1
|
Toro CS, Salazar JC, Montero DA, Ugalde JA, Díaz J, Cádiz LA, Henríquez T, García C, Díaz P, Camponovo R, Hermosilla G, Ulloa MT. Antimicrobial Resistance Dynamics in Chilean Shigella sonnei Strains Within Two Decades: Role of Shigella Resistance Locus Pathogenicity Island and Class 1 and Class 2 Integrons. Front Microbiol 2022; 12:794470. [PMID: 35185820 PMCID: PMC8854971 DOI: 10.3389/fmicb.2021.794470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Shigellosis is an enteric infectious disease in which antibiotic treatment is effective, shortening the duration of symptoms and reducing the excretion of the pathogen into the environment. Shigella spp., the etiologic agent, are considered emerging pathogens with a high public health impact due to the increase and global spread of multidrug-resistant (MDR) strains. Since Shigella resistance phenotype varies worldwide, we present an overview of the resistance phenotypes and associated genetic determinants present in 349 Chilean S. sonnei strains isolated during the periods 1995–1997, 2002–2004, 2008–2009, and 2010–2013. We detected a great variability in antibiotic susceptibility patterns, finding 300 (86%) MDR strains. Mobile genetic elements (MGE), such as plasmids, integrons, and genomic islands, have been associated with the MDR phenotypes. The Shigella resistance locus pathogenicity island (SRL PAI), which encodes for ampicillin, streptomycin, chloramphenicol, and tetracycline resistance genes, was detected by PCR in 100% of the strains isolated in 2008–2009 but was less frequent in isolates from other periods. The presence or absence of SRL PAI was also differentiated by pulsed-field gel electrophoresis. An atypical class 1 integron which harbors the blaOXA–1-aadA1-IS1 organization was detected as part of SRL PAI. The dfrA14 gene conferring trimethoprim resistance was present in 98.8% of the 2008–2009 isolates, distinguishing them from the SRL-positive strains isolated before that. Thus, it seems an SRL-dfrA14 S. sonnei clone spread during the 2008–2009 period and declined thereafter. Besides these, SRL-negative strains harboring class 2 integrons with or without resistance to nalidixic acid were detected from 2011 onward, suggesting the circulation of another clone. Whole-genome sequencing of selected strains confirmed the results obtained by PCR and phenotypic analysis. It is highlighted that 70.8% of the MDR strains harbored one or more of the MGE evaluated, while 15.2% lacked both SRL PAI and integrons. These results underscore the temporal dynamics of antimicrobial resistance in S. sonnei strains circulating in Chile, mainly determined by the spread of MGE conferring MDR phenotypes. Since shigellosis is endemic in Chile, constant surveillance of antimicrobial resistance phenotypes and their genetic basis is a priority to contribute to public health policies.
Collapse
Affiliation(s)
- Cecilia S. Toro
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
- *Correspondence: Cecilia S. Toro,
| | - Juan Carlos Salazar
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - David A. Montero
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Juan Antonio Ugalde
- C+, Research Center in Technologies for Society, School of Engineering, Universidad del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance, Santiago, Chile
| | - Janepsy Díaz
- Departamento de Estudios Científicos, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Leandro A. Cádiz
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Tania Henríquez
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Camila García
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Patricia Díaz
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | | | - Germán Hermosilla
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - María Teresa Ulloa
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Hawkey J, Paranagama K, Baker KS, Bengtsson RJ, Weill FX, Thomson NR, Baker S, Cerdeira L, Iqbal Z, Hunt M, Ingle DJ, Dallman TJ, Jenkins C, Williamson DA, Holt KE. Global population structure and genotyping framework for genomic surveillance of the major dysentery pathogen, Shigella sonnei. Nat Commun 2021; 12:2684. [PMID: 33976138 PMCID: PMC8113504 DOI: 10.1038/s41467-021-22700-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2020] [Accepted: 03/23/2021] [Indexed: 01/20/2023] Open
Abstract
Shigella sonnei is the most common agent of shigellosis in high-income countries, and causes a significant disease burden in low- and middle-income countries. Antimicrobial resistance is increasingly common in all settings. Whole genome sequencing (WGS) is increasingly utilised for S. sonnei outbreak investigation and surveillance, but comparison of data between studies and labs is challenging. Here, we present a genomic framework and genotyping scheme for S. sonnei to efficiently identify genotype and resistance determinants from WGS data. The scheme is implemented in the software package Mykrobe and tested on thousands of genomes. Applying this approach to analyse >4,000 S. sonnei isolates sequenced in public health labs in three countries identified several common genotypes associated with increased rates of ciprofloxacin resistance and azithromycin resistance, confirming intercontinental spread of highly-resistant S. sonnei clones and demonstrating the genomic framework can facilitate monitoring the spread of resistant clones, including those that have recently emerged, at local and global scales.
