1
|
Tang-Wing C, Mohanty I, Bryant M, Makowski K, Melendez D, Dorrestein PC, Knight R, Caraballo-Rodríguez AM, Allaband C, Jenné K. Impact of diet change on the gut microbiome of common marmosets ( Callithrix jacchus). mSystems 2024; 9:e0010824. [PMID: 38975760 PMCID: PMC11334461 DOI: 10.1128/msystems.00108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/01/2024] [Indexed: 07/09/2024] Open
Abstract
Gastrointestinal diseases are the most frequently reported clinical problems in captive common marmosets (Callithrix jacchus), often affecting the health and welfare of the animal and ultimately their use as a research subject. The microbiome has been shown to be intimately connected to diet and gastrointestinal health. Here, we use shotgun metagenomics and untargeted metabolomics in fecal samples of common marmosets collected before, during, and after a dietary transition from a biscuit to a gel diet. The overall health of marmosets, measured as weight recovery and reproductive outcome, improved after the diet transition. Moreover, each marmoset pair had significant shifts in the microbiome and metabolome after the diet transition. In general, we saw a decrease in Escherichia coli and Prevotella species and an increase in Bifidobacterium species. Untargeted metabolic profiles indicated that polyamine levels, specifically cadaverine and putrescine, were high after diet transition, suggesting either an increase in excretion or a decrease in intestinal reabsorption at the intestinal level. In conclusion, our data suggest that Bifidobacterium species could potentially be useful as probiotic supplements to the laboratory marmoset diet. Future studies with a larger sample size will be beneficial to show that this is consistent with the diet change. IMPORTANCE Appropriate diet and health of the common marmoset in captivity are essential both for the welfare of the animal and to improve experimental outcomes. Our study shows that a gel diet compared to a biscuit diet improves the health of a marmoset colony, is linked to increases in Bifidobacterium species, and increases the removal of molecules associated with disease. The diet transition had an influence on the molecular changes at both the pair and time point group levels, but only at the pair level for the microbial changes. It appears to be more important which genes and functions present changed rather than specific microbes. Further studies are needed to identify specific components that should be considered when choosing an appropriate diet and additional supplementary foods, as well as to validate the benefits of providing probiotics. Probiotics containing Bifidobacterium species appear to be useful as probiotic supplements to the laboratory marmoset diet, but additional work is needed to validate these findings.
Collapse
Affiliation(s)
- Cassandra Tang-Wing
- Animal Care Program, University of California, San Diego, La Jolla, California, USA
| | - Ipsita Mohanty
- Skaggs School of Pharmacy, University of California, San Diego, La Jolla, California, USA
| | - MacKenzie Bryant
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Katherine Makowski
- Animal Care Program, University of California, San Diego, La Jolla, California, USA
| | - Daira Melendez
- Bioinformatics Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, California, USA
| | | | - Celeste Allaband
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Keith Jenné
- Animal Care Program, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Niu D, Feng N, Xi S, Xu J, Su Y. Genomics-based analysis of four porcine-derived lactic acid bacteria strains and their evaluation as potential probiotics. Mol Genet Genomics 2024; 299:24. [PMID: 38438804 DOI: 10.1007/s00438-024-02101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/16/2023] [Indexed: 03/06/2024]
Abstract
The search for probiotics and exploration of their functions are crucial for livestock farming. Recently, porcine-derived lactic acid bacteria (LAB) have shown great potential as probiotics. However, research on the evaluation of porcine-derived LAB as potential probiotics through genomics-based analysis is relatively limited. The present study analyzed four porcine-derived LAB strains (Lactobacillus johnsonii L16, Latilactobacillus curvatus ZHA1, Ligilactobacillus salivarius ZSA5 and Ligilactobacillus animalis ZSB1) using genomic techniques and combined with in vitro tests to evaluate their potential as probiotics. The genome sizes of the four strains ranged from 1,897,301 bp to 2,318,470 bp with the GC contents from 33.03 to 41.97%. Pan-genomic analysis and collinearity analysis indicated differences among the genomes of four strains. Carbohydrate active enzymes analysis revealed that L. johnsonii L16 encoded more carbohydrate active enzymes than other strains. KEGG pathway analysis and in vitro tests confirmed that L. johnsonii L16 could utilize a wide range of carbohydrates and had good utilization capacity for each carbohydrate. The four strains had genes related to acid tolerance and were tolerant to low pH, with L. johnsonii L16 showing the greatest tolerance. The four strains contained genes related to bile salt tolerance and were able to tolerate 0.1% bile salt. Four strains had antioxidant related genes and exhibited antioxidant activity in in vitro tests. They contained the genes linked with organic acid biosynthesis and exhibited antibacterial activity against enterotoxigenic Escherichia coli K88 (ETEC K88) and Salmonella 6,7:c:1,5, wherein, L. johnsonii L16 and L. salivarius ZSA5 had gene clusters encoding bacteriocin. Results suggest that genome analysis combined with in vitro tests is an effective approach for evaluating different strains as probiotics. The findings of this study indicate that L. johnsonii L16 has the potential as a probiotic strain among the four strains and provide theoretical basis for the development of probiotics in swine production.
