1
|
Wang T, Yang H, Sheng Q, Ding Y, Zhang J, Chen F, Wang J, Song L, Deng X. Isoferulic acid facilitates effective clearance of hypervirulent Klebsiella pneumoniae through targeting capsule. PLoS Pathog 2025; 21:e1012787. [PMID: 39761301 PMCID: PMC11737856 DOI: 10.1371/journal.ppat.1012787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 01/16/2025] [Accepted: 11/27/2024] [Indexed: 01/18/2025] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) poses an alarming threat in clinical settings and global public health owing to its high pathogenicity, epidemic success and rapid development of drug resistance, especially the emergence of carbapenem-resistant lineages (CR-hvKP). With the decline of the "last resort" antibiotic class and the decreasing efficacy of first-line antibiotics, innovative alternative therapeutics are urgently needed. Capsule, an essential virulence determinant, is a major cause of the enhanced pathogenicity of hvKP and thus represents an attractive drug target to prevent the devastating clinical outcomes caused by hvKP infection. Here, we identified isoferulic acid (IFA), a natural phenolic acid compound widely present in traditional herbal medicines, as a potent broad-spectrum K. pneumoniae capsule inhibitor that suppresses capsule polysaccharide synthesis by increasing the energy status of bacteria. In this way, IFA remarkably reduced capsule thickness and impaired hypercapsule-associated hypermucoviscosity phenotype (HMV), thereby significantly sensitizing hvKP to complement-mediated bacterial killing and accelerating host cell adhesion and phagocytosis. Consequently, IFA facilitated effective bacterial clearance and thus remarkably protected mice from lethal hvKP infection, as evidenced by limited bacterial dissemination and a significant improvement in survival rate. In conclusion, this work promotes the development of a capsule-targeted alternative therapeutic strategy for the use of the promising candidate IFA as an intervention to curb hvKP infection, particularly drug-resistant cases.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Huaizhi Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Qiushuang Sheng
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, Jilin, China
| | - Ying Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Jian Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Feng Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Xuming Deng
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Camilotti E, Furian TQ, Borges KA, Ortiz Granados OF, Zottis Chitolina G, de Brites Weber T, Tonini da Rocha D, Nascimento VPD, Souza Moraes HLD, Salle CTP. Galleria mellonella larvae as an alternative model to determine the pathogenicity of avian pathogenic Escherichia coli. Avian Pathol 2024; 53:507-519. [PMID: 38845537 DOI: 10.1080/03079457.2024.2365932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
RESEARCH HIGHLIGHTS Galleria mellonella larvae are a viable model for determining APEC pathogenicity.Larval disease score is the main variable for determining APEC pathogenicity.Response variables should be evaluated up to 24 h post-inoculation.
Collapse
Affiliation(s)
- Elisar Camilotti
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Oscar Fernando Ortiz Granados
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Gabriela Zottis Chitolina
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Thaína de Brites Weber
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Daniela Tonini da Rocha
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
da Silva JR, Silva JFM, Pereira MF, Torres AR, Gonçalves MS, de Azevedo Prata MC, Vasconcelos Paiva E Brito MA, da Costa GM, Ribeiro JB. Is Galleria mellonella model a good alternative to study virulence in Staphylococcus aureus from bovine mastitis? Braz J Microbiol 2024; 55:889-900. [PMID: 38049660 PMCID: PMC10920502 DOI: 10.1007/s42770-023-01181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
Staphylococcus aureus is one of the agents of bovine mastitis of hardest control due to a complex pathogenesis comprising a variety of virulence factors, which ensures its persistence in the mammary gland, causing significant health and economic losses. Therefore, understanding the pathogenesis of this agent is imperative. Galleria mellonella has stood out as an invertebrate animal model for the study of infectious diseases that affect several hosts. This work aimed to evaluate G. mellonella larvae as an experimental model for the study of virulence phenotypes in an S. aureus population isolated from bovine mastitis. Thirty genetically divergent S. aureus strains were chosen based on PFGE analysis. After experimental infection, larvae survival rates, bacterial growth in hemolymph, melanization intensity of the dorsal vessel, and histological characteristics of the infected tissues were evaluated. The G. mellonella model showed a clear diversity in the S. aureus pathogenicity pattern, allowing the differentiation of strains with virulence phenotypes ranging from high to low degrees. Histological analysis confirmed that the strains tested were capable of inducing the formation of nodules and melanization spots in the dorsal vessels of the larvae in different magnitudes. The strains 16S-717, 19C-828, and 31S-1443 presented the highest virulence intensity among the bacteria tested and will be used further for the generation of S. aureus mutant populations to prospect genetic targets aimed to develop control strategies of bovine mastitis. Altogether, our results suggest that G. mellonella is an attractive and low-cost animal model for characterizing virulence phenotypes of large S. aureus populations.
Collapse
Affiliation(s)
- Juliana Rosa da Silva
- Department of Veterinay Medicine, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| | | | - Monalessa Fábia Pereira
- Department of Biological Sciences, State University of Minas Gerais, Carangola, MG, 36800-000, Brazil
| | | | - Maysa Serpa Gonçalves
- Department of Veterinay Medicine, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| | | | | | - Geraldo Márcio da Costa
- Department of Veterinay Medicine, Federal University of Lavras, Lavras, MG, 37200-000, Brazil.
| | - João Batista Ribeiro
- Brazilian Agricultural Research Corporation, Juiz de Fora, MG, 36038-330, Brazil.
| |
Collapse
|
4
|
Rakovitsky N, Temkin E, Hameir A, Lurie-Weinberger M, Keren-Paz A, Carmeli Y. Zophobas morio larvae as a novel model for the study of Acinetobacter virulence and antimicrobial resistance. Front Microbiol 2024; 15:1375787. [PMID: 38476953 PMCID: PMC10927975 DOI: 10.3389/fmicb.2024.1375787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
The use of mammalian models for in vivo testing of bacterial virulence raises ethical concerns and is expensive and time-consuming. As an alternative, non-mammalian models are sought. Galleria mellonella larvae have been used as a model to study several bacterial pathogens. However, their maintenance is challenging, and commercial supply is low. In this study, we aimed to establish the Zophobas morio larvae as an alternative non-mammalian model for the evaluation of the pathogenicity and antimicrobial susceptibility of Acinetobacter baumannii. We infected Z. morio with Acinetobacter strains and determined the optimal temperature and inoculum. To visualize the bacterial distribution within the larvae, hematoxylin and eosin (H&E) staining was performed. Next, a survival model of infected larvae was established, and virulence was compared between strains. The effect of antimicrobial treatment in relation to antibiotic susceptibility was studied. Our results demonstrate that Z. morio can be used as a model system for in vivo studies of A. baumannii.
Collapse
Affiliation(s)
- Nadya Rakovitsky
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Elizabeth Temkin
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Amichay Hameir
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Mor Lurie-Weinberger
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Alona Keren-Paz
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Yehuda Carmeli
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Xu Z, Li B, Jiang Y, Huang J, Su L, Wu W, Pang Q, Li Z, Zhang J, Li X, Wang J, Cen F, Peng L, Liang J, Wang F, Liu C, Shen C, Liu Y, Yang Y. Development of a quadruple qRT-PCR assay for simultaneous identification of hypervirulent and carbapenem-resistant Klebsiella pneumoniae. Microbiol Spectr 2024; 12:e0071923. [PMID: 38059628 PMCID: PMC10783029 DOI: 10.1128/spectrum.00719-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Globally, the increasing number of hypervirulent Klebsiella pneumoniae (hvKp) and carbapenem-resistant Kp (CR-Kp) infections poses a huge public health challenge with high morbidity and mortality. Worrisomely, due to the mobility of elements carrying virulence and drug-resistance genes, the increasing prevalence of CR-hvKp has also been found with an overwhelming mortality rate in recent years. However, the current detection methods for hvKp and CR-Kp have many disadvantages, such as long turnaround time, complex operation, low sensitivity, and specificity. Herein, a more sensitive, rapid, single-reaction, and multiplex quantitative real-time PCR was developed and validated to differentiate the circulating lineages of Kp with excellent performance in sensitivity and specificity, providing a useful tool for the differential diagnosis and the surveillance of the circulating Kp.
Collapse
Affiliation(s)
- Zhixiang Xu
- Savid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for infectious disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Baisheng Li
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Yushan Jiang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Huang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for infectious disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lebin Su
- Zhaoqing Center for Disease Control and Prevention, Zhaoqing, Guangdong, China
| | - Weibo Wu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for infectious disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qilin Pang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for infectious disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhuolin Li
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaqi Zhang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for infectious disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaohe Li
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for infectious disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jun Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for infectious disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Fulan Cen
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for infectious disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ling Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for infectious disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jinhu Liang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for infectious disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Fuxiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for infectious disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Chang Liu
- Zhaoqing Center for Disease Control and Prevention, Zhaoqing, Guangdong, China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingxia Liu
- Savid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for infectious disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for infectious disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Centeleghe I, Norville P, Hughes L, Maillard JY. Klebsiella pneumoniae survives on surfaces as a dry biofilm. Am J Infect Control 2023; 51:1157-1162. [PMID: 36907360 DOI: 10.1016/j.ajic.2023.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Dry surface biofilms (DSB) are widespread in healthcare settings presenting a challenge to cleaning and disinfection. Klebsiella pneumoniae has been a focus of attention due to antibiotic resistance and the emergence of hypervirulent strains. Few studies have demonstrated K pneumoniae survival on surfaces following desiccation. METHODS DSB were formed over 12 days. Bacterial culturability and transfer were investigated following DSB incubation up to 4 weeks. Bacterial viability in DSB was investigated with live/dead staining using flow cytometry. RESULTS K pneumoniae formed mature DSB. After 2 and 4 weeks of incubation, transfer from DSB was low (<55%) and reduced further (<21%) following wiping. Culturability at 2 and 4 weeks varied although viability remained high indicating viable but non culturable state (VBNC). DISCUSSION K pneumoniae was removed from surfaces by mechanical wiping as shown with DSB of other species. Although culturability was reduced over time, bacteria remained viable up to 4 weeks incubation, proving the need for robust cleaning regimens. CONCLUSIONS This is the first study confirming K pneumoniae survival on dry surfaces as a DSB. The presence of VBNC bacteria indicated that K pneumoniae can for extended periods, raising questions about its persistence on surfaces.