Collapse
Affiliation(s)
- Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Kalani Paranagama
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kate S Baker
- Department of Clinical Infection, Microbiology, and Immunology, Institute for Infection, Ecological and Veterinary Sciences, University of Liverpool, Liverpool, UK
| | - Rebecca J Bengtsson
- Department of Clinical Infection, Microbiology, and Immunology, Institute for Infection, Ecological and Veterinary Sciences, University of Liverpool, Liverpool, UK
| | | | - Nicholas R Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Dept Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Stephen Baker
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Louise Cerdeira
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Zamin Iqbal
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, UK
| | - Martin Hunt
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Danielle J Ingle
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Research School of Population Health, Australian National University, Canberra, ACT, Australia
| | | | - Claire Jenkins
- National Infection Service, Public Health England, London, UK
| | - Deborah A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Dept Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
3
|
Phylogenomic Investigation of Increasing Fluoroquinolone Resistance among Belgian Cases of Shigellosis between 2013 and 2018 Indicates Both Travel-Related Imports and Domestic Circulation. Microorganisms 2021; 9:microorganisms9040767. [PMID: 33917583 PMCID: PMC8067512 DOI: 10.3390/microorganisms9040767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/30/2022] Open
Abstract
Shigellosis is an acute enteric infection caused mainly by the species Shigella flexneri and Shigella sonnei. Since surveillance of these pathogens indicated an increase in ciprofloxacin-resistant samples collected in Belgium between 2013 and 2018, a subset of 148 samples was analyzed with whole genome sequencing (WGS) to investigate their dispersion and underlying genomic features associated with ciprofloxacin resistance. A comparison between observed phenotypes and WGS-based resistance prediction to ciprofloxacin revealed perfect correspondence for all samples. Core genome multi-locus sequence typing and single nucleotide polymorphism-typing were used for phylogenomic investigation to characterize the spread of these infections within Belgium, supplemented with data from international reference collections to place the Belgian isolates within their global context. For S. flexneri, substantial diversity was observed with ciprofloxacin-resistant isolates assigned to several phylogenetic groups. Besides travel-related imports, several clusters of highly similar Belgian isolates could not be linked directly to international travel suggesting the presence of domestically circulating strains. For S. sonnei, Belgian isolates were all limited to lineage III, and could often be traced back to travel to countries in Asia and Africa, sometimes followed by domestic circulation. For both species, several clusters of isolates obtained exclusively from male patients were observed. Additionally, we illustrated the limitations of conventional serotyping of S. flexneri, which was impacted by serotype switching. This study contributes to a better understanding of the spread of shigellosis within Belgium and internationally, and highlights the added value of WGS for the surveillance of this pathogen.
Collapse
|
4
|
van den Beld MJC, Reubsaet FAG, Pijnacker R, Harpal A, Kuiling S, Heerkens EM, Hoeve-Bakker BJA(D, Noomen RCEA, Hendriks ACA, Borst D, van der Heide H, Kooistra-Smid AMD(M, Rossen JWA. A Multifactorial Approach for Surveillance of Shigella spp. and Entero-Invasive Escherichia coli Is Important for Detecting (Inter)national Clusters. Front Microbiol 2020; 11:564103. [PMID: 33193150 PMCID: PMC7604320 DOI: 10.3389/fmicb.2020.564103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2020] [Accepted: 09/22/2020] [Indexed: 01/08/2023] Open
Abstract
Shigella spp. and entero-invasive Escherichia coli (EIEC) can cause mild diarrhea to dysentery. In Netherlands, although shigellosis is a notifiable disease, there is no laboratory surveillance for Shigella spp. and EIEC in place. Consequently, the population structure for circulating Shigella spp. and EIEC isolates is not known. This study describes the phenotypic and serological characteristics, the phenotypic and genetic antimicrobial resistance (AMR) profiles, the virulence gene profiles, the classic multi-locus sequence types (MLST) and core genome (cg)MLST types, and the epidemiology of 414 Shigella spp. and EIEC isolates collected during a cross-sectional study in Netherlands in 2016 and 2017. S. sonnei (56%), S. flexneri (25%), and EIEC (15%) were detected predominantly in Netherlands, of which the EIEC isolates were most diverse according to their phenotypical