Collapse
Affiliation(s)
- Dekai Niu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China
| | - Ni Feng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China
| | - Siteng Xi
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China
| | - Jianjian Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, China.
| |
Collapse
|
3
|
Malukiewicz J, D'arc M, Dias CA, Cartwright RA, Grativol AD, Moreira SB, Souza AR, Tavares MCH, Pissinatti A, Ruiz-Miranda CR, Santos AFA. Bifidobacteria define gut microbiome profiles of golden lion tamarin (Leontopithecus rosalia) and marmoset (Callithrix sp.) metagenomic shotgun pools. Sci Rep 2023; 13:15679. [PMID: 37735195 PMCID: PMC10514281 DOI: 10.1038/s41598-023-42059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
Gut microbiome disruptions may lead to adverse effects on wildlife fitness and viability, thus maintaining host microbiota biodiversity needs to become an integral part of wildlife conservation. The highly-endangered callitrichid golden lion tamarin (GLT-Leontopithecus rosalia) is a rare conservation success, but allochthonous callitrichid marmosets (Callithrix) serve as principle ecological GLT threats. However, incorporation of microbiome approaches to GLT conservation is impeded by limited gut microbiome studies of Brazilian primates. Here, we carried out analysis of gut metagenomic pools from 114 individuals of wild and captive GLTs and marmosets. More specifically, we analyzed the bacterial component of ultra filtered samples originally collected as part of a virome profiling study. The major findings of this study are consistent with previous studies in showing that Bifidobacterium, a bacterial species important for the metabolism of tree gums consumed by callitrichids, is an important component of the callitrichid gut microbiome - although GTLs and marmosets were enriched for different species of Bifidobacterium. Additionally, the composition of GLT and marmoset gut microbiota is sensitive to host environmental factors. Overall, our data expand baseline gut microbiome data for callitrichids to allow for the development of new tools to improve their management and conservation.
Collapse
Affiliation(s)
- Joanna Malukiewicz
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, 37077, Germany.
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, SP, 05403-000, Brazil.