Collapse
Affiliation(s)
- Isabella Centeleghe
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, UK.
| | | | - Louise Hughes
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, UK
| | - Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, UK
| |
Collapse
|
7
|
Kenyon C, Gestels Z, Vanbaelen T, Abdellati S, Van Den Bossche D, De Baetselier I, Xavier BB, Manoharan-Basil SS. Doxycycline PEP can induce doxycycline resistance in Klebsiella pneumoniae in a Galleria mellonella model of PEP. Front Microbiol 2023; 14:1208014. [PMID: 37711686 PMCID: PMC10498386 DOI: 10.3389/fmicb.2023.1208014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023] Open
Abstract
Background Four randomized controlled trials have now established that doxycycline post exposure (sex) prophylaxis (PEP) can reduce the incidence of chlamydia and syphilis in men who have sex with men. These studies have concluded that the risk of selecting for antimicrobial resistance is low. We evaluated this risk in vitro and in vivo using a Galleria mellonella infection model. Methods We evaluated how long it took for doxycycline resistance to emerge during passage on doxycycline containing agar plates in 4 species - Escherichia coli, Klebsiella pneumoniae, Neisseria gonorrhoeae and Neisseria subflava. We then assessed if K. pneumoniae could acquire resistance to doxycycline (and cross resistance to other antimicrobials) during intermittent exposure to doxycycline in a Galleria mellonella model of doxycycline PEP. Results In our passage experiments, we found that resistance first emerged in K. pneumoniae. By day 7 the K. pneumoniae MIC had increased from 2 mg/L to a median of 96 mg/L (IQR 64-96). Under various simulations of doxycycline PEP in the G. mellonella model, the doxycycline MIC of K. pneumoniae increased from 2 mg/L to 48 mg/L (IQR 48-84). Ceftriaxone and ciprofloxacin MICs increased over ten-fold. Whole genome sequencing revealed acquired mutations in ramR which regulates the expression of the AcrAB-TolC efflux pump. Conclusion Doxycycline PEP can select for doxycycline, ceftriaxone and ciprofloxacin resistance in K. pneumoniae in a G. mellonella model. The emergent ramR mutations were similar to those seen in circulating strains of K. pneumoniae. These findings suggest that we need to assess the effect of doxycycline PEP on resistance induction on a broader range of bacterial species than has hitherto been the case.
Collapse
Affiliation(s)
- Chris Kenyon
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| | - Zina Gestels
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Thibaut Vanbaelen
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Said Abdellati
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dorien Van Den Bossche
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Irith De Baetselier
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Basil Britto Xavier
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Hospital Outbreak Support Team-HOST, Ziekenhuis Netwerk Antwerpen Middelheim, Antwerp, Belgium
| | | |
Collapse
|
8
|
Zhao L, Niu J, Feng D, Wang X, Zhang R. Immune functions of pattern recognition receptors in Lepidoptera. Front Immunol 2023; 14:1203061. [PMID: 37398667 PMCID: PMC10312389 DOI: 10.3389/fimmu.2023.1203061] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Pattern recognition receptors (PRRs), as the "sensors" in the immune response, play a prominent role in recognizing pathogen-associated molecular patterns (PAMPs) and initiating an effective defense response to pathogens in Lepidoptera. It is becoming increasingly clear that damage-associated molecular patterns (DAMPs) normally play a physiological role within cells; however, when exposed to extracellular, they may become "part-time" critical signals of the immune response. Based on research in recent years, we review herein typical PRRs of Lepidoptera, including peptidoglycan recognition protein (PGRP), gram-negative binding protein (GNBP), β-1,3-glucan recognition protein (βGRP), C-type lectin (CTL), and scavenger receptor (SR). We also outline the ways in which DAMPs participate in the immune response and the correlation between PRRs and immune escape. Taken together, these findings suggest that the role of PRRs in insect innate immunity may be much greater than expected and that it is possible to recognize a broader range of signaling molecules.
Collapse
Affiliation(s)
- Lin Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinlan Niu
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Disong Feng
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Rong Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
9
|
Li X, Chen Z, Jiao J, Wang S, Wang Y, Wu W, Yang H, Lou H. In vitro and in vivo activity of meropenem+avibactam against MBL-producing carbapenem-resistant Klebsiella pneumoniae. Expert Rev Anti Infect Ther 2023; 21:91-98. [PMID: 36433637 DOI: 10.1080/14787210.2022.2153117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Antibiotic resistance has become a public health problem to be solved worldwide and metallo-β-lactamase (MBL)-producing bacteria make this problem even more challenging. METHODS The interactions of meropenem (MEM) in combination with avibactam (AVI) in growth inhibition on MBL-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) strains were tested. In vitro interactions of MEM+AVI were tested using the microdilution checkerboard assay and time-kill curves. In vivo interactions of MEM+AVI were tested using the Galleria mellonella model. RESULTS All strains were multi-drug resistant strains and six of them were proved to produce MBLs. We show that the combination of MEM+AVI generates profound synergistic effects on growth inhibition of all strains, which was better than that of MEM+vaborbactam or imipenem+relebactam. The time-kill curves further confirmed the potent synergistic antibacterial effects of MEM+AVI against MBL-producing CRKP strains. Galleria mellonella studies were consistent with in vitro analysis. Combining MEM with AVI improved survival rates and mean survival days were obviously prolonged compared to the drug alone and the untreated controls. CONCLUSIONS To our knowledge, this study is the first report of MEM+AVI collaborating against MBL-producing CRKP strains. Our findings showed that the combination of MEM+AVI has the potential for antibiotic drug development to combat MBL-producing pathogens.
Collapse
Affiliation(s)
- Xiuyun Li
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Maternal and Child Health Development Research Center, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Zhaowen Chen
- Medical Department, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Jin Jiao
- Department of Clinical Laboratory, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Shifu Wang
- Microbiology Laboratory, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yuehua Wang
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Weiwei Wu
- Department of Clinical Laboratory, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Huijun Yang
- Reproductive Medicine Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
Ahlawat S, Sharma KK. Lepidopteran insects: emerging model organisms to study infection by enteropathogens. Folia Microbiol (Praha) 2022; 68:181-196. [PMID: 36417090 DOI: 10.1007/s12223-022-01014-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022]
Abstract
The in vivo analysis of a pathogen is a critical step in gaining greater knowledge of pathogen biology and host-pathogen interactions. In the last two decades, there has been a notable rise in the number of studies on developing insects as a model for studying pathogens, which provides various benefits, such as ethical acceptability, relatively short life cycle, and cost-effective care and maintenance relative to routinely used rodent infection models. Furthermore, lepidopteran insects provide many advantages, such as easy handling and tissue extraction due to their large size relative to other invertebrate models, like Caenorhabditis elegans. Additionally, insects have an innate immune system that is highly analogous to vertebrates. In the present review, we discuss the components of the insect's larval immune system, which strengthens its usage as an alternative host, and present an updated overview of the research findings involving lepidopteran insects (Galleria mellonella, Manduca sexta, Bombyx mori, and Helicoverpa armigera) as infection models to study the virulence by enteropathogens due to the homology between insect and vertebrate gut.
Collapse
Affiliation(s)
- Shruti Ahlawat
- Department of Microbiology, Faculty of Allied Health Sciences, SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram, 122505, Haryana, India.
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| |
Collapse
|
11
|
Sugeçti S, Tunçsoy B, Büyükgüzel E, Özalp P, Büyükgüzel K. Ecotoxicological effects of dietary titanium dioxide nanoparticles on metabolic and biochemical parameters of model organism Galleria mellonella (Lepidoptera: Pyralidae). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:423-434. [PMID: 35895947 DOI: 10.1080/26896583.2021.1969846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoparticles (NPs) are now being used in many industrial activities, such as mining, paint and glass industries. The frequent industrial use of NPs contributes to environmental pollution and may cause cellular and oxidative damage in native organisms. In this study, the toxic effects of titanium dioxide nanoparticles (TiO2 NPs) were investigated using Galleria mellonella larvae as a model insect species. Alterations in cell damage indicators, such as alanine transferase, aspartate transferase, lactate dehydrogenase, non-enzymatic antioxidants and biochemical parameters, were determined in the hemolymph of G. mellonella larvae exposed to TiO2 NPs at different concentrations (5, 50, 250 and 1250 μg/mL) in their diets. TiO2 NPs caused concentration-dependent cellular damage in the hemolymph of G. mellonella larvae and increased the levels of the non-enzymatic antioxidants uric acid and bilirubin. In addition, total protein in hemolymph significantly decreased at the highest concentration (1250 μg/mL) of TiO2 NPs. Level of the urea increased at the highest concentration (1250 μg/mL) of TiO2 NPs, whereas the amount of glucose was not affected. These findings demonstrated that TiO2 NPs caused concentration-dependent toxic effects on G. mellonella larvae.
Collapse
Affiliation(s)
- Serkan Sugeçti
- Department of Veterinary Medicine, Çaycuma Food and Agriculture Vocational School, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Benay Tunçsoy
- Faculty of Engineering, Department of Bioengineering, Adana Alparslan Turkeş Science and Technology University, Adana, Turkey
| | - Ender Büyükgüzel
- Science and Art Faculty, Department of Molecular Biology and Genetics, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Pınar Özalp
- Science and Art Faculty Department of Biology, Çukurova University, Adana, Turkey
| | - Kemal Büyükgüzel
- Science and Art Faculty, Department of Biology, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
12
|
Tunçsoy B, Sugeçti S, Büyükgüzel E, Özalp P, Büyükgüzel K. Effects of Copper Oxide Nanoparticles on Immune and Metabolic Parameters of Galleria mellonella L. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:412-420. [PMID: 34002248 DOI: 10.1007/s00128-021-03261-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
In this study, the effects of dietary CuO nanoparticles (NPs) on metabolic enzyme activity, biochemical parameters, and total (THC) and differential hemocyte counts (DHC) were determined in Galleria mellonella larvae. Using concentrations of 10, 100, 1000 mg/L and the LC10 and LC30 levels of CuO NPs, we determined that the NPs negatively impacted metabolic enzyme activity and biochemical parameters in larval hemolymph. Compared with the control, the greatest increase in THC was observed in larvae fed on diets with 100 mg L-1 of CuO NPs. Plasmatocytes and granulocytes were among the most numerous hemocytes in all treatments. These results suggest that dietary CuO NPs effects the metabolic metabolism and immune system of G. mellonella and provide indirect information regarding the toxic effects of CuO NPs in mammalian immune system given similarities between mammalian blood cells and insect hemocytes.
