [PMID: 35643441 PMCID: PMC9148462 DOI: 10.1186/s12859-022-04727-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/11/2022] [Indexed: 11/28/2022] Open
Abstract
Background Computational methods based on initial screening and prediction of peptides for desired functions have proven to be effective alternatives to lengthy and expensive biochemical experimental methods traditionally utilized in peptide research, thus saving time and effort. However, for many researchers, the lack of expertise in utilizing programming libraries, access to computational resources, and flexible pipelines are big hurdles to adopting these advanced methods.
Results To address the above mentioned barriers, we have implemented the peptide design and analysis under Galaxy (PDAUG) package, a Galaxy-based Python powered collection of tools, workflows, and datasets for rapid in-silico peptide library analysis. In contrast to existing methods like standard programming libraries or rigid single-function web-based tools, PDAUG offers an integrated GUI-based toolset, providing flexibility to build and distribute reproducible pipelines and workflows without programming expertise. Finally, we demonstrate the usability of PDAUG in predicting anticancer properties of peptides using four different feature sets and assess the suitability of various ML algorithms. Conclusion PDAUG offers tools for peptide library generation, data visualization, built-in and public database peptide sequence retrieval, peptide feature calculation, and machine learning (ML) modeling. Additionally, this toolset facilitates researchers to combine PDAUG with hundreds of compatible existing Galaxy tools for limitless analytic strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04727-6.
Collapse
|
15
|
Khandker SS, Godman B, Jawad MI, Meghla BA, Tisha TA, Khondoker MU, Haq MA, Charan J, Talukder AA, Azmuda N, Sharmin S, Jamiruddin MR, Haque M, Adnan N. A Systematic Review on COVID-19 Vaccine Strategies, Their Effectiveness, and Issues. Vaccines (Basel) 2021; 9:1387. [PMID: 34960133 PMCID: PMC8708628 DOI: 10.3390/vaccines9121387] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 vaccines are indispensable, with the number of cases and mortality still rising, and currently no medicines are routinely available for reducing morbidity and mortality, apart from dexamethasone, although others are being trialed and launched. To date, only a limited number of vaccines have been given emergency use authorization by the US Food and Drug Administration and the European Medicines Agency. There is a need to systematically review the existing vaccine candidates and investigate their safety, efficacy, immunogenicity, unwanted events, and limitations. The review was undertaken by searching online databases, i.e., Google Scholar, PubMed, and ScienceDirect, with finally 59 studies selected. Our findings showed several types of vaccine candidates with different strategies against SARS-CoV-2, including inactivated, mRNA-based, recombinant, and nanoparticle-based vaccines, are being developed and launched. We have compared these vaccines in terms of their efficacy, side effects, and seroconversion based on data reported in the literature. We found mRNA vaccines appeared to have better efficacy, and inactivated ones had fewer side effects and similar seroconversion in all types of vaccines. Overall, global variant surveillance and systematic tweaking of vaccines, coupled with the evaluation and administering vaccines with the same or different technology in successive doses along with homologous and heterologous prime-booster strategy, have become essential to impede the pandemic. Their effectiveness appreciably outweighs any concerns with any adverse events.
Collapse
Affiliation(s)
- Shahad Saif Khandker
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
| | - Brian Godman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK;
- Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Md. Irfan Jawad
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Bushra Ayat Meghla
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Taslima Akter Tisha
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Mohib Ullah Khondoker
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
- Department of Community Medicine, Gonoshasthaya Samaj Vittik Medical College, Savar 1344, Bangladesh
| | - Md. Ahsanul Haq
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur 342005, India;
| | - Ali Azam Talukder
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Nafisa Azmuda
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Shahana Sharmin
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh;
| | - Mohd. Raeed Jamiruddin
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh;
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sugai Besi, Kuala Lumpur 57000, Malaysia
| | - Nihad Adnan
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| |
Collapse
|
16
|
Use of a small molecule integrin activator as a systemically administered vaccine adjuvant in controlling Chagas disease. NPJ Vaccines 2021; 6:114. [PMID: 34497271 PMCID: PMC8426359 DOI: 10.1038/s41541-021-00378-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 08/13/2021] [Indexed: 01/07/2023] Open
Abstract
The development of suitable safe adjuvants to enhance appropriate antigen-driven immune responses remains a challenge. Here we describe the adjuvant properties of a small molecule activator of the integrins αLβ2 and α4β1, named 7HP349, which can be safely delivered systemically independent of antigen. 7HP349 directly activates integrin cell adhesion receptors crucial for the generation of an immune response. When delivered systemically in a model of Chagas disease following immunization with a DNA subunit vaccine encoding candidate T. cruzi antigens, TcG2 and TcG4, 7HP349 enhanced the vaccine efficacy in both prophylactic and therapeutic settings. In a prophylactic setting, mice immunized with 7HP349 adjuvanted vaccine exhibited significantly improved control of acute parasite burden in cardiac and skeletal muscle as compared to vaccination alone. When administered with vaccine therapeutically, parasite burden was again decreased, with the greatest adjuvant effect of 7HP349 being noted in skeletal muscle. In both settings, adjuvantation with 7HP349 was effective in decreasing pathological inflammatory infiltrate, improving the integrity of tissue, and controlling tissue fibrosis in the heart and skeletal muscle of acutely and chronically infected Chagas mice. The positive effects correlated with increased splenic frequencies of CD8+T effector cells and an increase in the production of IFN-γ and cytolytic molecules (perforin and granzyme) by the CD4+ and CD8+ effector and central memory subsets in response to challenge infection. This demonstrates that 7HP349 can serve as a systemically administered adjuvant to enhance T cell-mediated immune responses to vaccines. This approach could be applied to numerous vaccines with no reformulation of existing stockpiles.
Collapse
|
17
|
Verdecia M, Kokai-Kun JF, Kibbey M, Acharya S, Venema J, Atouf F. COVID-19 vaccine platforms: Delivering on a promise? Hum Vaccin Immunother 2021; 17:2873-2893. [PMID: 34033528 PMCID: PMC8381795 DOI: 10.1080/21645515.2021.1911204] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of the novel SARS-CoV-2 and COVID-19 has brought into sharp focus the need for a vaccine to prevent this disease. Vaccines have saved millions of lives since their introduction to the public over 200 years ago. The potential for vaccination reached new heights in the mid-20th century with the development of technologies that expanded the ability to create novel vaccines. Since then, there has been continued technological advancement in vaccine development. The resulting platforms provide the promise for solutions for many infectious diseases, including those that have been with us for decades as well as those just now emerging. Each vaccine platform represents a different technology with a unique set of advantages and challenges, especially when considering manufacturing. Therefore, it is essential to understand each platform as a separate product and process with its specific quality considerations. This review outlines the relevant platforms for developing a vaccine for SARS-CoV-2 and discusses the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Mark Verdecia
- United States Pharmacopeial Convention, Rockville, MD, USA
| | | | - Maura Kibbey
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Sarita Acharya
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Jaap Venema
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Fouad Atouf
- United States Pharmacopeial Convention, Rockville, MD, USA
| |
Collapse
|
18
|
Varre JV. Vaccines are not one size fits all, just like medications: rotavirus vaccine study. Clin Exp Vaccine Res 2021; 10:148-150. [PMID: 34222127 PMCID: PMC8217582 DOI: 10.7774/cevr.2021.10.2.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/31/2020] [Accepted: 05/06/2021] [Indexed: 11/23/2022] Open
Abstract
The current global coronavirus disease 2019 pandemic has shown us once again how important vaccination is in controlling and preventing the spread of deadly diseases. Vaccinations are one of the most tried and tested public health measures aimed at the prevention and eventual eradication of various diseases. Many debilitating diseases like polio have been eradicated in countries like India due to effective vaccination strategies. Just like with any other public health initiative, there do exist various challenges for vaccination. Efficacy and correlate of protection studies are crucial in determining which vaccine works best. The rotavirus vaccine (ROTAVAC; Bharat Biotech International Ltd., Hyderabad, India) is one such example where efficacy seen in one geographical and ethnic population is not replicated elsewhere. This has prompted various researchers and pharmaceutical companies to think about customizing vaccines to the individual needs of a particular geographic and ethnic group. In this brief communication, we look at the rotavirus vaccination story and see how it laid down the idea for customized vaccination development and what the future of vaccine development looks like.
