1
|
Rubio J, Yan J, Miller S, Cheng J, Li R, Builta Z, Aoyagi K, Fisher M, She R, Spellberg B, Luna B. Polymyxins retain in vitro activity and in vivo efficacy against "resistant" Acinetobacter baumannii strains when tested in physiological conditions. Antimicrob Agents Chemother 2024; 68:e0072524. [PMID: 39240097 PMCID: PMC11459914 DOI: 10.1128/aac.00725-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024] Open
Abstract
The emergence of plasmid-mediated resistance threatens the efficacy of polymyxins as the last line of defense against pan-drug-resistant infections. However, we have found that using Mueller-Hinton II (MHII), the standard minimum inhibitory concentration (MIC) medium, results in MIC data that are disconnected from in vivo treatment outcomes. We found that culturing putative colistin-resistant Acinetobacter baumannii clinical isolates, as defined by MICs of >2 mg/L in standard MHII testing conditions, in bicarbonate-containing media reduced MICs to the susceptible range by preventing colistin resistance-conferring lipopolysaccharide modifications from occurring. Furthermore, the lower MICs in bicarbonate-containing media accurately predicted in vivo efficacy of a human-simulated dosing strategy of colistin and polymyxin B in a lethal murine infection model for some polymyxin-resistant A. baumannii strains. Thus, current polymyxin susceptibility testing methods overestimate the contribution of polymyxin resistance-conferring mutations and incorrectly predict antibiotic activity in vivo. Polymyxins may remain a viable therapeutic option against Acinetobacter baumannii strains heretofore determined to be "pan-resistant."
Collapse
Affiliation(s)
- Jennifer Rubio
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Jun Yan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Sarah Miller
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Jiaqi Cheng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Rachel Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Zac Builta
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Kari Aoyagi
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Mark Fisher
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Rosemary She
- Department of Pathology, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Brad Spellberg
- Los Angeles General Medical Center, Los Angeles, California, USA
| | - Brian Luna
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of USC, Los Angeles, California, USA
| |
Collapse
|
2
|
Berryman MA, Ilonen J, Triplett EW, Ludvigsson J. Functional metagenomic analysis reveals potential inflammatory triggers associated with genetic risk for autoimmune disease. J Autoimmun 2024; 148:103290. [PMID: 39033688 DOI: 10.1016/j.jaut.2024.103290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/28/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
To assess functional differences between the microbiomes of individuals with autoimmune risk-associated human leukocyte antigen (HLA) genetics and autoimmune protection-associated HLA, we performed a metagenomic analysis of stool samples from 72 infants in the All Babies in Southeast Sweden general-population cohort and assessed haplotype-peptide binding affinities. Infants with risk-associated HLA DR3-DQ2.5 and DR4-DQ8 had a higher abundance of known pathogen-associated molecular patterns and virulence related genes than infants with protection-associated HLA DR15-DQ6.2. However, there was limited overlap in the type of inflammatory trigger between risk groups. Supported by a high Firmicutes/Bacteroides ratio and differentially abundant flagellated species, genes related to the synthesis of flagella were prominent in those with HLA DR3-DQ2.5. However, this haplotype had a significantly lower likelihood of binding affinity to flagellin peptides. O-antigen biosynthesis genes were significantly correlated with the risk genotypes and absent from protective genotype association, supported by the differential abundance of gram-negative bacteria seen in the risk-associated groups. Genes related to vitamin B biosynthesis stood out in higher abundance in infants with HLA DR3-DQ2.5/DR4-DQ8 heterozygosity compared to those with autoimmune-protective genetics. Prevotella species and genus were significantly abundant in all infant groups with high risk for autoimmune disease. The potential inflammatory triggers associated with genetic risk for autoimmunity have significant implications. These results suggest that certain HLA haplotypes may be creating the opportunity for dysbiosis and subsequent inflammation early in life by clearing beneficial microbes or not clearing proinflammatory microbes. This HLA gatekeeping may prevent genetically at-risk individuals from benefiting from probiotic therapies by restricting the colonization of those beneficial bacteria.