Collapse
Affiliation(s)
- Benay Tunçsoy
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Serkan Sugeçti
- Department of Veterinary Medicine, Çaycuma Food and Agriculture Vocational School, Zonguldak Bülent Ecevit University, Zonguldak, Turkey.
| | - Ender Büyükgüzel
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Pınar Özalp
- Department of Biology, Faculty of Science and Art, Çukurova University, Adana, Turkey
| | - Kemal Büyükgüzel
- Department of Biology, Faculty of Science and Art, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
13
|
Pereira MF, Rossi CC, da Silva GC, Rosa JN, Bazzolli DMS. Galleria mellonella as an infection model: an in-depth look at why it works and practical considerations for successful application. Pathog Dis 2021; 78:5909969. [PMID: 32960263 DOI: 10.1093/femspd/ftaa056] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
The larva of the greater wax moth Galleria mellonella is an increasingly popular model for assessing the virulence of bacterial pathogens and the effectiveness of antimicrobial agents. In this review, we discuss details of the components of the G. mellonella larval immune system that underpin its use as an alternative infection model, and provide an updated overview of the state of the art of research with G. mellonella infection models to study bacterial virulence, and in the evaluation of antimicrobial efficacy. Emphasis is given to virulence studies with relevant human and veterinary pathogens, especially Escherichia coli and bacteria of the ESKAPE group. In addition, we make practical recommendations for larval rearing and testing, and overcoming potential limitations of the use of the model, which facilitate intra- and interlaboratory reproducibility.
Collapse
Affiliation(s)
- Monalessa Fábia Pereira
- Laboratório de Bioquímica e Microbiologia, Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais, 36800-000, Carangola, MG, Brazil
| | - Ciro César Rossi
- Laboratório de Microbiologia Molecular, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-901, Rio de Janeiro, RJ, Brazil
| | - Giarlã Cunha da Silva
- Laboratório de Genética Molecular de Bactérias, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Jéssica Nogueira Rosa
- Laboratório de Genética Molecular de Bactérias, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Denise Mara Soares Bazzolli
- Laboratório de Genética Molecular de Bactérias, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| |
Collapse
|
14
|
Pathophysiological effects of Klebsiella pneumoniae infection on Galleria mellonella as an invertebrate model organism. Arch Microbiol 2021; 203:3509-3517. [PMID: 33909089 DOI: 10.1007/s00203-021-02346-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 12/27/2022]
Abstract
Klebsiella pneumoniae is an important human pathogen causing urinary tract infections and pneumonia. Due to the increase in resistant strains and being an opportunistic pathogen, it is very important to determine the virulence process, the cellular damage it causes in the host and the immunological response level of the host. In this study, invertebrate infection model Galleria mellonella larvae were used to investigate cellular damage, antioxidant response and changes in biochemical parameters due to K. pneumoniae infection. The activity of cell damage indicators alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase increased in hemolymph of G. mellonella larvae due to K. pneumoniae virulence. Creatine kinase, alkaline phosphatase, gamma glutamyl transferase and amylase activities were increased to regulate the disrupted energy metabolism due to infection. As a result of the damage caused by K. pneumoniae infection, changes occurred in the amount of non-enzymatic antioxidants, uric acid, bilirubin and albumin. Due to K. pneumoniae infection, the amount of calcium, potassium, magnesium and phosphorus altered. This study showed that G. mellonella larvae was important infection model in the investigation of infectious cell damage and physiological effects, given the opportunistic nature of the K. pneumoniae pathogen and the lack of adequate animal models.
Collapse
|
15
|
Liu E, Jia P, Li X, Zhou M, Kudinha T, Wu C, Xu Y, Yang Q. In vitro and in vivo Effect of Antimicrobial Agent Combinations Against Carbapenem-Resistant Klebsiella pneumoniae with Different Resistance Mechanisms in China. Infect Drug Resist 2021; 14:917-928. [PMID: 33707959 PMCID: PMC7943327 DOI: 10.2147/idr.s292431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Objective This study aimed to evaluate the in vitro and in vivo effects of different combinations of antimicrobial agents against carbapenemase-producing and non-producing Klebsiella pneumoniae from China. Methods A checkerboard assay of meropenem (MEM), amikacin (AK), tigecycline (TGC), colistin (COL) and their combinations was carried out against 58 clinical carbapenem-resistant K. pneumoniae (CRKp) isolates, including 11 carbapenemase-non-producing K. pneumoniae isolates and 21 isolates producing KPC-2 enzyme, 11 NDM-1, 13 IMP, one VIM-1 and one OXA-48. The checkerboard assay was analyzed by the fractional inhibitory concentration index (FICI). A time-kill assay and Galleria mellonella infection model were conducted to evaluate the in vitro and in vivo effects of the four drugs alone and in combination. Results In the checkerboard assay, TGC+AK and MEM+AK combinations showed the highest synergistic effect against KPC-2 and NDM-1 carbapenemase-producing isolates, with synergy+partial synergy (defined as FICI <1) rates of 76.2% and 71.4% against KPC-2 producers, and 54.5% and 81.8% against NDM-1 producers. TGC+AK and MEM+COL combinations showed the highest rate of synergistic effect against IMP-producing isolates. Against carbapenemase-non-producing isolates, TGC+COL and TGC+AK combinations showed the highest rate of synergy effect (63.6% and 54.5%). MEM+AK showed a synergistic effect against one VIM-1 producer (FICI=0.31) and an additivite effect (FICI=1) against one OXA-48 producer. In the time-kill assay, COL+AK, COL+TGC, COL+MEM and AK+TGC showed good synergistic effects against the KPC-2-producing isolate D16. COL+MEM and COL+TGC combinations showed good effects against the NDM-1-producing isolate L13 and IMP-4-producing isolate L34. Against the carbapenemase-non-producing isolate Y105, MEM+TGC and COL+AK showed high synergistic effects, with log10CFU/mL decreases of 6.2 and 5.5 compared to the most active single drug. In the G. mellonella survival assay, MEM-based combinations had relatively high survival rates, especially when combined with colistin, against KPC-2 producers (90% survival rate) and with amikacin against metallo-beta-lactamase producers (95-100% survival rate). Conclusion Our study suggests that different antimicrobial agent combinations should be considered against CRKp infections with different resistance mechanisms.
Collapse
Affiliation(s)
- Enbo Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Peiyao Jia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xue Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.,Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Menglan Zhou
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Timothy Kudinha
- School of Biomedical Sciences, Charles Sturt University, Orange, 2800, Australia.,Pathology West, NSW Health Pathology, Orange, 2800, Australia
| | - Chuncai Wu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Qiwen Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| |
Collapse
|
16
|
Vergis J, Malik SVS, Pathak R, Kumar M, Kurkure NV, Barbuddhe SB, Rawool DB. Exploring Galleria mellonella larval model to evaluate antibacterial efficacy of Cecropin A (1-7)-Melittin against multi-drug resistant enteroaggregative Escherichia coli. Pathog Dis 2021; 79:6123720. [PMID: 33512501 DOI: 10.1093/femspd/ftab010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
High throughput in vivo laboratory models is need for screening and identification of effective therapeutic agents to overcome microbial drug-resistance. This study was undertaken to evaluate in vivo antimicrobial efficacy of short-chain antimicrobial peptide- Cecropin A (1-7)-Melittin (CAMA) against three multi-drug resistant enteroaggregative Escherichia coli (MDR-EAEC) field isolates in a Galleria mellonella larval model. The minimum inhibitory concentration (MIC; 2.0 mg/L) and minimum bactericidal concentration (MBC; 4.0 mg/L) of CAMA were determined by microdilution assay. CAMA was found to be stable at high temperatures, physiological concentration of cationic salts and proteases; safe with sheep erythrocytes, secondary cell lines and commensal lactobacilli at lower MICs; and exhibited membrane permeabilization. In vitro time-kill assay revealed concentration- and time-dependent clearance of MDR-EAEC in CAMA-treated groups at 30 min. CAMA- treated G. mellonella larvae exhibited an increased survival rate, reduced MDR-EAEC counts, immunomodulatory effect and proved non-toxic which concurred with histopathological findings. CAMA exhibited either an equal or better efficacy than the tested antibiotic control, meropenem. This study highlights the possibility of G. mellonella larvae as an excellent in vivo model for investigating the host-pathogen interaction, including the efficacy of antimicrobials against MDR-EAEC strains.
Collapse
Affiliation(s)
- Jess Vergis
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar 243122, India
| | - S V S Malik
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Richa Pathak
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Manesh Kumar
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Nitin V Kurkure
- Department of Veterinary Pathology, Nagpur Veterinary College, Nagpur 440001, India
| | - S B Barbuddhe
- ICAR- National Research Centre on Meat, Hyderabad 500092, India
| | - Deepak B Rawool
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar 243122, India
| |
Collapse
|
17
|
Hesketh-Best PJ, Mouritzen MV, Shandley-Edwards K, Billington RA, Upton M. Galleria mellonella larvae exhibit a weight-dependent lethal median dose when infected with methicillin-resistant Staphylococcus aureus. Pathog Dis 2021; 79:6121426. [PMID: 33503238 DOI: 10.1093/femspd/ftab003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Galleria mellonella is a recognised model to study antimicrobial efficacy; however, standardisation across the scientific field and investigations of methodological components are needed. Here, we investigate the impact of weight on mortality following infection with Methicillin-resistant Staphylococcus aureus (MRSA). Larvae were separated into six weight groups (180-300 mg at 20 mg intervals) and infected with a range of doses of MRSA to determine the 50% lethal dose (LD50), and the 'lipid weight' of larvae post-infection was quantified. A model of LD50 values correlated with weight was developed. The LD50 values, as estimated by our model, were further tested in vivo to prove our model. We establish a weight-dependent LD50 in larvae against MRSA and demonstrate that G. mellonella is a stable model within 180-260 mg. We present multiple linear models correlating weight with: LD50, lipid weight, and larval length. We demonstrate that the lipid weight is reduced as a result of MRSA infection, identifying a potentially new measure in which to understand the immune response. Finally, we demonstrate that larval length can be a reasonable proxy for weight. Refining the methodologies in which to handle and design experiments involving G. mellonella, we can improve the reliability of this powerful model.
Collapse
Affiliation(s)
- Poppy J Hesketh-Best
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Michelle V Mouritzen
- School of Biomedical Sciences, University of Plymouth, Derriford Research Facility, Plymouth Science Park, Plymouth, PL6 8BT, UK
| | - Kayleigh Shandley-Edwards
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Richard A Billington
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Derriford Research Facility, Plymouth Science Park, Plymouth, PL6 8BT, UK
| |
Collapse
|
18
|
Influences of the Culturing Media in the Virulence and Cell Wall of Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. J Fungi (Basel) 2020; 6:jof6040323. [PMID: 33260702 PMCID: PMC7712150 DOI: 10.3390/jof6040323] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa are etiological agents of sporotrichosis, a human subcutaneous mycosis. Although the protocols to evaluate Sporothrix virulence in animal models are well described, the cell preparation before inoculation is not standardized, and several culturing media are used to grow yeast-like cells. Here, we found that carbon or nitrogen limitation during fungal cell preparation negatively impacted the ability of S. schenckii and S. brasiliensis to kill Galleria mellonella larvae, but not S. globosa. The fungal growth conditions associated with the short median survival of animals were accompanied by increased hemocyte countings, phenoloxidase activity, and cytotoxicity. The fungal growth under carbon or nitrogen limitation also affected the cell wall composition of both S. schenckii and S. brasiliensis and showed increased exposure of β-1,3-glucan at the cell surface, while those growing conditions had a minimal impact on the S.globosa wall, which had higher levels of this polysaccharide exposed on the wall regardless of the culture condition. This polysaccharide exposure was linked to the increased ability of insect hemocytes to uptake fungal cells, suggesting that this is one of the mechanisms behind the lower virulence of S.globosa or cells from the other species grown in carbon or nitrogen limitation.
