1
|
Thung TY, Hall A, Jati AP, White ME, Bamert RS, Tan KS, Press C, Taiaroa G, Short FL, Dunstan RA, Lithgow T. Genetic variation in individuals from a population of the minimalist bacteriophage Merri-merri-uth nyilam marra-natj driving evolution of the virus. mBio 2024; 15:e0256424. [PMID: 39475328 PMCID: PMC11633184 DOI: 10.1128/mbio.02564-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024] Open
Abstract
In a survey of a waterway on Wurundjeri land, two sub-populations of the bacteriophage Merri-merri-uth nyilam marra-natj (phage MMNM) were isolated on a permissive host, Klebsiella B5055 of capsule-type K2, but were distinguished by minor phenotypic differences. The variant phage MMNM(Ala134) showed an inhibited activity against Klebsiella AJ174-2, and this was used as a basis to select for further variation through experimental evolution. Over the course of an evolution experiment, 20 phages that evolved distinct phenotypes in terms of the morphologies of plaques formed when they infected host Klebsiella were subject to whole-genome sequencing. The evolved phages had mutations in a small set of proteins that contribute to the baseplate portion of the phage virion. Phages MMNM and MMNM(Ala134) are minimalist phages, with baseplates formed from only five predicted subunits, akin to other minimalist phages Pam3 and XM1. The homology between all three minimalist phages provided a structural framework to interpret the two classes of mutations derived through evolution in the presence of the semi-permissive host: those that affect the interfacial surfaces between baseplate subunits, and those in a base-plate associated tail-fiber. This study evidences that multiple small mutations can be fixed into a sub-population of phage to provide a basis for phenotypic variation that we suggest could ultimately provide for a shift of virus properties, as an alternative evolutionary scenario to the major genetic events that result in more well-studied evolutionary mechanism of phage mosaicism. IMPORTANCE Bacteriophages (phages) are viruses that prey on bacteria. This study sampled natural phage populations to test the hypothesis that untapped genetic variation within a population can be the basis for the selection of phages to diversify their host-range. Sampling of a freshwater site revealed two populations of the phage Merri-merri-uth nyilam marra-natj (phage MMNM), differing by a variant residue (Val134Ala) in the baseplate protein MMNM_26. This sequence variation modulated bacterial killing in plaques, and further evolution of the phages on a semi-permissive bacterial host led to a new generation of phages with more diverse phenotypes in killing the bacterium Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Tze Y. Thung
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Alex Hall
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Afif P. Jati
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Murray E. White
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Rebecca S. Bamert
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Kher Shing Tan
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Cara Press
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - George Taiaroa
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Parkville, Australia
| | - Francesca L. Short
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Rhys A. Dunstan
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Trevor Lithgow
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
2
|
Jia H, Li X, Zhuang Y, Wu Y, Shi S, Sun Q, He F, Liang S, Wang J, Draz MS, Xie X, Zhang J, Yang Q, Ruan Z. Neural network-based predictions of antimicrobial resistance phenotypes in multidrug-resistant Acinetobacter baumannii from whole genome sequencing and gene expression. Antimicrob Agents Chemother 2024; 68:e0144624. [PMID: 39540735 PMCID: PMC11619347 DOI: 10.1128/aac.01446-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Whole genome sequencing (WGS) potentially represents a rapid approach for antimicrobial resistance genotype-to-phenotype prediction. However, the challenge still exists to predict fully minimum inhibitory concentrations (MICs) and antimicrobial susceptibility phenotypes based on WGS data. This study aimed to establish an artificial intelligence-based computational approach in predicting antimicrobial susceptibilities of multidrug-resistant Acinetobacter baumannii from WGS and gene expression data. Antimicrobial susceptibility testing (AST) was performed using the broth microdilution method for 10 antimicrobial agents. In silico multilocus sequence typing (MLST), antimicrobial resistance genes, and phylogeny based on cgSNP and cgMLST strategies were analyzed. High-throughput qPCR was performed to measure the expression level of antimicrobial resistance (AMR) genes. Most isolates exhibited a high level of resistance to most of the tested antimicrobial agents, with the majority belonging to the IC2/CC92 lineage. Phylogenetic analysis revealed undetected transmission events or local outbreaks. The percentage agreements between AMR phenotype and genotype ranged from 70.08% to 89.96%, with the coefficient of agreement (κ) extending from 0.025 and 0.881. The prediction of AST employed by deep neural network models achieved an accuracy of up to 98.64% on the testing data set. Additionally, several linear regression models demonstrated high prediction accuracy, reaching up to 86.15% within an error range of one gradient, indicating a linear relationship between certain gene expressions and the corresponding antimicrobial MICs. In conclusion, neural network-based predictions could be used as a tool for the surveillance of antimicrobial resistance in multidrug-resistant A. baumannii.
Collapse
Affiliation(s)
- Huiqiong Jia
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Xinyang Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Yilu Zhuang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Yuye Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Shasha Shi
- Department of Laboratory Medicine, Wuyi First People’s Hospital, Jinhua, China
| | - Qingyang Sun
- Department of Clinical Laboratory, No. 903 Hospital of PLA Joint Logistic Support Force, Hangzhou, China
| | - Fang He
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shanyan Liang
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, China
| | - Jianfeng Wang
- Department of Respiratory and Critical Care Medicine, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Mohamed S. Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Xu L, Li J, Wu W, Wu X, Ren J. Klebsiella pneumoniae capsular polysaccharide: Mechanism in regulation of synthesis, virulence, and pathogenicity. Virulence 2024; 15:2439509. [PMID: 39668724 DOI: 10.1080/21505594.2024.2439509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/04/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae exhibits strong pathogenicity and can cause severe invasive infections but is historically recognized as antibiotic-susceptible. In recent years, the escalating global prevalence of antibiotic-resistant hypervirulent K. pneumoniae has raised substantial concerns and created an urgent demand for effective treatment options. Capsular polysaccharide (CPS) is one of the main virulence determinants contributing to the hypervirulent phenotype. The structure of CPS varies widely among strains, and both the structure and composition of CPS can influence the virulence of K. pneumoniae. CPS possesses various immune evasion mechanisms that promote the survival of K. pneumoniae, as well as its colonization and dissemination. Given the proven viability of therapies that target the capsule, improving our understanding of the CPS structure is critical to effectively directing treatment strategies. In this review, the structure and typing of CPS are addressed as well as genes related to synthesis and regulation, relationships with virulence, and pathogenic mechanisms. We aim to provide a reference for research on the pathogenesis of K. pneumoniae.
Collapse
Affiliation(s)
- Li Xu
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
| | - Jiayang Li
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenqi Wu
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Davidova-Gerzova L, Lausova J, Sukkar I, Nechutna L, Kubackova P, Krutova M, Bezdicek M, Dolejska M. Multidrug-resistant ESBL-producing Klebsiella pneumoniae complex in Czech hospitals, wastewaters and surface waters. Antimicrob Resist Infect Control 2024; 13:141. [PMID: 39593189 PMCID: PMC11590221 DOI: 10.1186/s13756-024-01496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Multidrug-resistant (MDR) bacteria pose a significant challenge to the treatment of infectious diseases. Of particular concern are members of the Klebsiella pneumoniae species complex (KpSC), which are frequently associated with hospital-acquired infections and have the potential to spread outside hospitals via wastewaters. In this study, we aimed to investigate the occurrence and phylogenetic relatedness of MDR KpSC from patients with urinary tract infections (UTIs), hospital sewage, municipal wastewater treatment plants (mWWTPs) and surface waters and to evaluate the clinical relevance of the KpSC subspecies. METHODS A total of 372 KpSC isolates resistant to third-generation cephalosporins and/or meropenem were collected from patients (n = 130), hospital sewage (n = 95), inflow (n = 54) and outflow from the mWWTPs (n = 63), river upstream (n = 13) and downstream mWWTPs (n = 17) from three cities in the Czech Republic. The isolates were characterized by antimicrobial susceptibility testing and whole-genome sequencing (Illumina). The presence of antibiotic resistance genes, plasmid replicons and virulence-associated factors was determined. A phylogenetic tree and single nucleotide polymorphism matrix were created to reveal the relatedness between isolates. RESULTS The presence of MDR KpSC isolates (95%) was identified in all water sources and locations. Most isolates (99.7%) produced extended-spectrum beta-lactamases encoded by blaCTX-M-15. Resistance to carbapenems (5%) was observed mostly in wastewaters, but carbapenemase genes, such as blaGES-51 (n = 10), blaOXA-48 (n = 4), blaNDM-1 (n = 4) and blaKPC-3 (n = 1), were found in isolates from all tested locations and different sources except rivers. Among the 73 different sequence types (STs), phylogenetically related isolates were observed only among the ST307 lineage. Phylogenetic analysis revealed the transmission of this lineage from patients to the mWWTP and from the mWWTP to the adjacent river and the presence of the ST307 clone in the mWWTP over eight months. We confirmed the frequent abundance of K. pneumoniae (K. pneumoniae sensu stricto and K. pneumoniae subsp. ozaenae) in patients suffering from UTIs. K. variicola isolates formed only a minor proportion of UTIs, and K. quasipneumoniae was not found among UTIs isolates; however, these subspecies were frequently observed in hospital sewage communities during the first sampling period. CONCLUSION This study provides evidence of the transmission and persistence of the ST307 lineage from UTIs isolates via mWWTPs to surface waters. Isolates from UTIs consisted mostly of K. pneumoniae. Other isolates of KpSC were observed in hospital wastewaters, which implies the impact of sources other than UTIs. This study highlights the influence of urban wastewaters on the spread of MDR KpSC to receiving environments.
Collapse
Affiliation(s)
- Lenka Davidova-Gerzova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jarmila Lausova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Biology and Wildlife Diseases, University of Veterinary Sciences VETUNI Brno, Brno, Czech Republic
| | - Iva Sukkar
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Microbiology, Faculty of Medicine and University Hospital Pilsen, Charles University, Pilsen, Czech Republic
| | - Lucie Nechutna
- Department of Microbiology, Faculty of Medicine and University Hospital Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Petra Kubackova
- Division of Clinical Microbiology and Immunology, Department of Laboratory Medicine, The University Hospital Brno, Brno, Czech Republic
| | - Marcela Krutova
- Department of Medical Microbiology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Matej Bezdicek
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Monika Dolejska
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic.
- Department of Biology and Wildlife Diseases, University of Veterinary Sciences VETUNI Brno, Brno, Czech Republic.
- Department of Microbiology, Faculty of Medicine and University Hospital Pilsen, Charles University, Pilsen, Czech Republic.
- Division of Clinical Microbiology and Immunology, Department of Laboratory Medicine, The University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
5
|
Vezina B, Cooper HB, Wisniewski JA, Parker MH, Jenney AWJ, Holt KE, Wyres KL. Wild-Type Domestication: Loss of Intrinsic Metabolic Traits Concealed by Culture in Rich Media. MICROBIAL ECOLOGY 2024; 87:144. [PMID: 39567391 PMCID: PMC11579175 DOI: 10.1007/s00248-024-02459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024]
Abstract
Bacteria are typically isolated on rich media to maximise isolation success, removing them from their native evolutionary context. This eliminates selection pressures, enabling otherwise deleterious genomic events to accumulate. Here, we present a cautionary tale of these 'quiet mutations' which can persist unnoticed in bacterial culture lines. We used a combination of microbiological culture (standard and minimal media conditions), whole genome sequencing and metabolic modelling to investigate putative Klebsiella pneumoniae L-histidine auxotrophs. Additionally, we used genome-scale metabolic modelling to predict auxotrophies among completed public genomes (n = 2637). Two sub-populations were identified within a K. pneumoniae frozen stock, differing in their ability to grow in the absence of L-histidine. These sub-populations were the same 'strain', separated by eight single nucleotide variants and an insertion sequence-mediated deletion of the L-histidine biosynthetic operon. The His- sub-population remained undetected for > 10 years despite its inclusion in independent laboratory experiments. Genome-scale metabolic models predicted 0.8% public genomes contained ≥ 1 auxotrophy, with purine/pyrimidine biosynthesis and amino acid metabolism most frequently implicated. We provide a definitive example of the role of standard rich media culture conditions in obscuring biologically relevant mutations (i.e. nutrient auxotrophies) and estimate the prevalence of such auxotrophies using public genome collections. While the prevalence is low, it is not insignificant given the thousands of K. pneumoniae that are isolated for global surveillance and research studies each year. Our data serve as a pertinent reminder that rich-media culturing can cause unnoticed wild-type domestication.
Collapse
Affiliation(s)
- Ben Vezina
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia.
| | - Helena B Cooper
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia.
| | - Jessica A Wisniewski
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Matthew H Parker
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Adam W J Jenney
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Alfred Pathology Service, Microbiology Unit, The Alfred Hospital, Melbourne, VIC, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Kelly L Wyres
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
6
|
Rotman E, McClure S, Glazier J, Fuerte-Stone J, Foldi J, Erani A, McGann R, Arnold J, Lin H, Valaitis S, Mimee M. Rapid design of bacteriophage cocktails to suppress the burden and virulence of gut-resident carbapenem-resistant Klebsiella pneumoniae. Cell Host Microbe 2024; 32:1988-2003.e8. [PMID: 39368473 PMCID: PMC11563920 DOI: 10.1016/j.chom.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Antibiotic use can lead to the expansion of multi-drug-resistant pathobionts within the gut microbiome that can cause life-threatening infections. Selective alternatives to conventional antibiotics are in dire need. Here, we describe a Klebsiella PhageBank for the tailored design of bacteriophage cocktails to treat multi-drug-resistant Klebsiella pneumoniae. Using a transposon library in carbapenem-resistant K. pneumoniae, we identify host factors required for phage infection in major Klebsiella phage families. Leveraging the diversity of the PhageBank, we formulate phage combinations that eliminate K. pneumoniae with minimal phage resistance. Optimized cocktails selectively suppress the burden of K. pneumoniae in the mouse gut and drive the loss of key virulence factors that act as phage receptors. Phage-mediated diversification of bacterial populations in the gut leads to co-evolution of phage variants with higher virulence and broader host range. Altogether, the Klebsiella PhageBank charts a roadmap for phage therapy against a critical multidrug-resistant human pathogen.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Sandra McClure
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL 60637, USA
| | - Joshua Glazier
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jay Fuerte-Stone
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Jonathan Foldi
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Ali Erani
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Rory McGann
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jack Arnold
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Huaiying Lin
- Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Sandra Valaitis
- Department of Obstetrics and Gynecology, Section of Urogynecology, University of Chicago, Chicago, IL 60637, USA
| | - Mark Mimee
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
7
|
Salvador-Oke KT, Pitout JDD, Peirano G, Strydom KA, Kingsburgh C, Ehlers MM, Ismail A, Takawira FT, Kock MM. Molecular epidemiology of carbapenemase-producing Klebsiella pneumoniae in Gauteng South Africa. Sci Rep 2024; 14:27337. [PMID: 39521758 PMCID: PMC11550437 DOI: 10.1038/s41598-024-70910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024] Open
Abstract
Klebsiella pneumoniae multidrug-resistant (MDR) high-risk clones drive the spread of antimicrobial resistance (AMR) associated infections, resulting in limited therapeutic options. This study described the genomic characteristics of K. pneumoniae MDR high-risk clones in Gauteng, South Africa. Representative carbapenem-resistant [K. pneumoniae carbapenemase (KPC)-2, New-Delhi metallo-beta (β)-lactamase (NDM)-1, oxacillinase (OXA)-181, OXA-232, OXA-48, Verona integron-encoded metallo-β-lactamase (VIM)-1] K. pneumoniae isolates (n = 22) obtained from inpatient and outpatient's urine (n = 9) and inpatients rectal carriage (n = 13) were selected for short-read whole genome sequencing. Klebsiella pneumoniae population include sequence type (ST)-307 (n = 3), ST2497 (n = 5) and ST17 (n = 4). The ST17 strains were exclusively obtained from rectal screening. Ten isolates co-harboured carbapenemase genes including β-lactamase gene encoding KPC-2 + OXA-181, NDM-1 + OXA-48 and NDM-1 + OXA-181. One ST307 isolate (UP-KT-73CKP) co-harboured three carbapenemase genes (blaNDM-1 + blaOXA-48 + blaOXA-181), while all the ST2497 strains co-harboured (blaNDM-1 + blaOXA-232). Phenotypically, hypermucoviscosity was observed in a single ST307 isolate. The ST307 isolate UP-KT-151UKP harboured colibactin genotoxins. The following mobile genetic elements were detected: plasmids [incompatibility group (Inc)-FIB(K), IncX3], and bacteriophages [e.g. Klebsi_ST16_OXA48phi5.4_NC_049450, Klebsi_3LV2017_NC_047817(36)]. The study highlights the importance of local genomic surveillance systems to characterise K. pneumoniae MDR high-risk clones. This data will aid in designing infection and prevention measures for limiting the spread of carbapenemase-producing K. pneumoniae in Gauteng, South Africa.