| | - Mirela D'arc
- Laboratório de Diversidade e Doenças Virais, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Cecilia A Dias
- Centro de Primatologia, Universidade de Brasília, Brasília, Brazil
| | - Reed A Cartwright
- School of Life Sciences and the Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | | | - Silvia Bahadian Moreira
- Centro de Primatologia do Rio de Janeiro, Instituto Estadual do Ambiente, Rio de Janeiro, Brazil
| | | | | | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro, Instituto Estadual do Ambiente, Rio de Janeiro, Brazil
| | - Carlos R Ruiz-Miranda
- Laboratorio das Ciencias Ambientais, Centro de Biociencias e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - André F A Santos
- Laboratório de Diversidade e Doenças Virais, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Association of Primate Veterinarians Guidelines for the Management of Diarrhea. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:202-204. [PMID: 37208835 PMCID: PMC10230536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
5
|
Sheh A, Artim SC, Burns MA, Molina-Mora JA, Lee MA, Dzink-Fox J, Muthupalani S, Fox JG. Alterations in common marmoset gut microbiome associated with duodenal strictures. Sci Rep 2022; 12:5277. [PMID: 35347206 PMCID: PMC8960757 DOI: 10.1038/s41598-022-09268-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic gastrointestinal (GI) diseases are the most common diseases in captive common marmosets (Callithrix jacchus). Despite standardized housing, diet and husbandry, a recently described gastrointestinal syndrome characterized by duodenal ulcers and strictures was observed in a subset of marmosets sourced from the New England Primate Research Center. As changes in the gut microbiome have been associated with GI diseases, the gut microbiome of 52 healthy, non-stricture marmosets (153 samples) were compared to the gut microbiome of 21 captive marmosets diagnosed with a duodenal ulcer/stricture (57 samples). No significant changes were observed using alpha diversity metrics, and while the community structure was significantly different when comparing beta diversity between healthy and stricture cases, the results were inconclusive due to differences observed in the dispersion of both datasets. Differences in the abundance of individual taxa using ANCOM, as stricture-associated dysbiosis was characterized by Anaerobiospirillum loss and Clostridium perfringens increases. To identify microbial and serum biomarkers that could help classify stricture cases, we developed models using machine learning algorithms (random forest, classification and regression trees, support vector machines and k-nearest neighbors) to classify microbiome, serum chemistry or complete blood count (CBC) data. Random forest (RF) models were the most accurate models and correctly classified strictures using either 9 ASVs (amplicon sequence variants), 4 serum chemistry tests or 6 CBC tests. Based on the RF model and ANCOM results, C. perfringens was identified as a potential causative agent associated with the development of strictures. Clostridium perfringens was also isolated by microbiological culture in 4 of 9 duodenum samples from marmosets with histologically confirmed strictures. Due to the enrichment of C. perfringens in situ, we analyzed frozen duodenal tissues using both 16S microbiome profiling and RNAseq. Microbiome analysis of the duodenal tissues of 29 marmosets from the MIT colony confirmed an increased abundance of Clostridium in stricture cases. Comparison of the duodenal gene expression from stricture and non-stricture marmosets found enrichment of genes associated with intestinal absorption, and lipid metabolism, localization, and transport in stricture cases. Using machine learning, we identified increased abundance of C. perfringens, as a potential causative agent of GI disease and intestinal strictures in marmosets.
Collapse
Affiliation(s)
- Alexander Sheh
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Stephen C Artim
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Merck Research Laboratories, Merck, South San Francisco, CA, USA
| | - Monika A Burns
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jose Arturo Molina-Mora
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Mary Anne Lee
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - JoAnn Dzink-Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
The gut microbiome of exudivorous marmosets in the wild and captivity. Sci Rep 2022; 12:5049. [PMID: 35322053 PMCID: PMC8942988 DOI: 10.1038/s41598-022-08797-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Mammalian captive dietary specialists like folivores are prone to gastrointestinal distress and primate dietary specialists suffer the greatest gut microbiome diversity losses in captivity compared to the wild. Marmosets represent another group of dietary specialists, exudivores that eat plant exudates, but whose microbiome remains relatively less studied. The common occurrence of gastrointestinal distress in captive marmosets prompted us to study the Callithrix gut microbiome composition and predictive function through bacterial 16S ribosomal RNA V4 region sequencing. We sampled 59 wild and captive Callithrix across four species and their hybrids. Host environment had a stronger effect on the gut microbiome than host taxon. Wild Callithrix gut microbiomes were enriched for Bifidobacterium, which process host-indigestible carbohydrates. Captive marmoset guts were enriched for Enterobacteriaceae, a family containing pathogenic bacteria. While gut microbiome function was similar across marmosets, Enterobacteriaceae seem to carry out most functional activities in captive host guts. More diverse bacterial taxa seem to perform gut functions in wild marmosets, with Bifidobacterium being important for carbohydrate metabolism. Captive marmosets showed gut microbiome composition aspects seen in human gastrointestinal diseases. Thus, captivity may perturb the exudivore gut microbiome, which raises implications for captive exudivore welfare and calls for husbandry modifications.