Collapse
|
19
|
DeSarno AE, Parcell BJ, Coote PJ. Repurposing the anti-viral drug zidovudine (AZT) in combination with meropenem as an effective treatment for infections with multi-drug resistant, carbapenemase-producing strains of Klebsiella pneumoniae. Pathog Dis 2020; 78:5923554. [DOI: 10.1093/femspd/ftaa063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Abstract
Multi-drug resistant (MDR) Klebsiella pneumoniae represent a global threat to healthcare due to lack of effective treatments and high mortality rates. The aim of this research was to explore the potential of administering zidovudine (AZT) in combination with an existing antibiotic to treat resistant K. pneumoniae infections. Two MDR K. pneumoniae strains were employed, producing either the NDM-1 or KPC-3 carbapenemase. Efficacy of combinations of AZT with meropenem were compared with monotherapies against infections in Galleria mellonella larvae by measuring larval mortality and bacterial burden. The effect of the same combinations in vitro was determined via checkerboard and time-kill assays. In vitro, both K. pneumoniae strains were resistant to meropenem but were susceptible to AZT. In G. mellonella, treatment with either AZT or meropenem alone offered minimal therapeutic benefit against infections with either strain. In contrast, combination therapy of AZT with meropenem presented significantly enhanced efficacy compared to monotherapies. This was correlated with prevention of bacterial proliferation within the larvae but not elimination. Checkerboard assays showed that the interaction between AZT and meropenem was not synergistic but indifferent. In summary, combination therapy of AZT with meropenem represents a potential treatment for carbapenemase-producing MDR K. pneumoniae and merits further investigation.
Collapse
Affiliation(s)
- Alexandra E DeSarno
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Benjamin J Parcell
- NHS Tayside, Department of Medical Microbiology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Peter J Coote
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
20
|
Vergis J, Malik SS, Pathak R, Kumar M, Ramanjaneya S, Kurkure NV, Barbuddhe SB, Rawool DB. Exploiting Lactoferricin (17-30) as a Potential Antimicrobial and Antibiofilm Candidate Against Multi-Drug-Resistant Enteroaggregative Escherichia coli. Front Microbiol 2020; 11:575917. [PMID: 33072040 PMCID: PMC7531601 DOI: 10.3389/fmicb.2020.575917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
The study evaluated the in vitro antimicrobial and antibiofilm efficacy of an antimicrobial peptide (AMP), lactoferricin (17–30) [Lfcin (17–30)], against biofilm-forming multi-drug-resistant (MDR) strains of enteroaggregative Escherichia coli (EAEC), and subsequently, the in vivo antimicrobial efficacy was assessed in a Galleria mellonella larval model. Initially, minimum inhibitory concentration (MIC; 32 μM), minimum bactericidal concentration (MBC; 32 μM), and minimum biofilm eradication concentration (MBEC; 32 μM) of Lfcin (17–30) were determined against MDR-EAEC field isolates (n = 3). Lfcin (17–30) was tested stable against high-end temperatures (70 and 90°C), physiological concentration of cationic salts (150 mM NaCl and 2 mM MgCl2), and proteases (proteinase-K and lysozyme). Further, at lower MIC, Lfcin (17–30) proved to be safe for sheep RBCs, secondary cell lines (HEp-2 and RAW 264.7), and beneficial gut lactobacilli. In the in vitro time-kill assay, Lfcin (17–30) inhibited the MDR-EAEC strains 3 h post-incubation, and the antibacterial effect was due to membrane permeation of Lfcin (17–30) in the inner and outer membranes of MDR-EAEC. Furthermore, in the in vivo experiments, G. mellonella larvae treated with Lfcin (17–30) exhibited an increased survival rate, lower MDR-EAEC counts (P < 0.001), mild to moderate histopathological changes, and enhanced immunomodulatory effect and were safe to larval cells when compared with infection control. Besides, Lfcin (17–30) proved to be an effective antibiofilm agent, as it inhibited and eradicated the preformed biofilm formed by MDR-EAEC strains in a significant (P < 0.05) manner both by microtiter plate assay and live/dead bacterial quantification-based confocal microscopy. We recommend further investigation of Lfcin (17–30) in an appropriate animal model before its application in target host against MDR-EAEC strains.
Collapse
Affiliation(s)
- Jess Vergis
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Richa Pathak
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Manesh Kumar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Sunitha Ramanjaneya
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | | | | | - Deepak Bhiwa Rawool
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India.,ICAR-National Research Centre on Meat, Hyderabad, India
| |
Collapse
|
21
|
García-Carnero LC, Clavijo-Giraldo DM, Gómez-Gaviria M, Lozoya-Pérez NE, Tamez-Castrellón AK, López-Ramírez LA, Mora-Montes HM. Early Virulence Predictors during the Candida Species- Galleria mellonella Interaction. J Fungi (Basel) 2020; 6:jof6030152. [PMID: 32867152 PMCID: PMC7559698 DOI: 10.3390/jof6030152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
Fungal infections are a serious and increasing threat for human health, and one of the most frequent etiological agents for systemic mycoses is Candida spp. The gold standard to assess Candida virulence is the mouse model of systemic candidiasis, a restrictive, expensive, and time-consuming approach; therefore, invertebrate models have been proposed as alternatives. Galleria mellonella larvae have several traits that make them good candidates to study the fungal virulence. Here, we showed that a reduction in circulating hemocytes, increased melanin production, phenoloxidase, and lactate dehydrogenase activities were observed at 12 and 24 h postinoculation of highly virulent Candidatropicalis strains, while minimal changes in these parameters were observed in low-virulent strains. Similarly, the most virulent species Candida albicans, Candida tropicalis, Candida auris, Candida parapsilosis, and Candida orthopsilosis have led to significant changes in those parameters; while the low virulent species Candida guilliermondii, Candida krusei, and Candida metapsilosis induced modest variations in these immunological and cytotoxicity parameters. Since changes in circulating hemocytes, melanin production, phenoloxidase and lactate dehydrogenase activities showed a correlation with the larval median survival rates at 12 and 24 h postinoculation, we proposed them as candidates for early virulence predictors in G. mellonella.
Collapse
|
22
|
Principe L, Vecchio G, Sheehan G, Kavanagh K, Morroni G, Viaggi V, di Masi A, Giacobbe DR, Luzzaro F, Luzzati R, Di Bella S. Zinc Chelators as Carbapenem Adjuvants for Metallo-β-Lactamase-Producing Bacteria: In Vitro and In Vivo Evaluation. Microb Drug Resist 2020; 26:1133-1143. [PMID: 32364820 DOI: 10.1089/mdr.2020.0037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Infections caused by metallo-β-lactamase (MBL)-producing bacteria are emerging and carry a significant impact on patients' outcome. MBL producers are spread worldwide, both in community and hospital setting, with increasingly reported epidemic clusters and the search for MBL inhibitors is an important topic for public health. MBLs are zinc-dependent enzymes whose functioning can be hampered by zinc chelators. We evaluated the potential of six zinc chelators (disulfiram, nitroxoline, 5-amino-8-hydroxyquinoline, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid [DOTA], cyclam, and N,N,N',N'-tetrakis (2-pyridymethyl) ethylenediamine [TPEN]) in restoring carbapenem activity against MBL producers. Zinc chelators alone or in combination with meropenem against MBL-producing Klebsiella pneumoniae, Chryseobacterium indologenes, Elizabethkingia meningoseptica, and Stenotrophomonas maltophilia isolates were tested in vitro and in vivo (Galleria mellonella). In vitro experiments showed a synergistic activity between TPEN and meropenem toward all the strains. Nitroxoline alone retained activity against S. maltophilia, C. indologenes, and E. meningoseptica. In vivo experiments showed that TPEN or nitroxoline in combination with meropenem increased survival in larvae infected with E. meningoseptica, S. maltophilia, and K. pneumoniae. Based on our data, zinc chelators are potential carbapenem adjuvants molecules (restoring carbapenem activity) against MBL-sustained infections and could represent an interesting option for infections induced by these microorganisms.
Collapse
Affiliation(s)
- Luigi Principe
- Clinical Microbiology and Virology Unit, A. Manzoni Hospital, Lecco, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università di Catania, Catania, Italy
| | - Gerard Sheehan
- Department of Biology, SSPC Pharma Research Centre, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, SSPC Pharma Research Centre, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Gianluca Morroni
- Infectious Disease Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Valentina Viaggi
- Clinical Microbiology and Virology Unit, A. Manzoni Hospital, Lecco, Italy
| | | | | | - Francesco Luzzaro
- Clinical Microbiology and Virology Unit, A. Manzoni Hospital, Lecco, Italy
| | - Roberto Luzzati
- Infectious Diseases Department, University Hospital of Trieste, Trieste, Italy
| | - Stefano Di Bella
- Infectious Diseases Department, University Hospital of Trieste, Trieste, Italy
| |
Collapse
|
23
|
Scott E, Holden-Dye L, O'Connor V, Wand ME. Intra Strain Variation of the Effects of Gram-Negative ESKAPE Pathogens on Intestinal Colonization, Host Viability, and Host Response in the Model Organism Caenorhabditis elegans. Front Microbiol 2020; 10:3113. [PMID: 32038555 PMCID: PMC6985274 DOI: 10.3389/fmicb.2019.03113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/24/2019] [Indexed: 01/21/2023] Open
Abstract
In its native environment of rotting vegetation, the soil nematode Caenorhabditis elegans encounters a range of bacteria. This includes species from the ESKAPE group of pathogens that pose a clinical problem in acquired hospital infections. Here, we investigated three Gram-negative members of the ESKAPE group, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. Pathogenicity profiles as measured by time to kill adult C. elegans showed that P. aeruginosa was the most pathogenic, followed by K. pneumoniae, while C. elegans cultured on A. baumannii exhibited the same survival as those on the standard laboratory food source for C. elegans, Escherichia coli OP50. The pathogenicity was paralleled by a reduction in time that C. elegans resided on the bacterial lawn with the most pathogenic strains triggering an increase in the frequency of food-leaving. Previous reports indicate that gut colonization is a feature of pathogenicity, but we found that the most pathogenic strains were not associated with the highest level of colonization. Indeed, clearance of P. aeruginosa strains from the C. elegans gut was independent of bacterial pathogenicity. We show that this clearance is regulated by neuromodulation as C. elegans mutants in unc-31 and egl-3 have enhanced clearance of P. aeruginosa. Intriguingly this is also not linked to their pathogenicity. It is likely that there is a dynamic balance occurring in the C. elegans intestinal environment between maintaining a healthy, beneficial microbiota and removal of pathogenic bacteria.