Collapse
Affiliation(s)
- Meghan A Berryman
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eric W Triplett
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
| | - Johnny Ludvigsson
- Crown Princess Victoria's Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Mlynek KD, Toothman RG, Martinez EE, Qiu J, Richardson JB, Bozue JA. Mutation of wbtJ, a N-formyltransferase involved in O-antigen synthesis, results in biofilm formation, phase variation and attenuation in Francisella tularensis. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001437. [PMID: 38421161 PMCID: PMC10924466 DOI: 10.1099/mic.0.001437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Two clinically important subspecies, Francisella tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B) are responsible for most tularaemia cases, but these isolates typically form a weak biofilm under in vitro conditions. Phase variation of the F. tularensis lipopolysaccharide (LPS) has been reported in these subspecies, but the role of variation is unclear as LPS is crucial for virulence. We previously demonstrated that a subpopulation of LPS variants can constitutively form a robust biofilm in vitro, but it is unclear whether virulence was affected. In this study, we show that biofilm-forming variants of both fully virulent F. tularensis subspecies were highly attenuated in the murine tularaemia model by multiple challenge routes. Genomic sequencing was performed on these strains, which revealed that all biofilm-forming variants contained a lesion within the wbtJ gene, a formyltransferase involved in O-antigen synthesis. A ΔwbtJ deletion mutant recapitulated the biofilm, O-antigen and virulence phenotypes observed in natural variants and could be rescued through complementation with a functional wbtJ gene. Since the spontaneously derived biofilm-forming isolates in this study were a subpopulation of natural variants, reversion events to the wbtJ gene were detected that eliminated the phenotypes associated with biofilm variants and restored virulence. These results demonstrate a role for WbtJ in biofilm formation, LPS variation and virulence of F. tularensis.
Collapse
Affiliation(s)
- Kevin D. Mlynek
- Bacteriology Division, US ARMY Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Ronald G. Toothman
- Bacteriology Division, US ARMY Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Elsie E. Martinez
- Bacteriology Division, US ARMY Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Ju Qiu
- Regulated Research Administration Division, USAMRIID, Frederick, MD, USA
| | | | - Joel A. Bozue
- Bacteriology Division, US ARMY Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| |
Collapse
|
4
|
Mathew B, Aoyagi KL, Fisher MA. Antibacterial activity of Xenopsylla cheopis attacins against Yersinia pestis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554949. [PMID: 38469151 PMCID: PMC10926665 DOI: 10.1101/2023.08.26.554949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Antimicrobial peptide resistance has been proposed to play a major role in the flea-borne transmission of Yersinia pestis . However, the antimicrobial peptide response in fleas and their interaction with Y. pestis is largely unknown. Attacins are one of the most abundantly expressed antimicrobial peptides within the first hours after Y. pestis infection of Xenopsylla cheopis , a major vector of plague. In this study, we report the cloning, expression, and purification of two X. cheopis attacin peptides and describe their interactions with and antimicrobial activities against Y. pestis . These flea attacins were shown to bind lipopolysaccharides and have potent activity against Y. pestis , however the mechanism of killing does not involve extensive membrane damage. Treatment with attacins rapidly inhibits Y. pestis colony formation and results in oxidative stress, yet live-cell imaging revealed that bacteria continue to grow and divide for several hours in the presence of attacins before undergoing morphological changes and subsequent lysis. This data provides insights into an early battle between vector and pathogen that may impact transmission of one of the most virulent diseases known to man.