Collapse
|
7
|
Yamada C, Katayama T, Fushinobu S. Crystal structures of glycoside hydrolase family 136 lacto-N-biosidases from monkey gut- and human adult gut bacteria. Biosci Biotechnol Biochem 2022; 86:464-475. [PMID: 35092420 DOI: 10.1093/bbb/zbac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 11/14/2022]
Abstract
Glycoside hydrolase family 136 (GH136) was established after the discovery and structural analysis of lacto-N-biosidase (LNBase) from the infant gut bacterium Bifidobacterium longum subsp. longum JCM1217 (BlLnbX). Homologous genes of BlLnbX are widely distributed in the genomes of human gut bacteria and monkey Bifidobacterium spp., although only 2 crystal structures were reported in the GH136 family. Cell suspensions of Bifidobacterium saguini, Tyzzerella nexilis, and Ruminococcus lactaris exhibited the LNBase activity. Recombinant LNBases of these 3 species were functionally expressed with their specific chaperones in Escherichia coli, and their kinetic parameters against p-nitrophenol substrates were determined. The crystal structures of the LNBases from B. saguini and T. nexilis in complex with lacto-N-biose I were determined at 2.51 and 1.92 Å resolutions, respectively. These structures conserve a β-helix fold characteristic of GH136 and the catalytic residues, but they lack the metal ions that were present in BlLnbX.
Collapse
Affiliation(s)
- Chihaya Yamada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Sheh A, Artim SC, Burns MA, Molina-Mora JA, Lee MA, Dzink-Fox J, Muthupalani S, Fox JG. Analysis of gut microbiome profiles in common marmosets (Callithrix jacchus) in health and intestinal disease. Sci Rep 2022; 12:4430. [PMID: 35292670 PMCID: PMC8924212 DOI: 10.1038/s41598-022-08255-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic gastrointestinal (GI) diseases are the most common diseases in captive common marmosets. To understand the role of the microbiome in GI diseases, we characterized the gut microbiome of 91 healthy marmosets (303 samples) and 59 marmosets diagnosed with inflammatory bowel disease (IBD) (200 samples). Healthy marmosets exhibited "humanized," Bacteroidetes-dominant microbiomes. After up to 2 years of standardized diet, housing and husbandry, marmoset microbiomes could be classified into four distinct marmoset sources based on Prevotella and Bacteroides levels. Using a random forest (RF) model, marmosets were classified by source with an accuracy of 93% with 100% sensitivity and 95% specificity using abundance data from 4 Prevotellaceae amplicon sequence variants (ASVs), as well as single ASVs from Coprobacter, Parabacteroides, Paraprevotella, Phascolarctobacterium, Oribacterium and Fusobacterium. A single dysbiotic IBD state was not found across all marmoset sources, but IBD was associated with lower alpha diversity and a lower Bacteroides:Prevotella copri ratio within each source. IBD was highest in a Prevotella-dominant cohort, and consistent with Prevotella-linked diseases, pro-inflammatory genes in the jejunum were upregulated. RF analysis of serum biomarkers identified serum calcium, hemoglobin and red blood cell (RBC) counts as potential biomarkers for marmoset IBD. This study characterizes the microbiome of healthy captive common marmosets and demonstrates that source-specific microbiomes can be retained despite standardized diets and husbandry practices. Marmosets with IBD had decreased alpha diversity and a shift in the ratio of Bacteroides:Prevotella copri compared to healthy marmosets.
Collapse
Affiliation(s)
- Alexander Sheh
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Stephen C Artim
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Merck Research Laboratories, Merck, South San Francisco, CA, USA
| | - Monika A Burns
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jose Arturo Molina-Mora
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Mary Anne Lee
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - JoAnn Dzink-Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
9
|
Captive Common Marmosets (Callithrix jacchus) Are Colonized throughout Their Lives by a Community of Bifidobacterium Species with Species-Specific Genomic Content That Can Support Adaptation to Distinct Metabolic Niches. mBio 2021; 12:e0115321. [PMID: 34340536 PMCID: PMC8406136 DOI: 10.1128/mbio.01153-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is an omnivorous New World primate whose diet in the wild includes large amounts of fruit, seeds, flowers, and a variety of lizards and invertebrates. Marmosets also feed heavily on tree gums and exudates, and they have evolved unique morphological and anatomical characteristics to facilitate gum feeding (gummivory). In this study, we characterized the fecal microbiomes of adult and infant animals from a captive population of common marmosets at the Callitrichid Research Center at the University of Nebraska at Omaha under their normal dietary and environmental conditions. The microbiomes of adult animals were dominated by species of Bifidobacterium, Bacteroides, Prevotella, Phascolarctobacterium, Megamonas, and Megasphaera. Culturing and genomic analysis of the Bifidobacterium populations from adult animals identified four known marmoset-associated species (B. reuteri, B. aesculapii, B. myosotis, and B. hapali) and three unclassified taxa of Bifidobacterium that are phylogenetically distinct. Species-specific quantitative PCR (qPCR) confirmed that these same species of Bifidobacterium are abundant members of the microbiome throughout the lives of the animals. Genomic loci in each Bifidobacterium species encode enzymes to support growth and major marmoset milk oligosaccharides during breastfeeding; however, metabolic islands that can support growth on complex polysaccharide substrates in the diets of captive adults (pectin, xyloglucan, and xylan), including loci in B. aesculapii that can support its unique ability to grow on arabinogalactan-rich tree gums, were species-specific.