Collapse
Affiliation(s)
- Joseph Vinod Varre
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
19
|
Luo R, Delaunay‐Moisan A, Timmis K, Danchin A. SARS-CoV-2 biology and variants: anticipation of viral evolution and what needs to be done. Environ Microbiol 2021; 23:2339-2363. [PMID: 33769683 PMCID: PMC8251359 DOI: 10.1111/1462-2920.15487] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The global propagation of SARS-CoV-2 and the detection of a large number of variants, some of which have replaced the original clade to become dominant, underscores the fact that the virus is actively exploring its evolutionary space. The longer high levels of viral multiplication occur - permitted by high levels of transmission -, the more the virus can adapt to the human host and find ways to success. The third wave of the COVID-19 pandemic is starting in different parts of the world, emphasizing that transmission containment measures that are being imposed are not adequate. Part of the consideration in determining containment measures is the rationale that vaccination will soon stop transmission and allow a return to normality. However, vaccines themselves represent a selection pressure for evolution of vaccine-resistant variants, so the coupling of a policy of permitting high levels of transmission/virus multiplication during vaccine roll-out with the expectation that vaccines will deal with the pandemic, is unrealistic. In the absence of effective antivirals, it is not improbable that SARS-CoV-2 infection prophylaxis will involve an annual vaccination campaign against 'dominant' viral variants, similar to influenza prophylaxis. Living with COVID-19 will be an issue of SARS-CoV-2 variants and evolution. It is therefore crucial to understand how SARS-CoV-2 evolves and what constrains its evolution, in order to anticipate the variants that will emerge. Thus far, the focus has been on the receptor-binding spike protein, but the virus is complex, encoding 26 proteins which interact with a large number of host factors, so the possibilities for evolution are manifold and not predictable a priori. However, if we are to mount the best defence against COVID-19, we must mount it against the variants, and to do this, we must have knowledge about the evolutionary possibilities of the virus. In addition to the generic cellular interactions of the virus, there are extensive polymorphisms in humans (e.g. Lewis, HLA, etc.), some distributed within most or all populations, some restricted to specific ethnic populations and these variations pose additional opportunities for/constraints on viral evolution. We now have the wherewithal - viral genome sequencing, protein structure determination/modelling, protein interaction analysis - to functionally characterize viral variants, but access to comprehensive genome data is extremely uneven. Yet, to develop an understanding of the impacts of such evolution on transmission and disease, we must link it to transmission (viral epidemiology) and disease data (patient clinical data), and the population granularities of these. In this editorial, we explore key facets of viral biology and the influence of relevant aspects of human polymorphisms, human behaviour, geography and climate and, based on this, derive a series of recommendations to monitor viral evolution and predict the types of variants that are likely to arise.
Collapse
Affiliation(s)
- Ruibang Luo
- Department of Computer ScienceThe University of Hong KongBonham RoadPokfulamHong Kong
| | - Agnès Delaunay‐Moisan
- Université Paris‐Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif‐sur‐Yvette91198France
| | - Kenneth Timmis
- Institute of MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | - Antoine Danchin
- Kodikos Labs, Institut Cochin, 24 rue du Faubourg Saint‐JacquesParis75014France
- School of Biomedical Sciences, Li Kashing Faculty of MedicineUniversity of Hong Kong21 Sassoon RoadHong Kong
| |
Collapse
|
20
|
Rosa SS, Prazeres DMF, Azevedo AM, Marques MPC. mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine 2021; 39:2190-2200. [PMID: 33771389 PMCID: PMC7987532 DOI: 10.1016/j.vaccine.2021.03.038] [Citation(s) in RCA: 227] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 12/20/2022]
Abstract
Vaccines are one of the most important tools in public health and play an important role in infectious diseases control. Owing to its precision, safe profile and flexible manufacturing, mRNA vaccines are reaching the stoplight as a new alternative to conventional vaccines. In fact, mRNA vaccines were the technology of choice for many companies to combat the Covid-19 pandemic, and it was the first technology to be approved in both United States and in Europe Union as a prophylactic treatment. Additionally, mRNA vaccines are being studied in the clinic to treat a number of diseases including cancer, HIV, influenza and even genetic disorders. The increased demand for mRNA vaccines requires a technology platform and cost-effective manufacturing process with a well-defined product characterisation. Large scale production of mRNA vaccines consists in a 1 or 2-step in vitro reaction followed by a purification platform with multiple steps that can include Dnase digestion, precipitation, chromatography or tangential flow filtration. In this review we describe the current state-of-art of mRNA vaccines, focusing on the challenges and bottlenecks of manufacturing that need to be addressed to turn this new vaccination technology into an effective, fast and cost-effective response to emerging health crises.
Collapse
Affiliation(s)
- Sara Sousa Rosa
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Duarte M F Prazeres
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana M Azevedo
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Marco P C Marques
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gordon Street, London WC1H 0AH, United Kingdom.
| |
Collapse
|
21
|
Maciel LG, Barbosa ADS, de Alencar-Filho EB, Soares TA, Dos Anjos JV. A second generation of 1,2,4-oxadiazole derivatives with enhanced solubility for inhibition of 3-hydroxykynurenine transaminase (HKT) from Aedes aegypti. RSC Med Chem 2021; 12:222-236. [PMID: 34046611 PMCID: PMC8127416 DOI: 10.1039/d0md00305k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 12/30/2022] Open
Abstract
The most widely used method for the control of the Aedes aegypti mosquito population is the chemical control method. It represents a time- and cost-effective way to curb several diseases (e.g. dengue, Zika, chikungunya, yellow fever) through vector control. For this reason, the discovery of new compounds with a distinct mode of action from the available ones is essential in order to minimize the rise of insecticide resistance. Detoxification enzymes are an attractive target for the discovery of new insecticides. The kynurenine pathway is an important metabolic pathway, and it leads to the chemically stable xanthurenic acid, biosynthesized from 3-hydroxykynurenine, a precursor of reactive oxygen and nitrogen species, by the enzyme 3-hydroxykynurenine transaminase (HKT). Previously, we have reported the effectiveness of 1,2,4-oxadiazole derivatives acting as larvicides for A. aegypti and AeHKT inhibitors from in vitro and in silico studies. Here, we report the synthesis of new sodium 4-[3-(aryl)-1,2,4-oxadiazol-5-yl] propanoates and the cognate HKT-inhibitory activity. These new derivatives act as competitive inhibitors with IC50 values in the range of 42 to 339 μM. We further performed molecular docking simulations and QSAR analysis for the previously synthesized sodium 4-[3-(aryl)-1,2,4-oxadiazol-5-yl] butanoates reported earlier by our group and the data produced herein. Most of the 1,2,4-oxadiazole derivatives, including the canonical compounds for both series, showed a similar binding mode with HKT. The binding occurs similarly to the co-crystallized inhibitor via anchoring to Arg356 and positioning of the aromatic ring and its substituents outwards at the entry of the active site. QSAR analysis was performed in search of more than 770 molecular descriptors to establish a relationship between the lowest energy conformations and the IC50 values. The five best descriptors were selected to create and validate the model, which exhibited parameters that attested to its robustness and predictability. In summary, we observed that compounds with a para substitution and heavier groups (i.e. CF3 and NO2 substituents) had an enhanced HKT-inhibition profile. These compounds comprise a series described as AeHKT inhibitors via enzymatic inhibition experiments, opening the way to further the development of new substances with higher potency against HKT from Aedes aegypti.