Collapse
Affiliation(s)
- Kafilat T Salvador-Oke
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Johann D D Pitout
- Department of Pathology and Laboratory Medicine, Cummings School of Medicine, University of Calgary, Calgary, Canada
- Alberta Precision Laboratories, Calgary, Canada
- Tshwane Academic Division, Department of Medical Microbiology, National Health Laboratory Service, Pretoria, South Africa
| | - Gisele Peirano
- Department of Pathology and Laboratory Medicine, Cummings School of Medicine, University of Calgary, Calgary, Canada
- Alberta Precision Laboratories, Calgary, Canada
| | - Kathy-Anne Strydom
- Tshwane Academic Division, Department of Medical Microbiology, National Health Laboratory Service, Pretoria, South Africa
- National Reference Laboratory, Ampath, Centurion, South Africa
| | - Chanel Kingsburgh
- Tshwane Academic Division, Department of Medical Microbiology, National Health Laboratory Service, Pretoria, South Africa
- National Reference Laboratory, Ampath, Centurion, South Africa
| | - Marthie M Ehlers
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Tshwane Academic Division, Department of Medical Microbiology, National Health Laboratory Service, Pretoria, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg, 2131, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, 0950, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa
| | - Faustinos T Takawira
- Research Circle Trust, Harare, Zimbabwe
- National Microbiology Reference Laboratory, Harare, Zimbabwe
| | - Marleen M Kock
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
- Tshwane Academic Division, Department of Medical Microbiology, National Health Laboratory Service, Pretoria, South Africa.
| |
Collapse
|
8
|
Ndiaye I, Debarbieux L, Sow O, Ba BS, Diagne MM, Cissé A, Fall C, Dieye Y, Dia N, de Magny GC, Seck A. Characterization of two Friunavirus phages and their inhibitory effects on biofilms of extremely drug resistant Acinetobacter baumannii in Dakar, Senegal. BMC Microbiol 2024; 24:449. [PMID: 39501140 PMCID: PMC11536776 DOI: 10.1186/s12866-024-03608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/24/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Acinetobacter baumannii is a gram-negative, opportunistic pathogen, that is responsible for a wide variety of infections and is a significant cause of hospital-acquired infections. A. baumannii is listed by the World Health Organization (WHO) as a critical priority pathogen because of its high level of antibiotic resistance and the urgent need for alternative treatment solutions. To address this challenge, bacteriophages have been used to combat bacterial infections for more than a century, and phage research has regained interest in recent years due to antimicrobial resistance (AMR). However, although the vast majority of deaths from the AMR crisis will occur in developing countries in Africa and Asia, few phages' studies have been conducted in these regions. In this study, we present a comprehensive characterization of the bacteriophages vAbBal23 and vAbAbd25, actives against extremely drug-resistant (XDR) A. baumannii. METHODS Phages were isolated from environmental wastewaters in Dakar, Senegal. The host-range, thermal and pH stabilities, infection kinetics, one step growth assay, antibiofilm activity assay, sequencing, and genomic analysis, were performed to characterize the isolated phages. RESULTS Comparative genomic and phylogenetic analyses revealed that vAbBal23 and vAbAbd25 belong to the Caudoviricetes class, Autographiviridae family and Friunavirus genus. Both phages demonstrated activity against strains with capsular type KL230. They were stable over a wide pH range (pH 3 to 9) and at temperatures ranging from 25 °C to 40 °C. Additionally, the phages exhibited notable activity against both planktonic and biofilm cells of targeted extremely drug resistant A. baumannii. The results presented here indicate the lytic nature of vAbBal23 and vAbAbd25. This is further supported by the absence of genes encoding toxins, resistance genes and bacterial virulence factors, highlighting their potential for future phage applications. CONCLUSION Phages vAbBal23 and vAbAbd25 are promising biological agents that can infect A. baumannii, making them suitable candidates for use in phage therapies.
Collapse
Affiliation(s)
- Issa Ndiaye
- Pole de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal.
- Faculté de Médecine, Pharmacie et Odontostomatologie, Université Cheikh Anta Diop, Dakar, Sénégal.
| | - Laurent Debarbieux
- Laboratoire de Bactériophage, Bactérie, Hôte, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Ousmane Sow
- Pole de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
| | | | | | - Abdoulaye Cissé
- Pole de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
| | - Cheikh Fall
- Pole de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
| | - Yakhya Dieye
- Pole de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
| | - Ndongo Dia
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Guillaume Constantin de Magny
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
- MEEDiN, Montpellier Ecology and Evolution of Disease Network, Montpellier, France
| | - Abdoulaye Seck
- Pole de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
- Faculté de Médecine, Pharmacie et Odontostomatologie, Université Cheikh Anta Diop, Dakar, Sénégal
| |
Collapse
|
9
|
Qian C, Hu P, Guo W, Han Y, Yu P, Zhang Y, Ma Z, Chen L, Zhou T, Cao J. Genome analysis of tigecycline-resistant Acinetobacter baumannii reveals nosocomial lineage shifts and novel resistance mechanisms. J Antimicrob Chemother 2024; 79:2965-2974. [PMID: 39287979 DOI: 10.1093/jac/dkae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVES To investigate the characteristics and clonal dynamics of tigecycline-resistant Acinetobacter baumannii (TRAB) isolates from a Chinese hospital from 2016 to 2021. METHODS A total of 64 TRAB isolates were screened and WGS was performed. Phylogenetic analysis and non-polymorphic mutation analysis were used to analyse their clonal dynamics and tigecycline resistance-related mutations. RT-PCR was used to analyse the expression of the resistance-nodulation cell-division (RND) efflux pump genes adeB and adeJ. Gene cloning was used to explore the effect of tet(39) variants on tigecycline resistance. RESULTS Most TRAB isolates were found to be MDR, with 95% (61/64) of the isolates showing resistance to carbapenems. These TRAB isolates were classified into three primary genetic clusters based on core-genome SNPs. The KL2 cluster persisted throughout the study period, whereas the KL7 cluster emerged in 2019 and became the dominant clone. The KL7 cluster carried more antimicrobial resistance genes than the other two clusters. The predominant tigecycline resistance mechanism of the KL2 cluster and KL7 cluster was IS insertion in adeN (82.1%, 23/28) and genetic alterations in adeS (76.2%, 16/21), respectively. Eleven novel AdeS mutations were identified associated with elevated AdeB expression and tigecycline resistance. Moreover, we characterized a plasmid-borne tet(39) variant with an Ala-36-Thr substitution that synergizes with the RND efflux pump to confer high-level tigecycline resistance. CONCLUSIONS This work provides important insights into the diverse mechanisms associated with tigecycline resistance in A. baumannii, highlighting a pressing need for further monitoring of ST2-KL7 A. baumannii in clinical settings.
Collapse
Affiliation(s)
- Changrui Qian
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Panjie Hu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wenhui Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Yijia Han
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Pingting Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Yi Zhang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhexiao Ma
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jianming Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
10
|
Gaborieau B, Vaysset H, Tesson F, Charachon I, Dib N, Bernier J, Dequidt T, Georjon H, Clermont O, Hersen P, Debarbieux L, Ricard JD, Denamur E, Bernheim A. Prediction of strain level phage-host interactions across the Escherichia genus using only genomic information. Nat Microbiol 2024; 9:2847-2861. [PMID: 39482383 DOI: 10.1038/s41564-024-01832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/13/2024] [Indexed: 11/03/2024]
Abstract
Predicting bacteriophage infection of specific bacterial strains promises advancements in phage therapy and microbial ecology. Whether the dynamics of well-established phage-host model systems generalize to the wide diversity of microbes is currently unknown. Here we show that we could accurately predict the outcomes of phage-bacteria interactions at the strain level in natural isolates from the genus Escherichia using only genomic data (area under the receiver operating characteristic curve (AUROC) of 86%). We experimentally established a dataset of interactions between 403 diverse Escherichia strains and 96 phages. Most interactions are explained by adsorption factors as opposed to antiphage systems which play a marginal role. We trained predictive algorithms and pinpoint poorly predicted interactions to direct future research efforts. Finally, we established a pipeline to recommend tailored phage cocktails, demonstrating efficiency on 100 pathogenic E. coli isolates. This work provides quantitative insights into phage-host specificity and supports the use of predictive algorithms in phage therapy.
Collapse
Affiliation(s)
- Baptiste Gaborieau
- Université Paris Cité, INSERM, UMR1137, IAME, Paris, France.
- AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France.
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Microbiologie Intégrative et Moléculaire, Bacteriophage Bacterium Host, Paris, France.
| | - Hugo Vaysset
- AgroParisTech, Université Paris-Saclay, Paris, France
- Institut Pasteur, Université Paris Cité, INSERM U1284, SEED, Molecular Diversity of Microbes lab, Paris, France
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Florian Tesson
- Université Paris Cité, INSERM, UMR1137, IAME, Paris, France
- Institut Pasteur, Université Paris Cité, INSERM U1284, SEED, Molecular Diversity of Microbes lab, Paris, France
| | - Inès Charachon
- Université Paris Cité, INSERM, UMR1137, IAME, Paris, France
| | - Nicolas Dib
- Université Paris Cité, INSERM, UMR1137, IAME, Paris, France
| | | | - Tanguy Dequidt
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Microbiologie Intégrative et Moléculaire, Bacteriophage Bacterium Host, Paris, France
| | - Héloïse Georjon
- Institut Pasteur, Université Paris Cité, INSERM U1284, SEED, Molecular Diversity of Microbes lab, Paris, France
| | | | - Pascal Hersen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Microbiologie Intégrative et Moléculaire, Bacteriophage Bacterium Host, Paris, France
| | - Jean-Damien Ricard
- Université Paris Cité, INSERM, UMR1137, IAME, Paris, France
- AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France
| | - Erick Denamur
- Université Paris Cité, INSERM, UMR1137, IAME, Paris, France
- AP-HP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| | - Aude Bernheim
- Institut Pasteur, Université Paris Cité, INSERM U1284, SEED, Molecular Diversity of Microbes lab, Paris, France.
| |
Collapse
|
11
|
Heng H, Yang L, Zheng Z, Yang C, Yang X, Zhao W, Sun R, Chen K, Ye L, Li J, Chan EWC, Chen S. Characterization of Acinetobacter baumannii at a tertiary hospital in Guangzhou: a genomic and clinical study. Microbes Infect 2024; 26:105380. [PMID: 38909679 DOI: 10.1016/j.micinf.2024.105380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Acinetobacter baumannii (AB) infections have become a global public health concern due to the continued increase in the incidence of infection and the rate of resistance to carbapenems. This study aimed to investigate the genomic features of AB strains recovered from a tertiary hospital and assess the clinical implications of the findings. A total of 217 AB strains were collected between 2016 and 2018 at a tertiary hospital in Guangzhou, with 183 (84.33%) being carbapenem-resistant AB (CRAB), with the main mechanism being the carriage of the blaOXA-23 gene. The overall mortality rate of patients caused by such strains was 15.21% (n = 33). Artificial lung ventilation and the use of meropenem were mortality risk factors in AB-infected patients, while KL2 AB infection was negatively associated. Core genome multilocus sequence typing and clustering analysis were performed on the integrated AB genome collection from the NCBI database and this study to illustrate the population structure among China. The results revealed diverse core genome profiles (n = 17) among AB strains from China, and strains from this single hospital exhibited most of the core genome profiles (n = 13), suggesting genetic variability within the hospital and transmission across the country. These findings show that the high transmission potential of the CRAB strains and meropenem usage that confers a selective advantage of CRAB clinically are two major factors that pose significant challenges to the effective clinical management of AB infections. Understanding the genetic features and transmission patterns of clinical AB strains is crucial for the effective control of infections caused by this pathogen.
Collapse
Affiliation(s)
- Heng Heng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Ling Yang
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiwei Zheng
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Chen Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Xuemei Yang
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Wenxing Zhao
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Ruanyang Sun
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Kaichao Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China; Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
12
|
Lekota KE, Mabeo RO, Ramatla T, Van Wyk DAB, Thekisoe O, Molale-Tom LG, Bezuidenhout CC. Genomic insight on Klebsiella variicola isolated from wastewater treatment plant has uncovered a novel bacteriophage. BMC Genomics 2024; 25:986. [PMID: 39438783 PMCID: PMC11494819 DOI: 10.1186/s12864-024-10906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Klebsiella variicola is considered an emerging pathogen, which may colonize a variety of hosts, including environmental sources. Klebsiella variicola investigated in this study was obtained from an influent wastewater treatment plant in the North-West Province, South Africa. Whole genome sequencing was conducted to unravel the genetic diversity and antibiotic resistance patterns of K. variicola. Whole genome core SNP phylogeny was employed on publicly available 170 genomes. Furthermore, capsule types and antibiotic resistance genes, particularly beta-lactamase and carbapenems genes were investigated from the compared genomes. A 38 099 bp bacteriophage was uncovered alongside with K. variicola genome. Whole genome sequencing revealed that the extended beta-lactamase blaLEN (75.3%) of the beta-lactamase is dominant among compared K. variicola strains. The identified IncF plasmid AA035 confers resistance genes of metal and heat element subtypes, i.e., silver, copper, and tellurium. The capsule type KL107-D1 is a predominant capsule type present in 88.2% of the compared K. variicola genomes. The phage was determined to be integrase-deficient consisting of a fosB gene associated with fosfomycin resistance and clusters with the Wbeta genus Bacillus phage group. In silico analysis showed that the phage genome interacts with B. cereus as opposed to K. variicola strain T2. The phage has anti-repressor proteins involved in the lysis-lysogeny decision. This phage will enhance our understanding of its impact on bacterial dissemination and how it may affect disease development and antibiotic resistance mechanisms in wastewater treatment plants. This study highlights the need for ongoing genomic epidemiological surveillance of environmental K. variicola isolates.