Collapse
|
10
|
Sheh A. The Gastrointestinal Microbiota of the Common Marmoset (Callithrix jacchus). ILAR J 2021; 61:188-198. [PMID: 33620078 DOI: 10.1093/ilar/ilaa025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
The microbiota is heavily involved in both health and disease pathogenesis, but defining a normal, healthy microbiota in the common marmoset has been challenging. The aim of this review was to systematically review recent literature involving the gastrointestinal microbiome of common marmosets in health and disease. Twelve sources were included in this review. The gut microbiome composition was reviewed across institutions worldwide, and taxonomic shifts between healthy individuals were described. Unlike the human gut microbiome, which is dominated by Firmicutes and Bacteroidetes, the marmoset gut microbiome shows great plasticity across institutions, with 5 different phyla described as dominant in different healthy cohorts. Genera shared across institutions include Anaerobiospirillum, Bacteroides, Bifidobacterium, Collinsella, Fusobacterium, Megamonas, Megasphaera, Phascolarctobacterium, and Prevotella. Shifts in the abundance of Prevotella or Bifidobacterium or invasion by pathogens like Clostridium perfringens may be associated with disease. Changes in microbial composition have been described in healthy and diseased marmosets, but factors influencing the severe changes in microbial composition have not been established. Multi-institutional, prospective, and longitudinal studies that utilize multiple testing methodologies are required to determine sources of variability in the reporting of marmoset microbiomes. Furthermore, methods of microbial manipulation, whether by diet, enrichment, fecal microbiome transplantation, etc, need to be established to modulate and maintain robust and resilient microbiome communities in marmoset colonies and reduce the incidence of idiopathic gastrointestinal disease.
Collapse
Affiliation(s)
- Alexander Sheh
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
11
|
Lugli GA, Alessandri G, Milani C, Mancabelli L, Ruiz L, Fontana F, Borragán S, González A, Turroni F, Ossiprandi MC, Margolles A, van Sinderen D, Ventura M. Evolutionary development and co-phylogeny of primate-associated bifidobacteria. Environ Microbiol 2020; 22:3375-3393. [PMID: 32515117 DOI: 10.1111/1462-2920.15108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
Abstract
In recent years, bifidobacterial populations in the gut of various monkey species have been assessed in several ecological surveys, unveiling a diverse, yet unexplored ecosystem harbouring novel species. In the current study, we investigated the species distribution of bifidobacteria present in 23 different species of primates, including human samples, by means of 16S rRNA microbial profiling and internal transcribed spacer bifidobacterial profiling. Based on the observed bifidobacterial-host co-phylogeny, we found a statistically significant correlation between the Hominidae family and particular bifidobacterial species isolated from humans, indicating phylosymbiosis between these lineages. Furthermore, phylogenetic and glycobiome analyses, based on 40 bifidobacterial species isolated from primates, revealed that members of the Bifidobacterium tissieri phylogenetic group, which are typical gut inhabitants of members of the Cebidae family, descend from an ancient ancestor with respect to other bifidobacterial taxa isolated from primates.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Giulia Alessandri
- Department of Veterinary Medical Science, University of Parma, Parma, 43124, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy.,Microbiome Research Hub, University of Parma, Parma, 43124, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, 33300, Spain.,MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | | | - Andrea González
- Zoo de Santillana, Avda. del Zoo 2, Santillana del Mar, Cantabria, 39330, Spain
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy.,Microbiome Research Hub, University of Parma, Parma, 43124, Italy
| | | | - Abelardo Margolles
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, 33300, Spain.,MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, T12 YT20, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy.,Microbiome Research Hub, University of Parma, Parma, 43124, Italy
| |
Collapse
|
12
|
Metabolomics reveals impact of seven functional foods on metabolic pathways in a gut microbiota model. J Adv Res 2020; 23:47-59. [PMID: 32071791 PMCID: PMC7016031 DOI: 10.1016/j.jare.2020.01.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolomics was employed to assess 7 functional foods impact on gut microbiota. Insights regarding how functional foods alter gut metabolic pathways is presented. Increased GABA production was observed in polyphenol rich functional food. Purine alkaloids served as direct substrate in microbiota metabolism.