Collapse
Affiliation(s)
- Larissa G Maciel
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE) Recife - PE Brazil
| | - Andrey da S Barbosa
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE) Recife - PE Brazil
| | | | - Thereza A Soares
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE) Recife - PE Brazil
| | - Janaína V Dos Anjos
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE) Recife - PE Brazil
| |
Collapse
|
22
|
Cibulski S, Varela APM, Teixeira TF, Cancela MP, Sesterheim P, Souza DO, Roehe PM, Silveira F. Zika Virus Envelope Domain III Recombinant Protein Delivered With Saponin-Based Nanoadjuvant From Quillaja brasiliensis Enhances Anti-Zika Immune Responses, Including Neutralizing Antibodies and Splenocyte Proliferation. Front Immunol 2021; 12:632714. [PMID: 33746970 PMCID: PMC7969523 DOI: 10.3389/fimmu.2021.632714] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022] Open
Abstract
Nanoadjuvants that combine immunostimulatory properties and delivery systems reportedly bestow major improvements on the efficacy of recombinant, protein-based vaccines. Among these, self-assembled micellar formulations named ISCOMs (immune stimulating complexes) show a great ability to trigger powerful immunological responses against infectious pathogens. Here, a nanoadjuvant preparation, based on saponins from Quillaja brasiliensis, was evaluated together with an experimental Zika virus (ZIKV) vaccine (IQB80-zEDIII) and compared to an equivalent vaccine with alum as the standard adjuvant. The preparations were administered to mice in two doses (on days zero and 14) and immune responses were evaluated on day 28 post-priming. Serum levels of anti-Zika virus IgG, IgG1, IgG2b, IgG2c, IgG3 were significantly increased by the nanoadjuvant vaccine, compared to the mice that received the alum-adjuvanted vaccine or the unadjuvanted vaccine. In addition, a robust production of neutralizing antibodies and in vitro splenocyte proliferative responses were observed in mice immunized with IQB80-zEDIII nanoformulated vaccine. Therefore, the IQB80-zEDIII recombinant preparation seems to be a suitable candidate vaccine for ZIKV. Overall, this study identified saponin-based delivery systems as an adequate adjuvant for recombinant ZIKV vaccines and has important implications for recombinant protein-based vaccine formulations against other flaviviruses and possibly enveloped viruses.
Collapse
Affiliation(s)
- Samuel Cibulski
- Laboratório de Biotecnologia Celular e Molecular, Centro de Biotecnologia-CBiotec, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Ana Paula Muterle Varela
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thais Fumaco Teixeira
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Martín Pablo Cancela
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Sesterheim
- Centro de Cardiologia Experimental, Instituto de Cardiologia/Fundação Universitária de Cardiologia, Porto Alegre, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paulo Michel Roehe
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Silveira
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| |
Collapse
|
23
|
Gouglas D, Marsh K. Prioritizing investments in rapid response vaccine technologies for emerging infections: A portfolio decision analysis. PLoS One 2021; 16:e0246235. [PMID: 33571206 PMCID: PMC7877621 DOI: 10.1371/journal.pone.0246235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/16/2021] [Indexed: 11/19/2022] Open
Abstract
This study reports on the application of a Portfolio Decision Analysis (PDA) to support investment decisions of a non-profit funder of vaccine technology platform development for rapid response to emerging infections. A value framework was constructed via document reviews and stakeholder consultations. Probability of Success (PoS) data was obtained for 16 platform projects through expert assessments and stakeholder portfolio preferences via a Discrete Choice Experiment (DCE). The structure of preferences and the uncertainties in project PoS suggested a non-linear, stochastic value maximization problem. A simulation-optimization algorithm was employed, identifying optimal portfolios under different budget constraints. Stochastic dominance of the optimization solution was tested via mean-variance and mean-Gini statistics, and its robustness via rank probability analysis in a Monte Carlo simulation. Project PoS estimates were low and substantially overlapping. The DCE identified decreasing rates of return to investing in single platform types. Optimal portfolio solutions reflected this non-linearity of platform preferences along an efficiency frontier and diverged from a model simply ranking projects by PoS-to-Cost, despite significant revisions to project PoS estimates during the review process in relation to the conduct of the DCE. Large confidence intervals associated with optimization solutions suggested significant uncertainty in portfolio valuations. Mean-variance and Mean-Gini tests suggested optimal portfolios with higher expected values were also accompanied by higher risks of not achieving those values despite stochastic dominance of the optimal portfolio solution under the decision maker’s budget constraint. This portfolio was also the highest ranked portfolio in the simulation; though having only a 54% probability of being preferred to the second-ranked portfolio. The analysis illustrates how optimization modelling can help health R&D decision makers identify optimal portfolios in the face of significant decision uncertainty involving portfolio trade-offs. However, in light of such extreme uncertainty, further due diligence and ongoing updating of performance is needed on highly risky projects as well as data on decision makers’ portfolio risk attitude before PDA can conclude about optimal and robust solutions.
Collapse
Affiliation(s)
- Dimitrios Gouglas
- Coalition for Epidemic Preparedness Innovations, Oslo, Norway
- * E-mail:
| | - Kevin Marsh
- Patient-Centered Research, Evidera, London, United Kingdom
| |
Collapse
|
24
|
Danchin A, Turinici G. Immunity after COVID-19: Protection or sensitization? Math Biosci 2021; 331:108499. [PMID: 33129826 PMCID: PMC7598904 DOI: 10.1016/j.mbs.2020.108499] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/04/2020] [Accepted: 10/15/2020] [Indexed: 01/09/2023]
Abstract
Motivated by historical and present clinical observations, we discuss the possible unfavorable evolution of the immunity (similar to documented antibody-dependent enhancement scenarios) after a first infection with COVID-19. More precisely we ask the question of how the epidemic outcomes are affected if the initial infection does not provide immunity but rather sensitization to future challenges. We first provide background comparison with the 2003 SARS epidemic. Then we use a compartmental epidemic model structured by immunity level that we fit to available data; using several scenarios of the fragilization dynamics, we derive quantitative insights into the additional expected numbers of severe cases and deaths.
Collapse
|
25
|
Cuéllar-Cruz M. The histo-blood group antigens of the host cell may determine the binding of different viruses such as SARS-CoV-2. Future Microbiol 2021; 16:107-118. [PMID: 33459559 PMCID: PMC7842250 DOI: 10.2217/fmb-2020-0158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022] Open
Abstract
Viruses have caused the death of millions of people worldwide. Specifically, human viruses are grouped into 21 families, including the family of coronaviruses (CoVs). In December 2019, in Wuhan, China, a new human CoV was identified, SARS-CoV-2. The first step of the infection mechanism of the SARS-CoV-2 in the human host is adhesion, which occurs through the S glycoprotein that is found in diverse human organs. Another way through which SARS-CoV-2 could possibly attach to the host's cells is by means of the histo-blood group antigens. In this work, we have reviewed the mechanisms by which some viruses bind to the histo-blood group antigens, which could be related to the susceptibility of the individual and are dependent on the histo-blood group.