Collapse
Affiliation(s)
- Euan Scott
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Vincent O'Connor
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Matthew E Wand
- National Infection Service, Public Health England, Salisbury, United Kingdom
| |
Collapse
|
24
|
Zhang X, Zhao Y, Wu Q, Lin J, Fang R, Bi W, Dong G, Li J, Zhang Y, Cao J, Zhou T. Zebrafish and Galleria mellonella: Models to Identify the Subsequent Infection and Evaluate the Immunological Differences in Different Klebsiella pneumoniae Intestinal Colonization Strains. Front Microbiol 2019; 10:2750. [PMID: 31849893 PMCID: PMC6900958 DOI: 10.3389/fmicb.2019.02750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
The intestine is the main reservoir of bacterial pathogens in most organisms. Klebsiella pneumoniae is an important opportunistic pathogen associated with nosocomial bacterial infections. Intestinal colonization with K. pneumoniae has been shown to be associated with an increased risk of subsequent infections. However, not all K. pneumoniae strains in the intestine cause further infection, and the distinction of the difference among strains that cause infection after colonization and the ones causing only asymptomatic colonization is unclear. In this study, we report a case of a hospitalized patient from the ICU. We screened out two intestine colonization strains (FK4111, FK4758) to analyze the subsequent infection conditions. We set up infection models of zebrafish and Galleria mellonella to establish the differences in the potential for causing subsequent infection and the immunological specificities after K. pneumoniae intestine colonization. Sudan Black B and neutral red staining results indicated that FK4758 was more responsive to neutrophil recruitment and phagocytosis of macrophages than FK4111. The results of the assessment of the organ bacterial load revealed that FK4111 and FK4758 both had the highest bacterial loads in the zebrafish intestine compared to those in other organs. However, in the zebrafish spleen, liver, and heart, the FK4758 load was significantly higher than that of FK4111. The ST37 strain FK4111, which does not produce carbapenemase, did not cause infection after colonization, whereas the ST11 strain FK4758, which produces carbapenemase, caused infection after intestinal colonization. Our finding demonstrated that not all intestinal colonization of K. pneumoniae subsequently caused infections, and the infections of K. pneumoniae after colonization are different. Therefore, the infection models we established provided possibility for the estimation of host-microbial interactions.
Collapse
Affiliation(s)
- Xiucai Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajie Zhao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Qing Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Renchi Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenzi Bi
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Guofeng Dong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Jiahui Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yizhi Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Vergis J, Malik SS, Pathak R, Kumar M, Ramanjaneya S, Kurkure NV, Barbuddhe SB, Rawool DB. Antimicrobial Efficacy of Indolicidin Against Multi-Drug Resistant Enteroaggregative Escherichia coli in a Galleria mellonella Model. Front Microbiol 2019; 10:2723. [PMID: 31849877 PMCID: PMC6895141 DOI: 10.3389/fmicb.2019.02723] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance against enteroaggregative Escherichia coli (EAEC), an emerging food-borne pathogen, has been observed in an increasing trend recently. In the recent wake of antimicrobial resistance, alternate strategies especially, cationic antimicrobial peptides (AMPs) have attracted considerable attention to source antimicrobial technology solutions. This study evaluated the in vitro antimicrobial efficacy of Indolicidin against multi-drug resistant enteroaggregative Escherichia coli (MDR-EAEC) strains and further to assess its in vivo antimicrobial efficacy in Galleria mellonella larval model. The minimum inhibitory concentration (MIC; 32 μM) and minimum bactericidal concentration (MBC; 64 μM) of Indolicidin against MDR-EAEC was determined by micro broth dilution method. Indolicidin was also tested for its stability (high-end temperatures, physiological concentration of salts and proteases); safety (sheep RBCs; HEp-2 and RAW 264.7 cell lines); effect on beneficial microflora (Lactobacillus rhamnosus and Lactobacillus acidophilus) and its mode of action (flow cytometry; nitrocefin and ONPG uptake). In vitro time-kill kinetic assay of MDR-EAEC treated with Indolicidin was performed. Further, survival rate, MDR-EAEC count, melanization rate, hemocyte enumeration, cytotoxicity assay and histopathological examination were carried out in G. mellonella model to assess in vivo antimicrobial efficacy of Indolicidin against MDR-EAEC strains. Indolicidin was tested stable at high temperatures (70°C; 90°C), physiological concentration of cationic salts (NaCl; MgCl2) and proteases, except for trypsin and tested safe with sheep RBCs and cell lines (RAW 264.7; HEp-2) at MIC (1X and 2X); the beneficial flora was not inhibited. Indolicidin exhibited outer membrane permeabilization in a concentration- and time-dependent manner. In vitro time-kill assay revealed concentration-cum-time dependent clearance of MDR-EAEC in Indolicidin-treated groups at 120 min, while, in G. mellonella, the infected group treated with Indolicidin revealed an increased survival rate, immunomodulatory effect, reduced MDR-EAEC counts and were tested safe to the larval cells which was concurred histopathologically. To conclude, the results suggests Indolicidin as an effective antimicrobial candidate against MDR-EAEC and we recommend its further investigation in appropriate animal models (mice/piglets) before its application in the target host.
Collapse
Affiliation(s)
- Jess Vergis
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Richa Pathak
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Manesh Kumar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Sunitha Ramanjaneya
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | | | - Deepak Bhiwa Rawool
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
26
|
Cardenas-Alvarez MX, Townsend Ramsett MK, Malekmohammadi S, Bergholz TM. Evidence of hypervirulence in Listeria monocytogenes clonal complex 14. J Med Microbiol 2019; 68:1677-1685. [PMID: 31524579 DOI: 10.1099/jmm.0.001076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose. Listeria monocytogenes is a foodborne pathogen that causes central nervous system (CNS) and maternal-neonatal (MN) infections, bacteremia (BAC), and gastroenteritis in humans and ruminants. Specific clonal complexes (CC) have been associated with severe listeriosis cases, however, less is known about differences among subgroup virulence patterns. This study aimed to assess variation in virulence across different CC and clinical outcomes.Methodology. Galleria mellonella larvae were used to compare virulence phenotypes of 34 L. monocytogenes strains representing isolates from CC1, CC6 (from lineage I), and CC7, CC9, CC14, CC37 and CC204 (from lineage II) classified by clinical outcome: BAC, CNS and MN infection. Larvae survival, LD50, cytotoxicity, health index scores and bacterial concentrations post-infection were evaluated as quantifiable indicators of virulence.Results. Isolates belonging to CC14 and MN-associated infections are hypervirulent in G. mellonella as they led to lower G. mellonella survival rates and health index scores, as well as reduced cytotoxic effects when compared to other CC and clinical outcomes included here. CC14 isolates also showed increased bacterial concentrations at 8 and 24 h post-infection, indicating ability to survive the initial immune response and proliferate within G. mellonella larvae.Conclusion. Subgroups of L. monocytogenes possess different virulence phenotypes that may be associated with niche-specificity. While hypervirulent clones have been identified so far in lineage I, our data demonstrate that hypervirulent clones are not restricted to lineage I, as CC14 belongs to lineage II. Identification of subgroups with a higher ability to cause disease may facilitate surveillance and management of listeriosis.
Collapse
Affiliation(s)
| | | | - Sahar Malekmohammadi
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Teresa M Bergholz
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
27
|
Seasonal Health Risks Due to Zoonotic Pathogens from Hand-dug Well Water in Ohangwena and Omusati Regions of Namibia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
28
|
Phenotypic switching in Candida tropicalis alters host-pathogen interactions in a Galleria mellonella infection model. Sci Rep 2019; 9:12555. [PMID: 31467372 PMCID: PMC6715636 DOI: 10.1038/s41598-019-49080-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/16/2019] [Indexed: 11/08/2022] Open
Abstract
Candida tropicalis is a human pathogen associated with high mortality rates. We have reported a switching system in C. tropicalis consisting of five morphotypes – the parental, switch variant (crepe and rough), and revertant (crepe and rough) strains, which exhibited altered virulence in a Galleria mellonella model. Here, we evaluate whether switching events may alter host-pathogen interactions by comparing the attributes of the innate responses to the various states. All switched strains induced higher melanization in G. mellonella larvae than that induced by the parental strain. The galiomicin expression was higher in the larvae infected with the crepe and rough morphotypes than that in the larvae infected with the parental strain. Hemocytes preferentially phagocytosed crepe variant cells over parental cells in vitro. In contrast, the rough variant cells were less phagocytosed than the parental strain. The hemocyte density was decreased in the larvae infected with the crepe variant compared to that in the larvae infected with the parental strain. Interestingly, larvae infected with the revertant of crepe restored the hemocyte density levels that to those observed for larvae infected with the parental strain. Most of the switched strains were more resistant to hemocyte candidacidal activity than the parental strain. These results indicate that the switch states exhibit similarities as well as important differences during infection in a G. mellonella model.
Collapse
|
29
|
Evaluating the level of nitroreductase activity in clinical Klebsiella pneumoniae isolates to support strategies for nitro drug and prodrug development. Int J Antimicrob Agents 2019; 54:538-546. [PMID: 31398484 DOI: 10.1016/j.ijantimicag.2019.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 11/22/2022]
Abstract
To understand the potential utility of novel nitroreductase (NR)-activated prodrugs, NR enzyme activity was assessed in clinical Klebsiella pneumoniae isolates using a NR-activated fluorescent probe. NR activity was constant throughout the bacterial growth cycle, but individual K. pneumoniae isolates exhibited a wide range of NR activity levels. The genes of major NR enzymes (nfsA and nfnB) showed a number of sequence variants. Aside from a C-terminal extension of NfnB, which may be responsible for lower NR activity in specific isolates, the genetic differences did not explain the variation in activity. Analysis of important clinical strains (ST11, ST258, ST14 and ST101) showed significant variation in NR activity between isolates within the same sequence type despite conservation of nfsA/nfnB sequences. Addition of methyl viologen (MV), a known activator of soxRS, caused a significant increase in NR activity for all strains, with proportionally larger increases in activity seen for strains with low uninduced NR levels. Real-time PCR on selected strains following exposure to MV showed upregulation of soxS (15-32-fold) and nfsA (5-22-fold) in all strains tested. Expression of nfnB was upregulated 2-5-fold in 4/6 strains tested. High levels of NR activity in the absence of MV activation correlated with nitrofurantoin susceptibility. These data provide evidence that NR gene mutations and regulatory pathways influence NR activity in K. pneumoniae isolates and this is likely to impact treatment efficacy with novel nitro-containing drugs or prodrugs.