Functional food defined as dietary supplements that in addition to their nutritional values, can beneficially modulate body functions becomes more and more popular but the reaction of the intestinal microbiota to it is largely unknown. In order to analyse the impact of functional food on the microbiota itself it is necessary to focus on the physiology of the microbiota, which can be assessed in a whole by untargeted metabolomics. Obtaining a detailed description of the gut microbiota reaction to food ingredients can be a key to understand how these organisms regulate and bioprocess many of these food components. Extracts prepared from seven chief functional foods, namely green tea, black tea, Opuntia ficus-indica (prickly pear, cactus pear), black coffee, green coffee, pomegranate, and sumac were administered to a gut consortium culture encompassing 8 microbes which are resembling, to a large extent, the metabolic activities found in the human gut. Samples were harvested at 0.5 and 24 h post addition of functional food extract and from blank culture in parallel and analysed for its metabolites composition using gas chromatography coupled to mass spectrometry detection (GC-MS). A total of 131 metabolites were identified belonging to organic acids, alcohols, amino acids, fatty acids, inorganic compounds, nitrogenous compounds, nucleic acids, phenolics, steroids and sugars, with amino acids as the most abundant class in cultures. Considering the complexity of such datasets, multivariate data analyses were employed to classify samples and investigate how functional foods influence gut microbiota metabolisms. Results from this study provided a first insights regarding how functional foods alter gut metabolism through either induction or inhibition of certain metabolic pathways, i.e. GABA production in the presence of higher acidity induced by functional food metabolites such as polyphenols. Likewise, functional food metabolites i.e., purine alkaloids acted themselves as direct substrate in microbiota metabolism.
Collapse
Key Words
- BC, Black Coffee
- BT, Black Tea
- Chemometrics
- FI, Opuntia ficus-indica (prickly pear)
- Functional foods
- GC, Green Coffee
- GCMS
- GI, gastrointestinal
- GIT, gastrointestinal tract
- GT, Green Tea
- Gut microbiota
- Metabolomics
- POM, pomegranate (Punica granatum)
- SCFAs, short chain fatty acids
- SUM, sumac (Rhus coriaria)
Collapse
|
13
|
Prebiotic potential of natural gums and starch for bifidobacteria of variable origins. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.bcdf.2019.100199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Greene LK, Bornbusch SL, McKenney EA, Harris RL, Gorvetzian SR, Yoder AD, Drea CM. The importance of scale in comparative microbiome research: New insights from the gut and glands of captive and wild lemurs. Am J Primatol 2019; 81:e22974. [PMID: 30932230 DOI: 10.1002/ajp.22974] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/22/2022]
Abstract
Research on animal microbiomes is increasingly aimed at determining the evolutionary and ecological factors that govern host-microbiome dynamics, which are invariably intertwined and potentially synergistic. We present three empirical studies related to this topic, each of which relies on the diversity of Malagasy lemurs (representing a total of 19 species) and the comparative approach applied across scales of analysis. In Study 1, we compare gut microbial membership across 14 species in the wild to test the relative importance of host phylogeny and feeding strategy in mediating microbiome structure. Whereas host phylogeny strongly predicted community composition, the same feeding strategies shared by distant relatives did not produce convergent microbial consortia, but rather shaped microbiomes in host lineage-specific ways, particularly in folivores. In Study 2, we compare 14 species of wild and captive folivores, frugivores, and omnivores, to highlight the importance of captive populations for advancing gut microbiome research. We show that the perturbational effect of captivity is mediated by host feeding strategy and can be mitigated, in part, by modified animal management. In Study 3, we examine various scent-gland microbiomes across three species in the wild or captivity and show them to vary by host species, sex, body site, and a proxy of social status. These rare data provide support for the bacterial fermentation hypothesis in olfactory signal production and implicate steroid hormones as mediators of microbial community structure. We conclude by discussing the role of scale in comparative microbial studies, the links between feeding strategy and host-microbiome coadaptation, the underappreciated benefits of captive populations for advancing conservation research, and the need to consider the entirety of an animal's microbiota. Ultimately, these studies will help move the field from exploratory to hypothesis-driven research.