Collapse
Affiliation(s)
- Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, C.P. 36050, Guanajuato, Guanajuato, México
| |
Collapse
|
26
|
Quazi S. Vaccine in response to COVID-19: Recent developments, challenges, and a way out. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2021. [DOI: 10.4103/bbrj.bbrj_166_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
27
|
Affiliation(s)
- Mohamud Sheek-Hussein
- Institute of Public Health, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| | - Fikri M Abu-Zidan
- Department of Surgery, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| |
Collapse
|
28
|
Summer K, Browne J, Liu L, Benkendorff K. Molluscan Compounds Provide Drug Leads for the Treatment and Prevention of Respiratory Disease. Mar Drugs 2020; 18:md18110570. [PMID: 33228163 PMCID: PMC7699502 DOI: 10.3390/md18110570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
Respiratory diseases place an immense burden on global health and there is a compelling need for the discovery of new compounds for therapeutic development. Here, we identify research priorities by critically reviewing pre-clinical and clinical studies using extracts and compounds derived from molluscs, as well as traditional molluscan medicines, used in the treatment of respiratory diseases. We reviewed 97 biomedical articles demonstrating the anti-inflammatory, antimicrobial, anticancer, and immunomodulatory properties of >320 molluscan extracts/compounds with direct relevance to respiratory disease, in addition to others with promising bioactivities yet to be tested in the respiratory context. Of pertinent interest are compounds demonstrating biofilm inhibition/disruption and antiviral activity, as well as synergism with approved antimicrobial and chemotherapeutic agents. At least 100 traditional medicines, incorporating over 300 different mollusc species, have been used to treat respiratory-related illness in cultures worldwide for thousands of years. These medicines provide useful clues for the discovery of bioactive components that likely underpin their continued use. There is particular incentive for investigations into anti-inflammatory compounds, given the extensive application of molluscan traditional medicines for symptoms of inflammation, and shells, which are the principal molluscan product used in these preparations. Overall, there is a need to target research toward specific respiratory disease-related hypotheses, purify bioactive compounds and elucidate their chemical structures, and develop an evidence base for the integration of quality-controlled traditional medicines.
Collapse
Affiliation(s)
- Kate Summer
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, GPO Box 157, Lismore, NSW 2480, Australia;
| | - Jessica Browne
- School of Health and Human Sciences, Southern Cross University, Terminal Drive, Bilinga, QLD 4225, Australia;
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, GPO Box 157, Lismore, NSW 2480, Australia;
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia
- Correspondence: ; Tel.: +61-429-520-589
| |
Collapse
|
29
|
Auderset F, Belnoue E, Mastelic-Gavillet B, Lambert PH, Siegrist CA. A TLR7/8 Agonist-Including DOEPC-Based Cationic Liposome Formulation Mediates Its Adjuvanticity Through the Sustained Recruitment of Highly Activated Monocytes in a Type I IFN-Independent but NF-κB-Dependent Manner. Front Immunol 2020; 11:580974. [PMID: 33262759 PMCID: PMC7686571 DOI: 10.3389/fimmu.2020.580974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
Novel adjuvants, such as Toll-like receptors (TLRs) agonists, are needed for the development of new formulations able to circumvent limitations of current vaccines. Among TLRs, TLR7/8 agonists represent promising candidates, as they are well described to enhance antigen-specific antibody responses and skew immunity toward T helper (TH) 1 responses. We find here that the incorporation of the synthetic TLR7/8 ligand 3M-052 in a cationic DOEPC-based liposome formulation shifts immunity toward TH1 responses and elicits strong and long-lasting germinal center and follicular T helper cell responses in adult mice. This reflects the prolonged recruitment of innate cells toward the site of immunization and homing of activated antigen-loaded monocytes and monocyte-derived dendritic cells toward draining lymph nodes. We further show that this adjuvanticity is independent of type I IFN but NF-κB-dependent. Overall, our data identify TLR7/8 agonists incorporated in liposomes as promising and effective adjuvants to enhance TH1 and germinal center responses.
Collapse
Affiliation(s)
- Floriane Auderset
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Elodie Belnoue
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Beatris Mastelic-Gavillet
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Paul-Henri Lambert
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
30
|
Khalil AS, Jaenisch R, Mooney DJ. Engineered tissues and strategies to overcome challenges in drug development. Adv Drug Deliv Rev 2020; 158:116-139. [PMID: 32987094 PMCID: PMC7518978 DOI: 10.1016/j.addr.2020.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/29/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Current preclinical studies in drug development utilize high-throughput in vitro screens to identify drug leads, followed by both in vitro and in vivo models to predict lead candidates' pharmacokinetic and pharmacodynamic properties. The goal of these studies is to reduce the number of lead drug candidates down to the most likely to succeed in later human clinical trials. However, only 1 in 10 drug candidates that emerge from preclinical studies will succeed and become an approved therapeutic. Lack of efficacy or undetected toxicity represents roughly 75% of the causes for these failures, despite these parameters being the primary exclusion criteria in preclinical studies. Recently, advances in both biology and engineering have created new tools for constructing new preclinical models. These models can complement those used in current preclinical studies by helping to create more realistic representations of human tissues in vitro and in vivo. In this review, we describe current preclinical models to identify their value and limitations and then discuss select areas of research where improvements in preclinical models are particularly needed to advance drug development. Following this, we discuss design considerations for constructing preclinical models and then highlight recent advances in these efforts. Taken together, we aim to review the advances as of 2020 surrounding the prospect of biological and engineering tools for adding enhanced biological relevance to preclinical studies to aid in the challenges of failed drug candidates and the burden this poses on the drug development enterprise and thus healthcare.
Collapse
Affiliation(s)
- Andrew S Khalil
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA.
| |
Collapse
|
31
|
Nasrallah AA, Farran SH, Nasrallah ZA, Chahrour MA, Salhab HA, Fares MY, Khachfe HH, Akl EA. A large number of COVID-19 interventional clinical trials were registered soon after the pandemic onset: a descriptive analysis. J Clin Epidemiol 2020; 125:170-178. [PMID: 32526460 PMCID: PMC7278640 DOI: 10.1016/j.jclinepi.2020.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVE There is a pressing need for evidence-based interventions to address the devastating clinical and public health effects of the coronavirus disease 2019 (COVID-19) pandemic. The number of registered trials related to COVID-19 is increasing by the day. The objective of this study was to describe the characteristics of the currently registered interventional clinical trials related to COVID-19. METHODS We searched the World Health Organization's International Clinical Trials Registry Platform on May 15th, 2020. We included any entry that is related to COVID-19. We abstracted and then descriptively analyzed the following characteristics of the registered trials: study design, status, phase, primary endpoints, experimental interventions, and geographic location among other qualifiers. RESULTS We identified 1,308 eligible registered trials. Most trials were registered with ClinicalTrials.gov (n = 703; 53.7%) and the Chinese Clinical Trial Registry (n = 291; 22.2%). The number of participants to be enrolled across these trials was 734,657, with a median of 110 participants per trial. The most commonly studied intervention category was pharmacologic (n = 763; 58.3%), with antiparasitic medications being the most common subcategory. Although over half of the trials were already recruiting, we identified published peer-reviewed results for only 8 of those trials. CONCLUSION There is a relatively large number of registered trials but with very few results published so far. Although our findings suggest an appropriate initial response by the research community, the real challenge will be to get these trials completed, published, and translated into practice and policy.