Collapse
|
5
|
Aoyagi KL, Mathew B, Fisher MA. Enterobacterial common antigen biosynthesis in Yersinia pestis is tied to antimicrobial peptide resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554945. [PMID: 37662240 PMCID: PMC10473683 DOI: 10.1101/2023.08.26.554945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Resistance to antimicrobial peptides (AMPs) plays an important role in allowing Yersinia pestis to maintain a successful infection in the flea vector Xenopsylla cheopis . Mutants that are unable to modify lipid A in their outer membrane with aminoarabinose (Ara4N), showed increased sensitivity to AMPs such as polymyxin B (PB), as well as decreased survival in fleas. A deletion mutant of wecE , a gene involved in biosynthesis of enterobacterial common antigen (ECA), also displayed hypersusceptibility to PB in vitro. Additional mutants in the ECA biosynthetic pathway were generated, some designed to cause accumulation of intermediate products that sequester undecaprenyl phosphate (Und-P), a lipid carrier that is also used in numerous other pathways, including for peptidoglycan, O-antigen, and Ara4N biosynthesis. Mutants that accumulate Und-PP-linked intermediates (ECA-lipid II) showed increased susceptibility to PB, reduced Ara4N-modified lipid A, altered cell morphology, and decreased ability to maintain flea infections. These effects are consistent with a model where Y. pestis has a sufficiently limited free Und-P pool such that sequestration of Und-P as ECA-lipid II prevents adequate Ara4N biosynthesis, ultimately resulting in AMP hypersusceptibility.
Collapse
|
6
|
Laukaitis HJ, Cooper TT, Suwanbongkot C, Verhoeve VI, Kurtti TJ, Munderloh UG, Macaluso KR. Transposon mutagenesis of Rickettsia felis sca1 confers a distinct phenotype during flea infection. PLoS Pathog 2022; 18:e1011045. [PMID: 36542675 DOI: 10.1371/journal.ppat.1011045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/05/2023] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Since its recognition in 1994 as the causative agent of human flea-borne spotted fever, Rickettsia felis, has been detected worldwide in over 40 different arthropod species. The cat flea, Ctenocephalides felis, is a well-described biological vector of R. felis. Unique to insect-borne rickettsiae, R. felis can employ multiple routes of infection including inoculation via salivary secretions and potentially infectious flea feces into the skin of vertebrate hosts. Yet, little is known of the molecular interactions governing flea infection and subsequent transmission of R. felis. While the obligate intracellular nature of rickettsiae has hampered the function of large-scale mutagenesis strategies, studies have shown the efficiency of mariner-based transposon systems in Rickettsiales. Thus, this study aimed to assess R. felis genetic mutants in a flea transmission model to elucidate genes involved in vector infection. A Himar1 transposase was used to generate R. felis transformants, in which subsequent genome sequencing revealed a transposon insertion near the 3' end of sca1. Alterations in sca1 expression resulted in unique infection phenotypes. While the R. felis sca1::tn mutant portrayed enhanced growth kinetics compared to R. felis wild-type during in vitro culture, rickettsial loads were significantly reduced during flea infection. As a consequence of decreased rickettsial loads within infected donor fleas, R. felis sca1::tn exhibited limited transmission potential. Thus, the use of a biologically relevant model provides evidence of a defective phenotype associated with R. felis sca1::tn during flea infection.
Collapse
Affiliation(s)
- Hanna J Laukaitis
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Triston T Cooper
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Chanakan Suwanbongkot
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Victoria I Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Timothy J Kurtti
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Ulrike G Munderloh
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Kevin R Macaluso
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| |
Collapse
|
7
|
Miller BW, Lim AL, Lin Z, Bailey J, Aoyagi KL, Fisher MA, Barrows LR, Manoil C, Schmidt EW, Haygood MG. Shipworm symbiosis ecology-guided discovery of an antibiotic that kills colistin-resistant Acinetobacter. Cell Chem Biol 2021; 28:1628-1637.e4. [PMID: 34146491 PMCID: PMC8605984 DOI: 10.1016/j.chembiol.2021.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023]
Abstract
Teredinibacter turnerae is an intracellular bacterial symbiont in the gills of wood-eating shipworms, where it is proposed to use antibiotics to defend itself and its animal host. Several biosynthetic gene clusters are conserved in T. turnerae and their host shipworms around the world, implying that they encode defensive compounds. Here, we describe turnercyclamycins, lipopeptide antibiotics encoded in the genomes of all sequenced T. turnerae strains. Turnercyclamycins are bactericidal against challenging Gram-negative pathogens, including colistin-resistant Acinetobacter baumannii. Phenotypic screening identified the outer membrane as the likely target. Turnercyclamycins and colistin operate by similar cellular, although not necessarily molecular, mechanisms, but turnercyclamycins kill colistin-resistant A. baumannii, potentially filling an urgent clinical need. Thus, by exploring environments that select for the properties we require, we harvested the fruits of evolution to discover compounds with potential to target unmet health needs. Investigating the symbionts of shipworms is a powerful example of this principle.
