1
|
Mather AE, Gilmour MW, Reid SWJ, French NP. Foodborne bacterial pathogens: genome-based approaches for enduring and emerging threats in a complex and changing world. Nat Rev Microbiol 2024; 22:543-555. [PMID: 38789668 DOI: 10.1038/s41579-024-01051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/26/2024]
Abstract
Foodborne illnesses pose a substantial health and economic burden, presenting challenges in prevention due to the diverse microbial hazards that can enter and spread within food systems. Various factors, including natural, political and commercial drivers, influence food production and distribution. The risks of foodborne illness will continue to evolve in step with these drivers and with changes to food systems. For example, climate impacts on water availability for agriculture, changes in food sustainability targets and evolving customer preferences can all have an impact on the ecology of foodborne pathogens and the agrifood niches that can carry microorganisms. Whole-genome and metagenome sequencing, combined with microbial surveillance schemes and insights from the food system, can provide authorities and businesses with transformative information to address risks and implement new food safety interventions across the food chain. In this Review, we describe how genome-based approaches have advanced our understanding of the evolution and spread of enduring bacterial foodborne hazards as well as their role in identifying emerging foodborne hazards. Furthermore, foodborne hazards exist in complex microbial communities across the entire food chain, and consideration of these co-existing organisms is essential to understanding the entire ecology supporting pathogen persistence and transmission in an evolving food system.
Collapse
Affiliation(s)
- Alison E Mather
- Quadram Institute Bioscience, Norwich, UK.
- University of East Anglia, Norwich, UK.
| | - Matthew W Gilmour
- Quadram Institute Bioscience, Norwich, UK
- University of East Anglia, Norwich, UK
| | | | - Nigel P French
- Tāuwharau Ora, School of Veterinary Science, Te Kunenga Ki Pūrehuroa, Massey University, Papaioea, Palmerston North, Aotearoa New Zealand
| |
Collapse
|
2
|
Luan T, Cepeda V, Liu B, Bowen Z, Ayyangar U, Almeida M, Hill CM, Koren S, Treangen TJ, Porter A, Pop M. MetaCompass: Reference-guided Assembly of Metagenomes. ARXIV 2024:arXiv:2403.01578v1. [PMID: 38903742 PMCID: PMC11188144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metagenomic studies have primarily relied on de novo assembly for reconstructing genes and genomes from microbial mixtures. While reference-guided approaches have been employed in the assembly of single organisms, they have not been used in a metagenomic context. Here we describe the first effective approach for reference-guided metagenomic assembly that can complement and improve upon de novo metagenomic assembly methods for certain organisms. Such approaches will be increasingly useful as more genomes are sequenced and made publicly available.
Collapse
Affiliation(s)
- Tu Luan
- Department of Computer Science, University of Maryland, College Park, Maryland, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Victoria Cepeda
- Department of Computer Science, University of Maryland, College Park, Maryland, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Bo Liu
- Department of Computer Science, University of Maryland, College Park, Maryland, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Zac Bowen
- Fraunhofer USA Center Mid-Atlantic, Riverdale, Maryland, USA
| | - Ujjwal Ayyangar
- Fraunhofer USA Center Mid-Atlantic, Riverdale, Maryland, USA
| | - Mathieu Almeida
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Christopher M. Hill
- Department of Computer Science, University of Maryland, College Park, Maryland, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Todd J. Treangen
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Adam Porter
- Department of Computer Science, University of Maryland, College Park, Maryland, USA
| | - Mihai Pop
- Department of Computer Science, University of Maryland, College Park, Maryland, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
3
|
Kristensen T, Sørensen LH, Pedersen SK, Jensen JD, Mordhorst H, Lacy-Roberts N, Lukjancenko O, Luo Y, Hoffmann M, Hendriksen RS. Results of the 2020 Genomic Proficiency Test for the network of European Union Reference Laboratory for Antimicrobial Resistance assessing whole-genome-sequencing capacities. Microb Genom 2023; 9:mgen001076. [PMID: 37526643 PMCID: PMC10483428 DOI: 10.1099/mgen.0.001076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023] Open
Abstract
The global surveillance and outbreak investigation of antimicrobial resistance (AMR) is amidst a paradigm shift from traditional biology to bioinformatics. This is due to developments in whole-genome-sequencing (WGS) technologies, bioinformatics tools, and reduced costs. The increased use of WGS is accompanied by challenges such as standardization, quality control (QC), and data sharing. Thus, there is global need for inter-laboratory WGS proficiency test (PT) schemes to evaluate laboratories' capacity to produce reliable genomic data. Here, we present the results of the first iteration of the Genomic PT (GPT) organized by the Global Capacity Building Group at the Technical University of Denmark in 2020. Participating laboratories sequenced two isolates and corresponding DNA of Salmonella enterica, Escherichia coli and Campylobacter coli, using WGS methodologies routinely employed at their laboratories. The participants' ability to obtain consistently good-quality WGS data was assessed based on several QC WGS metrics. A total of 21 laboratories from 21 European countries submitted WGS and meta-data. Most delivered high-quality sequence data with only two laboratories identified as overall underperforming. The QC metrics, N50 and number of contigs, were identified as good indicators for high-sequencing quality. We propose QC thresholds for N50 greater than 20 000 and 25 000 for Campylobacter coli and Escherichia coli, respectively, and number of contigs >200 bp greater than 225, 265 and 100 for Salmonella enterica, Escherichia coli and Campylobacter coli, respectively. The GPT2020 results confirm the importance of systematic QC procedures, ensuring the submission of reliable WGS data for surveillance and outbreak investigation to meet the requirements of the paradigm shift in methodology.