Collapse
|
30
|
Host plant-dependent effects of microbes and phytochemistry on the insect immune response. Oecologia 2019; 191:141-152. [PMID: 31367913 DOI: 10.1007/s00442-019-04480-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 10/26/2022]
Abstract
Herbivorous insects can defend themselves against pathogens via an immune response, which is influenced by the nutritional quality and phytochemistry of the host plant. However, it is unclear how these aspects of diet interact to influence the insect immune response and what role is played by ingested foliar microbes. We examined dietary protein, phytochemistry, and the caterpillar microbiome to understand variation in immune response of the Melissa blue butterfly, Lycaeides melissa. We also asked if these factors have host plant-specific effects by measuring L. melissa immune response when reared on a recently colonized exotic host plant (Medicago sativa) as compared to the immune response on an ancestral, native host (Astragalus canadensis). L. melissa did not experience immunological benefits directly related to consumption of the novel plant M. sativa. However, we did find negative, direct effects of phytochemical diversity and negative, direct effects of diet-derived microbial diversity on constitutive immune response for caterpillars fed M. sativa, as measured by phenoloxidase activity. Foliar protein did not directly influence the immune response, but did do so indirectly by increasing weight gain. Our results highlight the important effects of host diet on caterpillar physiology and raise the possibility that foliar microbiota, despite being rapidly passed through the gut, can affect the caterpillar immune response.
Collapse
|
31
|
He Y, Qin Q, DiLegge MJ, Vivanco JM. Isolation of Klebsiella pneumoniae and Pseudomonas aeruginosa from entomopathogenic nematode-insect host relationship to examine bacterial pathogenicity on Trichoplusia ni. Microb Pathog 2019; 135:103606. [PMID: 31228543 DOI: 10.1016/j.micpath.2019.103606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
Klebsiella pneumoniae was isolated from infected pupae of Galleria mellonella and Pseudomonas aeruginosa was isolated from the entomopathogenic nematode Heterorhabditis bacteriophora hosted within the pupae of G. mellonella. Insect consumption and surface application of P. aeruginosa resulted in 83.33% and 81.66% mortality of Trichoplusia ni larvae, respectively. In contrast, 50% mortality was shown when T. ni larvae were fed with K. pneumoniae, and no larvae were killed when applying the bacterium to the larval cuticle. This report shows that two opportunistic human pathogens found in the insect-nematode ecosystem could kill insect pests.
Collapse
Affiliation(s)
- Yanhui He
- School of Chemistry and Chemical Engineering, The Key Lab for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, PR China; Center for Rhizosphere Biology and Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Qiuju Qin
- Center for Rhizosphere Biology and Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA; (c)Agricultural University of Hebei Province, Baoding, 071000, PR China
| | - Michael J DiLegge
- Center for Rhizosphere Biology and Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jorge M Vivanco
- Center for Rhizosphere Biology and Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
32
|
Safety assessment of Gram-negative bacteria associated with traditional French cheeses. Food Microbiol 2019; 79:1-10. [DOI: 10.1016/j.fm.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 09/25/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022]
|
33
|
Sheehan G, Dixon A, Kavanagh K. Utilization of Galleria mellonella larvae to characterize the development of Staphylococcus aureus infection. MICROBIOLOGY-SGM 2019; 165:863-875. [PMID: 31107207 DOI: 10.1099/mic.0.000813] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Staphylococcus aureus is a human opportunistic pathogen that causes a wide range of superficial and systemic infections in susceptible patients. Here we describe how an inoculum of S. aureus activates the cellular and humoral response of Galleria mellonella larvae while growing and disseminating throughout the host, forming nodules and ultimately killing the host. An inoculum of S. aureus (2×106 larva- 1 ) decreased larval viability at 24 (80±5.77 %), 48 (55.93±5.55 %) and 72 h (10.23±2.97 %) and was accompanied by significant proliferation and dissemination of S. aureus between 6 and 48 h and the formation of nodules in the host. The hemocyte (immune cell) densities increased between 4 and 24 h and hemocytes isolated from larvae after 24 h exposure to heat-killed S. aureus (2×106 larva- 1 ) showed altered killing kinetics as compared to those from control larvae. Alterations in the humoral immune response of larvae 6 and 24 h post-infection were also determined by quantitative shotgun proteomics. The proteome of 6 h-infected larvae was enriched for antimicrobial proteins, proteins of the prophenoloxidase cascade and a range of peptidoglycan recognition proteins. By 24 h there was a significant increase in the abundance of a range of antimicrobial peptides with anti-staphylococcal activity and proteins associated with nodule formation. The results presented here indicate how S. aureus interacts with the larval immune response, induces the expression of a variety of immune-related peptides and also forms nodules which are a hallmark of soft tissue infections during human infection.
Collapse
Affiliation(s)
- Gerard Sheehan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Amy Dixon
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
34
|
Barros PPD, Rossoni RD, Ribeiro FDC, Silva MP, Souza CMD, Jorge AOC, Junqueira JC. Two sporulated Bacillus enhance immunity in Galleria mellonella protecting against Candida albicans. Microb Pathog 2019; 132:335-342. [PMID: 31100407 DOI: 10.1016/j.micpath.2019.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
The aim of this study was to evaluate the effects of Bacillus subtilis and Bacillus atrophaeus on Galleria mellonella immunity challenged by Candida albicans. Firstly, we analyzed the susceptibility of G. mellonella to bacilli (vegetative and sporulating forms). It was found that both vegetative and sporulating forms were not pathogenic to G. mellonella at a concentration of 1 × 104 cells/larva. Next, larvae were pretreated with two species of Bacillus, in the vegetative and sporulating forms, and then challenged with C. albicans. In addition, the gene expression of antimicrobial peptides (AMPs) such as Gallerimycin, Gloverin, Cecropin-D and Galiomicin was investigated. Survival rates increased in the Bacillus treated larvae compared with control larvae inoculated with C. albicans only. Cells and spores of Bacillus spp. upregulated Gloverin, Galiomicin and Gallerimycin genes in relation to the control group (PBS + PBS). When these larvae were infected with C. albicans, the group pretreated with spores of B. atrophaeus and B. subtilis showed a greater increase in expression of Galiomycin (49.08-fold and 13.50-fold) and Gallerimycin (27.88-fold and 68.15-fold), respectively, compared to the group infected with C. albicans only (p = 0.0001). After that, we investigated the effects of B. subtilis and B. atrophaeus on immune system of G. mellonella evaluating the number of hemocytes, quantification of melanization, cocoon formation and colony forming units (CFU) count. Hemocyte count increased in response to stimulation by Bacillus, and a higher increase was achieved when larvae were inoculated with B. subtilis spores (p = 0.0011). In the melanization assay, all groups tested demonstrated lower production of melanin compared to that in the phosphate-buffered saline (PBS) group. In addition, full cocoon formation was observed in all groups analyzed, which corresponded to a healthier wax worm. Hemolymph culture revealed higher growth of B. atrophaeus and B. subtilis in the groups inoculated with spores. We concluded that spores and cells of B. atrophaeus and B. subtilis stimulated the immune system of G. mellonella larvae and protected them of C. albicans infection.
Collapse
Affiliation(s)
- Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Felipe de Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Michelle Peneluppi Silva
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Cheyenne Marçal de Souza
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Antonio Olavo Cardoso Jorge
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| |
Collapse
|
35
|
Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev 2019; 43:123-144. [PMID: 30452654 PMCID: PMC6435446 DOI: 10.1093/femsre/fuy043] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022] Open
Abstract
Klebsiella species cause a wide range of diseases including pneumonia, urinary tract infections (UTIs), bloodstream infections and sepsis. These infections are particularly a problem among neonates, elderly and immunocompromised individuals. Klebsiella is also responsible for a significant number of community-acquired infections. A defining feature of these infections is their morbidity and mortality, and the Klebsiella strains associated with them are considered hypervirulent. The increasing isolation of multidrug-resistant strains has significantly narrowed, or in some settings completely removed, the therapeutic options for the treatment of Klebsiella infections. Not surprisingly, this pathogen has then been singled out as an 'urgent threat to human health' by several organisations. This review summarises the tremendous progress that has been made to uncover the sophisticated immune evasion strategies of K. pneumoniae. The co-evolution of Klebsiella in response to the challenge of an activated immune has made Klebsiella a formidable pathogen exploiting stealth strategies and actively suppressing innate immune defences to overcome host responses to survive in the tissues. A better understanding of Klebsiella immune evasion strategies in the context of the host-pathogen interactions is pivotal to develop new therapeutics, which can be based on antagonising the anti-immune strategies of this pathogen.
Collapse
Affiliation(s)
- José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Joana Sa Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
36
|
Liu Z, Gu Y, Li X, Liu Y, Ye Y, Guan S, Li J. Identification and Characterization of NDM-1-producing Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae in China. Ann Lab Med 2019; 39:167-175. [PMID: 30430779 PMCID: PMC6240523 DOI: 10.3343/alm.2019.39.2.167] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/28/2018] [Accepted: 10/25/2018] [Indexed: 12/28/2022] Open
Abstract
Background Carbapenem-resistant hypervirulent (hypermucoviscous) Klebsiella pneumoniae (CR-HMKP) poses a significant public health challenge. We investigated its epidemiology and molecular characteristics in a tertiary care hospital in eastern China. Methods CR-HMKP were identified among 106 non-duplicated carbapenem-resistant K. pneumoniae isolates (from June 2013 to September 2017) using the string test. The pulsotype (PT) and sequence type (ST) of CR-HMKP isolates were determined using pulsed-field gel electrophoresis and multilocus sequence typing. Resistance determinants, capsular serotypes, and virulence genes were detected by PCR and sequencing. Representative isolates from each PT were selected, and their virulence phenotypes were established using the serum killing and Galleria mellonella lethality assays. Results Of the 106 isolates, 13 (12.3%) were CR-HMKP. Seven were positive for blaNDM-1 and shared the same genotype (PT5/ST1764); the others were positive for blaKPC-2, belonged to ST11, and were divided into four different PTs. The serotype of all blaNDM-1-positive isolates was K64, while that of blaKPC-2-positive isolates were K47 (N=4) and K64 (N=2). The NDM-1-producing HMKP isolates were positive for aerobactin, exhibited high serum resistance, and elicited significantly increased larval mortality compared with the other isolates. All patients had received invasive treatment prior to infection by NDM-1-producing HMKP. The infections occurred between July and August 2016 and were hospital-acquired. Conclusions NDM-1-producing HMKP ST1764 isolates were identified; this is the first report worldwide on an outbreak of nosocomial infection caused by these isolates. Effective surveillance and strict infection control strategies should be implemented to prevent CR-HMKP dissemination.