Collapse
Affiliation(s)
- Kgaugelo E Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - Refilwe O Mabeo
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Deidre A B Van Wyk
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Lesego G Molale-Tom
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Cornelius C Bezuidenhout
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
13
|
Koncz M, Stirling T, Hadj Mehdi H, Méhi O, Eszenyi B, Asbóth A, Apjok G, Tóth Á, Orosz L, Vásárhelyi BM, Ari E, Daruka L, Polgár TF, Schneider G, Zalokh SA, Számel M, Fekete G, Bohár B, Nagy Varga K, Visnyovszki Á, Székely E, Licker MS, Izmendi O, Costache C, Gajic I, Lukovic B, Molnár S, Szőcs-Gazdi UO, Bozai C, Indreas M, Kristóf K, Van der Henst C, Breine A, Pál C, Papp B, Kintses B. Genomic surveillance as a scalable framework for precision phage therapy against antibiotic-resistant pathogens. Cell 2024; 187:5901-5918.e28. [PMID: 39332413 DOI: 10.1016/j.cell.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/15/2024] [Accepted: 09/04/2024] [Indexed: 09/29/2024]
Abstract
Phage therapy is gaining increasing interest in the fight against critically antibiotic-resistant nosocomial pathogens. However, the narrow host range of bacteriophages hampers the development of broadly effective phage therapeutics and demands precision approaches. Here, we combine large-scale phylogeographic analysis with high-throughput phage typing to guide the development of precision phage cocktails targeting carbapenem-resistant Acinetobacter baumannii, a top-priority pathogen. Our analysis reveals that a few strain types dominate infections in each world region, with their geographical distribution remaining stable within 6 years. As we demonstrate in Eastern Europe, this spatiotemporal distribution enables preemptive preparation of region-specific phage collections that target most local infections. Finally, we showcase the efficacy of phage cocktails against prevalent strain types using in vitro and animal infection models. Ultimately, genomic surveillance identifies patients benefiting from the same phages across geographical scales, thus providing a scalable framework for precision phage therapy.
Collapse
Affiliation(s)
- Mihály Koncz
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary
| | - Tamás Stirling
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary; Doctoral School of Biology, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Hiba Hadj Mehdi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary; Doctoral School of Biology, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Bálint Eszenyi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - András Asbóth
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary; Department of Genetics, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117 Budapest, Hungary
| | - Gábor Apjok
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Ákos Tóth
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - László Orosz
- Department of Medical Microbiology, University of Szeged, Szent-Györgyi Albert Medical School, Dom tér 10, 6720 Szeged, Hungary
| | - Bálint Márk Vásárhelyi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Eszter Ari
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; Department of Genetics, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117 Budapest, Hungary; HCEMM-BRC Metabolic Systems Biology Group, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Tamás Ferenc Polgár
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; Theoretical Medicine Doctoral School, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Sif Aldin Zalokh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Mónika Számel
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Metabolic Systems Biology Group, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Balázs Bohár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, 10th Floor Commonwealth Building Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Karolina Nagy Varga
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Ádám Visnyovszki
- South-Pest Central Hospital National Institute of Hematology and Infectious Diseases, Nagyvárad tér 1, 1097 Budapest, Hungary; Doctoral School of Interdisciplinary Medical Sciences, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Edit Székely
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Str. Gheorghe Marinescu 38, 540142 Targu Mures, Romania; County Emergency Clinical Hospital of Targu Mures, Str. Dr. Gh. Marinescu 50, 540136 Targu Mures, Romania
| | - Monica-Sorina Licker
- Microbiology Department, Multidisciplinary Research Center on Antimicrobial Resistance, "Victor Babes" University of Medicine and Pharmacy, Str. Eftimie Murgu 2, 300041 Timisoara, Romania; Microbiology Laboratory, "Pius Branzeu" Emergency Clinical County Hospital, Str. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | - Oana Izmendi
- Microbiology Department, Multidisciplinary Research Center on Antimicrobial Resistance, "Victor Babes" University of Medicine and Pharmacy, Str. Eftimie Murgu 2, 300041 Timisoara, Romania; Microbiology Laboratory, "Pius Branzeu" Emergency Clinical County Hospital, Str. Liviu Rebreanu 156, 300723 Timisoara, Romania; Doctoral School, "Victor Babes" University of Medicine and Pharmacy, Str. Eftimie Murgu 2, 300041 Timisoara, Romania
| | - Carmen Costache
- Department of Microbiology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, Str. Victor Babes 8, 400347 Cluj-Napoca, Romania
| | - Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Bojana Lukovic
- Academy of Applied Studies Belgrade, College of Health Sciences, Bulevar Zorana Djindjica 152a, Belgrade, Serbia
| | - Szabolcs Molnár
- Emergency County Hospital Miercurea-Ciuc, Str. Doctor Dénes László 2, 530173 Miercurea Ciuc, Romania
| | | | - Csilla Bozai
- County Emergency Hospital Satu Mare, Str. Ravensburg 1-3, 440192 Satu Mare, Romania
| | - Marina Indreas
- Bacau County Emergency Hospital, Str. Haret Spiru 2-4, 600114 Bacau, Romania
| | - Katalin Kristóf
- Institute of Laboratory Medicine, Semmelweis University, Üllői út 78/b, 1083 Budapest, Hungary
| | - Charles Van der Henst
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Pleinlaan 2, Building E-3, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Elsene, 1050 Brussels, Belgium
| | - Anke Breine
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Pleinlaan 2, Building E-3, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Elsene, 1050 Brussels, Belgium
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Metabolic Systems Biology Group, Temesvári Krt. 62, 6726 Szeged, Hungary; National Laboratory for Health Security, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary.
| | - Bálint Kintses
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary.
| |
Collapse
|
14
|
Fernández-Manteca MG, Ocampo-Sosa AA, Vecilla DF, Ruiz MS, Roiz MP, Madrazo F, Rodríguez-Grande J, Calvo-Montes J, Rodríguez-Cobo L, López-Higuera JM, Fariñas MC, Cobo A. Identification of hypermucoviscous Klebsiella pneumoniae K1, K2, K54 and K57 capsular serotypes by Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124533. [PMID: 38820814 DOI: 10.1016/j.saa.2024.124533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Antimicrobial resistance poses a significant challenge in modern medicine, affecting public health. Klebsiella pneumoniae infections compound this issue due to their broad range of infections and the emergence of multiple antibiotic resistance mechanisms. Efficient detection of its capsular serotypes is crucial for immediate patient treatment, epidemiological tracking and outbreak containment. Current methods have limitations that can delay interventions and increase the risk of morbidity and mortality. Raman spectroscopy is a promising alternative to identify capsular serotypes in hypermucoviscous K. pneumoniae isolates. It provides rapid and in situ measurements with minimal sample preparation. Moreover, its combination with machine learning tools demonstrates high accuracy and reproducibility. This study analyzed the viability of combining Raman spectroscopy with one-dimensional convolutional neural networks (1-D CNN) to classify four capsular serotypes of hypermucoviscous K. pneumoniae: K1, K2, K54 and K57. Our approach involved identifying the most relevant Raman features for classification to prevent overfitting in the training models. Simplifying the dataset to essential information maintains accuracy and reduces computational costs and training time. Capsular serotypes were classified with 96 % accuracy using less than 30 Raman features out of 2400 contained in each spectrum. To validate our methodology, we expanded the dataset to include both hypermucoviscous and non-mucoid isolates and distinguished between them. This resulted in an accuracy rate of 94 %. The results obtained have significant potential for practical healthcare applications, especially for enabling the prompt prescription of the appropriate antibiotic treatment against infections.
Collapse
Affiliation(s)
- María Gabriela Fernández-Manteca
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Photonics Engineering Group, Universidad de Cantabria, Santander, Spain.
| | - Alain A Ocampo-Sosa
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Domingo Fernandez Vecilla
- Clinical Microbiology and Parasitology Department, Basurto University Hospital, Bilbao, Vizcaya, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Vizcaya, Spain
| | - María Siller Ruiz
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - María Pía Roiz
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Fidel Madrazo
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Jorge Rodríguez-Grande
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Jorge Calvo-Montes
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Rodríguez-Cobo
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Photonics Engineering Group, Universidad de Cantabria, Santander, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - José Miguel López-Higuera
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Photonics Engineering Group, Universidad de Cantabria, Santander, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - María Carmen Fariñas
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Enfermedades Infecciosas, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Santander, Spain
| | - Adolfo Cobo
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain; Photonics Engineering Group, Universidad de Cantabria, Santander, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
15
|
Mejía-Limones I, Andrade-Molina D, Morey-León G, Hidalgo-Olmedo JC, Chang-Asinc JG, Fernández-Cadena JC, Rojas M. Whole-genome sequencing of Klebsiella pneumoniae MDR circulating in a pediatric hospital setting: a comprehensive genome analysis of isolates from Guayaquil, Ecuador. BMC Genomics 2024; 25:928. [PMID: 39367302 PMCID: PMC11451243 DOI: 10.1186/s12864-024-10835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae is the major cause of nosocomial infections worldwide and is related to a worsening increase in Multidrug-Resistant Bacteria (MDR) and virulence genes that seriously affect immunosuppressed patients, long-stay intensive care patients, elderly individuals, and children. Whole-Genome Sequencing (WGS) has resulted in a useful strategy for characterizing the genomic components of clinically important bacteria, such as K. pneumoniae, enabling them to monitor genetic changes and understand transmission, highlighting the risk of dissemination of resistance and virulence associated genes in hospitals. In this study, we report on WGS 14 clinical isolates of K. pneumoniae from a pediatric hospital biobank of Guayaquil, Ecuador. RESULTS The main findings revealed pronounced genetic heterogeneity among the isolates. Multilocus sequencing type ST45 was the predominant lineage among non-KPC isolates, whereas ST629 was found more frequently among KPC isolates. Phylogenetic analysis suggested local transmission dynamics. Comparative genomic analysis revealed a core set of 3511 conserved genes and an open pangenome in neonatal isolates. The diversity of MLSTs and capsular types, and the high genetic diversity among these isolates indicate high intraspecific variability. In terms of virulence factors, we identified genes associated with adherence, biofilm formation, immune evasion, secretion systems, multidrug efflux pump transporters, and a notably high number of genes related to iron uptake. A large number of these genes were detected in the ST45 isolate, whereas iron uptake yersiniabactin genes were found exclusively in the non-KPC isolates. We observed high resistance to commonly used antibiotics and determined that these isolates exhibited multidrug resistance including β-lactams, aminoglycosides, fluoroquinolones, quinolones, trimetropins, fosfomycin and macrolides; additionally, resistance-associated point mutations and cross-resistance genes were identified in all the isolates. We also report the first K. pneumoniae KPC-3 gene producers in Ecuador. CONCLUSIONS Our WGS results for clinical isolates highlight the importance of MDR in neonatal K. pneumoniae infections and their genetic diversity. WGS will be an imperative strategy for the surveillance of K. pneumoniae in Ecuador, and will contribute to identifying effective treatment strategies for K. pneumoniae infections in critical units in patients at stratified risk.
Collapse
Affiliation(s)
- I Mejía-Limones
- Laboratorio de Ciencias Omicas, Facultad de Ciencias de La Salud, Universidad Espíritu Santo, Samborondón, Ecuador
| | - D Andrade-Molina
- Laboratorio de Ciencias Omicas, Facultad de Ciencias de La Salud, Universidad Espíritu Santo, Samborondón, Ecuador.
| | - G Morey-León
- Laboratorio de Ciencias Omicas, Facultad de Ciencias de La Salud, Universidad Espíritu Santo, Samborondón, Ecuador
| | - J C Hidalgo-Olmedo
- Hospital de Niños Dr. Roberto Gilbert E. Junta de Beneficencia de Guayaquil, Guayaquil, Ecuador
| | - J G Chang-Asinc
- Hospital de Niños Dr. Roberto Gilbert E. Junta de Beneficencia de Guayaquil, Guayaquil, Ecuador
| | - J C Fernández-Cadena
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - M Rojas
- Human Genomics Corporation S.A.S., Loja, Ecuador
| |
Collapse
|
16
|
van der Lans SPA, Bardoel BW, Ruyken M, de Haas CJC, Baijens S, Muts RM, Scheepmaker LM, Aerts PC, van 't Wout MFL, Preiner J, Marijnissen RJ, Schuurman J, Beurskens FJ, Kerkman PF, Rooijakkers SHM. Agnostic B cell selection approach identifies antibodies against K. pneumoniae that synergistically drive complement activation. Nat Commun 2024; 15:8100. [PMID: 39285158 PMCID: PMC11405761 DOI: 10.1038/s41467-024-52372-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Antibody-dependent complement activation plays a key role in the natural human immune response to infections. Currently, the understanding of which antibody-antigen combinations drive a potent complement response on bacteria is limited. Here, we develop an antigen-agnostic approach to stain and single-cell sort human IgG memory B cells recognizing intact bacterial cells, keeping surface antigens in their natural context. With this method we successfully identified 29 antibodies against K. pneumoniae, a dominant cause of hospital-acquired infections with increasing antibiotic resistance. Combining genetic tools and functional analyses, we reveal that the capacity of antibodies to activate complement on K. pneumoniae critically depends on their antigenic target. Furthermore, we find that antibody combinations can synergistically activate complement on K. pneumoniae by strengthening each other's binding in an Fc-independent manner. Understanding the molecular basis of effective complement activation by antibody combinations to mimic a polyclonal response could accelerate the development of antibody-based therapies against problematic infections.
Collapse
Affiliation(s)
- Sjors P A van der Lans
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bart W Bardoel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maartje Ruyken
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stan Baijens
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Remy M Muts
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lisette M Scheepmaker
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Piet C Aerts
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marije F L van 't Wout
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | - Priscilla F Kerkman
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Masson FM, Káradóttir S, van der Lans SPA, Doorduijn DJ, de Haas CJC, Rooijakkers SHM, Bardoel BW. Klebsiella LPS O1-antigen prevents complement-mediated killing by inhibiting C9 polymerization. Sci Rep 2024; 14:20701. [PMID: 39237647 PMCID: PMC11377433 DOI: 10.1038/s41598-024-71487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
The Gram-negative bacterium Klebsiella pneumoniae is an important human pathogen. Its treatment has been complicated by the emergence of multi-drug resistant strains. The human complement system is an important part of our innate immune response that can directly kill Gram-negative bacteria by assembling membrane attack complex (MAC) pores into the bacterial outer membrane. To resist this attack, Gram-negative bacteria can modify their lipopolysaccharide (LPS). Especially the decoration of the LPS outer core with the O-antigen polysaccharide has been linked to increased bacterial survival in serum, but not studied in detail. In this study, we characterized various clinical Klebsiella pneumoniae isolates and show that expression of the LPS O1-antigen correlates with resistance to complement-mediated killing. Mechanistic data reveal that the O1-antigen does not inhibit C3b deposition and C5 conversion. In contrast, we see more efficient formation of C5a, and deposition of C6 and C9 when an O-antigen is present. Further downstream analyses revealed that the O1-antigen prevents correct insertion and polymerization of the final MAC component C9 into the bacterial membrane. Altogether, we show that the LPS O1-antigen is a key determining factor for complement resistance by K. pneumoniae and provide insights into the molecular basis of O1-mediated MAC evasion.
Collapse
Affiliation(s)
- Frerich M Masson
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Salvör Káradóttir
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Dennis J Doorduijn
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Bart W Bardoel
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
18
|
Slater D, Hutt Vater K, Sridhar S, Hwang W, Bielawski D, Turbett SE, LaRocque RC, Harris JB. Multiplexed real-time PCR for the detection and differentiation of Klebsiella pneumoniae O-antigen serotypes. Microbiol Spectr 2024; 12:e0037524. [PMID: 39115309 PMCID: PMC11371267 DOI: 10.1128/spectrum.00375-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/12/2024] [Indexed: 09/01/2024] Open
Abstract
Klebsiella pneumoniae has emerged as a global health threat due to its role in the spread of antimicrobial resistance and because it is a frequent cause of hospital-acquired infections and neonatal sepsis. Capsular and lipopolysaccharide (LPS) O-antigen polysaccharide surface antigens are major immunogens that are useful for strain classification and are candidates for vaccine development. We have developed real-time PCR reagents for molecular serotyping, subtyping, and quantitation of the most prevalent LPS O-antigen types (i.e., O1, O2, O3, and O5) of Klebsiella pneumoniae. We describe two applications for this O-typing assay: for screening culture isolates and for direct typing of Klebsiella pneumoniae present in stool samples. We find 100% concordance between the results of the O-typing assay and whole-genome sequencing of 81 culture isolates, and >90% agreement in O-typing performed directly on specimens of human stool, with disagreement arising primarily from a lack of sensitivity of the culture-based comparator method. Additionally, we find evidence for mixed O-type populations at varying levels of abundance in direct tests of stool from a hospitalized patient population. Taken together, these results demonstrate that this novel O-typing assay can be a useful tool for K. pneumoniae epidemiologic and vaccine studies.IMPORTANCEKlebsiella pneumoniae is an important opportunistic pathogen. The gastrointestinal (GI) tract is the primary reservoir of K. pneumoniae in humans, and GI carriage is believed to be a prerequisite for invasive infection. Knowledge about the dynamics and duration of GI carriage has been hampered by the lack of tools suitable for detection and strain discrimination. Real-time PCR is particularly suited to the higher-throughput workflows used in population-based studies, which are needed to improve our understanding of carriage dynamics and the factors influencing K. pneumoniae colonization.