Collapse
Affiliation(s)
- Thea Kristensen
- National Food Institute, Research Group of Genomic Epidemiology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Department of Plant and Environmental Sciences, Section for Organismal Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lauge Holm Sørensen
- National Food Institute, Research Group of Global Capacity Building, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Susanne Karlsmose Pedersen
- National Food Institute, Research Group of Global Capacity Building, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jacob Dyring Jensen
- National Food Institute, Research Group of Genomic Epidemiology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hanne Mordhorst
- National Food Institute, Research Group of Genomic Epidemiology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Niamh Lacy-Roberts
- National Food Institute, Research Group of Global Capacity Building, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Yan Luo
- Center for Food and Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - Maria Hoffmann
- Center for Food and Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - Rene S. Hendriksen
- National Food Institute, Research Group of Global Capacity Building, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Azarian T, Sherry NL, Baker K, Holt KE, Okeke IN. Making microbial genomics work for clinical and public health microbiology. Microb Genom 2022; 8:mgen000900. [PMID: 36112024 PMCID: PMC9676031 DOI: 10.1099/mgen.0.000900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 01/05/2025] Open
Affiliation(s)
- Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Norelle L. Sherry
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kate Baker
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kathryn E. Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
5
|
Stevens EL, Carleton HA, Beal J, Tillman GE, Lindsey RL, Lauer AC, Pightling A, Jarvis KG, Ottesen A, Ramachandran P, Hintz L, Katz LS, Folster JP, Whichard JM, Trees E, Timme RE, McDERMOTT P, Wolpert B, Bazaco M, Zhao S, Lindley S, Bruce BB, Griffin PM, Brown E, Allard M, Tallent S, Irvin K, Hoffmann M, Wise M, Tauxe R, Gerner-Smidt P, Simmons M, Kissler B, Defibaugh-Chavez S, Klimke W, Agarwala R, Lindsay J, Cook K, Austerman SR, Goldman D, McGARRY S, Hale KR, Dessai U, Musser SM, Braden C. Use of Whole Genome Sequencing by the Federal Interagency Collaboration for Genomics for Food and Feed Safety in the United States. J Food Prot 2022; 85:755-772. [PMID: 35259246 DOI: 10.4315/jfp-21-437] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/22/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT This multiagency report developed by the Interagency Collaboration for Genomics for Food and Feed Safety provides an overview of the use of and transition to whole genome sequencing (WGS) technology for detection and characterization of pathogens transmitted commonly by food and for identification of their sources. We describe foodborne pathogen analysis, investigation, and harmonization efforts among the following federal agencies: National Institutes of Health; Department of Health and Human Services, Centers for Disease Control and Prevention (CDC) and U.S. Food and Drug Administration (FDA); and the U.S. Department of Agriculture, Food Safety and Inspection Service, Agricultural Research Service, and Animal and Plant Health Inspection Service. We describe single nucleotide polymorphism, core-genome, and whole genome multilocus sequence typing data analysis methods as used in the PulseNet (CDC) and GenomeTrakr (FDA) networks, underscoring the complementary nature of the results for linking genetically related foodborne pathogens during outbreak investigations while allowing flexibility to meet the specific needs of Interagency Collaboration partners. We highlight how we apply WGS to pathogen characterization (virulence and antimicrobial resistance profiles) and source attribution efforts and increase transparency by making the sequences and other data publicly available through the National Center for Biotechnology Information. We also highlight the impact of current trends in the use of culture-independent diagnostic tests for human diagnostic testing on analytical approaches related to food safety and what is next for the use of WGS in the area of food safety. HIGHLIGHTS
Collapse
Affiliation(s)
- Eric L Stevens
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Heather A Carleton
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Jennifer Beal
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Glenn E Tillman
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250
| | - Rebecca L Lindsey
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - A C Lauer
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Arthur Pightling
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Karen G Jarvis
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Andrea Ottesen
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Padmini Ramachandran
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Leslie Hintz
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Lee S Katz
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Jason P Folster
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Jean M Whichard
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Eija Trees
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Ruth E Timme
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Patrick McDERMOTT
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, Maryland 20708
| | - Beverly Wolpert
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Michael Bazaco
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Shaohua Zhao
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, Maryland 20708
| | - Sabina Lindley
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Beau B Bruce
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Patricia M Griffin
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Eric Brown
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Marc Allard
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Sandra Tallent
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Kari Irvin
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Maria Hoffmann
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Matt Wise
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Robert Tauxe
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Peter Gerner-Smidt
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Mustafa Simmons
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250
| | - Bonnie Kissler
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250
| | | | - William Klimke
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Richa Agarwala
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - James Lindsay
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705
| | - Kimberly Cook
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705
| | - Suelee Robbe Austerman
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Ames, Iowa 50010, USA
| | - David Goldman
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250
| | - Sherri McGARRY
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| | - Kis Robertson Hale
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250
| | - Uday Dessai
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250
| | - Steven M Musser
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740
| | - Chris Braden
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329
| |
Collapse
|
6
|
Schwan CL, Dallman TJ, Cook PW, Vipham J. A case report of Salmonella enterica serovar Corvallis from environmental isolates from Cambodia and clinical isolates in the UK. Access Microbiol 2022; 4:000315. [PMID: 35252753 PMCID: PMC8895601 DOI: 10.1099/acmi.0.000315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 12/10/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica subspecies enterica serovar Corvallis (S. Corvallis) has been identified as a human pathogen and as a food contaminant. Diarrhoeal disease is a common diagnosis in tourists visiting Southeast Asia, often with unknown aetiology. However, numerous public health institutes have identified Salmonella as a common causative agent when consuming contaminated food and water. Genomic data from environmental isolates from a Cambodian informal market were uploaded to the National Center for Biotechnology Information (NCBI) platform, allowing the novel sequences to be compared to global whole-genome sequence archives. The comparison revealed that two human clinical isolates from England and four of the environmental isolates were closely related, with an average single nucleotide polymorphism (SNP) difference of 1 (0-3 SNPs). A maximum-likelihood tree based on core SNPs was generated comparing the 4 isolates recovered from a Cambodian informal market with 239 isolates of S. Corvallis received from routine surveillance of human salmonellosis in England and confirmed the close relationship. In addition, the environmental isolates clustered into a broader phylogenetic group within the S. Corvallis population containing 68 additional human isolates, of which 42 were from patients who reported recent international travel, almost exclusively to Southeast Asia. The environmental isolates of S. Corvallis isolated from an informal market in Cambodia are concerning for public health due to their genetic similarity to isolates (e.g. clinical isolates from the UK) with known human virulence and pathogenicity. This study emphasizes the benefits of global and public data sharing of pathogen genomes.
Collapse
Affiliation(s)
- Carla L. Schwan
- Department of Nutritional Sciences, University of Georgia, 300 Carlton St., Athens, GA 30602, USA
| | | | - Peter W. Cook
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessie Vipham
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
7
|
Wagner DD, Carleton HA, Trees E, Katz LS. Evaluating whole-genome sequencing quality metrics for enteric pathogen outbreaks. PeerJ 2021; 9:e12446. [PMID: 34900416 PMCID: PMC8627651 DOI: 10.7717/peerj.12446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
Background Whole genome sequencing (WGS) has gained increasing importance in responses to enteric bacterial outbreaks. Common analysis procedures for WGS, single nucleotide polymorphisms (SNPs) and genome assembly, are highly dependent upon WGS data quality. Methods Raw, unprocessed WGS reads from Escherichia coli, Salmonella enterica, and Shigella sonnei outbreak clusters were characterized for four quality metrics: PHRED score, read length, library insert size, and ambiguous nucleotide composition. PHRED scores were strongly correlated with improved SNPs analysis results in E. coli and S. enterica clusters. Results Assembly quality showed only moderate correlations with PHRED scores and library insert size, and then only for Salmonella. To improve SNP analyses and assemblies, we compared seven read-healing pipelines to improve these four quality metrics and to see how well they improved SNP analysis and genome assembly. The most effective read healing pipelines for SNPs analysis incorporated quality-based trimming, fixed-width trimming, or both. The Lyve-SET SNPs pipeline showed a more marked improvement than the CFSAN SNP Pipeline, but the latter performed better on raw, unhealed reads. For genome assembly, SPAdes enabled significant improvements in healed E. coli reads only, while Skesa yielded no significant improvements on healed reads. Conclusions PHRED scores will continue to be a crucial quality metric albeit not of equal impact across all types of analyses for all enteric bacteria. While trimming-based read healing performed well for SNPs analyses, different read healing approaches are likely needed for genome assembly or other, emerging WGS analysis methodologies.