Collapse
Affiliation(s)
- Bailey W Miller
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA
| | - Albebson L Lim
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA
| | - Jeannie Bailey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kari L Aoyagi
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark A Fisher
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, UT 84112, USA
| | - Louis R Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Colin Manoil
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA.
| | - Margo G Haygood
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA.
| |
Collapse
|
8
|
Lipopolysaccharide of the Yersinia pseudotuberculosis Complex. Biomolecules 2021; 11:biom11101410. [PMID: 34680043 PMCID: PMC8533242 DOI: 10.3390/biom11101410] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Lipopolysaccharide (LPS), localized in the outer leaflet of the outer membrane, serves as the major surface component of the Gram-negative bacterial cell envelope responsible for the activation of the host's innate immune system. Variations of the LPS structure utilized by Gram-negative bacteria promote survival by providing resistance to components of the innate immune system and preventing recognition by TLR4. This review summarizes studies of the biosynthesis of Yersinia pseudotuberculosis complex LPSs, and the roles of their structural components in molecular mechanisms of yersiniae pathogenesis and immunogenesis.
Collapse
|
9
|
Mathew B, Aoyagi KL, Fisher MA. Yersinia pestis Lipopolysaccharide Remodeling Confers Resistance to a Xenopsylla cheopis Cecropin. ACS Infect Dis 2021; 7:2536-2545. [PMID: 34319069 DOI: 10.1021/acsinfecdis.1c00275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fleas are major vectors of Yersinia pestis, the causative agent of plague. It has been proposed that Y. pestis has developed the ability to overcome the innate immune responses of fleas. Despite the fact that they transmit a number of bacterial infections, very little is known about the immune responses in fleas. In this study, we describe the antimicrobial activities of a cecropin from Xenopsylla cheopis (cheopin), an efficient vector for Y. pestis in the wild. This is the first cecropin-class antimicrobial peptide described from Siphonaptera insects. Cheopin showed potent activity against Gram-negative bacteria but little activity against wild-type Y. pestis KIM6+. Deletion of the aminoarabinose operon, which is responsible for the 4-amino-4-deoxy-l-arabinose (Ara4N) modification of LPS, rendered Y. pestis highly susceptible to cheopin. Confocal microscopy and whole cell binding assays indicated that Ara4N modification reduces the affinity of cheopin for Y. pestis. Further, cheopin only permeabilized bacterial membranes in the absence of Ara4N-modified LPS, which was correlated with bacterial killing. This study provides insights into innate immunity of the flea and evidence for the crucial role of Ara4N modification of Y. pestis LPS in conferring resistance against flea antimicrobial peptides.