Collapse
Affiliation(s)
- Damien Slater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kian Hutt Vater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sushmita Sridhar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wontae Hwang
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Derek Bielawski
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sarah E Turbett
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Khan MAS, Chaity SC, Hosen MA, Rahman SR. Genomic epidemiology of multidrug-resistant clinical Acinetobacter baumannii in Bangladesh. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105656. [PMID: 39116952 DOI: 10.1016/j.meegid.2024.105656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The rising frequency of multidrug-resistant (MDR) Acinetobacter baumannii infections represents a significant public health challenge in Bangladesh. Genomic analysis of bacterial pathogens enhances surveillance and control efforts by providing insights into genetic diversity, antimicrobial resistance (AMR) profiles, and transmission dynamics. In this study, we conducted a comprehensive bioinformatic analysis of 82 whole-genome sequences (WGS) of A. baumannii from Bangladesh to understand their genomic epidemiological characteristics. WGS of the MDR and biofilm-forming A. baumannii strain S1C revealed the presence of 28 AMR genes, predicting its pathogenicity and classification within sequence type ST2. Multi-locus sequence typing (MLST) genotyping suggested heterogeneity in the distribution of clinical A. baumannii strains in Bangladesh, with a predominance of ST575. The resistome diversity was evident from the detection of 82 different AMR genes, with antibiotic inactivation being the most prevalent resistance mechanism. All strains were predicted to be multidrug-resistant. The observed virulence genes were associated with immune evasion, biofilm formation, adherence, nutrient acquisition, effector delivery, and other mechanisms. Mobile genetic elements carrying AMR genes were predicted in 68.29% (N = 56) of the genomes. The "open" state of the pan-genome and a high proportion of accessory genes highlighted the genome plasticity and diversity of A. baumannii in Bangladesh. Additionally, phylogenomic analysis indicated clustering of A. baumannii strains into three separate clades according to sequence type. In summary, our findings offer detailed insights into the genomic landscape of A. baumannii in Bangladesh, contributing to our understanding of its epidemiology and pathogenicity and informing strategies to combat this pathogen.
Collapse
Affiliation(s)
| | | | - Md Arman Hosen
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
20
|
Gray J, Torres VVL, Goodall E, McKeand SA, Scales D, Collins C, Wetherall L, Lian ZJ, Bryant JA, Milner MT, Dunne KA, Icke C, Rooke JL, Schneiders T, Lund PA, Cunningham AF, Cole JA, Henderson IR. Transposon mutagenesis screen in Klebsiella pneumoniae identifies genetic determinants required for growth in human urine and serum. eLife 2024; 12:RP88971. [PMID: 39189918 PMCID: PMC11349299 DOI: 10.7554/elife.88971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Klebsiella pneumoniae is a global public health concern due to the rising myriad of hypervirulent and multidrug-resistant clones both alarmingly associated with high mortality. The molecular mechanisms underpinning these recalcitrant K. pneumoniae infection, and how virulence is coupled with the emergence of lineages resistant to nearly all present-day clinically important antimicrobials, are unclear. In this study, we performed a genome-wide screen in K. pneumoniae ECL8, a member of the endemic K2-ST375 pathotype most often reported in Asia, to define genes essential for growth in a nutrient-rich laboratory medium (Luria-Bertani [LB] medium), human urine, and serum. Through transposon directed insertion-site sequencing (TraDIS), a total of 427 genes were identified as essential for growth on LB agar, whereas transposon insertions in 11 and 144 genes decreased fitness for growth in either urine or serum, respectively. These studies not only provide further knowledge on the genetics of this pathogen but also provide a strong impetus for discovering new antimicrobial targets to improve current therapeutic options for K. pneumoniae infections.
Collapse
Affiliation(s)
- Jessica Gray
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Von Vergel L Torres
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Emily Goodall
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Samantha A McKeand
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Danielle Scales
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Christy Collins
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Laura Wetherall
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Zheng Jie Lian
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Jack A Bryant
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Matthew T Milner
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Karl A Dunne
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Christopher Icke
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Jessica L Rooke
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Thamarai Schneiders
- Division of Infection Medicine, University of EdinburghEdinburghUnited Kingdom
| | - Peter A Lund
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | - Jeff A Cole
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| |
Collapse
|
21
|
Sun W, Rong C, Chen L, Li J, An Z, Yue J, Wei H, Han K, Hua M, Zeng H, Chen C. Microaerobic-mediated suppression of Klebsiella pneumoniae mucoviscosity is restored by rmpD overexpression. J Appl Microbiol 2024; 135:lxae192. [PMID: 39090973 DOI: 10.1093/jambio/lxae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
AIMS Hypervirulent Klebsiella pneumoniae (hvKp) causes invasive community-acquired infections in healthy individuals, and hypermucoviscosity (HMV) is the main phenotype associated with hvKp. This study investigates the impact of microaerobic environment availability on the mucoviscosity of K. pneumoniae. METHODS AND RESULTS By culturing 25 clinical strains under microaerobic and aerobic environments, we observed a notable reduction in mucoviscosity in microaerobic environments. RNA sequencing and qRT-PCR revealed downregulated expressions of capsule synthesis genes (galf, orf2, wzi, wza, wzb, wzc, wcaj, manC, manB, and ugd) and regulatory genes (rmpA, rmpD, and rmpC) under microaerobic conditions. Transmission electron microscopy and Indian ink staining analysis were performed, revealing that the capsular thickness of K. pneumoniae decreased by half in microaerobic conditions compared to aerobic conditions. Deletion of rmpD and rmpC caused the loss of the HMV phenotype in both aerobic and microaerobic conditions. However, compared to wild-type strain in microaerobic condition, only rmpD overexpression strain, and not rmpC overexpression strain, displayed a significant increase in capsule thickness in microaerobic conditions. CONCLUSIONS Microaerobic conditions can suppress the mucoviscosity of K. pneumoniae, but this suppression can be overcome by altering the expression of rmpD, indicating a specific function for rmpD in the oxygen environmental adaptation of K. pneumoniae.
Collapse
Affiliation(s)
- Wangnan Sun
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Chengbo Rong
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Liang Chen
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Jiarui Li
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Zhijing An
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Jinglin Yue
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Hengkun Wei
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Kai Han
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Mingxi Hua
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Hui Zeng
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Chen Chen
- Biomedical Innovation Center and Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
22
|
Wang S, Ma S, Sun S, Wang Q, Ding Q, Jin L, Chen F, Yin G, Wu X, Wang R, Wang H. Global evolutionary dynamics of virulence genes in ST11-KL47 carbapenem-resistant Klebsiella pneumoniae. Int J Antimicrob Agents 2024; 64:107245. [PMID: 38906484 DOI: 10.1016/j.ijantimicag.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
ST11-KL47 is a hypervirulent carbapenem-resistant Klebsiella pneumoniae (CRKP) that is highly prevalent in China and poses a major public health risk. To investigate the evolutionary dynamics of virulence genes in this subclone, we analysed 78 sequenced isolates obtained from a long-term study across 29 centres from 17 cities in China. Virulence genes were located in large hybrid pNDM-Mar-like plasmids (length: ∼266 kilobases) rather than in classical pK2044-like plasmids. These hybrid plasmids, derived from the fusion of pK2044 and pNDM-Mar plasmids mediated by insertion sequence (IS) elements (such as ISKpn28 and IS26), integrated virulence gene fragments into the chromosome. Analysis of 217 sequences containing the special IncFIB (pNDM-Mar) replicon using public databases indicated that these plasmids typically contained T4SS-related and multiple antimicrobial resistance genes, were present in 24 countries, and were found in humans, animals, and the environment. Notably, the chromosomal integration of virulence genes was observed in strains across five countries across two continents. In vivo and in vitro models showed that the large hybrid plasmid increased the host fitness cost while increasing virulence. Conversely, virulence genes transferred to chromosomes resulted in increased fitness and lower virulence. In conclusion, virulence genes in the plasmids of ST11-KL47 CRKP are evolving, driven by adaptive negative selection, to enable vertical chromosomal inheritance along with conferring a survival advantage and low pathogenicity.
Collapse
Affiliation(s)
- Shuyi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Shuai Ma
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Ding
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Fengning Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Guankun Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyu Wu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
23
|
Chen J, Wang Y, Zhang N, Li J, Liu X. Genotypic and phenotypic characteristics of Acinetobacter baumannii isolates from the people's hospital of Qingyang City, Gansu province. BMC Genomics 2024; 25:727. [PMID: 39060939 PMCID: PMC11282657 DOI: 10.1186/s12864-024-10601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Acinetobacter baumannii (A. baumannii) is a common opportunistic pathogen in hospitals that causes nosocomial infection. In order to understand the phenotypic and genotypic characteristics of A. baumannii isolates, we sequenced and analyzed 62 A. baumannii isolates from a hospital in Gansu province. RESULTS Non-repeated 62 A. baumannii isolates were collected from August 2015 to November 2021. Most isolates (56/62) were resistant to multiple drugs. All the 62 A. baumannii isolates were resistant to aztreonam and contained blaADC-25 gene which exists only on chromosome contigs. The 62 isolates in this study were not clustered in a single clade, but were dispersed among multiple clades in the common genome. Seven sequence types were identified by Multilocus sequence type (MLST) analysis and most isolates (52/62) belonged to ST2. The plasmids were grouped into 11 clusters by MOB-suite. CONCLUSIONS This study furthers the understanding of A. baumannii antimicrobial-resistant genotypes, and may aid in prevention and control nosocomial infection caused by drug-resistant A. baumannii.
Collapse
Affiliation(s)
- Jiali Chen
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yang Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Na Zhang
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Li
- Department of Clinical Laboratory Medicine, Qingyang People's Hospital, Qingyang, Gansu, 745000, China.
| | - Xiong Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| |
Collapse
|
24
|
Shamanna V, Srinivas S, Couto N, Nagaraj G, Sajankila SP, Krishnappa HG, Kumar KA, Aanensen DM, Lingegowda RK. Geographical distribution, disease association and diversity of Klebsiella pneumoniae K/L and O antigens in India: roadmap for vaccine development. Microb Genom 2024; 10:001271. [PMID: 39037209 PMCID: PMC11316559 DOI: 10.1099/mgen.0.001271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Klebsiella pneumoniae poses a significant healthcare challenge due to its multidrug resistance and diverse serotype landscape. This study aimed to explore the serotype diversity of 1072 K. pneumoniae and its association with geographical distribution, disease severity and antimicrobial/virulence patterns in India. Whole-genome sequencing was performed on the Illumina platform, and genomic analysis was carried out using the Kleborate tool. The analysis revealed a total of 78 different KL types, among which KL64 (n=274/1072, 26 %), KL51 (n=249/1072, 24 %), and KL2 (n=88/1072, 8 %) were the most prevalent. In contrast, only 13 distinct O types were identified, with O1/O2v1 (n=471/1072, 44 %), O1/O2v2 (n=353/1072, 33 %), and OL101 (n=66/1072, 6 %) being the predominant serotypes. The study identified 114 different sequence types (STs) with varying serotypes, with ST231 being the most predominant. O serotypes were strongly linked with STs, with O1/O2v1 predominantly associated with ST231. Simpson's diversity index and Fisher's exact test revealed higher serotype diversity in the north and east regions, along with intriguing associations between specific serotypes and resistance profiles. No significant association between KL or O types and disease severity was observed. Furthermore, we found the specific association of virulence factors yersiniabactin and aerobactin (P<0.05) with KL types but no association with O antigen types (P>0.05). Conventionally described hypervirulent clones (i.e. KL1 and KL2) in India lacked typical virulent markers (i.e. aerobactin), contrasting with other regional serotypes (KL51). The cumulative distribution of KL and O serotypes suggests that future vaccines may have to include either ~20 KL or four O types to cover >85 % of the carbapenemase-producing Indian K. pneumoniae population. The results highlight the necessity for comprehensive strategies to manage the diverse landscape of K. pneumoniae strains across different regions in India. Understanding regional serotype dynamics is pivotal for targeted surveillance, interventions, and tailored vaccine strategies to tackle the diverse landscape of K. pneumoniae infections across India. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Varun Shamanna
- Central Research Laboratory, KIMS, Bengaluru, India
- Department of Biotechnology, NMAM Institute of Technology, Nitte, Udupi, India
| | | | - Natacha Couto
- Centre for Genomic Pathogen Surveillance, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | | | | | | | | | - David M. Aanensen
- Centre for Genomic Pathogen Surveillance, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | | | - NIHR Global Health Research Unit on genomic surveillance - India consortium
- Central Research Laboratory, KIMS, Bengaluru, India
- Department of Biotechnology, NMAM Institute of Technology, Nitte, Udupi, India
- Centre for Genomic Pathogen Surveillance, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Müller JU, Schwabe M, Swiatek LS, Heiden SE, Schlüter R, Sittner M, Bohnert JA, Becker K, Idelevich EA, Guenther S, Eger E, Schaufler K. Temperatures above 37°C increase virulence of a convergent Klebsiella pneumoniae sequence type 307 strain. Front Cell Infect Microbiol 2024; 14:1411286. [PMID: 38947124 PMCID: PMC11211929 DOI: 10.3389/fcimb.2024.1411286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Background Convergence of Klebsiella pneumoniae (KP) pathotypes has been increasingly reported in recent years. These pathogens combine features of both multidrug-resistant and hypervirulent KP. However, clinically used indicators for hypervirulent KP identification, such as hypermucoviscosity, appear to be differentially expressed in convergent KP, potential outbreak clones are difficult to identify. We aimed to fill such knowledge gaps by investigating the temperature dependence of hypermucoviscosity and virulence in a convergent KP strain isolated during a clonal outbreak and belonging to the high-risk sequence type (ST)307. Methods Hypermucoviscosity, biofilm formation, and mortality rates in Galleria mellonella larvae were examined at different temperatures (room temperature, 28°C, 37°C, 40°C and 42°C) and with various phenotypic experiments including electron microscopy. The underlying mechanisms of the phenotypic changes were explored via qPCR analysis to evaluate plasmid copy numbers, and transcriptomics. Results Our results show a temperature-dependent switch above 37°C towards a hypermucoviscous phenotype, consistent with increased biofilm formation and in vivo mortality, possibly reflecting a bacterial response to fever-like conditions. Furthermore, we observed an increase in plasmid copy number for a hybrid plasmid harboring carbapenemase and rmpA genes. However, transcriptomic analysis revealed no changes in rmpA expression at higher temperatures, suggesting alternative regulatory pathways. Conclusion This study not only elucidates the impact of elevated temperatures on hypermucoviscosity and virulence in convergent KP but also sheds light on previously unrecognized aspects of its adaptive behavior, underscoring its resilience to changing environments.