Collapse
Affiliation(s)
- Darlene D Wagner
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America.,Eagle Medical Services, LLC, Atlanta, GA, United States of America
| | - Heather A Carleton
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Eija Trees
- Association of Public Health Laboratories, Silver Spring, MD, United States of America
| | - Lee S Katz
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America.,Center for Food Safety, University of Georgia, Griffin, GA, United States of America
| |
Collapse
|
8
|
Schwan CL, Lomonaco S, Bastos LM, Cook PW, Maher J, Trinetta V, Bhullar M, Phebus RK, Gragg S, Kastner J, Vipham JL. Genotypic and Phenotypic Characterization of Antimicrobial Resistance Profiles in Non-typhoidal Salmonella enterica Strains Isolated From Cambodian Informal Markets. Front Microbiol 2021; 12:711472. [PMID: 34603240 PMCID: PMC8481621 DOI: 10.3389/fmicb.2021.711472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/26/2021] [Indexed: 12/03/2022] Open
Abstract
Non-typhoidal Salmonella enterica is a pathogen of global importance, particularly in low and middle-income countries (LMICs). The presence of antimicrobial resistant (AMR) strains in market environments poses a serious health threat to consumers. In this study we identified and characterized the genotypic and phenotypic AMR profiles of 81 environmental S. enterica strains isolated from samples from informal markets in Cambodia in 2018–2019. AMR genotypes were retrieved from the NCBI Pathogen Detection website (https://www.ncbi.nlm.nih.gov/pathogens/) and using ResFinder (https://cge.cbs.dtu.dk/services/) Salmonella pathogenicity islands (SPIs) were identified with SPIFinder (https://cge.cbs.dtu.dk/services/). Susceptibility testing was performed by broth microdilution according to the Clinical and Laboratory Standards Institute (CLSI) standard guidelines M100-S22 using the National Antimicrobial Resistance Monitoring System (NARMS) Sensititre Gram Negative plate. A total of 17 unique AMR genes were detected in 53% (43/81) of the isolates, including those encoding tetracycline, beta-lactam, sulfonamide, quinolone, aminoglycoside, phenicol, and trimethoprim resistance. A total of 10 SPIs (SPI-1, 3–5, 8, 9, 12–14, and centisome 63 [C63PI]) were detected in 59 isolates. C63PI, an iron transport system in SPI-1, was observed in 56% of the isolates (n = 46). SPI-1, SPI-4, and SPI-9 were present in 13, 2, and 5% of the isolates, respectively. The most common phenotypic resistances were observed to tetracycline (47%; n = 38), ampicillin (37%; n = 30), streptomycin (20%; n = 16), chloramphenicol (17%; n = 14), and trimethoprim-sulfamethoxazole (16%; n = 13). This study contributes to understanding the AMR genes present in S. enterica isolates from informal markets in Cambodia, as well as support domestic epidemiological investigations of multidrug resistance (MDR) profiles.
Collapse
Affiliation(s)
- Carla L Schwan
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, United States
| | - Sara Lomonaco
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Leonardo M Bastos
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Peter W Cook
- Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Joshua Maher
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, United States
| | - Valentina Trinetta
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, United States
| | - Manreet Bhullar
- Department of Horticulture and Natural Resources, Kansas State University, Olathe, KS, United States
| | - Randall K Phebus
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, United States
| | - Sara Gragg
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, United States
| | - Justin Kastner
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jessie L Vipham
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
9
|
Abstract
Whole-genome sequencing (WGS) is becoming the de facto standard for bacterial typing and outbreak surveillance of resistant bacterial pathogens. However, interoperability for WGS of bacterial outbreaks is poorly understood. We hypothesized that harmonization of WGS for outbreak surveillance is achievable through the use of identical protocols for both data generation and data analysis. A set of 30 bacterial isolates, comprising of various species belonging to the Enterobacteriaceae family and Enterococcus genera, were selected and sequenced using the same protocol on the Illumina MiSeq platform in each individual centre. All generated sequencing data were analysed by one centre using BioNumerics (6.7.3) for (i) genotyping origin of replications and antimicrobial resistance genes, (ii) core-genome multi-locus sequence typing (cgMLST) for Escherichia coli and Klebsiella pneumoniae and whole-genome multi-locus sequencing typing (wgMLST) for all species. Additionally, a split k-mer analysis was performed to determine the number of SNPs between samples. A precision of 99.0% and an accuracy of 99.2% was achieved for genotyping. Based on cgMLST, a discrepant allele was called only in 2/27 and 3/15 comparisons between two genomes, for E. coli and K. pneumoniae, respectively. Based on wgMLST, the number of discrepant alleles ranged from 0 to 7 (average 1.6). For SNPs, this ranged from 0 to 11 SNPs (average 3.4). Furthermore, we demonstrate that using different de novo assemblers to analyse the same dataset introduces up to 150 SNPs, which surpasses most thresholds for bacterial outbreaks. This shows the importance of harmonization of data-processing surveillance of bacterial outbreaks. In summary, multi-centre WGS for bacterial surveillance is achievable, but only if protocols are harmonized.
Collapse
|
10
|
Barretto C, Rincón C, Portmann AC, Ngom-Bru C. Whole Genome Sequencing Applied to Pathogen Source Tracking in Food Industry: Key Considerations for Robust Bioinformatics Data Analysis and Reliable Results Interpretation. Genes (Basel) 2021; 12:275. [PMID: 33671973 PMCID: PMC7919020 DOI: 10.3390/genes12020275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 12/31/2022] Open
Abstract
Whole genome sequencing (WGS) has arisen as a powerful tool to perform pathogen source tracking in the food industry thanks to several developments in recent years. However, the cost associated to this technology and the degree of expertise required to accurately process and understand the data has limited its adoption at a wider scale. Additionally, the time needed to obtain actionable information is often seen as an impairment for the application and use of the information generated via WGS. Ongoing work towards standardization of wet lab including sequencing protocols, following guidelines from the regulatory authorities and international standardization efforts make the technology more and more accessible. However, data analysis and results interpretation guidelines are still subject to initiatives coming from distinct groups and institutions. There are multiple bioinformatics software and pipelines developed to handle such information. Nevertheless, little consensus exists on a standard way to process the data and interpret the results. Here, we want to present the constraints we face in an industrial setting and the steps we consider necessary to obtain high quality data, reproducible results and a robust interpretation of the obtained information. All of this, in a time frame allowing for data-driven actions supporting factories and their needs.