Collapse
Affiliation(s)
- Ali A Nasrallah
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sarah H Farran
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | | | - Hamza A Salhab
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Neuroscience Research Center, Lebanese University, Beirut, Lebanon
| | - Mohamad Y Fares
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Neuroscience Research Center, Lebanese University, Beirut, Lebanon; College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Hussein H Khachfe
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Neuroscience Research Center, Lebanese University, Beirut, Lebanon
| | - Elie A Akl
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada.
| |
Collapse
|
32
|
Sathyanarayana SD, Fernandes SD, Castelino LJ, Vadakkepushpakath AN, Shriram RG. Vaccines in the United States: a systematic review on history of evolution, regulations, licensing, and future challenges. Clin Exp Vaccine Res 2020; 9:69-75. [PMID: 32864362 PMCID: PMC7445324 DOI: 10.7774/cevr.2020.9.2.69] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
Vaccines are credited with reducing or effectively eradicating a number of infectious diseases such as smallpox, measles, and diphtheria. Particularly in nations like the United States, where a large number of infectious diseases were prevalent, vaccines proved to be timely interventions. The approval procedure for vaccines in the United States is regulated by the Center for Biologics Evaluation and Research. Vaccine development is often found to be demanding and requires astute knowledge and understanding of recent developments by physicians and researchers to ensure that effective vaccines are made available to the masses with minimum risk. This article aims to illustrate the regulatory scenario with regards to vaccine development and licensure in the United States with a brief look at the origin of vaccines and their regulations in the nation. Also, it details the challenges faced by the United States vaccine industry to remain relevant in today's constantly evolving world.
Collapse
Affiliation(s)
- Sandeep Divate Sathyanarayana
- Department of Pharmaceutical Regulatory Affairs, Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangaluru, India
| | - Swapnil Dylan Fernandes
- Department of Pharmaceutical Regulatory Affairs, Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangaluru, India
| | - Lovely Joylen Castelino
- Department of Pharmaceutical Regulatory Affairs, Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangaluru, India
| | - Anoop Narayanan Vadakkepushpakath
- Department of Pharmaceutical Regulatory Affairs, Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Mangaluru, India
| | | |
Collapse
|
33
|
Kim GB, Nam GH, Hong Y, Woo J, Cho Y, Kwon IC, Yang Y, Kim IS. Xenogenization of tumor cells by fusogenic exosomes in tumor microenvironment ignites and propagates antitumor immunity. SCIENCE ADVANCES 2020; 6:6/27/eaaz2083. [PMID: 32937446 PMCID: PMC7458456 DOI: 10.1126/sciadv.aaz2083] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/15/2020] [Indexed: 05/02/2023]
Abstract
Many cancer patients not responding to current immunotherapies fail to produce tumor-specific T cells for various reasons, such as a lack of recognition of cancer cells as foreign. Here, we suggest a previously unidentified method for xenogenizing (turning self to non-self) tumors by using fusogenic exosomes to introduce fusogenic viral antigens (VSV-G) onto the tumor cell surface. We found that xenogenized tumor cells were readily recognized and engulfed by dendritic cells; thereby, tumor antigens were efficiently presented to T lymphocytes. Moreover, exosome-VSV-G itself acts as a TLR4 agonist and stimulates the maturation of dendritic cells, leading to CD8+ T cell cross-priming. The administration of these exosomes in multiple tumor mouse models xenogenized tumor cells, resulting in tumor growth inhibition. The combinatorial treatment with anti-PD-L1 exhibited complete tumor regression (30%) and better long-term overall survival. These results suggest that tumor xenogenization by fusogenic exosomes provides a previously unidentified novel strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Gi Beom Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Gi-Hoon Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yeonsun Hong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jiwan Woo
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yakdol Cho
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Ick Chan Kwon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yoosoo Yang
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|
34
|
Vlazaki M, Huber J, Restif O. Integrating mathematical models with experimental data to investigate the within-host dynamics of bacterial infections. Pathog Dis 2020; 77:5704399. [PMID: 31942996 PMCID: PMC6986552 DOI: 10.1093/femspd/ftaa001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
Bacterial infections still constitute a major cause of mortality and morbidity worldwide. The unavailability of therapeutics, antimicrobial resistance and the chronicity of infections due to incomplete clearance contribute to this phenomenon. Despite the progress in antimicrobial and vaccine development, knowledge about the effect that therapeutics have on the host–bacteria interactions remains incomplete. Insights into the characteristics of bacterial colonization and migration between tissues and the relationship between replication and host- or therapeutically induced killing can enable efficient design of treatment approaches. Recently, innovative experimental techniques have generated data enabling the qualitative characterization of aspects of bacterial dynamics. Here, we argue that mathematical modeling as an adjunct to experimental data can enrich the biological insight that these data provide. However, due to limited interdisciplinary training, efforts to combine the two remain limited. To promote this dialogue, we provide a categorization of modeling approaches highlighting their relationship to data generated by a range of experimental techniques in the area of in vivo bacterial dynamics. We outline common biological themes explored using mathematical models with case studies across all pathogen classes. Finally, this review advocates multidisciplinary integration to improve our mechanistic understanding of bacterial infections and guide the use of existing or new therapies.
Collapse
Affiliation(s)
- Myrto Vlazaki
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK
| | - John Huber
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK
| |
Collapse
|
35
|
Abstract
COVID-19 has been the most devastating pandemic in human history. Despite the highest scientific efforts and investments, a reliable and certified medication has yet to be developed regarding to immune or cure this virus. However, while synthetic medications are gaining the focus of attentions, it appears from a significant number of recent studies that plant-based substances could also be potential candidates for developing effective and secure remedies against this novel disease. Citing such recent works, this review primarily demonstrates the antiviral potentials of medicinal plants for inhibiting human coronaviruses. It also shows the importance of antiviral plants substances, particularly in the development of a broad spectrum medication for coronaviruses including SARS-CoV-2 responsible for COVID-19.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Ahmet Onay
- Department of Biology, Faculty of Science, Dicle University, Diyarbakır Turkey
| |
Collapse
|
36
|
Mechanisms of Mixed Th1/Th2 Responses in Mice Induced by Albizia julibrissin Saponin Active Fraction by i n Silico Analysis. Vaccines (Basel) 2020; 8:vaccines8010048. [PMID: 32012760 PMCID: PMC7158666 DOI: 10.3390/vaccines8010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/28/2022] Open
Abstract
The purified active fraction of Albizia julibrissin saponin (AJSAF) is an ideal adjuvant candidate that improves antigen-specific both cellular and humoral immune responses and elicits mixed Th1/Th2 responses, but its mechanisms remain unclear. The key features of action of AJSAF were investigated in mice immunized with Newcastle disease virus-based recombinant influenza vaccine (rL-H5) and AJSAF at the same leg (AJSAF+rL-H5) or different legs (AJSAF/rL-H5). The adjuvant activity of AJSAF on rL-H5 is strictly dependent on their spatial colocalization. Serum H5 antigen (H5Ag)-specific IgG, IgG1, IgG2a, and IgG2b antibody titers in AJSAF+rL-H5 group were significantly higher than those in AJSAF/rL-H5 group. The mechanisms of selectivity of Th1 or Th2 in mice induced by AJSAF was explored by the transcriptomic and proteomic profiles of H5Ag-stimulated splenocytes from the immunized mice using gene microarray and two-dimensional difference gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Compared to rL-H5 alone, AJSAF/rL-H5 induced more differentially expressed genes (DEGs) than AJSAF+rL-H5, whereas AJSAF+rL-H5 upregulated higher mRNA expression of Th1 (T-bet, IFN-γ, TNF-α, IL-12β, and IL-12Rβ1) and Th2 (IL-10 and AICDA) immune response genes. The neutrophil response and its derived S100A8 and S100A9 might be involved in the AJSAF-mediated Th1 response. Meanwhile, AJSAF might induce the adaptive immune responses by improving a local innate immune microenvironment. These findings expanded the current knowledge on the mechanisms of action of saponin-based adjuvants, and provided new insights into how adjuvants shape adaptive immune responses.