Collapse
Affiliation(s)
- Justus U. Müller
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Michael Schwabe
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Lena-Sophie Swiatek
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Stefan E. Heiden
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Max Sittner
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Jürgen A. Bohnert
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Evgeny A. Idelevich
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Sebastian Guenther
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Elias Eger
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Katharina Schaufler
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
- University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
26
|
Jiang M, Zhang H, Lu W, Qiu X, Lin C, Zhao R, Li Q, Wu Q. Molecular Characteristics of Virulence Genes in Carbapenem-Resistant and Carbapenem-Sensitive Klebsiella Pneumoniae in Relation to Different Capsule Serotypes in Ningbo, China. Infect Drug Resist 2024; 17:2109-2120. [PMID: 38828374 PMCID: PMC11141717 DOI: 10.2147/idr.s461666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Background Klebsiella pneumoniae (KP) is a common nosocomial pathogen. Capsules are an important component of KP's virulence, among which the K1, K2, K5, K20, K54, and K57 serotypes are predominant and exhibit varying degrees of virulence. Methods The capsule and virulence genes of 150 carbapenem-resistant Klebsiella pneumoniae (CRKP) and 213 carbapenem-sensitive Klebsiella pneumoniae (CSKP) isolates were examined by polymerase chain reaction (PCR). The isolates were tested for hypermucoviscosity by string tests. Phylogenetic relationships between KP isolates were analyzed using multilocus sequence typing (MLST) and a Galleria mellonella infection model confirmed the differences in virulence. Results A total of 111 of 363 isolates of KP were detected, the highest detected serotypes were K1, K5, and K2, and CSKP was detected more frequently than CRKP. There was a greater prevalence of K1 and K2 serotypes in CSKP, while in CRKP, K5 serotypes were more prevalent. K1 isolates had the highest detection rates for hypermucoviscosity Klebsiella pneumoniae (hmKP) and hypervirulent Klebsiella pneumoniae (hvKP), and carried the most virulence genes. K54 isolates had the lowest detection rate of hmKP while K5 isolates had the lowest detection rate of hvKP and carried the fewest virulence genes. MLST results for serotypes K1, K20, and K57 showed significant homogeneity, while those for serotypes K2, K5, and K54 showed diversity. The Galleria mellonella infection model showed that the K1 serotype was the most virulent and the K54 serotype was the weakest. Conclusion CSKP isolates were detected more frequently than CRKP isolates for capsular serotype detection. K1 isolates had the most virulence gene and strongest virulence, K5 isolates carried the fewest virulence genes, and K54 isolates had the weakest virulence. Furthermore, significant homogeneity was observed among K1, K20, and K57 isolates.
Collapse
Affiliation(s)
- Min Jiang
- Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Hui Zhang
- Clinical Laboratory, Ninghai County Chengguan Hospital, Ningbo, Zhejiang Province, People’s Republic of China
| | - Wenjun Lu
- Intensive Care Units, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Xuedan Qiu
- Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Chenyao Lin
- Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Rongqing Zhao
- Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Qingcao Li
- Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Qiaoping Wu
- Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| |
Collapse
|
27
|
Li P, Guo G, Zheng X, Xu S, Zhou Y, Qin X, Hu Z, Yu Y, Tan Z, Ma J, Chen L, Zhang W. Therapeutic efficacy of a K5-specific phage and depolymerase against Klebsiella pneumoniae in a mouse model of infection. Vet Res 2024; 55:59. [PMID: 38715095 PMCID: PMC11077817 DOI: 10.1186/s13567-024-01311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/14/2024] [Indexed: 05/12/2024] Open
Abstract
Klebsiella pneumoniae has become one of the most intractable gram-negative pathogens infecting humans and animals due to its severe antibiotic resistance. Bacteriophages and protein products derived from them are receiving increasing amounts of attention as potential alternatives to antibiotics. In this study, we isolated and investigated the characteristics of a new lytic phage, P1011, which lyses K5 K. pneumoniae specifically among 26 serotypes. The K5-specific capsular polysaccharide-degrading depolymerase dep1011 was identified and expressed. By establishing murine infection models using bovine strain B16 (capable of supporting phage proliferation) and human strain KP181 (incapable of sustaining phage expansion), we explored the safety and efficacy of phage and dep1011 treatments against K5 K. pneumoniae. Phage P1011 resulted in a 60% survival rate of the mice challenged with K. pneumoniae supporting phage multiplication, concurrently lowering the bacterial burden in their blood, liver, and lungs. Unexpectedly, even when confronted with bacteria impervious to phage multiplication, phage therapy markedly decreased the number of viable organisms. The protective efficacy of the depolymerase was significantly better than that of the phage. The depolymerase achieved 100% survival in both treatment groups regardless of phage propagation compatibility. These findings indicated that P1011 and dep1011 might be used as potential antibacterial agents to control K5 K. pneumoniae infection.
Collapse
Affiliation(s)
- Pei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Genglin Guo
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai, China
| | - Xiangkuan Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Sixiang Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Yu Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Xiayan Qin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Zimeng Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China
| | - Yanfei Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Zhongming Tan
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210014, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Long Chen
- Department of Clinical Laboratory, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, 215600, China.
| | - Wei Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- The Sanya Institute of Nanjing Agricultural University, Yabulun Industrial Park, Yazhou Bay Science and Technology City, Sanya, 572024, China.
| |
Collapse
|
28
|
Heinz E, Pearse O, Zuza A, Bilima S, Msefula C, Musicha P, Siyabu P, Tewesa E, Graf FE, Lester R, Lissauer S, Cornick J, Lewis JM, Kawaza K, Thomson NR, Feasey NA. Longitudinal analysis within one hospital in sub-Saharan Africa over 20 years reveals repeated replacements of dominant clones of Klebsiella pneumoniae and stresses the importance to include temporal patterns for vaccine design considerations. Genome Med 2024; 16:67. [PMID: 38711148 PMCID: PMC11073982 DOI: 10.1186/s13073-024-01342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Infections caused by multidrug-resistant gram-negative bacteria present a severe threat to global public health. The WHO defines drug-resistant Klebsiella pneumoniae as a priority pathogen for which alternative treatments are needed given the limited treatment options and the rapid acquisition of novel resistance mechanisms by this species. Longitudinal descriptions of genomic epidemiology of Klebsiella pneumoniae can inform management strategies but data from sub-Saharan Africa are lacking. METHODS We present a longitudinal analysis of all invasive K. pneumoniae isolates from a single hospital in Blantyre, Malawi, southern Africa, from 1998 to 2020, combining clinical data with genome sequence analysis of the isolates. RESULTS We show that after a dramatic increase in the number of infections from 2016 K. pneumoniae becomes hyperendemic, driven by an increase in neonatal infections. Genomic data show repeated waves of clonal expansion of different, often ward-restricted, lineages, suggestive of hospital-associated transmission. We describe temporal trends in resistance and surface antigens, of relevance for vaccine development. CONCLUSIONS Our data highlight a clear need for new interventions to prevent rather than treat K. pneumoniae infections in our setting. Whilst one option may be a vaccine, the majority of cases could be avoided by an increased focus on and investment in infection prevention and control measures, which would reduce all healthcare-associated infections and not just one.
Collapse
Affiliation(s)
- Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK.
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK.
| | - Oliver Pearse
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Allan Zuza
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sithembile Bilima
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Patrick Musicha
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Edith Tewesa
- Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Fabrice E Graf
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
| | - Rebecca Lester
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Division of Infection & Immunity, University College London, London, UK
| | - Samantha Lissauer
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Jennifer Cornick
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Joseph M Lewis
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Kondwani Kawaza
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Nicholas R Thomson
- Parasites and Microbes Program, Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas A Feasey
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK.
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi.
- School of Medicine, St Andrews University, St Andrews, UK.
| |
Collapse
|
29
|
Hwang W, Wantuch PL, Bernshtein B, Zhiteneva J, Slater D, Vater KH, Sridhar S, Oliver E, Roach DJ, Rao S, Turbett SE, Knoot CJ, Harding CM, Amin MN, Cross AS, LaRocque RC, Rosen DA, Harris JB. Antibody responses in Klebsiella pneumoniae bloodstream infection: a cohort study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.591958. [PMID: 38746292 PMCID: PMC11092611 DOI: 10.1101/2024.05.01.591958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Klebsiella pneumonia (Kpn) is the fourth leading cause of infection-related deaths globally, yet little is known about human antibody responses to invasive Kpn. In this study, we sought to determine whether the O-specific polysaccharide (OPS) antigen, a vaccine candidate, is immunogenic in humans with Kpn bloodstream infection (BSI). We also sought to define the cross-reactivity of human antibody responses among structurally related Kpn OPS subtypes and to assess the impact of capsule production on OPS-targeted antibody binding and function. Methods We measured plasma antibody responses to OPS (and MrkA, a fimbrial protein) in a cohort of patients with Kpn BSI and compared these with controls, including a cohort of healthy individuals and a cohort of individuals with Enterococcus BSI. We performed flow cytometry to measure the impact of Kpn capsule production on whole cell antibody binding and complement deposition, utilizing patient isolates with variable levels of capsule production and isogenic capsule-deficient strains derived from these isolates. Findings We enrolled 69 patients with Kpn BSI. Common OPS serotypes accounted for 57/69 (83%) of infections. OPS was highly immunogenic in patients with Kpn BSI, and peak OPS-IgG antibody responses in patients were 10 to 30-fold higher than antibody levels detected in healthy controls, depending on the serotype. There was significant cross-reactivity among structurally similar OPS subtypes, including the O1v1/O1v2, O2v1/O2v2 and O3/O3b subtypes. Physiological amounts of capsule produced by both hyperencapsulated and non-hyperencapsulated Kpn significantly inhibited OPS-targeted antibody binding and function. Interpretation OPS was highly immunogenic in patients with Kpn BSI, supporting its potential as a candidate vaccine antigen. The strong cross-reactivity observed between similar OPS subtypes in humans with Kpn BSI suggests that it may not be necessary to include all subtypes in an OPS-based vaccine. However, these observations are tempered by the fact that capsule production, even in non-highly encapsulated strains, has the potential to interfere with OPS antibody binding. This may limit the effectiveness of vaccines that exclusively target OPS. Funding National Institute of Allergy and Infectious Diseases at the National Institutes of Health. Research in Context Evidence before this study: Despite the potential of O-specific polysaccharide (OPS) as a vaccine antigen against Klebsiella pneumoniae (Kpn), the immunogenicity of OPS in humans remains largely unstudied, creating a significant knowledge gap with regard to vaccine development. A search of PubMed for publications up to March 18, 2024, using the terms " Klebsiella pneumoniae " and "O-specific polysaccharide" or "O-antigen" or "lipopolysaccharide" revealed no prior studies addressing OPS antibody responses in humans with Kpn bloodstream infections (BSI). One prior study 1 evaluated antibody response to a single lipopolysaccharide (which contains one subtype of OPS) in humans with invasive Kpn infection; however, in this study OPS typing of the infecting strains and target antigen were not described. Added value of this study: Our investigation into OPS immunogenicity in a human cohort marks a significant advance. Analyzing plasma antibody responses in 69 patients with Kpn BSI, we found OPS to be broadly immunogenic across all the types and subtypes examined, and there was significant cross-reactivity among structurally related OPS antigens. We also demonstrated that Kpn capsule production inhibit OPS antibody binding and the activation of complement on the bacterial surface, even in classical Kpn strains expressing lower levels of capsule.Implications of all the available evidence: While the immunogenicity and broad cross-reactivity of OPS in humans with Kpn BSI suggests it is a promising vaccine candidate, the obstruction of OPS antibody binding and engagement by physiologic levels of Kpn capsule underscores the potential limitations of an exclusively OPS-antigen based vaccine for Kpn. Our study provides insights for the strategic development of vaccines aimed at combating Kpn infections, an important antimicrobial resistant pathogen.
Collapse
|
30
|
Moussa J, Nassour E, Jisr T, El Chaar M, Tokajian S. Characterization of blaNDM-19-producing IncX3 plasmid isolated from carbapenem-resistant Escherichia coli and Klebsiellapneumoniae. Heliyon 2024; 10:e29642. [PMID: 38655329 PMCID: PMC11036045 DOI: 10.1016/j.heliyon.2024.e29642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
The increase in the prevalence of carbapenem-producing Enterobacterales (CPE) is a major threat, with the New Delhi metallo-β-lactamase (NDM) enzyme-producing CPEs being one of the major causative agents of healthcare settings infections. In this study, we characterized an IncX3 plasmid harboring blaNDM-19 in Lebanon, recovered from three Escherichia coli belonging to ST167 and one Klebsiella pneumoniae belonging to ST16 isolated from a clinical setting. Plasmid analysis using PBRT, Plasmid Finder, and PlasmidSPAdes showed that all four isolates carried a conjugative 47-kb plasmid having blaNDM-19, and was designated as pLAU-NDM19. We constructed a sequence-based maximum likelihood phylogenetic tree and compared pLAU-NDM19 to other representative IncX3 plasmids carrying NDM-variants and showed that it was closely linked to NDM-19 positive IncX3 plasmid from K. pneumoniae reported in China. Our findings also revealed the route mediating resistance transmission, the IncX3 dissemination among Enterobacterales, and the NDM-19 genetic environment. We showed that mobile elements contributed to the variability of IncX3 genomic environment and highlighted that clonal dissemination in healthcare settings facilitated the spread of resistance determinants. Antimicrobial stewardship programs implemented in hospitals should be coupled with genomic surveillance to better understand the mechanisms mediating the mobilization of resistance determinants among nosocomial pathogens and their subsequent clonal dissemination.
Collapse
Affiliation(s)
- Jennifer Moussa
- Department of Natural Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Elie Nassour
- Department of Natural Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Tamima Jisr
- Clinical Laboratory Department, Makassed General Hospital, P.O.Box 11-6301, Beirut, Lebanon
| | - Mira El Chaar
- Faculty of Health Sciences, University of Balamand, P.O. Box 55251, Beirut, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| |
Collapse
|
31
|
Cheewapat R, Redkimned J, Lekuthai S, Kitti T, Tasanapak K, Thanwisai A, Sitthisak S, Sornda T, Impheng H, Onsurathum S, Leungtongkam U, Lamlertthon S, Kucharoenphaibul S, Wongwigkarn J, Singkum P, Chanchaithong P, Thummeepak R. Genomic Landscape Reveals Chromosomally-Mediated Antimicrobial Resistome and Virulome of a High-Risk International Clone II Acinetobacter baumannii AB073 from Thailand. Glob Health Epidemiol Genom 2024; 2024:8872463. [PMID: 38716477 PMCID: PMC11074871 DOI: 10.1155/2024/8872463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/14/2024] [Accepted: 04/18/2024] [Indexed: 07/28/2024] Open
Abstract
This study utilized integrative bioinformatics' tools together with phenotypic assays to understand the whole-genome features of a carbapenem-resistant international clone II Acinetobacter baumannii AB073. Overall, we found the isolate to be resistant to seven antibiotic classes, penicillins, β-lactam/β-lactamase inhibitor combinations, cephalosporins, carbapenems, aminoglycosides, fluoroquinolones, and folate pathway antagonists. These resistance phenotypes are related to various chromosomal-located antibiotic resistance determinants involved in different mechanisms such as reduced permeability, antibiotic target protection, antibiotic target alteration, antibiotic inactivation, and antibiotic efflux. IC2 A. baumannii AB073 could not transfer antibiotic resistance by conjugation experiments. Likewise, mobilome analysis found that AB073 did not carry genetic determinants involving horizontal gene transfer. Moreover, this isolate also carried multiple genes associated with the ability of iron uptake, biofilm formation, immune invasion, virulence regulations, and serum resistance. In addition, the genomic epidemiological study showed that AB073-like strains were successful pathogens widespread in various geographic locations and clinical sources. In conclusion, the comprehensive analysis demonstrated that AB073 contained multiple genomic determinants which were important characteristics to classify this isolate as a successful international clone II obtained from Thailand.