Collapse
Affiliation(s)
- Caroline Barretto
- Institute of Food Safety and Analytical Sciences, Nestlé Research, 1000 Lausanne 26, Switzerland; (C.R.); (A.-C.P.); (C.N.-B.)
| | | | | | | |
Collapse
|
11
|
Uelze L, Becker N, Borowiak M, Busch U, Dangel A, Deneke C, Fischer J, Flieger A, Hepner S, Huber I, Methner U, Linde J, Pietsch M, Simon S, Sing A, Tausch SH, Szabo I, Malorny B. Toward an Integrated Genome-Based Surveillance of Salmonella enterica in Germany. Front Microbiol 2021; 12:626941. [PMID: 33643254 PMCID: PMC7902525 DOI: 10.3389/fmicb.2021.626941] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/21/2021] [Indexed: 02/03/2023] Open
Abstract
Despite extensive monitoring programs and preventative measures, Salmonella spp. continue to cause tens of thousands human infections per year, as well as many regional and international food-borne outbreaks, that are of great importance for public health and cause significant socio-economic costs. In Germany, salmonellosis is the second most common cause of bacterial diarrhea in humans and is associated with high hospitalization rates. Whole-genome sequencing (WGS) combined with data analysis is a high throughput technology with an unprecedented discriminatory power, which is particularly well suited for targeted pathogen monitoring, rapid cluster detection and assignment of possible infection sources. However, an effective implementation of WGS methods for large-scale microbial pathogen detection and surveillance has been hampered by the lack of standardized methods, uniform quality criteria and strategies for data sharing, all of which are essential for a successful interpretation of sequencing data from different sources. To overcome these challenges, the national GenoSalmSurv project aims to establish a working model for an integrated genome-based surveillance system of Salmonella spp. in Germany, based on a decentralized data analysis. Backbone of the model is the harmonization of laboratory procedures and sequencing protocols, the implementation of open-source bioinformatics tools for data analysis at each institution and the establishment of routine practices for cross-sectoral data sharing for a uniform result interpretation. With this model, we present a working solution for cross-sector interpretation of sequencing data from different sources (such as human, veterinarian, food, feed and environmental) and outline how a decentralized data analysis can contribute to a uniform cluster detection and facilitate outbreak investigations.
Collapse
Affiliation(s)
- Laura Uelze
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Natalie Becker
- Department of Food, Feed and Commodities, Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Maria Borowiak
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Ulrich Busch
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Alexandra Dangel
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Carlus Deneke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jennie Fischer
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Antje Flieger
- Unit of Enteropathogenic Bacteria and Legionella (FG11) – National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Sabrina Hepner
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Ingrid Huber
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Michael Pietsch
- Unit of Enteropathogenic Bacteria and Legionella (FG11) – National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Sandra Simon
- Unit of Enteropathogenic Bacteria and Legionella (FG11) – National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Andreas Sing
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Simon H. Tausch
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Istvan Szabo
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Burkhard Malorny
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
12
|
Marchet C, Boucher C, Puglisi SJ, Medvedev P, Salson M, Chikhi R. Data structures based on k-mers for querying large collections of sequencing data sets. Genome Res 2021; 31:1-12. [PMID: 33328168 PMCID: PMC7849385 DOI: 10.1101/gr.260604.119] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
High-throughput sequencing data sets are usually deposited in public repositories (e.g., the European Nucleotide Archive) to ensure reproducibility. As the amount of data has reached petabyte scale, repositories do not allow one to perform online sequence searches, yet, such a feature would be highly useful to investigators. Toward this goal, in the last few years several computational approaches have been introduced to index and query large collections of data sets. Here, we propose an accessible survey of these approaches, which are generally based on representing data sets as sets of k-mers. We review their properties, introduce a classification, and present their general intuition. We summarize their performance and highlight their current strengths and limitations.
Collapse
Affiliation(s)
- Camille Marchet
- Université de Lille, CNRS, CRIStAL UMR 9189, F-59000 Lille, France
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Simon J Puglisi
- Department of Computer Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Paul Medvedev
- Department of Computer Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for Computational Biology and Bioinformatics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Mikaël Salson
- Université de Lille, CNRS, CRIStAL UMR 9189, F-59000 Lille, France
| | - Rayan Chikhi
- Institut Pasteur & CNRS, C3BI USR 3756, F-75015 Paris, France
| |
Collapse
|
13
|
Timme RE, Lafon PC, Balkey M, Adams JK, Wagner D, Carleton H, Strain E, Hoffmann M, Sabol A, Rand H, Lindsey R, Sheehan D, Baugher JD, Trees E. Gen-FS coordinated proficiency test data for genomic foodborne pathogen surveillance, 2017 and 2018 exercises. Sci Data 2020; 7:402. [PMID: 33214563 PMCID: PMC7677400 DOI: 10.1038/s41597-020-00740-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/20/2020] [Indexed: 11/09/2022] Open
Abstract
The US PulseNet and GenomeTrakr laboratory networks work together within the Genomics for Food Safety (Gen-FS) consortium to collect and analyze genomic data for foodborne pathogen surveillance (species include Salmonella enterica, Listeria monocytogenes, Escherichia coli (STECs), and Campylobactor). In 2017 these two laboratory networks started harmonizing their respective proficiency test exercises, agreeing on distributing a single strain-set and following the same standard operating procedure (SOP) for genomic data collection, running a jointly coordinated annual proficiency test exercise. In this data release we are publishing the reference genomes and raw data submissions for the 2017 and 2018 proficiency test exercises. Measurement(s) | DNA • genome • sequence_assembly | Technology Type(s) | DNA sequencing • sequence assembly process | Factor Type(s) | species of foodborne pathogen | Sample Characteristic - Organism | Salmonella enterica • Escherichia coli • Listeria monocytogenes |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.13135046
Collapse
Affiliation(s)
- Ruth E Timme
- US Food and Drug Administration, College Park, MD, USA.