Collapse
Affiliation(s)
- Basil Mathew
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kari L. Aoyagi
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Mark A. Fisher
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, United States
- ARUP Laboratories, Salt Lake City, Utah 84112, United States
| |
Collapse
|
10
|
Abstract
Spikes in rickettsioses occur as deforestation, urbanization, and homelessness increase human exposure to blood-feeding arthropods. Still, effective Rickettsia vaccines remain elusive. Species of Rickettsia (Alphaproteobacteria: Rickettsiales) are obligate intracellular parasites of a wide range of eukaryotes, with recognized arthropod-borne human pathogens belonging to the transitional group (TRG), typhus group (TG), and spotted fever group (SFG) rickettsiae. Growing in the host cytosol, rickettsiae pilfer numerous metabolites to make a typical Gram-negative bacterial cell envelope. The O-antigen of rickettsial lipopolysaccharide (LPS) is immunogenic and has been shown to tether the S-layer to the rickettsial surface; however, little is known about the structure and immunogenicity of the Rickettsia lipid A moiety. The structure of lipid A, the membrane anchor of LPS, affects the ability of this molecule to interact with components of the host innate immune system, specifically the MD-2/TLR4 receptor complex. To dissect the host responses that can occur during Rickettsia in vitro and in vivo infection, structural analysis of Rickettsia lipid A is needed. Lipid A was extracted from four Rickettsia species and structurally analyzed. R. akari (TRG), R. typhi (TG), and R. montanensis (SFG) produced a similar structure, whereas R. rickettsii (SFG) altered the length of a secondary acyl group. While all structures have longer acyl chains than known highly inflammatory hexa-acylated lipid A structures, the R. rickettsii modification should differentially alter interactions with the hydrophobic internal pocket in MD2. The significance of these characteristics toward inflammatory potential as well as membrane dynamics between arthropod and vertebrate cellular environments warrants further investigation. Our work adds lipid A to the secretome and O-antigen as variable factors possibly correlating with phenotypically diverse rickettsioses. IMPORTANCE Spikes in rickettsioses occur as deforestation, urbanization, and homelessness increase human exposure to blood-feeding arthropods. Still, effective Rickettsia vaccines remain elusive. Recent studies have determined that Rickettsia lipopolysaccharide anchors the protective S-layer to the bacterial surface and elicits bactericidal antibodies. Furthermore, growing immunological evidence suggests vertebrate sensors (MD-2/TLR4 and noncanonical inflammasome) typically triggered by the lipid A portion of lipopolysaccharide are activated during Rickettsia infection. However, the immunopotency of Rickettsia lipid A is unknown due to poor appreciation for its structure. We determined lipid A structures for four distinct rickettsiae, revealing longer acyl chains relative to highly inflammatory bacterial lipid A. Surprisingly, lipid A of the Rocky Mountain spotted fever agent deviates in structure from other rickettsiae. Thus, lipid A divergence may contribute to variable disease phenotypes, sounding an alarm for determining its immunopotency and possible utility (i.e., as an adjuvant or anti-inflammatory) for development of more prudent rickettsiacidal therapies.
Collapse
|
11
|
Hinnebusch BJ, Jarrett CO, Bland DM. Molecular and Genetic Mechanisms That Mediate Transmission of Yersinia pestis by Fleas. Biomolecules 2021; 11:210. [PMID: 33546271 PMCID: PMC7913351 DOI: 10.3390/biom11020210] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
The ability to cause plague in mammals represents only half of the life history of Yersinia pestis. It is also able to colonize and produce a transmissible infection in the digestive tract of the flea, its insect host. Parallel to studies of the molecular mechanisms by which Y. pestis is able to overcome the immune response of its mammalian hosts, disseminate, and produce septicemia, studies of Y. pestis-flea interactions have led to the identification and characterization of important factors that lead to transmission by flea bite. Y. pestis adapts to the unique conditions in the flea gut by altering its metabolic physiology in ways that promote biofilm development, a common strategy by which bacteria cope with a nutrient-limited environment. Biofilm localization to the flea foregut disrupts normal fluid dynamics of blood feeding, resulting in regurgitative transmission. Many of the important genes, regulatory pathways, and molecules required for this process have been identified and are reviewed here.