Collapse
Affiliation(s)
- Rattiya Cheewapat
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jadsadaporn Redkimned
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sirikran Lekuthai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Thawatchai Kitti
- Department of Oriental Medicine, Chiang Rai College, Chiang Rai 57000, Thailand
| | - Kannipa Tasanapak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sutthirat Sitthisak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Thanet Sornda
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Hathaichanok Impheng
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sudarat Onsurathum
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Udomluk Leungtongkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Supaporn Lamlertthon
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Siriwat Kucharoenphaibul
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jintana Wongwigkarn
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pantira Singkum
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Salaya 10400, Thailand
| | - Pattrarat Chanchaithong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rapee Thummeepak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
32
|
Doğan E, Sydow K, Heiden SE, Eger E, Wassilew G, Proctor RA, Bohnert JA, Idelevich EA, Schaufler K, Becker K. Klebsiella pneumoniae exhibiting a phenotypic hyper-splitting phenomenon including the formation of small colony variants. Front Cell Infect Microbiol 2024; 14:1372704. [PMID: 38601740 PMCID: PMC11004228 DOI: 10.3389/fcimb.2024.1372704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
In this study, we characterized a Klebsiella pneumoniae strain in a patient with shrapnel hip injury, which resulted in multiple phenotypic changes, including the formation of a small colony variant (SCV) phenotype. Although already described since the 1960s, there is little knowledge about SCV phenotypes in Enterobacteriaceae. The formation of SCVs has been recognized as a bacterial strategy to evade host immune responses and compromise the efficacy of antimicrobial therapies, leading to persistent and recurrent courses of infections. In this case, 14 isolates with different resisto- and morpho-types were distinguished from the patient's urine and tissue samples. Whole genome sequencing revealed that all isolates were clonally identical belonging to the K. pneumoniae high-risk sequence type 147. Subculturing the SCV colonies consistently resulted in the reappearance of the initial SCV phenotype and three stable normal-sized phenotypes with distinct morphological characteristics. Additionally, an increase in resistance was observed over time in isolates that shared the same colony appearance. Our findings highlight the complexity of bacterial behavior by revealing a case of phenotypic "hyper-splitting" in a K. pneumoniae SCV and its potential clinical significance.
Collapse
Affiliation(s)
- Eyüp Doğan
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Katharina Sydow
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
| | - Stefan E. Heiden
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
| | - Elias Eger
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
| | - Georgi Wassilew
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Richard A. Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jürgen A. Bohnert
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Evgeny A. Idelevich
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Katharina Schaufler
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
- University Medicine Greifswald, Greifswald, Germany
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
33
|
Gao S, Jin W, Quan Y, Li Y, Shen Y, Yuan S, Yi L, Wang Y, Wang Y. Bacterial capsules: Occurrence, mechanism, and function. NPJ Biofilms Microbiomes 2024; 10:21. [PMID: 38480745 PMCID: PMC10937973 DOI: 10.1038/s41522-024-00497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
In environments characterized by extended multi-stress conditions, pathogens develop a variety of immune escape mechanisms to enhance their ability to infect the host. The capsules, polymers that bacteria secrete near their cell wall, participates in numerous bacterial life processes and plays a crucial role in resisting host immune attacks and adapting to their niche. Here, we discuss the relationship between capsules and bacterial virulence, summarizing the molecular mechanisms of capsular regulation and pathogenesis to provide new insights into the research on the pathogenesis of pathogenic bacteria.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yue Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
34
|
Haudiquet M, Le Bris J, Nucci A, Bonnin RA, Domingo-Calap P, Rocha EPC, Rendueles O. Capsules and their traits shape phage susceptibility and plasmid conjugation efficiency. Nat Commun 2024; 15:2032. [PMID: 38448399 PMCID: PMC10918111 DOI: 10.1038/s41467-024-46147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Bacterial evolution is affected by mobile genetic elements like phages and conjugative plasmids, offering new adaptive traits while incurring fitness costs. Their infection is affected by the bacterial capsule. Yet, its importance has been difficult to quantify because of the high diversity of confounding mechanisms in bacterial genomes such as anti-viral systems and surface receptor modifications. Swapping capsule loci between Klebsiella pneumoniae strains allowed us to quantify their impact on plasmid and phage infection independently of genetic background. Capsule swaps systematically invert phage susceptibility, revealing serotypes as key determinants of phage infection. Capsule types also influence conjugation efficiency in both donor and recipient cells, a mechanism shaped by capsule volume and conjugative pilus structure. Comparative genomics confirmed that more permissive serotypes in the lab correspond to the strains acquiring more conjugative plasmids in nature. The least capsule-sensitive pili (F-like) are the most frequent in the species' plasmids, and are the only ones associated with both antibiotic resistance and virulence factors, driving the convergence between virulence and antibiotics resistance in the population. These results show how traits of cellular envelopes define slow and fast lanes of infection by mobile genetic elements, with implications for population dynamics and horizontal gene transfer.
Collapse
Affiliation(s)
- Matthieu Haudiquet
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France.
- Ecole Doctoral FIRE-Programme Bettencourt, CRI, Paris, France.
| | - Julie Le Bris
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
- Sorbonne Université, Collège Doctoral, Ecole Doctorale Complexité du Vivant, 75005, Paris, France
| | - Amandine Nucci
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| | - Rémy A Bonnin
- Team Resist UMR1184 Université Paris Saclay, CEA, Inserm, Le Kremlin-Bicêtre, Paris, France
- Service de bactériologie, Hôpital Bicêtre, Université Paris Saclay, AP-HP, Le Kremlin-Bicêtre, Paris, France
- Centre National de Référence Associé de la Résistance aux Antibiotiques, Le Kremlin-Bicêtre, Paris, France
| | - Pilar Domingo-Calap
- Instituto de Biología Integrativa de Sistemas, Universitat de València-CSIC, 46980, Paterna, Spain
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France.
| | - Olaya Rendueles
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France.
| |
Collapse
|
35
|
Sanz MB, Pasteran F, de Mendieta JM, Brunetti F, Albornoz E, Rapoport M, Lucero C, Errecalde L, Nuñez MR, Monge R, Pennini M, Power P, Corso A, Gomez SA. KPC-2 allelic variants in Klebsiella pneumoniae isolates resistant to ceftazidime-avibactam from Argentina: blaKPC-80, blaKPC-81, blaKPC-96 and blaKPC-97. Microbiol Spectr 2024; 12:e0411123. [PMID: 38319084 PMCID: PMC10913460 DOI: 10.1128/spectrum.04111-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Ceftazidime-avibactam (CZA) therapy has significantly improved survival rates for patients infected by carbapenem-resistant bacteria, including KPC producers. However, resistance to CZA is a growing concern, attributed to multiple mechanisms. In this study, we characterized four clinical CZA-resistant Klebsiella pneumoniae isolates obtained between July 2019 and December 2020. These isolates expressed novel allelic variants of blaKPC-2 resulting from changes in hotspots of the mature protein, particularly in loops surrounding the active site of KPC. Notably, KPC-80 had an K269_D270insPNK mutation near the Lys270-loop, KPC-81 had a del_I173 mutation within the Ω-loop, KPC-96 showed a Y241N substitution within the Val240-loop and KPC-97 had an V277_I278insNSEAV mutation within the Lys270-loop. Three of the four isolates exhibited low-level resistance to imipenem (4 µg/mL), while all remained susceptible to meropenem. Avibactam and relebactam effectively restored carbapenem susceptibility in resistant isolates. Cloning mutant blaKPC genes into pMBLe increased imipenem MICs in recipient Escherichia coli TOP10 for blaKPC-80, blaKPC-96, and blaKPC-97 by two dilutions; again, these MICs were restored by avibactam and relebactam. Frameshift mutations disrupted ompK35 in three isolates. Additional resistance genes, including blaTEM-1, blaOXA-18 and blaOXA-1, were also identified. Interestingly, three isolates belonged to clonal complex 11 (ST258 and ST11) and one to ST629. This study highlights the emergence of CZA resistance including unique allelic variants of blaKPC-2 and impermeability. Comprehensive epidemiological surveillance and in-depth molecular studies are imperative for understanding and monitoring these complex resistance mechanisms, crucial for effective antimicrobial treatment strategies. IMPORTANCE The emergence of ceftazidime-avibactam (CZA) resistance poses a significant threat to the efficacy of this life-saving therapy against carbapenem-resistant bacteria, particularly Klebsiella pneumoniae-producing KPC enzymes. This study investigates four clinical isolates exhibiting resistance to CZA, revealing novel allelic variants of the key resistance gene, blaKPC-2. The mutations identified in hotspots surrounding the active site of KPC, such as K269_D270insPNK, del_I173, Y241N and V277_I278insNSEAV, prove the adaptability of these pathogens. Intriguingly, low-level resistance to imipenem and disruptions in porin genes were observed, emphasizing the complexity of the resistance mechanisms. Interestingly, three of four isolates belonged to clonal complex 11. This research not only sheds light on the clinical significance of CZA resistance but also shows the urgency for comprehensive surveillance and molecular studies to inform effective antimicrobial treatment strategies in the face of evolving bacterial resistance.
Collapse
Affiliation(s)
- María Belén Sanz
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Fernando Pasteran
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Juan Manuel de Mendieta
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Florencia Brunetti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ezequiel Albornoz
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Melina Rapoport
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Celeste Lucero
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | | | - Maria Rosa Nuñez
- Hospital Provincial Neuquén Dr. Castro Rendón, Neuquén, Argentina
| | | | | | - Pablo Power
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandra Corso
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Sonia A. Gomez
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
36
|
Hu F, Pan Y, Li H, Han R, Liu X, Ma R, Wu Y, Lun H, Qin X, Li J, Wang A, Zhou M, Liu B, Zhou Z, He P. Carbapenem-resistant Klebsiella pneumoniae capsular types, antibiotic resistance and virulence factors in China: a longitudinal, multi-centre study. Nat Microbiol 2024; 9:814-829. [PMID: 38424289 PMCID: PMC10914598 DOI: 10.1038/s41564-024-01612-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024]
Abstract
Epidemiological knowledge of circulating carbapenem-resistant Klebsiella pneumoniae (CRKP) is needed to develop effective strategies against this public health threat. Here we present a longitudinal analysis of 1,017 CRKP isolates recovered from patients from 40 hospitals across China between 2016 and 2020. Virulence gene and capsule typing revealed expansion of CRKP capsule type KL64 (59.5%) alongside decreases in KL47 prevalence. Hypervirulent CRKP increased in prevalence from 28.2% in 2016 to 45.7% in 2020. Phylogenetic and spatiotemporal analysis revealed Beijing and Shanghai as transmission hubs accounting for differential geographical prevalence of KL47 and KL64 strains across China. Moderate frequency capsule or O-antigen loss was also detected among isolates. Non-capsular CRKP were more susceptible to phagocytosis, attenuated during mouse infections, but showed increased serum resistance and biofilm formation. These findings give insight into CRKP serotype prevalence and dynamics, revealing the importance of monitoring serotype shifts for the future development of immunological strategies against CRKP infections.
Collapse
Affiliation(s)
- Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuqing Pan
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heng Li
- Key Laboratory of Alkene-carbon Fibers-based Technology & Application for Detection of Major Infectious Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Liu
- Key Laboratory of Alkene-carbon Fibers-based Technology & Application for Detection of Major Infectious Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, China
| | - Ruijing Ma
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongqin Wu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heyuan Lun
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Qin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiayin Li
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aixi Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Liu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhemin Zhou
- Key Laboratory of Alkene-carbon Fibers-based Technology & Application for Detection of Major Infectious Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, China.
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Ping He
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.
| |
Collapse
|
37
|
Puljko A, Barišić I, Dekić Rozman S, Križanović S, Babić I, Jelić M, Maravić A, Udiković-Kolić N. Molecular epidemiology and mechanisms of carbapenem and colistin resistance in Klebsiella and other Enterobacterales from treated wastewater in Croatia. ENVIRONMENT INTERNATIONAL 2024; 185:108554. [PMID: 38479059 DOI: 10.1016/j.envint.2024.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 03/02/2024] [Indexed: 03/26/2024]
Abstract
Among the most problematic bacteria with clinical relevance are the carbapenem-resistant Enterobacterales (CRE), as there are very limited options for their treatment. Treated wastewater can be a route for the release of these bacteria into the environment and the population. The aim of this study was to isolate CRE from treated wastewater from the Zagreb wastewater treatment plant and to determine their phenotypic and genomic characteristics. A total of 200 suspected CRE were isolated, 148 of which were confirmed as Enterobacterales by MALDI-TOF MS. The predominant species was Klebsiella spp. (n = 47), followed by Citrobacter spp. (n = 40) and Enterobacter cloacae complex (cplx.) (n = 35). All 148 isolates were carbapenemase producers with a multidrug-resistant phenotype. Using multi-locus sequence typing and whole-genome sequencing (WGS), 18 different sequence types were identified among these isolates, 14 of which were associated with human-associated clones. The virulence gene analysis of the sequenced Klebsiella isolates (n = 7) revealed their potential pathogenicity. PCR and WGS showed that the most frequent carbapenemase genes in K. pneumoniae were blaOXA-48 and blaNDM-1, which frequently occurred together, while blaKPC-2 together with blaNDM-1 was mainly detected in K. oxytoca, E. cloacae cplx. and Citrobacter spp. Colistin resistance was observed in 40% of Klebsiella and 57% of Enterobacter isolates. Underlying mechanisms identified by WGS include known and potentially novel intrinsic mechanisms (point mutations in the pmrA/B, phoP/Q, mgrB and crrB genes) and acquired mechanisms (mcr-4.3 gene). The mcr-4.3 gene was identified for the first time in K. pneumoniae and is probably located on the conjugative IncHI1B plasmid. In addition, WGS analysis of 13 isolates revealed various virulence genes and resistance genes to other clinically relevant antibiotics as well as different plasmids possibly associated with carbapenemase genes. Our study demonstrates the important role that treated municipal wastewater plays in harboring and spreading enterobacterial pathogens that are resistant to last-resort antibiotics.
Collapse
Affiliation(s)
- Ana Puljko
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ivan Barišić
- Molecular Diagnostics, Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria
| | - Svjetlana Dekić Rozman
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Stela Križanović
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ivana Babić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Marko Jelić
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, Mirogojska 8, 10 000 Zagreb, Croatia
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21 000 Split, Croatia
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia.
| |
Collapse
|
38
|
Artyszuk D, Jachymek W, Izdebski R, Gniadkowski M, Lukasiewicz J. The OL101 O antigen locus specifies a novel Klebsiella pneumoniae serotype O13 structure. Carbohydr Polym 2024; 326:121581. [PMID: 38142087 DOI: 10.1016/j.carbpol.2023.121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 12/25/2023]
Abstract
Klebsiella pneumoniae is one of the priority objects for the development of new therapies against infections. The species has been perceived as of limited variety of O antigens (11 O serotypes identified to date). That trait makes lipopolysaccharide an attractive target for protective antibodies. Nowadays, K. pneumoniae O antigens encoding genes are often analysed by bioinformatic tools, such as Kaptive, indicating higher actual diversity of the O antigen loci. One of the novel K. pneumoniae O loci for which the antigen structure has not been elucidated so far is OL101. In this study, four clinical isolates predicted as OL101 were characterized and found to have the O antigen structure composed of β-Kdop-[→3)-α-l-Rhap-(1→4)-α-d-Glcp-(1→]n, representing a novel serotype O13. Identification of the β-Kdop terminus was based on the analysis of the complete LPS molecule by the HR-MAS NMR spectroscopy. The bioinformatic analysis of 71,377 K. pneumoniae genomes from public databases (July 2023) revealed a notable OL101 prevalence of 6.55 %.