| | | | - Maria Balkey
- US Food and Drug Administration, College Park, MD, USA
| | - Jennifer K Adams
- Association of Public Health Laboratories, Silver Spring, MD, USA
| | | | | | - Errol Strain
- US Food and Drug Administration, College Park, MD, USA
| | | | - Ashley Sabol
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hugh Rand
- US Food and Drug Administration, College Park, MD, USA
| | - Rebecca Lindsey
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Deborah Sheehan
- Association of Public Health Laboratories, Silver Spring, MD, USA
| | | | - Eija Trees
- Association of Public Health Laboratories, Silver Spring, MD, USA
| |
Collapse
|
14
|
Whole-genome sequencing as part of national and international surveillance programmes for antimicrobial resistance: a roadmap. BMJ Glob Health 2020; 5:e002244. [PMID: 33239336 PMCID: PMC7689591 DOI: 10.1136/bmjgh-2019-002244] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 12/26/2022] Open
Abstract
The global spread of antimicrobial resistance (AMR) and lack of novel alternative treatments have been declared a global public health emergency by WHO. The greatest impact of AMR is experienced in resource-poor settings, because of lack of access to alternative antibiotics and because the prevalence of multidrug-resistant bacterial strains may be higher in low-income and middle-income countries (LMICs). Intelligent surveillance of AMR infections is key to informed policy decisions and public health interventions to counter AMR. Molecular surveillance using whole-genome sequencing (WGS) can be a valuable addition to phenotypic surveillance of AMR. WGS provides insights into the genetic basis of resistance mechanisms, as well as pathogen evolution and population dynamics at different spatial and temporal scales. Due to its high cost and complexity, WGS is currently mainly carried out in high-income countries. However, given its potential to inform national and international action plans against AMR, establishing WGS as a surveillance tool in LMICs will be important in order to produce a truly global picture. Here, we describe a roadmap for incorporating WGS into existing AMR surveillance frameworks, including WHO Global Antimicrobial Resistance Surveillance System, informed by our ongoing, practical experiences developing WGS surveillance systems in national reference laboratories in Colombia, India, Nigeria and the Philippines. Challenges and barriers to WGS in LMICs will be discussed together with a roadmap to possible solutions.
Collapse
|
15
|
|
16
|
Maljkovic Berry I, Rutvisuttinunt W, Voegtly LJ, Prieto K, Pollett S, Cer RZ, Kugelman JR, Bishop-Lilly KA, Morton L, Waitumbi J, Jarman RG. A Department of Defense Laboratory Consortium Approach to Next Generation Sequencing and Bioinformatics Training for Infectious Disease Surveillance in Kenya. Front Genet 2020; 11:577563. [PMID: 33101395 PMCID: PMC7546821 DOI: 10.3389/fgene.2020.577563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022] Open
Abstract
Epidemics of emerging and re-emerging infectious diseases are a danger to civilian and military populations worldwide. Health security and mitigation of infectious disease threats is a priority of the United States Government and the Department of Defense (DoD). Next generation sequencing (NGS) and Bioinformatics (BI) enhances traditional biosurveillance by providing additional data to understand transmission, identify resistance and virulence factors, make predictions, and update risk assessments. As more and more laboratories adopt NGS and BI technologies they encounter challenges in building local capacity. In addition to choosing the right sequencing platform and approach, considerations must also be made for the complexity of bioinformatics analyses, data storage, as well as personnel and computational requirements. To address these needs, a comprehensive training program was developed covering wet lab and bioinformatics approaches to NGS. The program is meant to be modular and adaptive to meet both common and individualized needs of medical research and public health laboratories across the DoD. The training program was first deployed internationally to the Basic Science Laboratory of the US Army Medical Research Directorate-Africa in Kisumu, Kenya, which is an overseas Lab of the Walter Reed Army Institute of Research (WRAIR). A week-long workshop with intensive focus on targeted sequencing and the bioinformatics of genome assembly (n = 24 participants) was held. Post-workshop self-assessment (completed by 21 participants) noted significant median gains in knowledge domains related to NGS targeted sequencing, bioinformatics for genome assembly, and sequence quality assessment. The participants also reported that the information on study design, sample preparation, sequencing quality control, data quality assessment, reporting, and basic and advanced bioinformatics analysis were the most useful information presented in the training. While longer-term evaluations are planned, the training resulted in significant short-term improvement of a laboratory’s self-reported wet lab and bioinformatics capabilities. This framework can be used for future DoD laboratory development in the area of NGS and BI for infectious disease surveillance, ultimately enhancing this global DoD capability.
Collapse
Affiliation(s)
- Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Wiriya Rutvisuttinunt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Office of Genomics and Advanced Technologies National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Logan J Voegtly
- Genomics & Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, MD, United States.,Leidos, Reston, VA, United States
| | - Karla Prieto
- College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States.,Center for Genomic Studies, United States Army Medical Research Institute for Infectious Diseases, Frederick, MD, United States
| | - Simon Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Regina Z Cer
- Genomics & Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, MD, United States.,Leidos, Reston, VA, United States
| | - Jeffrey R Kugelman
- Center for Genomic Studies, United States Army Medical Research Institute for Infectious Diseases, Frederick, MD, United States
| | - Kimberly A Bishop-Lilly
- Genomics & Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, MD, United States
| | - Lindsay Morton
- Global Emerging Infections Surveillance, Armed Forces Health Surveillance Branch, Silver Spring, MD, United States
| | - John Waitumbi
- Basic Science Laboratory, US Army Medical Research Directorate-Africa/Kenya Medical Research Institute, Kisumu, Kenya
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
17
|
Uelze L, Borowiak M, Bönn M, Brinks E, Deneke C, Hankeln T, Kleta S, Murr L, Stingl K, Szabo K, Tausch SH, Wöhlke A, Malorny B. German-Wide Interlaboratory Study Compares Consistency, Accuracy and Reproducibility of Whole-Genome Short Read Sequencing. Front Microbiol 2020; 11:573972. [PMID: 33013811 PMCID: PMC7516015 DOI: 10.3389/fmicb.2020.573972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/14/2020] [Indexed: 12/05/2022] Open
Abstract
We compared the consistency, accuracy and reproducibility of next-generation short read sequencing between ten laboratories involved in food safety (research institutes, state laboratories, universities and companies) from Germany and Austria. Participants were asked to sequence six DNA samples of three bacterial species (Campylobacter jejuni, Listeria monocytogenes and Salmonella enterica) in duplicate, according to their routine in-house sequencing protocol. Four different types of Illumina sequencing platforms (MiSeq, NextSeq, iSeq, NovaSeq) and one Ion Torrent sequencing instrument (S5) were involved in the study. Sequence quality parameters were determined for all data sets and centrally compared between laboratories. SNP and cgMLST calling were performed to assess the reproducibility of sequence data collected for individual samples. Overall, we found Illumina short read data to be more accurate (higher base calling accuracy, fewer miss-assemblies) and consistent (little variability between independent sequencing runs within a laboratory) than Ion Torrent sequence data, with little variation between the different Illumina instruments. Two laboratories with Illumina instruments submitted sequence data with lower quality, probably due to the use of a library preparation kit, which shows difficulty in sequencing low GC genome regions. Differences in data quality were more evident after assembling short reads into genome assemblies, with Ion Torrent assemblies featuring a great number of allele differences to Illumina assemblies. Clonality of samples was confirmed through SNP calling, which proved to be a more suitable method for an integrated data analysis of Illumina and Ion Torrent data sets in this study.