Collapse
Affiliation(s)
- Zhou Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yi Gu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Li
- Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, China
| | - Ying Ye
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, China
| | - Shihe Guan
- Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, China.,Department of Infectious Diseases, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
37
|
Pereira TC, de Barros PP, Fugisaki LRDO, Rossoni RD, Ribeiro FDC, de Menezes RT, Junqueira JC, Scorzoni L. Recent Advances in the Use of Galleria mellonella Model to Study Immune Responses against Human Pathogens. J Fungi (Basel) 2018; 4:jof4040128. [PMID: 30486393 PMCID: PMC6308929 DOI: 10.3390/jof4040128] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
The use of invertebrates for in vivo studies in microbiology is well established in the scientific community. Larvae of Galleria mellonella are a widely used model for studying pathogenesis, the efficacy of new antimicrobial compounds, and immune responses. The immune system of G. mellonella larvae is structurally and functionally similar to the innate immune response of mammals, which makes this model suitable for such studies. In this review, cellular responses (hemocytes activity: phagocytosis, nodulation, and encapsulation) and humoral responses (reactions or soluble molecules released in the hemolymph as antimicrobial peptides, melanization, clotting, free radical production, and primary immunization) are discussed, highlighting the use of G. mellonella as a model of immune response to different human pathogenic microorganisms.
Collapse
Affiliation(s)
- Thais Cristine Pereira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Luciana Ruano de Oliveira Fugisaki
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Felipe de Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Raquel Teles de Menezes
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| |
Collapse
|
38
|
Selim A, Yang E, Rousset E, Thiéry R, Sidi-Boumedine K. Characterization of Coxiella burnetii strains from ruminants in a Galleria mellonella host-based model. New Microbes New Infect 2018; 24:8-13. [PMID: 29922469 PMCID: PMC6004733 DOI: 10.1016/j.nmni.2018.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 11/25/2022] Open
Abstract
Coxiella burnetii is a small Gram-negative intracellular bacterium and is the causative agent of Q fever, which is a zoonotic disease with a worldwide distribution. Domesticated ruminants are the main reservoir of the disease, but the bacterium is able to infect a wide range of hosts, including humans, arthropods and invertebrates. Virulence studies of Coxiella strains usually require a suitable animal model. However, mammalian models are costly and are associated with many ethical constraints. An alternative infection model using Galleria mellonella has been used to study the virulence of several bacterial as well as fungal pathogens. Moreover, the G. mellonella larvae model has been used to identify virulence genes using phase II C. burnetii strain Nine Mile mutants. In our study we describe its use for the characterization of C. burnetii strains isolated from ruminants.
Collapse
Affiliation(s)
- A Selim
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France.,Animal Medicine Department, Faculty of Veterinary Medicine, Banha University, Banha, Egypt
| | - E Yang
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France
| | - E Rousset
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France
| | - R Thiéry
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France
| | - K Sidi-Boumedine
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Sophia Antipolis Laboratory, Animal Q Fever Unit, Sophia Antipolis, France
| |
Collapse
|
39
|
Marcoleta AE, Varas MA, Ortiz-Severín J, Vásquez L, Berríos-Pastén C, Sabag AV, Chávez FP, Allende ML, Santiviago CA, Monasterio O, Lagos R. Evaluating Different Virulence Traits of Klebsiella pneumoniae Using Dictyostelium discoideum and Zebrafish Larvae as Host Models. Front Cell Infect Microbiol 2018; 8:30. [PMID: 29479519 PMCID: PMC5811510 DOI: 10.3389/fcimb.2018.00030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/23/2018] [Indexed: 01/26/2023] Open
Abstract
Multiresistant and invasive hypervirulent Klebsiella pneumoniae strains have become one of the most urgent bacterial pathogen threats. Recent analyses revealed a high genomic plasticity of this species, harboring a variety of mobile genetic elements associated with virulent strains, encoding proteins of unknown function whose possible role in pathogenesis have not been addressed. K. pneumoniae virulence has been studied mainly in animal models such as mice and pigs, however, practical, financial, ethical and methodological issues limit the use of mammal hosts. Consequently, the development of simple and cost-effective experimental approaches with alternative host models is needed. In this work we described the use of both, the social amoeba and professional phagocyte Dictyostelium discoideum and the fish Danio rerio (zebrafish) as surrogate host models to study K. pneumoniae virulence. We compared three K. pneumoniae clinical isolates evaluating their resistance to phagocytosis, intracellular survival, lethality, intestinal colonization, and innate immune cells recruitment. Optical transparency of both host models permitted studying the infective process in vivo, following the Klebsiella-host interactions through live-cell imaging. We demonstrated that K. pneumoniae RYC492, but not the multiresistant strains 700603 and BAA-1705, is virulent to both host models and elicits a strong immune response. Moreover, this strain showed a high resistance to phagocytosis by D. discoideum, an increased ability to form biofilms and a more prominent and irregular capsule. Besides, the strain 700603 showed the unique ability to replicate inside amoeba cells. Genomic comparison of the K. pneumoniae strains showed that the RYC492 strain has a higher overall content of virulence factors although no specific genes could be linked to its phagocytosis resistance, nor to the intracellular survival observed for the 700603 strain. Our results indicate that both zebrafish and D. discoideum are advantageous host models to study different traits of K. pneumoniae that are associated with virulence.
Collapse
Affiliation(s)
- Andrés E Marcoleta
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Macarena A Varas
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Javiera Ortiz-Severín
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Leonardo Vásquez
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Camilo Berríos-Pastén
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Andrea V Sabag
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Francisco P Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Miguel L Allende
- Departamento de Biología, Facultad de Ciencias, Centro FONDAP de Regulación del Genoma, Universidad de Chile, Santiago, Chile
| | - Carlos A Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rosalba Lagos
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
40
|
Effect of Lactobacillus rhamnosus on the response of Galleria mellonella against Staphylococcus aureus and Escherichia coli infections. Arch Microbiol 2017; 200:383-389. [DOI: 10.1007/s00203-017-1441-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/09/2017] [Accepted: 10/19/2017] [Indexed: 01/01/2023]
|
41
|
Novel pyridyl nitrofuranyl isoxazolines show antibacterial activity against multiple drug resistant Staphylococcus species. Bioorg Med Chem 2017; 25:3971-3979. [DOI: 10.1016/j.bmc.2017.05.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/08/2017] [Accepted: 05/17/2017] [Indexed: 11/21/2022]
|
42
|
Picconi P, Hind C, Jamshidi S, Nahar K, Clifford M, Wand ME, Sutton JM, Rahman KM. Triaryl Benzimidazoles as a New Class of Antibacterial Agents against Resistant Pathogenic Microorganisms. J Med Chem 2017. [PMID: 28650661 DOI: 10.1021/acs.jmedchem.7b00108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A new class of nontoxic triaryl benzimidazole compounds, derived from existing classes of DNA minor groove binders, were designed, synthesized, and evaluated for their antibacterial activity against multidrug resistant (MDR) Gram-positive and Gram-negative species. Molecular modeling experiments suggest that the newly synthesized class cannot be accommodated within the minor groove of DNA due to a change in the shape of the molecules. Compounds 8, 13, and 14 were found to be the most active of the series, with MICs in the range of 0.5-4 μg/mL against the MDR Staphylococci and Enterococci species. Compound 13 showed moderate activity against the MDR Gram-negative strains, with MICs in the range of 16-32 μg/mL. Active compounds showed a bactericidal mode of action, and a mechanistic study suggested the inhibition of bacterial gyrase as the mechanism of action (MOA) of this chemical class. The MOA was further supported by the molecular modeling study.
Collapse
Affiliation(s)
- Pietro Picconi
- Institute of Pharmaceutical Science, King's College London , London SE1 1DB, U.K
| | - Charlotte Hind
- National Infections Service, Porton Down, Public Health England , Salisbury SP4 0JG, Wiltshire U.K
| | - Shirin Jamshidi
- Institute of Pharmaceutical Science, King's College London , London SE1 1DB, U.K
| | - Kazi Nahar
- Institute of Pharmaceutical Science, King's College London , London SE1 1DB, U.K
| | - Melanie Clifford
- National Infections Service, Porton Down, Public Health England , Salisbury SP4 0JG, Wiltshire U.K
| | - Matthew E Wand
- National Infections Service, Porton Down, Public Health England , Salisbury SP4 0JG, Wiltshire U.K
| | - J Mark Sutton
- National Infections Service, Porton Down, Public Health England , Salisbury SP4 0JG, Wiltshire U.K
| | | |
Collapse
|
43
|
Cheepurupalli L, Raman T, Rathore SS, Ramakrishnan J. Bioactive Molecule from Streptomyces sp. Mitigates MDR Klebsiella pneumoniae in Zebrafish Infection Model. Front Microbiol 2017; 8:614. [PMID: 28446900 PMCID: PMC5388697 DOI: 10.3389/fmicb.2017.00614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 03/27/2017] [Indexed: 02/02/2023] Open
Abstract
The emergence and spread of multi-drug resistant (MDR) especially carbapenem-resistant Klebsiella pneumoniae is a major emerging threat to public health, leading to excess in mortality rate as high as 50-86%. MDR K. pneumoniae manifests all broad mechanisms of drug resistance, hence development of new drugs to treat MDR K. pneumoniae infection has become a more relevant question in the scientific community. In the present study a potential Streptomyces sp. ASK2 was isolated from rhizosphere soil of medicinal plant. The multistep HPLC purification identified the active principle exhibiting antagonistic activity against MDR K. pneumoniae. The purified compound was found to be an aromatic compound with aliphatic side chain molecule having a molecular weight of 444.43 Da. FT-IR showed the presence of OH and C=O as functional groups. The bioactive compound was further evaluated for drug induced toxicity and efficacy in adult zebrafish infection model. As this is the first study on K. pneumoniae - zebrafish model, the infectious doses to manifest sub-clinical and clinical infection were optimized. Furthermore, the virulence of K. pneumoniae in planktonic and biofilm state was studied in zebrafish. The MTT assay of ex vivo culture of zebrafish liver reveals non-toxic nature of the proposed ASK2 compound at an effective dose. Moreover, significant increase in survival rate of infected zebrafish suggests that ASK2 compound from a new strain of Streptomyces sp. was potent in mitigating MDR K. pneumoniae infection.