Collapse
Affiliation(s)
- Lydia K Greene
- Duke University Program in Ecology, Duke University, Durham, North Carolina.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina.,Primate Microbiome Project, Minneapolis, Minnesota
| | - Sally L Bornbusch
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Erin A McKenney
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina.,North Carolina Museum of Natural Sciences, Raleigh, North Carolina
| | - Rachel L Harris
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Sarah R Gorvetzian
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, North Carolina
| | - Christine M Drea
- Duke University Program in Ecology, Duke University, Durham, North Carolina.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina.,Department of Biology, Duke University, Durham, North Carolina
| |
Collapse
|
15
|
Kap YS, Bus-Spoor C, van Driel N, Dubbelaar ML, Grit C, Kooistra SM, Fagrouch ZC, Verschoor EJ, Bauer J, Eggen BJL, Harmsen HJM, Laman JD, 't Hart BA. Targeted Diet Modification Reduces Multiple Sclerosis-like Disease in Adult Marmoset Monkeys from an Outbred Colony. THE JOURNAL OF IMMUNOLOGY 2018; 201:3229-3243. [PMID: 30341184 DOI: 10.4049/jimmunol.1800822] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/25/2018] [Indexed: 01/20/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) in common marmosets is a translationally relevant model of the chronic neurologic disease multiple sclerosis. Following the introduction of a new dietary supplement in our purpose-bred marmoset colony, the percentage of marmosets in which clinically evident EAE could be induced by sensitization against recombinant human myelin oligodendrocyte glycoprotein in IFA decreased from 100 to 65%. The reduced EAE susceptibility after the dietary change coincided with reduced Callitrichine herpesvirus 3 expression in the colony, an EBV-related γ1-herpesvirus associated with EAE. We then investigated, in a controlled study in marmoset twins, which disease-relevant parameters were affected by the dietary change. The selected twins had been raised on the new diet for at least 12 mo prior to the study. In twin siblings reverted to the original diet 8 wk prior to EAE induction, 100% disease prevalence (eight out of eight) was restored, whereas in siblings remaining on the new diet the EAE prevalence was 75% (six out of eight). Spinal cord demyelination, a classical hallmark of the disease, was significantly lower in new-diet monkeys than in monkeys reverted to the original diet. In new-diet monkeys, the proinflammatory T cell response to recombinant human myelin oligodendrocyte glycoprotein was significantly reduced, and RNA-sequencing revealed reduced apoptosis and enhanced myelination in the brain. Systematic typing of the marmoset gut microbiota using 16S rRNA sequencing demonstrated a unique, Bifidobacteria-dominated composition, which changed after disease induction. In conclusion, targeted dietary intervention exerts positive effects on EAE-related parameters in multiple compartments of the marmoset's gut-immune-CNS axis.
Collapse
Affiliation(s)
- Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands;
| | - Carien Bus-Spoor
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Nikki van Driel
- Department of Immunobiology, Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands
| | - Marissa L Dubbelaar
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Corien Grit
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Susanne M Kooistra
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| | - Zahra C Fagrouch
- Department of Virology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands; and
| | - Jan Bauer
- Department for Neuroimmunology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Bart J L Eggen
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Jon D Laman
- Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands.,Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.,MS Centrum Noord Nederland, 9722 NN Groningen, the Netherlands
| |
Collapse
|