Collapse
Affiliation(s)
- Laura Uelze
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Maria Borowiak
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Markus Bönn
- Landesamt für Verbraucherschutz Sachsen-Anhalt (LAV), Halle (Saale), Germany
| | - Erik Brinks
- Department of Microbiology and Biotechnology, Max Rubner-Institut (MRI), Kiel, Germany
| | - Carlus Deneke
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, AG Molecular Genetics and Genome Analysis, Johannes Gutenberg Universität Mainz, Mainz, Germany
| | - Sylvia Kleta
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Larissa Murr
- Bavarian Health and Food Safety Authority (LGL), Oberschleißheim, Germany
| | - Kerstin Stingl
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Kathrin Szabo
- Department 5, Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Simon H Tausch
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Anne Wöhlke
- Food and Veterinary Institute, Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Braunschweig, Germany
| | - Burkhard Malorny
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
18
|
Guimaraes AMS, Zimpel CK. Mycobacterium bovis: From Genotyping to Genome Sequencing. Microorganisms 2020; 8:E667. [PMID: 32375210 PMCID: PMC7285088 DOI: 10.3390/microorganisms8050667] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium bovis is the main pathogen of bovine, zoonotic, and wildlife tuberculosis. Despite the existence of programs for bovine tuberculosis (bTB) control in many regions, the disease remains a challenge for the veterinary and public health sectors, especially in developing countries and in high-income nations with wildlife reservoirs. Current bTB control programs are mostly based on test-and-slaughter, movement restrictions, and post-mortem inspection measures. In certain settings, contact tracing and surveillance has benefited from M. bovis genotyping techniques. More recently, whole-genome sequencing (WGS) has become the preferential technique to inform outbreak response through contact tracing and source identification for many infectious diseases. As the cost per genome decreases, the application of WGS to bTB control programs is inevitable moving forward. However, there are technical challenges in data analyses and interpretation that hinder the implementation of M. bovis WGS as a molecular epidemiology tool. Therefore, the aim of this review is to describe M. bovis genotyping techniques and discuss current standards and challenges of the use of M. bovis WGS for transmission investigation, surveillance, and global lineages distribution. We compiled a series of associated research gaps to be explored with the ultimate goal of implementing M. bovis WGS in a standardized manner in bTB control programs.
Collapse
Affiliation(s)
- Ana M. S. Guimaraes
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Cristina K. Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
- Department of Preventive Veterinary Medicine and Animal Health, University of São Paulo, São Paulo 01246-904, Brazil
| |
Collapse
|
19
|
Pasquali F, Do Valle I, Palma F, Remondini D, Manfreda G, Castellani G, Hendriksen RS, De Cesare A. Application of different DNA extraction procedures, library preparation protocols and sequencing platforms: impact on sequencing results. Heliyon 2019; 5:e02745. [PMID: 31720479 PMCID: PMC6838873 DOI: 10.1016/j.heliyon.2019.e02745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/01/2019] [Accepted: 10/25/2019] [Indexed: 01/22/2023] Open
Abstract
In this study three DNA extraction procedures, two library preparation protocols and two sequencing platforms were applied to analyse six bacterial cultures and their corresponding DNA obtained as part of a proficiency test. The impact of each variable on sequencing results was assessed using the following parameters: reads quality, assembly and alignment statistics; number of single nucleotide polymorphisms (SNPs), detected applying assembly- and alignment-based strategies; antimicrobial resistance genes (ARGs), identified on de novo assemblies of all sequenced genomes. The investigated nucleic acid extraction procedures, library preparation kits and sequencing platforms do not significantly affect de novo assembly statistics and number of SNPs and ARGs. The only exception was observed for two duplicates, which were associated to one PCR-based library preparation kit. Results from this comparative study can support researchers in the choice toward the available pre-sequencing and sequencing options, and might suggest further comparisons to be performed.
Collapse
Affiliation(s)
- F Pasquali
- Department of Food and Agricultural Sciences, Alma Mater Studiorum-University of Bologna, via del Florio 2, Ozzano dell'Emilia, 40064 Italy
| | - I Do Valle
- Department of Physics, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115-5000, USA
| | - F Palma
- Department of Food and Agricultural Sciences, Alma Mater Studiorum-University of Bologna, via del Florio 2, Ozzano dell'Emilia, 40064 Italy
| | - D Remondini
- Department of Physics and Astronomy, Alma Mater Studiorum-University of Bologna, viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - G Manfreda
- Department of Food and Agricultural Sciences, Alma Mater Studiorum-University of Bologna, via del Florio 2, Ozzano dell'Emilia, 40064 Italy
| | - G Castellani
- Department of Physics and Astronomy, Alma Mater Studiorum-University of Bologna, viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - R S Hendriksen
- Technical University of Denmark, Kemitorvet, Kgs. Lyngby, 2800, Denmark
| | - A De Cesare
- Department of Food and Agricultural Sciences, Alma Mater Studiorum-University of Bologna, via del Florio 2, Ozzano dell'Emilia, 40064 Italy
| |
Collapse
|
20
|
Brinkmann A, Andrusch A, Belka A, Wylezich C, Höper D, Pohlmann A, Nordahl Petersen T, Lucas P, Blanchard Y, Papa A, Melidou A, Oude Munnink BB, Matthijnssens J, Deboutte W, Ellis RJ, Hansmann F, Baumgärtner W, van der Vries E, Osterhaus A, Camma C, Mangone I, Lorusso A, Marcacci M, Nunes A, Pinto M, Borges V, Kroneman A, Schmitz D, Corman VM, Drosten C, Jones TC, Hendriksen RS, Aarestrup FM, Koopmans M, Beer M, Nitsche A. Proficiency Testing of Virus Diagnostics Based on Bioinformatics Analysis of Simulated In Silico High-Throughput Sequencing Data Sets. J Clin Microbiol 2019; 57:e00466-19. [PMID: 31167846 PMCID: PMC6663916 DOI: 10.1128/jcm.00466-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Quality management and independent assessment of high-throughput sequencing-based virus diagnostics have not yet been established as a mandatory approach for ensuring comparable results. The sensitivity and specificity of viral high-throughput sequence data analysis are highly affected by bioinformatics processing using publicly available and custom tools and databases and thus differ widely between individuals and institutions. Here we present the results of the COMPARE [Collaborative Management Platform for Detection and Analyses of (Re-)emerging and Foodborne Outbreaks in Europe] in silico virus proficiency test. An artificial, simulated in silico data set of Illumina HiSeq sequences was provided to 13 different European institutes for bioinformatics analysis to identify viral pathogens in high-throughput sequence data. Comparison of the participants' analyses shows that the use of different tools, programs, and databases for bioinformatics analyses can impact the correct identification of viral sequences from a simple data set. The identification of slightly mutated and highly divergent virus genomes has been shown to be most challenging. Furthermore, the interpretation of the results, together with a fictitious case report, by the participants showed that in addition to the bioinformatics analysis, the virological evaluation of the results can be important in clinical settings. External quality assessment and proficiency testing should become an important part of validating high-throughput sequencing-based virus diagnostics and could improve the harmonization, comparability, and reproducibility of results. There is a need for the establishment of international proficiency testing, like that established for conventional laboratory tests such as PCR, for bioinformatics pipelines and the interpretation of such results.