Collapse
|
37
|
Carrión-López P, Martínez-Ruiz J, Librán-García L, Giménez-Bachs JM, Pastor-Navarro H, Salinas-Sánchez AS. Analysis of the Efficacy of a Sublingual Bacterial Vaccine in the Prophylaxis of Recurrent Urinary Tract Infection. Urol Int 2020; 104:293-300. [PMID: 31962327 DOI: 10.1159/000505162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/29/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Recurrent urinary tract infections (R-UTIs) are very common amongst women, and alternatives to antibacterial prophylaxis are necessary. This study evaluates the effectiveness of a sublingual bacterial vaccine for the prophylaxis of R-UTIs. METHODS We conducted a quasi-experimental pretest-posttest study of 166 women diagnosed with R-UTIs. Both before and after the start of treatment with the vaccine, we analysed the total number of R-UTI episodes, the urine culture results, and the type and number of antibiotic packages consumed. Symptoms and urine cultures were evaluated 3, 6, 9, 12, 18, and 24 months after initiating treatment with the vaccine. RESULTS The mean time of follow-up after vaccination was 1.7 years. After vaccination, there was a 54.6% reduction in episodes of UTI, and a 56.2% reduction in positive urine cultures. At 3 months, 74.4% of the patients had no R-UTI, the rate falling to 68.1% at 6 months, 52.4% at 12 months, and 44.5% at 24 months. The cumulative probability of maintaining negative urine cultures was 76% at 3 months, 37% at 12 months, and 18% at 2 years. CONCLUSIONS The use of a sublingual bacterial vaccine for the prophylaxis of R-UTIs in women is an effective treatment that contributes to a reduction in the number of UTI episodes.
Collapse
|
38
|
Developing vaccines against epidemic-prone emerging infectious diseases. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:65-73. [PMID: 31776599 PMCID: PMC6925075 DOI: 10.1007/s00103-019-03061-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Today’s world is characterized by increasing population density, human mobility, urbanization, and climate and ecological change. This global dynamic has various effects, including the increased appearance of emerging infectious diseases (EIDs), which pose a growing threat to global health security. Outbreaks of EIDs, like the 2013–2016 Ebola outbreak in West Africa or the current Ebola outbreak in Democratic Republic of the Congo (DRC), have not only put populations in low- and middle-income countries (LMIC) at risk in terms of morbidity and mortality, but they also have had a significant impact on economic growth in affected regions and beyond. The Coalition for Epidemic Preparedness Innovation (CEPI) is an innovative global partnership between public, private, philanthropic, and civil society organizations that was launched as the result of a consensus that a coordinated, international, and intergovernmental plan was needed to develop and deploy new vaccines to prevent future epidemics. CEPI is focusing on supporting candidate vaccines against the World Health Organization (WHO) Blueprint priority pathogens MERS-CoV, Nipah virus, Lassa fever virus, and Rift Valley fever virus, as well as Chikungunya virus, which is on the WHO watch list. The current vaccine portfolio contains a wide variety of technologies, ranging across recombinant viral vectors, nucleic acids, and recombinant proteins. To support and accelerate vaccine development, CEPI will also support science projects related to the development of biological standards and assays, animal models, epidemiological studies, and diagnostics, as well as build capacities for future clinical trials in risk-prone contexts.
Collapse
|
39
|
Introducing of an integrated artificial neural network and Chou's pseudo amino acid composition approach for computational epitope-mapping of Crimean-Congo haemorrhagic fever virus antigens. Int Immunopharmacol 2020; 78:106020. [DOI: 10.1016/j.intimp.2019.106020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/09/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022]
|
40
|
Delineating Surface Epitopes of Lyme Disease Pathogen Targeted by Highly Protective Antibodies of New Zealand White Rabbits. Infect Immun 2019; 87:IAI.00246-19. [PMID: 31085705 DOI: 10.1128/iai.00246-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/07/2019] [Indexed: 11/20/2022] Open
Abstract
Lyme disease (LD), the most prevalent vector-borne illness in the United States and Europe, is caused by Borreliella burgdorferi No vaccine is available for humans. Dogmatically, B. burgdorferi can establish a persistent infection in the mammalian host (e.g., mice) due to a surface antigen, VlsE. This antigenically variable protein allows the spirochete to continually evade borreliacidal antibodies. However, our recent study has shown that the B. burgdorferi spirochete is effectively cleared by anti-B. burgdorferi antibodies of New Zealand White rabbits, despite the surface expression of VlsE. Besides homologous protection, the rabbit antibodies also cross-protect against heterologous B. burgdorferi spirochetes and significantly reduce the pathology of LD arthritis in persistently infected mice. Thus, this finding that NZW rabbits develop a unique repertoire of very potent antibodies targeting the protective surface epitopes, despite abundant VlsE, prompted us to identify the specificities of the protective rabbit antibodies and their respective targets. By applying subtractive reverse vaccinology, which involved the use of random peptide phage display libraries coupled with next-generation sequencing and our computational algorithms, repertoires of nonprotective (early) and protective (late) rabbit antibodies were identified and directly compared. Consequently, putative surface epitopes that are unique to the protective rabbit sera were mapped. Importantly, the relevance of newly identified protection-associated epitopes for their surface exposure has been strongly supported by prior empirical studies. This study is significant because it now allows us to systematically test the putative epitopes for their protective efficacy with an ultimate goal of selecting the most efficacious targets for development of a long-awaited LD vaccine.
Collapse
|
41
|
Tang T, Weng T, Jia H, Luo S, Xu Y, Li L, Zhang P. Harnessing the layer-by-layer assembly technique to design biomaterials vaccines for immune modulation in translational applications. Biomater Sci 2019; 7:715-732. [PMID: 30762040 DOI: 10.1039/c8bm01219a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The existence of challenging diseases such as cancers, HIV and Zika requires developing new vaccines that can generate tunable and robust immune responses against the diseases. Biomaterials-based techniques have been broadly explored for designing vaccines that can produce controllable and potent immunity. Among the existing biomaterials-based strategies, the layer-by-layer (LbL) assembly technique is remarkably attractive in vaccine design due to its unique features such as programmed and versatile cargo loading, cargo protection, co-delivery, juxtaposing of immune signals, etc. In this work, we reviewed the existing LbL-based vaccine design techniques for translational applications. Specifically, we discussed nanovaccines constructed by coating polyelectrolyte multilayers (PEMs) on nanoparticles, microcapsule vaccines assembled from PEMs, polyplex/complex vaccines condensed from charged materials and microneedle vaccines deposited with PEMs, highlighting the employment of these techniques to promote immunity against diseases ranging from cancers to infectious and autoimmune diseases (i.e., HIV, influenza, multiple sclerosis, etc.). Additionally, the review specifically emphasized using LbL-based vaccine technologies for tuning the cellular and molecular pathways, demonstrating the unique advantages presented by these vaccination strategies. These studies showed the versatility and potency of using LbL-based techniques for designing the next generation of biomaterials vaccines for translational purposes.