profile, O-types, MLST types, and cgMLST clades. Virulence gene profiling showed that none of the isolates harbored Shiga toxin genes. Most S. flexneri and EIEC isolates possessed nearly all virulence genes examined, while these genes were only detected in approximately half of the S. sonnei isolates, probably due to loss of the large invasion plasmid upon subculturing. Phenotypical resistance correlated well with the resistant genotype, except for the genes involved in resistance to aminoglycosides. A substantial part of the characterized isolates was resistant to antimicrobials advised for treatment, i.e., 73% was phenotypically resistant to co-trimoxazole and 19% to ciprofloxacin. AMR was particularly observed in isolates from male patients who had sex with men (MSM) or from patients that had traveled to Asia. Furthermore, isolates related to international clusters were also circulating in Netherlands. Travel-related isolates formed clusters with isolates from patients without travel history, indicating their emergence into the Dutch population. In conclusion, laboratory surveillance using whole genome sequencing as high-resolution typing technique and for genetic characterization of isolates complements the current epidemiological surveillance, as the latter is not sufficient to detect all (inter)national clusters, emphasizing the importance of multifactorial public health approaches.
Collapse
Affiliation(s)
- Maaike J. C. van den Beld
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Frans A. G. Reubsaet
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Roan Pijnacker
- Infectious Diseases, Epidemiology and Surveillance, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Airien Harpal
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Sjoerd Kuiling
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Evy M. Heerkens
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - B. J. A. (Dieneke) Hoeve-Bakker
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Ramón C. E. A. Noomen
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Amber C. A. Hendriks
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Dyogo Borst
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Han van der Heide
- Infectious Disease Research, Diagnostics and Laboratory Surveillance, Centre for Infectious disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - A. M. D. (Mirjam) Kooistra-Smid
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Medical Microbiology, Certe, Groningen, Netherlands
| | - John W. A. Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
Rapid Increase of CTX-M-Producing Shigella sonnei Isolates in Switzerland Due to Spread of Common Plasmids and International Clones. Antimicrob Agents Chemother 2020; 64:AAC.01057-20. [PMID: 32718957 DOI: 10.1128/aac.01057-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2020] [Accepted: 07/17/2020] [Indexed: 01/06/2023] Open
Abstract
The Swiss Centre for Antibiotic Resistance (ANRESIS) has recently noted an increase of extended-spectrum cephalosporin-resistant (ESC-R) Shigella sonnei isolates nationwide (3.8% in 2016 versus 37.5% in 2019). To understand this phenomenon, we analyzed 25 representative isolates (of which 14 were ESC-R) collected in Switzerland during 2016 to 2019. Whole-genome sequencing was achieved using both the Illumina and the Nanopore platforms. Both ESC-R and extended-spectrum cephalosporin-susceptible isolates belonged to sequence type 152 (ST152). The ESC-R isolates carried bla CTX-M-3 in IncI1-pST57 (n = 5), bla CTX-M-15 in IncFII (F2:A-:B-) (n = 5), bla CTX-M-15 in IncI1-pST16, and bla CTX-M-27, bla CTX-M-55, or bla CTX-M-134 in other IncFII plasmids (n = 1 each). Plasmids having the same bla and Inc group exhibited high degrees of genetic identity to each other but also to plasmids previously reported in other Enterobacterales Core-genome analysis showed that there were 4 main clusters, each of which included strains that differed by <58 single nucleotide variants (SNVs) and that consisted of both bla CTX-M-positive and bla CTX-M-negative isolates. Moreover, most isolates belonging to the same cluster shared an identical core-genome sequence type (cgST). For instance, cluster 1 included 4 isolates of cgST113036, of which only 3 harbored the IncI1-pST57 bla CTX-M-3-positive plasmid. The 25 S. sonnei isolates were also subjected to phylogenetic comparison with deposited international strains. As a result, matching isolates (isolates that had the same cgST and that differed by <8 SNVs) have been reported in the United Kingdom, the United States, France, and the Netherlands. Overall, our results suggest that some common S. sonnei clusters can spread between continents and can be imported into other nations after international trips. Such clusters include, in part, isolates that do not possess bla ESBL-harboring plasmids, indicating their tendency to acquire them from other Enterobacterales.
Collapse
|