Collapse
Affiliation(s)
- Daria Artyszuk
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Microbial Immunochemistry and Vaccines, 53-114 Wroclaw, Poland
| | - Wojciech Jachymek
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Microbial Immunochemistry and Vaccines, 53-114 Wroclaw, Poland
| | - Radosław Izdebski
- National Medicines Institute, Department of Molecular Microbiology, 00-725 Warsaw, Poland
| | - Marek Gniadkowski
- National Medicines Institute, Department of Molecular Microbiology, 00-725 Warsaw, Poland
| | - Jolanta Lukasiewicz
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Microbial Immunochemistry and Vaccines, 53-114 Wroclaw, Poland.
| |
Collapse
|
39
|
Cooper HB, Vezina B, Hawkey J, Passet V, López-Fernández S, Monk JM, Brisse S, Holt KE, Wyres KL. A validated pangenome-scale metabolic model for the Klebsiella pneumoniae species complex. Microb Genom 2024; 10:001206. [PMID: 38376382 PMCID: PMC10926698 DOI: 10.1099/mgen.0.001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
The Klebsiella pneumoniae species complex (KpSC) is a major source of nosocomial infections globally with high rates of resistance to antimicrobials. Consequently, there is growing interest in understanding virulence factors and their association with cellular metabolic processes for developing novel anti-KpSC therapeutics. Phenotypic assays have revealed metabolic diversity within the KpSC, but metabolism research has been neglected due to experiments being difficult and cost-intensive. Genome-scale metabolic models (GSMMs) represent a rapid and scalable in silico approach for exploring metabolic diversity, which compile genomic and biochemical data to reconstruct the metabolic network of an organism. Here we use a diverse collection of 507 KpSC isolates, including representatives of globally distributed clinically relevant lineages, to construct the most comprehensive KpSC pan-metabolic model to date, KpSC pan v2. Candidate metabolic reactions were identified using gene orthology to known metabolic genes, prior to manual curation via extensive literature and database searches. The final model comprised a total of 3550 reactions, 2403 genes and can simulate growth on 360 unique substrates. We used KpSC pan v2 as a reference to derive strain-specific GSMMs for all 507 KpSC isolates, and compared these to GSMMs generated using a prior KpSC pan-reference (KpSC pan v1) and two single-strain references. We show that KpSC pan v2 includes a greater proportion of accessory reactions (8.8 %) than KpSC pan v1 (2.5 %). GSMMs derived from KpSC pan v2 also generate more accurate growth predictions, with high median accuracies of 95.4 % (aerobic, n=37 isolates) and 78.8 % (anaerobic, n=36 isolates) for 124 matched carbon substrates. KpSC pan v2 is freely available at https://github.com/kelwyres/KpSC-pan-metabolic-model, representing a valuable resource for the scientific community, both as a source of curated metabolic information and as a reference to derive accurate strain-specific GSMMs. The latter can be used to investigate the relationship between KpSC metabolism and traits of interest, such as reservoirs, epidemiology, drug resistance or virulence, and ultimately to inform novel KpSC control strategies.
Collapse
Affiliation(s)
- Helena B. Cooper
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| | - Ben Vezina
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Virginie Passet
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, 75015 Paris, France
| | - Sebastián López-Fernández
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, 75015 Paris, France
| | - Jonathan M. Monk
- Department of Bioengineering, University of California, San Diego, California 92093, USA
| | - Sylvain Brisse
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, 75015 Paris, France
| | - Kathryn E. Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Kelly L. Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
40
|
Bazalar-Gonzales J, Silvestre-Espejo T, Rodríguez Cueva C, Carhuaricra Huamán D, Ignación León Y, Luna Espinoza L, Rosadio Alcántara R, Maturrano Hernández L. Genomic insights into ESBL-producing Escherichia coli isolated from non-human primates in the Peruvian Amazon. Front Vet Sci 2024; 10:1340428. [PMID: 38292135 PMCID: PMC10825005 DOI: 10.3389/fvets.2023.1340428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae are on the WHO priority pathogens list because they are associated with high mortality, health-care burden, and antimicrobial resistance (AMR), a serious problem that threatens global public health and should be addressed through the One Health approach. Non-human primates (NHP) have a high risk of acquiring these antibiotic-resistant bacteria due to their close phylogenetic relationship with humans and increased anthropogenic activities in their natural environments. This study aimed to detect and analyze the genomes of ESBL-producing Escherichia coli (ESBL-producing E. coli) in NHP from the Peruvian Amazon. Materials and methods We collected a total of 119 fecal samples from semi-captive Saguinus labiatus, Saguinus mystax, and Saimiri boliviensis, and captive Ateles chamek, Cebus unicolor, Lagothrix lagothricha, and Sapajus apella in the Loreto and Ucayali regions, respectively. Subsequently, we isolated and identified E. coli strains by microbiological methods, detected ESBL-producing E. coli through antimicrobial susceptibility tests following CLSI guidelines, and analyzed their genomes using previously described genomic methods. Results We detected that 7.07% (7/99) of E. coli strains: 5.45% (3/55) from Loreto and 9.09% (4/44) from Ucayali, expressed ESBL phenotype. Genomic analysis revealed the presence of high-risk pandemic clones, such as ST10 and ST117, carrying a broad resistome to relevant antibiotics, including three blaCTX-M variants: blaCTX-M-15, blaCTX-M-55, and blaCTX-M-65. Phylogenomic analysis confirmed the clonal relatedness of high-risk lineages circulating at the human-NHP interface. Additionally, two ESBL-producing E. coli strains were identified as EPEC (eae) and ExPEC according to their virulence profiles, and one more presented a hypermucoviscous phenotype. Discussion We report the detection and genomic analysis of seven ESBL-producing E. coli strains carrying broad resistome and virulence factors in NHP from two regions of the Peruvian Amazon. Some of these strains are closely related to high-risk pandemic lineages previously reported in humans and domestic animals, highlighting the negative impact of anthropogenic activities on Amazonian wildlife. To our knowledge, this is the first documentation of ESBL-producing E. coli in NHP from the Amazon, underscoring the importance of adopting the One Health approach to AMR surveillance and minimizing the potential transmission risk of antibiotic-resistant bacteria at the human-NHP interface.
Collapse
Affiliation(s)
- Jhonathan Bazalar-Gonzales
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Asociación Equipo Primatológico del Perú (EPP), Iquitos, Peru
| | - Thalía Silvestre-Espejo
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Carmen Rodríguez Cueva
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Dennis Carhuaricra Huamán
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Programa de Pós-Graduação Interunidades em Bioinformática, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Yennifer Ignación León
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Luis Luna Espinoza
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Raúl Rosadio Alcántara
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Lenin Maturrano Hernández
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
41
|
Alonso-del Valle A, Toribio-Celestino L, Quirant A, Pi CT, DelaFuente J, Canton R, Rocha EPC, Ubeda C, Peña-Miller R, San Millan A. Antimicrobial resistance level and conjugation permissiveness shape plasmid distribution in clinical enterobacteria. Proc Natl Acad Sci U S A 2023; 120:e2314135120. [PMID: 38096417 PMCID: PMC10741383 DOI: 10.1073/pnas.2314135120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Conjugative plasmids play a key role in the dissemination of antimicrobial resistance (AMR) genes across bacterial pathogens. AMR plasmids are widespread in clinical settings, but their distribution is not random, and certain associations between plasmids and bacterial clones are particularly successful. For example, the globally spread carbapenem resistance plasmid pOXA-48 can use a wide range of enterobacterial species as hosts, but it is usually associated with a small number of specific Klebsiella pneumoniae clones. These successful associations represent an important threat for hospitalized patients. However, knowledge remains limited about the factors determining AMR plasmid distribution in clinically relevant bacteria. Here, we combined in vitro and in vivo experimental approaches to analyze pOXA-48-associated AMR levels and conjugation dynamics in a collection of wild-type enterobacterial strains isolated from hospitalized patients. Our results revealed significant variability in these traits across different bacterial hosts, with Klebsiella spp. strains showing higher pOXA-48-mediated AMR and conjugation frequencies than Escherichia coli strains. Using experimentally determined parameters, we developed a simple mathematical model to interrogate the contribution of AMR levels and conjugation permissiveness to plasmid distribution in bacterial communities. The simulations revealed that a small subset of clones, combining high AMR levels and conjugation permissiveness, play a critical role in stabilizing the plasmid in different polyclonal microbial communities. These results help to explain the preferential association of plasmid pOXA-48 with K. pneumoniae clones in clinical settings. More generally, our study reveals that species- and strain-specific variability in plasmid-associated phenotypes shape AMR evolution in clinically relevant bacterial communities.
Collapse
Affiliation(s)
- Aida Alonso-del Valle
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid28049, Spain
| | - Laura Toribio-Celestino
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid28049, Spain
| | - Anna Quirant
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia46020, Spain
| | - Carles Tardio Pi
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca62209, México
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Unidad Académica Yucatán, Universidad Nacional Autónoma de México, Yucatán04510, México
| | - Javier DelaFuente
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid28049, Spain
| | - Rafael Canton
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramon y Cajal de Investigacion Sanitaria, Madrid28034, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Eduardo P. C. Rocha
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris75015, France
| | - Carles Ubeda
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia46020, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Rafael Peña-Miller
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca62209, México
| | - Alvaro San Millan
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid28049, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid28029, Spain
| |
Collapse
|
42
|
Wantuch PL, Knoot CJ, Robinson LS, Vinogradov E, Scott NE, Harding CM, Rosen DA. A heptavalent O-antigen bioconjugate vaccine exhibits differential functional antibody responses against diverse Klebsiella pneumoniae isolates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571344. [PMID: 38168360 PMCID: PMC10760053 DOI: 10.1101/2023.12.12.571344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Klebsiella pneumoniae is a concerning pathogen that is now the leading cause of neonatal sepsis and is increasingly difficult to treat due to heightened antibiotic resistance. Thus, there is an urgent need for preventive and effective immunotherapies targeting K. pneumoniae. Vaccination represents a tractable approach to combat this resistant bacterium in some settings; however, there is currently not a licensed K. pneumoniae vaccine available. K. pneumoniae surface polysaccharides, including the terminal O-antigen polysaccharides of lipopolysaccharide, have long been attractive candidates for vaccine inclusion. Herein we describe the generation of a bioconjugate vaccine targeting seven of the predominant O-antigen subtypes in K. pneumoniae. Each of the seven bioconjugates were immunogenic in isolation, with limited cross-reactivity among subtypes. Vaccine-induced antibodies demonstrated varying degrees of binding to a wide variety of K. pneumoniae strains, including suspected hypervirulent strains, all expressing different O-antigen and capsular polysaccharide combinations. Further, sera from vaccinated mice induced complement-mediated killing of many of these K. pneumoniae strains. Finally, we found that increased quantity of capsule interferes with O-antigen antibodies' ability to bind and mediate killing of some K. pneumoniae strains, including those carrying hypervirulence-associated genes. Taken together, these data indicate that this novel heptavalent O-antigen bioconjugate vaccine formulation exhibits promising efficacy against some, but not all, K. pneumoniae isolates.
Collapse
Affiliation(s)
- Paeton L Wantuch
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | - Evgeny Vinogradov
- National Research Council Canada, Human Health Therapeutics Centre, Ottawa, ON K1A 0R6, Canada
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - David A Rosen
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110. USA
| |
Collapse
|
43
|
Mendes G, Santos ML, Ramalho JF, Duarte A, Caneiras C. Virulence factors in carbapenem-resistant hypervirulent Klebsiella pneumoniae. Front Microbiol 2023; 14:1325077. [PMID: 38098668 PMCID: PMC10720631 DOI: 10.3389/fmicb.2023.1325077] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Hypervirulence and carbapenem-resistant have emerged as two distinct evolutionary pathotypes of Klebsiella pneumoniae, with both reaching their epidemic success and posing a great threat to public health. However, as the boundaries separating these two pathotypes fade, we assist a worrisome convergence in certain high-risk clones, causing hospital outbreaks and challenging every therapeutic option available. To better understand the basic biology of these pathogens, this review aimed to describe the virulence factors and their distribution worldwide among carbapenem-resistant highly virulent or hypervirulent K. pneumoniae strains, as well as to understand the interplay of these virulence strains with the carbapenemase produced and the sequence type of such strains. As we witness a shift in healthcare settings where carbapenem-resistant highly virulent or hypervirulent K. pneumoniae are beginning to emerge and replace classical K. pneumoniae strains, a better understanding of these strains is urgently needed for immediate and appropriate response.
Collapse
Affiliation(s)
- Gabriel Mendes
- Microbiology Research Laboratory on Environmental Health, Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Leonor Santos
- Microbiology Research Laboratory on Environmental Health, Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - João F. Ramalho
- Microbiology Research Laboratory on Environmental Health, Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Aida Duarte
- Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Almada, Portugal
| | - Cátia Caneiras
- Microbiology Research Laboratory on Environmental Health, Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Almada, Portugal
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
44
|
Arcari G, Cecilia F, Oliva A, Polani R, Raponi G, Sacco F, De Francesco A, Pugliese F, Carattoli A. Genotypic Evolution of Klebsiella pneumoniae Sequence Type 512 during Ceftazidime/Avibactam, Meropenem/Vaborbactam, and Cefiderocol Treatment, Italy. Emerg Infect Dis 2023; 29:2266-2274. [PMID: 37877547 PMCID: PMC10617348 DOI: 10.3201/eid2911.230921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
In February 2022, a critically ill patient colonized with a carbapenem-resistant K. pneumoniae producing KPC-3 and VIM-1 carbapenemases was hospitalized for SARS-CoV-2 in the intensive care unit of Policlinico Umberto I hospital in Rome, Italy. During 95 days of hospitalization, ceftazidime/avibactam, meropenem/vaborbactam, and cefiderocol were administered consecutively to treat 3 respiratory tract infections sustained by different bacterial agents. Those therapies altered the resistome of K. pneumoniae sequence type 512 colonizing or infecting the patient during the hospitalization period. In vivo evolution of the K. pneumoniae sequence type 512 resistome occurred through plasmid loss, outer membrane porin alteration, and a nonsense mutation in the cirA siderophore gene, resulting in high levels of cefiderocol resistance. Cross-selection can occur between K. pneumoniae and treatments prescribed for other infective agents. K. pneumoniae can stably colonize a patient, and antimicrobial-selective pressure can promote progressive K. pneumoniae resistome evolution, indicating a substantial public health threat.
Collapse
|
45
|
Maciejewska B, Squeglia F, Latka A, Privitera M, Olejniczak S, Switala P, Ruggiero A, Marasco D, Kramarska E, Drulis-Kawa Z, Berisio R. Klebsiella phage KP34gp57 capsular depolymerase structure and function: from a serendipitous finding to the design of active mini-enzymes against K. pneumoniae. mBio 2023; 14:e0132923. [PMID: 37707438 PMCID: PMC10653864 DOI: 10.1128/mbio.01329-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/19/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE In this work, we determined the structure of Klebsiella phage KP34p57 capsular depolymerase and dissected the role of individual domains in trimerization and functional activity. The crystal structure serendipitously revealed that the enzyme can exist in a monomeric state once deprived of its C-terminal domain. Based on the crystal structure and site-directed mutagenesis, we localized the key catalytic residues in an intra-subunit deep groove. Consistently, we show that C-terminally trimmed KP34p57 variants are monomeric, stable, and fully active. The elaboration of monomeric, fully active phage depolymerases is innovative in the field, as no previous example exists. Indeed, mini phage depolymerases can be combined in chimeric enzymes to extend their activity ranges, allowing their use against multiple serotypes.