Collapse
Affiliation(s)
- Tan Tang
- Department of Material Processing and Controlling, School of Mechanical Engineering & Automation, Beihang University, China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Varrelman TJ, Basinski AJ, Remien CH, Nuismer SL. Transmissible vaccines in heterogeneous populations: Implications for vaccine design. One Health 2019; 7:100084. [PMID: 30859117 PMCID: PMC6395884 DOI: 10.1016/j.onehlt.2019.100084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 11/17/2022] Open
Abstract
Transmissible vaccines may provide a promising solution for improving the control of infectious disease, particularly zoonotic pathogens with wildlife reservoirs. Although it is well known that heterogeneity in pathogen transmission impacts the spread of infectious disease, the effects of heterogeneity on vaccine transmission are largely unknown. Here we develop and analyze a mathematical model that quantifies the potential benefits of a transmissible vaccine in a population where transmission is heterogeneous between two subgroups. Our results demonstrate that the effect of heterogeneity on the benefit of vaccine transmission largely depends on the vaccine design and the pattern of vaccine administration across subgroups. Specifically, our results show that in most cases a transmissible vaccine designed to mirror the transmission of the pathogen is optimal. If the vaccination effort can be preferentially biased towards a given subgroup, a vaccine with a pattern of transmission opposite to that of the pathogen can become optimal in some cases. To better understand the consequences of heterogeneity on the effectiveness of a transmissible vaccine in the real world, we parameterized our model using data from Sin Nombre virus in deer mice (Peromyscus maniculatus). The results of this analysis reveal that when a vaccination campaign is limited in vaccine availability, a traditional vaccine must be administered primarily to males for the spread of Sin Nombre virus to be prevented. In contrast, a transmissible vaccine remains effective even when it cannot be preferentially administered to males.
Collapse
Affiliation(s)
- Tanner J Varrelman
- Bioinformatics and Computational Biology, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, United States
| | - Andrew J Basinski
- Dept. of Mathematics, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, United States
| | - Christopher H Remien
- Dept. of Mathematics, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, United States
| | - Scott L Nuismer
- Dept. of Biological Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, United States
| |
Collapse
|
43
|
Wei X, Beltrán-Gastélum M, Karshalev E, de Ávila BEF, Zhou J, Ran D, Angsantikul P, Fang RH, Wang J, Zhang L. Biomimetic Micromotor Enables Active Delivery of Antigens for Oral Vaccination. NANO LETTERS 2019; 19:1914-1921. [PMID: 30724085 PMCID: PMC6451690 DOI: 10.1021/acs.nanolett.8b05051] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Vaccination represents one of the most effective means of preventing infectious disease. In order to maximize the utility of vaccines, highly potent formulations that are easy to administer and promote high patient compliance are desired. In the present work, a biomimetic self-propelling micromotor formulation is developed for use as an oral antivirulence vaccine. The propulsion is provided by a magnesium-based core, and a biomimetic cell membrane coating is used to detain and neutralize a toxic antigenic payload. The resulting motor toxoids leverage their propulsion properties in order to more effectively elicit mucosal immune responses. After demonstrating the successful fabrication of the motor toxoids, their uptake properties are shown in vitro. When delivered to mice via an oral route, it is then confirmed that the propulsion greatly improves retention and uptake of the antigenic material in the small intestine in vivo. Ultimately, this translates into markedly elevated generation of antibody titers against a model toxin. This work provides a proof-of-concept highlighting the benefits of active oral delivery for vaccine development, opening the door for a new set of applications, in which biomimetic motor technology can provide significant benefits.
Collapse
Affiliation(s)
| | | | - Emil Karshalev
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, U.S.A
| | | | - Jiarong Zhou
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Danni Ran
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Pavimol Angsantikul
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Ronnie H. Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Joseph Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
44
|
Das S, Mohakud NK, Suar M, Sahu BR. Vaccine development for enteric bacterial pathogens: Where do we stand? Pathog Dis 2019; 76:5040763. [PMID: 30052916 DOI: 10.1093/femspd/fty057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/19/2018] [Indexed: 01/06/2023] Open
Abstract
Gut infections triggered by pathogenic bacteria lead to most frequently occurring diarrhea in humans accounting for million deaths annually. Currently, only a few licensed vaccines are available against these pathogens for mostly travelers moving to diarrheal endemic areas. Besides commercialized vaccines, there are many formulations that are either under clinical or pre-clinical stages of development and despite several efforts to improve safety, immunogenicity and efficacy, none of them can confer long-term protective immunity, for which repeated booster doses are always recommended. Further in many countries, financial, social and political constraints have jeopardized vaccine development program against these pathogens that enforce us to gather knowledge on safety, tolerability, immunogenicity and protective efficacy regarding the same. In this review, we analyze safety and efficacy issues of vaccines against five major gut bacteria causing enteric infections. The article also simultaneously describes several barriers for vaccine development and further discusses possible strategies to enhance immunogenicity and efficacy.
Collapse
Affiliation(s)
- Susmita Das
- Infection Biology Lab, KIIT School of Biotechnology, Campus XI, Bhubaneswar 751024, India
| | - Nirmal K Mohakud
- Department of Pediatrics, Kalinga Institute of Medical Sciences, Patia, Bhubaneswar 751024, India
| | - Mrutyunjay Suar
- Infection Biology Lab, KIIT School of Biotechnology, Campus XI, Bhubaneswar 751024, India
| | - Bikash R Sahu
- Infection Biology Lab, KIIT School of Biotechnology, Campus XI, Bhubaneswar 751024, India
| |
Collapse
|
45
|
Dumpa N, Goel K, Guo Y, McFall H, Pillai AR, Shukla A, Repka MA, Murthy SN. Stability of Vaccines. AAPS PharmSciTech 2019; 20:42. [PMID: 30610415 DOI: 10.1208/s12249-018-1254-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Vaccines are considered the most economical and effective preventive measure against most deadly infectious diseases. Vaccines help protect around three million lives every year, but hundreds of thousands of lives are lost due to the instability of vaccines. This review discusses the various types of instability observed, while manufacturing, storing, and distributing vaccines. It describes the specific stability problems associated with each type of vaccine. This review also discusses the various measures adopted to overcome these instability problems. Vaccines are classified based on their components, and this review discusses how these preventive measures relate to each type of vaccine. This review also includes certain case studies that illustrate various approaches to improve vaccine stability. Last, this review provides insight on prospective methods for developing more stable vaccines.
Collapse
|
46
|
Kis Z, Shattock R, Shah N, Kontoravdi C. Emerging Technologies for Low-Cost, Rapid Vaccine Manufacture. Biotechnol J 2018; 14:e1800376. [PMID: 30537361 DOI: 10.1002/biot.201800376] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/29/2018] [Indexed: 12/26/2022]
Abstract
To stop the spread of future epidemics and meet infant vaccination demands in low- and middle-income countries, flexible, rapid and low-cost vaccine development and manufacturing technologies are required. Vaccine development platform technologies that can produce a wide range of vaccines are emerging, including: a) humanized, high-yield yeast recombinant protein vaccines; b) insect cell-baculovirus ADDomer vaccines; c) Generalized Modules for Membrane Antigens (GMMA) vaccines; d) RNA vaccines. Herein, existing and future platforms are assessed in terms of addressing challenges of scale, cost, and responsiveness. To assess the risk and feasibility of the four emerging platforms, the following six metrics are applied: 1) technology readiness; 2) technological complexity; 3) ease of scale-up; 4) flexibility for the manufacturing of a wide range of vaccines; 5) thermostability of the vaccine product at tropical ambient temperatures; and 6) speed of response from threat identification to vaccine deployment. The assessment indicated that technologies in the order of increasing feasibility and decreasing risk are the yeast platform, ADDomer platform, followed by RNA and GMMA platforms. The comparative strengths and weaknesses of each technology are discussed in detail, illustrating the associated development and manufacturing needs and priorities.