Collapse
Affiliation(s)
- Lalitha Cheepurupalli
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityTirumalaisamudram, India
| | - Thiagarajan Raman
- Laboratory for Inflammation Research, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityTirumalaisamudram, India
| | - Sudarshan S. Rathore
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityTirumalaisamudram, India
| | - Jayapradha Ramakrishnan
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityTirumalaisamudram, India
| |
Collapse
|
44
|
Champion OL, Wagley S, Titball RW. Galleria mellonella as a model host for microbiological and toxin research. Virulence 2016; 7:840-5. [PMID: 27362761 DOI: 10.1080/21505594.2016.1203486] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mammals are widely used by microbiologists as a model host species to study infectious diseases of humans and domesticated livestock. These studies have been pivotal for our understanding of mechanisms of virulence and have allowed the development of diagnostics, pre-treatments and therapies for disease. However, over the past decade we have seen efforts to identify organisms which can be used as alternatives to mammals for these studies. The drivers for this are complex and multifactorial and include cost, ethical and scientific considerations. Galleria mellonella have been used as an alternative infection model since the 1980s and its utility for the study of bacterial disease and antimicrobial discovery was recently comprehensively reviewed. The wider applications of G. mellonella as a model host, including its susceptibility to 29 species of fungi, 7 viruses, 1 species of parasite and 16 biological toxins, are described in this perspective. In addition, the latest developments in the standardisation of G. mellonella larvae for research purposes has been reviewed.
Collapse
Affiliation(s)
- Olivia L Champion
- a University of Exeter, College of Life and Environmental Science , Exeter , Devon , UK
| | - Sariqa Wagley
- a University of Exeter, College of Life and Environmental Science , Exeter , Devon , UK
| | - Richard W Titball
- a University of Exeter, College of Life and Environmental Science , Exeter , Devon , UK
| |
Collapse
|
45
|
Wei WJ, Yang HF, Ye Y, Li JB. Galleria mellonella as a model system to assess the efficacy of antimicrobial agents against Klebsiella pneumoniae infection. J Chemother 2016; 29:252-256. [PMID: 27237961 DOI: 10.1080/1120009x.2016.1156892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Wen-Juan Wei
- a Department of Infectious Diseases , The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Hai-Fei Yang
- a Department of Infectious Diseases , The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Ying Ye
- a Department of Infectious Diseases , The First Affiliated Hospital of Anhui Medical University , Hefei , China.,b Institute of Bacterium Resistance , Anhui Medical University , Hefei , China.,c Department of bacteria resistance , Anhui Center for Surveillance of Bacterial Resistance , Hefei , China
| | - Jia-Bin Li
- a Department of Infectious Diseases , The First Affiliated Hospital of Anhui Medical University , Hefei , China.,b Institute of Bacterium Resistance , Anhui Medical University , Hefei , China.,c Department of bacteria resistance , Anhui Center for Surveillance of Bacterial Resistance , Hefei , China.,d Department of Infectious Disease , Chaohu Hospital of Anhui Medical University , Hefei , China
| |
Collapse
|
46
|
Varying activity of chlorhexidine-based disinfectants against Klebsiella pneumoniae clinical isolates and adapted strains. J Hosp Infect 2016; 93:42-8. [DOI: 10.1016/j.jhin.2015.12.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/29/2015] [Indexed: 11/15/2022]
|
47
|
Effective immunosuppression with dexamethasone phosphate in the Galleria mellonella larva infection model resulting in enhanced virulence of Escherichia coli and Klebsiella pneumoniae. Med Microbiol Immunol 2016; 205:333-43. [PMID: 26920133 PMCID: PMC4939170 DOI: 10.1007/s00430-016-0450-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/11/2016] [Indexed: 01/19/2023]
Abstract
The aim was to evaluate whether immunosuppression with dexamethasone 21-phosphate could be applied to the Galleria mellonella in vivo infection model. Characterised clinical isolates of Escherichia coli or Klebsiella pneumoniae were employed, and G. mellonella larvae were infected with increasing doses of each strain to investigate virulence in vivo. Virulence was then compared with larvae exposed to increasing doses of dexamethasone 21-phosphate. The effect of dexamethasone 21-phosphate on larval haemocyte phagocytosis in vitro was determined via fluorescence microscopy and a burden assay measured the growth of infecting bacteria inside the larvae. Finally, the effect of dexamethasone 21-phosphate treatment on the efficacy of ceftazidime after infection was also noted. The pathogenicity of K. pneumoniae or E. coli in G. mellonella larvae was dependent on high inoculum numbers such that virulence could not be attributed specifically to infection by live bacteria but also to factors associated with dead cells. Thus, for these strains, G. mellonella larvae do not constitute an ideal infection model. Treatment of larvae with dexamethasone 21-phosphate enhanced the lethality induced by infection with E. coli or K. pneumoniae in a dose- and inoculum size-dependent manner. This correlated with proliferation of bacteria in the larvae that could be attributed to dexamethasone inhibiting haemocyte phagocytosis and acting as an immunosuppressant. Notably, prior exposure to dexamethasone 21-phosphate reduced the efficacy of ceftazidime in vivo. In conclusion, demonstration of an effective immunosuppressant regimen can improve the specificity and broaden the applications of the G. mellonella model to address key questions regarding infection.
Collapse
|
48
|
Ciesielczuk H, Betts J, Phee L, Doumith M, Hope R, Woodford N, Wareham DW. Comparative virulence of urinary and bloodstream isolates of extra-intestinal pathogenic Escherichia coli in a Galleria mellonella model. Virulence 2016; 6:145-51. [PMID: 25853733 DOI: 10.4161/21505594.2014.988095] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) are a significant cause of urinary tract infections and bacteraemia worldwide. Currently no single virulence factor or ExPEC lineage has been identified as the sole contributor to severe extra-intestinal infection and/or urosepsis. Galleria mellonella has recently been established as a simple model for studying the comparative virulence of ExPEC. In this study we investigated the virulence of 40 well-characterized ExPEC strains, in G. mellonella, by measuring mortality (larvae survival), immune recognition/response (melanin production) and cell damage (lactate dehydrogenase production). Although mortality was similar between urinary and bloodstream isolates, it was heightened for community-associated infections, complicated UTIs and urinary-source bacteraemia. Isolates of ST131 and those possessing afa/dra, ompT and serogroup O6 were also associated with heightened virulence.
Collapse
Affiliation(s)
- Holly Ciesielczuk
- a Antimicrobial Research Group; Center for Immunology and Infectious Disease; Blizard Institute, Barts and the London School of Medicine and Dentistry; Queen Mary; University of London ; London , UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Tsai CJY, Loh JMS, Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 2016; 7:214-29. [PMID: 26730990 PMCID: PMC4871635 DOI: 10.1080/21505594.2015.1135289] [Citation(s) in RCA: 489] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galleria mellonella (greater wax moth or honeycomb moth) has been introduced as an alternative model to study microbial infections. G. mellonella larvae can be easily and inexpensively obtained in large numbers and are simple to use as they don't require special lab equipment. There are no ethical constraints and their short life cycle makes them ideal for large-scale studies. Although insects lack an adaptive immune response, their innate immune response shows remarkable similarities with the immune response in vertebrates. This review gives a current update of what is known about the immune system of G. mellonella and provides an extensive overview of how G. mellonella is used to study the virulence of Gram-positive and Gram-negative bacteria. In addition, the use of G. mellonella to evaluate the efficacy of antimicrobial agents and experimental phage therapy are also discussed. The review concludes with a critical assessment of the current limitatons of G. mellonella infection models.
Collapse
Affiliation(s)
- Catherine Jia-Yun Tsai
- a Department of Molecular Medicine & Pathology , School of Medical Sciences, University of Auckland , Auckland , New Zealand.,b Maurice Wilkins Center, University of Auckland , Auckland , New Zealand
| | - Jacelyn Mei San Loh
- a Department of Molecular Medicine & Pathology , School of Medical Sciences, University of Auckland , Auckland , New Zealand.,b Maurice Wilkins Center, University of Auckland , Auckland , New Zealand
| | - Thomas Proft
- a Department of Molecular Medicine & Pathology , School of Medical Sciences, University of Auckland , Auckland , New Zealand.,b Maurice Wilkins Center, University of Auckland , Auckland , New Zealand
| |
Collapse
|
50
|
Bruchmann S, Muthukumarasamy U, Pohl S, Preusse M, Bielecka A, Nicolai T, Hamann I, Hillert R, Kola A, Gastmeier P, Eckweiler D, Häussler S. Deep transcriptome profiling of clinicalKlebsiella pneumoniaeisolates reveals strain and sequence type-specific adaptation. Environ Microbiol 2015; 17:4690-710. [DOI: 10.1111/1462-2920.13016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/06/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Sebastian Bruchmann
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Molecular Bacteriology; Twincore; Centre for Clinical and Experimental Infection Research; A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School; Hannover Germany
| | - Uthayakumar Muthukumarasamy
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Molecular Bacteriology; Twincore; Centre for Clinical and Experimental Infection Research; A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School; Hannover Germany
| | - Sarah Pohl
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Molecular Bacteriology; Twincore; Centre for Clinical and Experimental Infection Research; A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School; Hannover Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Agata Bielecka
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Molecular Bacteriology; Twincore; Centre for Clinical and Experimental Infection Research; A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School; Hannover Germany
| | - Tanja Nicolai
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Isabell Hamann
- Medizinisches Labor Ostsachsen; Mikrobiologie; Görlitz Germany
| | - Roger Hillert
- Medizinisches Labor Ostsachsen; Mikrobiologie; Görlitz Germany
| | - Axel Kola
- Institute of Hygiene and Environmental Medicine; Charité University Medicine Berlin; Berlin Germany
| | - Petra Gastmeier
- Institute of Hygiene and Environmental Medicine; Charité University Medicine Berlin; Berlin Germany
| | - Denitsa Eckweiler
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Molecular Bacteriology; Twincore; Centre for Clinical and Experimental Infection Research; A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School; Hannover Germany
| | - Susanne Häussler
- Department of Molecular Bacteriology; Helmholtz Centre for Infection Research; Braunschweig Germany
- Institute for Molecular Bacteriology; Twincore; Centre for Clinical and Experimental Infection Research; A Joint Venture of the Helmholtz Centre for Infection Research and the Hannover Medical School; Hannover Germany
| |
Collapse
|