Collapse
Affiliation(s)
- Annika Brinkmann
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens 1, Berlin, Germany
| | - Andreas Andrusch
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens 1, Berlin, Germany
| | - Ariane Belka
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Claudia Wylezich
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Anne Pohlmann
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Thomas Nordahl Petersen
- Technical University of Denmark, National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kongens Lyngby, Denmark
| | - Pierrick Lucas
- French Agency for Food, Environmental and Occupational Health and Safety, Laboratory of Ploufragan, Unit of Viral Genetics and Biosafety, Ploufragan, France
| | - Yannick Blanchard
- French Agency for Food, Environmental and Occupational Health and Safety, Laboratory of Ploufragan, Unit of Viral Genetics and Biosafety, Ploufragan, France
| | - Anna Papa
- Microbiology Department, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki, Greece
| | - Angeliki Melidou
- Microbiology Department, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki, Greece
| | - Bas B Oude Munnink
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Erhard van der Vries
- Department of Infectious Diseases and Immunology, University of Utrecht, Utrecht, The Netherlands
| | | | - Cesare Camma
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise G. Caporale, National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Teramo, Italy
| | - Iolanda Mangone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise G. Caporale, National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise G. Caporale, National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Teramo, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise G. Caporale, National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Teramo, Italy
| | - Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - Miguel Pinto
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health (INSA), Lisbon, Portugal
| | - Annelies Kroneman
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Dennis Schmitz
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Victor Max Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Terry C Jones
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Rene S Hendriksen
- Technical University of Denmark, National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kongens Lyngby, Denmark
| | - Frank M Aarestrup
- Technical University of Denmark, National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kongens Lyngby, Denmark
| | - Marion Koopmans
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Martin Beer
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Andreas Nitsche
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens 1, Berlin, Germany
| |
Collapse
|
21
|
Greig DR, Jenkins C, Gharbia S, Dallman TJ. Comparison of single-nucleotide variants identified by Illumina and Oxford Nanopore technologies in the context of a potential outbreak of Shiga toxin-producing Escherichia coli. Gigascience 2019; 8:giz104. [PMID: 31433830 PMCID: PMC6703438 DOI: 10.1093/gigascience/giz104] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/12/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We aimed to compare Illumina and Oxford Nanopore Technology sequencing data from the 2 isolates of Shiga toxin-producing Escherichia coli (STEC) O157:H7 to determine whether concordant single-nucleotide variants were identified and whether inference of relatedness was consistent with the 2 technologies. RESULTS For the Illumina workflow, the time from DNA extraction to availability of results was ∼40 hours, whereas with the ONT workflow serotyping and Shiga toxin subtyping variant identification were available within 7 hours. After optimization of the ONT variant filtering, on average 95% of the discrepant positions between the technologies were accounted for by methylated positions found in the described 5-methylcytosine motif sequences, CC(A/T)GG. Of the few discrepant variants (6 and 7 difference for the 2 isolates) identified by the 2 technologies, it is likely that both methodologies contain false calls. CONCLUSIONS Despite these discrepancies, Illumina and Oxford Nanopore Technology sequences from the same case were placed on the same phylogenetic location against a dense reference database of STEC O157:H7 genomes sequenced using the Illumina workflow. Robust single-nucleotide polymorphism typing using MinION-based variant calling is possible, and we provide evidence that the 2 technologies can be used interchangeably to type STEC O157:H7 in a public health setting.
Collapse
Affiliation(s)
- David R Greig
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Claire Jenkins
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Saheer Gharbia
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Timothy J Dallman
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| |
Collapse
|
22
|
Genomic Comparison Reveals Natural Occurrence of Clinically Relevant Multidrug-Resistant Extended-Spectrum-β-Lactamase-Producing Escherichia coli Strains. Appl Environ Microbiol 2019; 85:AEM.03030-18. [PMID: 31053578 DOI: 10.1128/aem.03030-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/24/2019] [Indexed: 02/06/2023] Open
Abstract
The effectiveness of antibiotics has been challenged by the increasing frequency of antimicrobial resistance (AMR), which has emerged as a major threat to global health. Despite its negative impact on the development of AMR, there are few effective strategies for reducing AMR in food-producing animals. Using whole-genome sequencing and comparative genomics of 36 multidrug-resistant (MDR) Escherichia coli strains isolated from beef cattle with no previous exposure to antibiotics, we obtained results suggesting that the occurrence of MDR E. coli also arises in animals with no antibiotic selective pressure. Extended-spectrum-β-lactamase-producing E. coli strains with enhanced virulence capacities for toxin production and adherence have evolved, which implies important ramifications for animal and human health. Gene exchanges by conjugative plasmids and insertion elements have driven widespread antibiotic resistance in clinically relevant pathogens. Phylogenetic relatedness of E. coli strains from various geographic locations and hosts, such as animals, environmental sources, and humans, suggests that transmission of MDR E. coli strains occurs intercontinentally without host barriers.IMPORTANCE Multidrug-resistant (MDR) Escherichia coli isolates pose global threats to public health due to the decreasing availability of treatment options. To better understand the characteristics of MDR E. coli isolated from food-producing animals with no antibiotic exposure, we employed genomic comparison, high-resolution phylogenetics, and functional characterization. Our findings highlight the potential capacity of MDR E. coli to cause severe disease and suggest that these strains are widespread intercontinentally. This study underlines the occurrence of MDR E. coli in food-producing animals raised without antibiotic use, which has alarming, critical ramifications within animal and human medical practice.