Collapse
Affiliation(s)
- Zoltán Kis
- Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Robin Shattock
- Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Nilay Shah
- Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, UK
| |
Collapse
|
47
|
Siagian RC, Osorio JE. Novel approaches to vaccine development in lower-middle income countries. INTERNATIONAL JOURNAL OF HEALTH GOVERNANCE 2018. [DOI: 10.1108/ijhg-03-2018-0011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The purpose of this paper is to identify, analyze and describe the novel approaches that affect vaccine development in lower-middle income countries (LMICs).
Design/methodology/approach
The vaccine market in LMICs currently focuses on traditional Expanded Program for Immunization vaccines instead of new ones. Unlike the successful introduction of those traditional vaccines, the introduction of new vaccines appears to be very slow, mainly due to financial issues. This paper systematically reviews a set of published papers on vaccine development and analyzes them against a specific region-setting framework.
Findings
Public–private partnership alone could not ensure long-term vaccine sustainability. Several factors that encourage domestic vaccine development were identified. The findings demonstrate that the regulatory approach of hybrid collaboration and market opportunity strategies can be a major breakthrough for domestic vaccine development in LMICs.
Research limitations/implications
Further research is required to include qualitative and quantitative methods for policy analysis, as all of the discussion in this research focused on literature reviews. The authors did not discuss how strategic decisions are affected from a political perspective and this needs to be specified in future research. Think tanks, considerably and fundamentally, affect policy ideas and decisions. However, important breakthroughs continue to be made at the same time.
Social implications
The development of vaccines in LMICs is expected to be a mechanism to overcome the inadequate access to vaccines in those countries, as solving this problem requires tackling issues from both the supply and demand sides.
Originality/value
This is a literature review that creates recommendation and approaches for domestic vaccine development in LMICs. This review aims to encourage LMICs to produce their own vaccines for sustainability of the vaccine access through vaccine development lifecycle, instead of expecting donor that provides funding and vaccines (vaccine access) in certain period of time. Donor is not always the solution for the problem, since vaccine development requires finance to function infrastructure. There are many efforts in revoking this, including World Health Organization through several reports; however, this effort still has many doubts. Therefore, the article would like to try to see this as a viable solution from the policy perspectives, with several examples to make recommendations more practical.
Collapse
|
48
|
Zhu B, He T, Gao X, Shi M, Sun H. Evaluation and characteristics of immunological adjuvant activity of purified fraction of Albizia julibrissin saponins. Immunol Invest 2018; 48:283-302. [DOI: 10.1080/08820139.2018.1523923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Binnian Zhu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang China
| | - Tianyu He
- College of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| | - Xiangyun Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang China
| | - Minghua Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang China
| |
Collapse
|
49
|
Rodgers AM, Cordeiro AS, Kissenpfennig A, Donnelly RF. Microneedle arrays for vaccine delivery: the possibilities, challenges and use of nanoparticles as a combinatorial approach for enhanced vaccine immunogenicity. Expert Opin Drug Deliv 2018; 15:851-867. [PMID: 30051726 DOI: 10.1080/17425247.2018.1505860] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Vaccination is one of the greatest breakthroughs of modern preventative medicine. Despite this, there remain problems surrounding delivery, efficacy and compliance. Thus, there is a pressing need to develop cost-effective vaccine delivery systems that could expand the use of vaccines, particularly within developing countries. Microneedle (MN) arrays, given their ease of use, painlessness and ability to target skin antigen presenting cells, provide an attractive platform for improved vaccine delivery and efficacy. Studies have demonstrated enhanced immunogenicity with the use of MN in comparison to conventional needle. More recently, dissolving MN have been used for efficient delivery of nanoparticles (NP), as a means to enhance antigen immunogenicity. AREAS COVERED This review introduces the fields of MN technology and nanotechnology, highlighting the recent advances which have been made with these two technologies combined for enhanced vaccine delivery and efficacy. Some key questions that remain to be addressed for adoption of MN in a clinical setting are also evaluated. EXPERT OPINION MN-mediated vaccine delivery holds potential for expanding access to vaccines, with individuals in developing countries likely to be the principal beneficiaries. The combinatorial approach of utilizing MN coupled with NP, provides opportunities to enhance the immunogenicity of vaccine antigens.
Collapse
Affiliation(s)
- Aoife Maria Rodgers
- a School of Pharmacy, Medical Biology Centre , Queen's University Belfast , Belfast , United Kingdom
| | - Ana Sara Cordeiro
- a School of Pharmacy, Medical Biology Centre , Queen's University Belfast , Belfast , United Kingdom
| | - Adrien Kissenpfennig
- b Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science , Queen's University Belfast , Belfast , United Kingdom
| | - Ryan F Donnelly
- a School of Pharmacy, Medical Biology Centre , Queen's University Belfast , Belfast , United Kingdom
| |
Collapse
|
50
|
Rodgers AM, McCrudden MTC, Vincente-Perez EM, Dubois AV, Ingram RJ, Larrañeta E, Kissenpfennig A, Donnelly RF. Design and characterisation of a dissolving microneedle patch for intradermal vaccination with heat-inactivated bacteria: A proof of concept study. Int J Pharm 2018; 549:87-95. [PMID: 30048778 PMCID: PMC6127419 DOI: 10.1016/j.ijpharm.2018.07.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/16/2018] [Accepted: 07/21/2018] [Indexed: 12/04/2022]
Abstract
This work describes the formulation and evaluation of dissolving microneedle patches (MNs) for intradermal delivery of heat-inactivated bacteria. Pseudomonas aeruginosa, strain PA01, was used as a model bacterium. Utilising a simple, cost effective fabrication process, P. aeruginosa was heat-inactivated and formulated into dissolving MNs, fabricated from aqueous blends of 20% w/w poly(methylvinylether/maleic acid). The resultant MNs were of sufficient mechanical strength to consistently penetrate a validated skin model Parafilm M®, inserting to a depth of between 254 and 381 µm. MNs were successfully inserted into murine skin and partially dissolved. Analysis of MN dissolution kinetics in murine ears via optical coherence tomography showed almost complete MN dissolution 5 min post-insertion. Mice were vaccinated using these optimised MNs by application of one MN to the dorsal surface of each ear (5 min). Mice were subsequently challenged intranasally (24 h) with a live culture of P. aeruginosa (2 × 106 colony forming units). Bacterial load in the lungs of mice vaccinated with P. aeruginosa MNs was significantly (p = 0.0059) lower than those of their unvaccinated counterparts. This proof of concept work demonstrates the potential of dissolving MNs for intradermal vaccination with heat-inactivated bacteria. MNs may be a cost effective, potentially viable delivery system, which could easily be implemented in developing countries, allowing a rapid and simplified approach to vaccinating against a specific pathogen.
Collapse
Affiliation(s)
- Aoife M Rodgers
- School of Pharmacy, Medical Biology Centre, Queens University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Maelíosa T C McCrudden
- School of Pharmacy, Medical Biology Centre, Queens University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Eva M Vincente-Perez
- School of Pharmacy, Medical Biology Centre, Queens University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Alice V Dubois
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, BT9 7BL, United Kingdom
| | - Rebecca J Ingram
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, BT9 7BL, United Kingdom
| | - Eneko Larrañeta
- School of Pharmacy, Medical Biology Centre, Queens University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Adrien Kissenpfennig
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, BT9 7BL, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queens University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|