Collapse
Affiliation(s)
- Barbara Maciejewska
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| | - Agnieszka Latka
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Mario Privitera
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| | - Sebastian Olejniczak
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Paulina Switala
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | | | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| |
Collapse
|
46
|
Khadka S, Ring BE, Walker RS, Krzeminski LR, Pariseau DA, Hathaway M, Mobley HLT, Mike LA. Urine-mediated suppression of Klebsiella pneumoniae mucoidy is counteracted by spontaneous Wzc variants altering capsule chain length. mSphere 2023; 8:e0028823. [PMID: 37610214 PMCID: PMC10597399 DOI: 10.1128/msphere.00288-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 08/24/2023] Open
Abstract
Klebsiella pneumoniae is a hospital-associated pathogen primarily causing urinary tract infections (UTIs), pneumonia, and septicemia. Two challenging lineages include the hypervirulent strains, causing invasive community-acquired infections, and the carbapenem-resistant classical strains, most frequently isolated from UTIs. While hypervirulent strains are often characterized by a hypermucoid phenotype, classical strains usually present with low mucoidy. Since clinical UTI isolates tend to exhibit limited mucoidy, we hypothesized that environmental conditions may drive K. pneumoniae adaptation to the urinary tract and select against mucoid isolates. We found that both hypervirulent K. pneumoniae and classical Klebsiella UTI isolates significantly suppressed mucoidy when cultured in urine without reducing capsule abundance. A genetic screen identified secondary mutations in the wzc tyrosine kinase that overcome urine-suppressed mucoidy. Over-expressing Wzc variants in trans was sufficient to boost mucoidy in both hypervirulent and classical Klebsiella UTI isolates. Wzc is a bacterial tyrosine kinase that regulates capsule polymerization and extrusion. Although some Wzc variants reduced Wzc phospho-status, urine did not alter Wzc phospho-status. Urine does, however, increase K. pneumoniae capsule chain length diversity and enhance cell-surface attachment. The identified Wzc variants counteract urine-mediated effects on capsule chain length and cell attachment. Combined, these data indicate that capsule chain length correlates with K. pneumoniae mucoidy and that this extracellular feature can be fine-tuned by spontaneous Wzc mutations, which alter host interactions. Spontaneous Wzc mutation represents a global mechanism that could fine-tune K. pneumoniae niche-specific fitness in both classical and hypervirulent isolates. IMPORTANCE Klebsiella pneumoniae is high-priority pathogen causing both hospital-associated infections, such as urinary tract infections, and community-acquired infections. Clinical isolates from community-acquired infection are often characterized by a tacky, hypermucoid phenotype, while urinary tract isolates are usually not mucoid. Historically, mucoidy was attributed to capsule overproduction; however, recent reports have demonstrated that K. pneumoniae capsule abundance and mucoidy are not always correlated. Here, we report that human urine suppresses K. pneumoniae mucoidy, diversifies capsule polysaccharide chain length, and increases cell surface association. Moreover, specific mutations in the capsule biosynthesis gene, wzc, are sufficient to overcome urine-mediated suppression of mucoidy. These Wzc variants cause constitutive production of more uniform capsular polysaccharide chains and increased release of capsule from the cell surface, even in urine. These data demonstrate that K. pneumoniae regulates capsule chain length and cell surface attachment in response host cues, which can alter bacteria-host interactions.
Collapse
Affiliation(s)
- Saroj Khadka
- Medical Microbiology and Immunology, University of Toledo , Toledo, Ohio, USA
| | - Brooke E Ring
- Medical Microbiology and Immunology, University of Toledo , Toledo, Ohio, USA
| | - Ryan S Walker
- Microbiology and Immunology, University of Michigan , Ann Arbor, Michigan, USA
| | | | - Drew A Pariseau
- Medical Microbiology and Immunology, University of Toledo , Toledo, Ohio, USA
| | - Matthew Hathaway
- Medical Microbiology and Immunology, University of Toledo , Toledo, Ohio, USA
| | - Harry L T Mobley
- Microbiology and Immunology, University of Michigan , Ann Arbor, Michigan, USA
| | - Laura A Mike
- Medical Microbiology and Immunology, University of Toledo , Toledo, Ohio, USA
| |
Collapse
|
47
|
Cai R, Ren Z, Zhao R, Lu Y, Wang X, Guo Z, Song J, Xiang W, Du R, Zhang X, Han W, Ru H, Gu J. Structural biology and functional features of phage-derived depolymerase Depo32 on Klebsiella pneumoniae with K2 serotype capsular polysaccharides. Microbiol Spectr 2023; 11:e0530422. [PMID: 37750730 PMCID: PMC10581125 DOI: 10.1128/spectrum.05304-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 08/03/2023] [Indexed: 09/27/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae with capsular polysaccharides (CPSs) causes severe nosocomial- and community-acquired infections. Phage-derived depolymerases can degrade CPSs from K. pneumoniae to attenuate bacterial virulence, but their antimicrobial mechanisms and clinical potential are not well understood. In the present study, Klebsiella phage GH-K3-derived depolymerase Depo32 (encoded by gene gp32) was identified to exhibit high efficiency in specifically degrading the CPSs of K2 serotype K. pneumoniae. The cryo-electron microscopy structure of trimeric Depo32 at a resolution up to 2.32 Å revealed potential catalytic centers in the cleft of each of the two adjacent subunits. K. pneumoniae subjected to Depo32 became more sensitive to phagocytosis by RAW264.7 cells and activated the cells by the mitogen-activated protein kinase signaling pathway. In addition, intranasal inoculation with Depo32 (a single dose of 200 µg, 20 µg daily for 3 days, or in combination with gentamicin) rescued all C57BL/6J mice infected with a lethal dose of K. pneumoniae K7 without interference from its neutralizing antibody. In summary, this work elaborates on the mechanism by which Depo32 targets the degradation of K2 serotype CPSs and its potential as an antivirulence agent. IMPORTANCE Depolymerases specific to more than 20 serotypes of Klebsiella spp. have been identified, but most studies only evaluated the single-dose treatment of depolymerases with relatively simple clinical evaluation indices and did not reveal the anti-infection mechanism of these depolymerases in depth. On the basis of determining the biological characteristics, the structure of Depo32 was analyzed by cryo-electron microscopy, and the potential active center was further identified. In addition, the effects of Depo32 on macrophage phagocytosis, signaling pathway activation, and serum killing were revealed, and the efficacy of the depolymerase (single treatment, multiple treatments, or in combination with gentamicin) against acute pneumonia caused by Klebsiella pneumoniae was evaluated. Moreover, the roles of the active sites of Depo32 were also elucidated in the in vitro and in vivo studies. Therefore, through structural biology, cell biology, and in vivo experiments, this study demonstrated the mechanism by which Depo32 targets K2 serotype K. pneumoniae infection.
Collapse
Affiliation(s)
- Ruopeng Cai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhuolu Ren
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rihong Zhao
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yan Lu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xinwu Wang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Changchun, Jilin, China
| | - Zhimin Guo
- Infectious Diseases and Pathogen Biology Center, Clinical Laboratory Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jinming Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Wentao Xiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Rui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiaokang Zhang
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Inter disciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Heng Ru
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingmin Gu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
48
|
Ikhimiukor OO, Souza SSR, Akintayo IJ, Marcovici MM, Workman A, Martin IW, Andam CP. Phylogenetic lineages and antimicrobial resistance determinants of clinical Klebsiella oxytoca spanning local to global scales. Microbiol Spectr 2023; 11:e0054923. [PMID: 37676032 PMCID: PMC10581156 DOI: 10.1128/spectrum.00549-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023] Open
Abstract
Klebsiella oxytoca is an opportunistic pathogen causing serious nosocomial infections. Knowledge about the population structure and diversity of healthcare-associated K. oxytoca from a genomic standpoint remains limited. Here, we characterized the phylogenetic relationships and genomic characteristics of 20 K. oxytoca sensu stricto isolates recovered from bloodstream infections at the Dartmouth-Hitchcock Medical Center, New Hampshire, USA from 2017 to 2021. Results revealed a diverse population consisting of 15 sequence types (STs) that together harbored 10 variants of the intrinsic beta-lactamase gene bla OXY-2, conferring resistance to penicillins. Similar sets of antimicrobial resistance (AMR) determinants reside in multiple distinct lineages, with no one lineage dominating the local population. To place the New Hampshire K. oxytoca in a broader context, we compared them to 304 publicly available genomes of clinical isolates from 18 countries. This global clinical K. oxytoca sensu stricto population is represented by over 65 STs that together harbored resistance genes against 14 antimicrobial classes, including eight bla OXY-2 variants. Three dominant STs in the global population (ST2, ST176, ST199) circulate across multiple countries and were also present in the New Hampshire population. The global K. oxytoca population is genetically diverse, but there is evidence for broad dissemination of a few lineages carrying distinct set of AMR determinants. Our findings reveal the clinical diversity of K. oxytoca sensu stricto and its importance in surveillance efforts aimed at monitoring the evolution of this drug-resistant nosocomial pathogen. IMPORTANCE The opportunistic pathogen Klebsiella oxytoca has been increasingly implicated in patient morbidity and mortality worldwide, including several outbreaks in healthcare settings. The emergence and spread of antimicrobial resistant strains exacerbate the disease burden caused by this species. Our study showed that clinical K. oxytoca sensu stricto is phylogenetically diverse, harboring various antimicrobial resistance determinants and bla OXY-2 variants. Understanding the genomic and population structure of K. oxytoca is important for international initiatives and local epidemiological efforts for surveillance and control of drug-resistant K. oxytoca.
Collapse
Affiliation(s)
- Odion O. Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Stephanie S. R. Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Ifeoluwa J. Akintayo
- Institute for Infection Prevention and Hospital Epidemiology, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Michael M. Marcovici
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Adrienne Workman
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Isabella W. Martin
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
49
|
Lourenço M, Osbelt L, Passet V, Gravey F, Megrian D, Strowig T, Rodrigues C, Brisse S. Phages against Noncapsulated Klebsiella pneumoniae: Broader Host range, Slower Resistance. Microbiol Spectr 2023; 11:e0481222. [PMID: 37338376 PMCID: PMC10433977 DOI: 10.1128/spectrum.04812-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/23/2023] [Indexed: 06/21/2023] Open
Abstract
Klebsiella pneumoniae (Kp), a human gut colonizer and opportunistic pathogen, is a major contributor to the global burden of antimicrobial resistance. Virulent bacteriophages represent promising agents for decolonization and therapy. However, the majority of anti-Kp phages that have been isolated thus far are highly specific to unique capsular types (anti-K phages), which is a major limitation to phage therapy prospects due to the highly polymorphic capsule of Kp. Here, we report on an original anti-Kp phage isolation strategy, using capsule-deficient Kp mutants as hosts (anti-Kd phages). We show that anti-Kd phages have a broad host range, as the majority are able to infect noncapsulated mutants of multiple genetic sublineages and O-types. Additionally, anti-Kd phages induce a lower rate of resistance emergence in vitro and provide increased killing efficiency when in combination with anti-K phages. In vivo, anti-Kd phages are able to replicate in mouse guts colonized with a capsulated Kp strain, suggesting the presence of noncapsulated Kp subpopulations. The original strategy proposed here represents a promising avenue that circumvents the Kp capsule host restriction barrier, offering promise for therapeutic development. IMPORTANCE Klebsiella pneumoniae (Kp) is an ecologically generalist bacterium as well as an opportunistic pathogen that is responsible for hospital-acquired infections and a major contributor to the global burden of antimicrobial resistance. In the last decades, limited advances have been made in the use of virulent phages as alternatives or complements to antibiotics that are used to treat Kp infections. This work demonstrates the potential value of an anti-Klebsiella phage isolation strategy that addresses the issue of the narrow host range of anti-K phages. Anti-Kd phages may be active in infection sites in which capsule expression is intermittent or repressed or in combination with anti-K phages, which often induce the loss of capsule in escape mutants.
Collapse
Affiliation(s)
- Marta Lourenço
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Lisa Osbelt
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Virginie Passet
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - François Gravey
- Dynamycure Inserm UM1311 Normandie Univ, UNICAEN, UNIROUEN, Caen, France
| | - Daniela Megrian
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Carla Rodrigues
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| |
Collapse
|
50
|
Jati AP, Sola-Campoy PJ, Bosch T, Schouls LM, Hendrickx APA, Bautista V, Lara N, Raangs E, Aracil B, Rossen JWA, Friedrich AW, Navarro Riaza AM, Cañada-García JE, Ramírez de Arellano E, Oteo-Iglesias J, Pérez-Vázquez M, García-Cobos S. Widespread Detection of Yersiniabactin Gene Cluster and Its Encoding Integrative Conjugative Elements (ICE Kp) among Nonoutbreak OXA-48-Producing Klebsiella pneumoniae Clinical Isolates from Spain and the Netherlands. Microbiol Spectr 2023; 11:e0471622. [PMID: 37310221 PMCID: PMC10434048 DOI: 10.1128/spectrum.04716-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
In this study, we determined the presence of virulence factors in nonoutbreak, high-risk clones and other isolates belonging to less common sequence types associated with the spread of OXA-48-producing Klebsiella pneumoniae clinical isolates from The Netherlands (n = 61) and Spain (n = 53). Most isolates shared a chromosomally encoded core of virulence factors, including the enterobactin gene cluster, fimbrial fim and mrk gene clusters, and urea metabolism genes (ureAD). We observed a high diversity of K-Locus and K/O loci combinations, KL17 and KL24 (both 16%), and the O1/O2v1 locus (51%) being the most prevalent in our study. The most prevalent accessory virulence factor was the yersiniabactin gene cluster (66.7%). We found seven yersiniabactin lineages-ybt 9, ybt 10, ybt 13, ybt 14, ybt 16, ybt 17, and ybt 27-which were chromosomally embedded in seven integrative conjugative elements (ICEKp): ICEKp3, ICEKp4, ICEKp2, ICEKp5, ICEKp12, ICEKp10, and ICEKp22, respectively. Multidrug-resistant lineages-ST11, ST101, and ST405-were associated with ybt 10/ICEKp4, ybt 9/ICEKp3, and ybt 27/ICEKp22, respectively. The fimbrial adhesin kpi operon (kpiABCDEFG) was predominant among ST14, ST15, and ST405 isolates, as well as the ferric uptake system kfuABC, which was also predominant among ST101 isolates. No convergence of hypervirulence and resistance was observed in this collection of OXA-48-producing K. pneumoniae clinical isolates. Nevertheless, two isolates, ST133 and ST792, were positive for the genotoxin colibactin gene cluster (ICEKp10). In this study, the integrative conjugative element, ICEKp, was the major vehicle for yersiniabactin and colibactin gene clusters spreading. IMPORTANCE Convergence of multidrug resistance and hypervirulence in Klebsiella pneumoniae isolates has been reported mostly related to sporadic cases or small outbreaks. Nevertheless, little is known about the real prevalence of carbapenem-resistant hypervirulent K. pneumoniae since these two phenomena are often separately studied. In this study, we gathered information on the virulent content of nonoutbreak, high-risk clones (i.e., ST11, ST15, and ST405) and other less common STs associated with the spread of OXA-48-producing K. pneumoniae clinical isolates. The study of virulence content in nonoutbreak isolates can help us to expand information on the genomic landscape of virulence factors in K. pneumoniae population by identifying virulence markers and their mechanisms of spread. Surveillance should focus not only on antimicrobial resistance but also on virulence characteristics to avoid the spread of multidrug and (hyper)virulent K. pneumoniae that may cause untreatable and more severe infections.
Collapse
Affiliation(s)
- Afif P. Jati
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Indonesian Society of Bioinformatics and Biodiversity, Indonesia
| | - Pedro J. Sola-Campoy
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Thijs Bosch
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Leo M. Schouls
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Antoni P. A. Hendrickx
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Verónica Bautista
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Noelia Lara
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Erwin Raangs
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Belén Aracil
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - John W. A. Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Laboratory of Medical Microbiology and Infectious Diseases, Isala Hospital, Zwolle, The Netherlands
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alex W. Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- University Hospital Münster, Institute of European Prevention Networks in Infection Control, Münster, Germany
| | - Ana M. Navarro Riaza
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Javier E. Cañada-García
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Eva Ramírez de Arellano
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia García-Cobos
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - The Dutch and Spanish Collaborative Working Groups on Surveillance on Carbapenemase-Producing Enterobacterales
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Indonesian Society of Bioinformatics and Biodiversity, Indonesia
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Medical Microbiology and Infectious Diseases, Isala Hospital, Zwolle, The Netherlands
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- University Hospital Münster, Institute of European Prevention Networks in Infection Control, Münster, Germany
| |
Collapse
|