Collapse
|
23
|
Hawkey J, Le Hello S, Doublet B, Granier SA, Hendriksen RS, Fricke WF, Ceyssens PJ, Gomart C, Billman-Jacobe H, Holt KE, Weill FX. Global phylogenomics of multidrug-resistant Salmonella enterica serotype Kentucky ST198. Microb Genom 2019; 5. [PMID: 31107206 PMCID: PMC6700661 DOI: 10.1099/mgen.0.000269] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serotype Kentucky can be a common causative agent of salmonellosis, usually associated with consumption of contaminated poultry. Antimicrobial resistance (AMR) to multiple drugs, including ciprofloxacin, is an emerging problem within this serotype. We used whole-genome sequencing (WGS) to investigate the phylogenetic structure and AMR content of 121 S.enterica serotype Kentucky sequence type 198 isolates from five continents. Population structure was inferred using phylogenomic analysis and whole genomes were compared to investigate changes in gene content, with a focus on acquired AMR genes. Our analysis showed that multidrug-resistant (MDR) S.enterica serotype Kentucky isolates belonged to a single lineage, which we estimate emerged circa 1989 following the acquisition of the AMR-associated Salmonella genomic island (SGI) 1 (variant SGI1-K) conferring resistance to ampicillin, streptomycin, gentamicin, sulfamethoxazole and tetracycline. Phylogeographical analysis indicates this clone emerged in Egypt before disseminating into Northern, Southern and Western Africa, then to the Middle East, Asia and the European Union. The MDR clone has since accumulated various substitution mutations in the quinolone-resistance-determining regions (QRDRs) of DNA gyrase (gyrA) and DNA topoisomerase IV (parC), such that most strains carry three QRDR mutations which together confer resistance to ciprofloxacin. The majority of AMR genes in the S. enterica serotype Kentucky genomes were carried either on plasmids or SGI structures. Remarkably, each genome of the MDR clone carried a different SGI1-K derivative structure; this variation could be attributed to IS26-mediated insertions and deletions, which appear to have hampered previous attempts to trace the clone’s evolution using sub-WGS resolution approaches. Several different AMR plasmids were also identified, encoding resistance to chloramphenicol, third-generation cephalosporins, carbapenems and/or azithromycin. These results indicate that most MDR S. enterica serotype Kentucky circulating globally result from the clonal expansion of a single lineage that acquired chromosomal AMR genes 30 years ago, and has continued to diversify and accumulate additional resistances to last-line oral antimicrobials. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Jane Hawkey
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Simon Le Hello
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella , World Health Organization Collaborative Centre for the Typing and Antibiotic Resistance of Salmonella , Institut Pasteur, 75015 Paris, France
| | - Benoît Doublet
- ISP, Institut National de la Recherche Agronomique, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Sophie A Granier
- Laboratoire de sécurité des aliments, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES), Université PARIS-EST, 94701 Maisons-Alfort, France.,Laboratoire de Fougères, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES), 35306 Fougères, France
| | - Rene S Hendriksen
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - W Florian Fricke
- Department of Microbiome Research and Applied Bioinformatics, University of Hohenheim, Stuttgart, Germany.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Camille Gomart
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella , World Health Organization Collaborative Centre for the Typing and Antibiotic Resistance of Salmonella , Institut Pasteur, 75015 Paris, France
| | - Helen Billman-Jacobe
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kathryn E Holt
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.,Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - François-Xavier Weill
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella , World Health Organization Collaborative Centre for the Typing and Antibiotic Resistance of Salmonella , Institut Pasteur, 75015 Paris, France
| |
Collapse
|
24
|
Phylogenomic Pipeline Validation for Foodborne Pathogen Disease Surveillance. J Clin Microbiol 2019; 57:JCM.01816-18. [PMID: 30728194 DOI: 10.1128/jcm.01816-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Foodborne pathogen surveillance in the United States is transitioning from strain identification using restriction digest technology (pulsed-field gel electrophoresis [PFGE]) to shotgun sequencing of the entire genome (whole-genome sequencing [WGS]). WGS requires a new suite of analysis tools, some of which have long histories in academia but are new to the field of public health and regulatory decision making. Although the general workflow is fairly standard for collecting and analyzing WGS data for disease surveillance, there are a number of differences in how the data are collected and analyzed across public health agencies, both nationally and internationally. This impedes collaborative public health efforts, so national and international efforts are underway to enable direct comparison of these different analysis methods. Ultimately, the harmonization efforts will allow the (mutually trusted and understood) production and analysis of WGS data by labs and agencies worldwide, thus improving outbreak response capabilities globally. This review provides a historical perspective on the use of WGS for pathogen tracking and summarizes the efforts underway to ensure the major steps in phylogenomic pipelines used for pathogen disease surveillance can be readily validated. The tools for doing this will ensure that the results produced are sound, reproducible, and comparable across different analytic approaches.
Collapse
|
25
|
Jones JL, Wang L, Ceric O, Nemser SM, Rotstein DS, Jurkovic DA, Rosa Y, Byrum B, Cui J, Zhang Y, Brown CA, Burnum AL, Sanchez S, Reimschuessel R. Whole genome sequencing confirms source of pathogens associated with bacterial foodborne illness in pets fed raw pet food. J Vet Diagn Invest 2019; 31:235-240. [PMID: 30663530 PMCID: PMC6838835 DOI: 10.1177/1040638718823046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Reports of raw meat pet food containing zoonotic foodborne bacteria, including Salmonella, Escherichia coli, and Listeria monocytogenes, are increasing. Contaminated raw pet food and biological waste from pets consuming those diets may pose a public health risk. The U.S. Food and Drug Administration Veterinary Laboratory Investigation and Response Network conducted 2 case investigations, involving 3 households with animal illnesses, which included medical record review, dietary and environmental exposure interviews, animal sample testing, and whole genome sequencing (WGS) of bacteria isolated from the pets and the raw pet food. For each case investigation, WGS with core genome multi-locus sequence typing analysis showed that the animal clinical isolates were closely related to one or more raw pet food bacterial isolates. WGS and genomic analysis of paired animal clinical and animal food isolates can confirm suspected outbreaks of animal foodborne illness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yan Zhang
- Yan Zhang, Ohio Animal
Disease Diagnostic Laboratory, Ohio Department of Agriculture, 8995 East Main
Street, Building 6, Reynoldsburg, OH 43068.
| | | | | | | | | |
Collapse
|
26
|
Ladner JT, Grubaugh ND, Pybus OG, Andersen KG. Precision epidemiology for infectious disease control. Nat Med 2019; 25:206-211. [PMID: 30728537 PMCID: PMC7095960 DOI: 10.1038/s41591-019-0345-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022]
Abstract
Advances in genomics and computing are transforming the capacity for the characterization of biological systems, and researchers are now poised for a precision-focused transformation in the way they prepare for, and respond to, infectious diseases. This includes the use of genome-based approaches to inform molecular diagnosis and individual-level treatment regimens. In addition, advances in the speed and granularity of pathogen genome generation have improved the capability to track and understand pathogen transmission, leading to potential improvements in the design and implementation of population-level public health interventions. In this Perspective, we outline several trends that are driving the development of precision epidemiology of infectious disease and their implications for scientists' ability to respond to outbreaks.
Collapse
Affiliation(s)
- Jason T Ladner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | | | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
- Scripps Research Translational Institute, La Jolla, CA, USA.
| |
Collapse
|
27
|
Abstract
This protocol outlines the all the steps necessary to become a GenomeTrakr data contributor. GenomeTrakr is an international genomic reference database of mostly food and environmental isolates from foodborne pathogens. The data and analyses are housed at the National Center for Biotechnology Information (NCBI), which is a database freely available to anyone in the world. The Pathogen Detection browser at NCBI computes daily cluster results adding the newly submitted data to the existing phylogenetic clusters of closely related genomes. Contributors to this database can see how their new isolates are related to the real-time foodborne pathogen surveillance program established in the USA and a few other countries, and at the same time adding valuable new data to the reference database.
Collapse
|