Collapse
Affiliation(s)
- B. Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (C.O.J.); (D.M.B.)
| | | | | |
Collapse
|
12
|
The Diverse Roles of the Global Transcriptional Regulator PhoP in the Lifecycle of Yersinia pestis. Pathogens 2020; 9:pathogens9121039. [PMID: 33322274 PMCID: PMC7764729 DOI: 10.3390/pathogens9121039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 11/18/2022] Open
Abstract
Yersinia pestis, the causative agent of plague, has a complex infectious cycle that alternates between mammalian hosts (rodents and humans) and insect vectors (fleas). Consequently, it must adapt to a wide range of host environments to achieve successful propagation. Y. pestis PhoP is a response regulator of the PhoP/PhoQ two-component signal transduction system that plays a critical role in the pathogen’s adaptation to hostile conditions. PhoP is activated in response to various host-associated stress signals detected by the sensor kinase PhoQ and mediates changes in global gene expression profiles that lead to cellular responses. Y. pestis PhoP is required for resistance to antimicrobial peptides, as well as growth under low Mg2+ and other stress conditions, and controls a number of metabolic pathways, including an alternate carbon catabolism. Loss of phoP function in Y. pestis causes severe defects in survival inside mammalian macrophages and neutrophils in vitro, and a mild attenuation in murine plague models in vivo, suggesting its role in pathogenesis. A Y. pestisphoP mutant also exhibits reduced ability to form biofilm and to block fleas in vivo, indicating that the gene is also important for establishing a transmissible infection in this vector. Additionally, phoP promotes the survival of Y. pestis inside the soil-dwelling amoeba Acanthamoeba castellanii, a potential reservoir while the pathogen is quiescent. In this review, we summarize our current knowledge on the mechanisms of PhoP-mediated gene regulation in Y. pestis and examine the significance of the roles played by the PhoP regulon at each stage of the Y. pestis life cycle.
Collapse
|
13
|
Zamyatina A, Heine H. Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways. Front Immunol 2020; 11:585146. [PMID: 33329561 PMCID: PMC7732686 DOI: 10.3389/fimmu.2020.585146] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
The innate immune response to lipopolysaccharide is essential for host defense against Gram-negative bacteria. In response to bacterial infection, the TLR4/MD-2 complex that is expressed on the surface of macrophages, monocytes, dendritic, and epithelial cells senses picomolar concentrations of endotoxic LPS and triggers the production of various pro-inflammatory mediators. In addition, LPS from extracellular bacteria which is either endocytosed or transfected into the cytosol of host cells or cytosolic LPS produced by intracellular bacteria is recognized by cytosolic proteases caspase-4/11 and hosts guanylate binding proteins that are involved in the assembly and activation of the NLRP3 inflammasome. All these events result in the initiation of pro-inflammatory signaling cascades directed at bacterial eradication. However, TLR4-mediated signaling and caspase-4/11-induced pyroptosis are largely involved in the pathogenesis of chronic and acute inflammation. Both extra- and intracellular LPS receptors-TLR4/MD-2 complex and caspase-4/11, respectively-are able to directly bind the lipid A motif of LPS. Whereas the structural basis of lipid A recognition by the TLR4 complex is profoundly studied and well understood, the atomic mechanism of LPS/lipid A interaction with caspase-4/11 is largely unknown. Here we describe the LPS-induced TLR4 and caspase-4/11 mediated signaling pathways and their cross-talk and scrutinize specific structural features of the lipid A motif of diverse LPS variants that have been reported to activate caspase-4/11 or to induce caspase-4/11 mediated activation of NLRP3 inflammasome (either upon transfection of LPS in vitro or upon infection of cell cultures with intracellular bacteria or by LPS as a component of the outer membrane vesicles). Generally, inflammatory caspases show rather similar structural requirements as the TLR4/MD-2 complex, so that a "basic" hexaacylated bisphosphorylated lipid A architecture is sufficient for activation. However, caspase-4/11 can sense and respond to much broader variety of lipid A variants compared to the very "narrow" specificity of TLR4/MD-2 complex as far as the number and the length of lipid chains attached at the diglucosamine backbone of lipid A is concerned. Besides, modification of the lipid A phosphate groups with positively charged appendages such as phosphoethanolamine or aminoarabinose could be essential for the interaction of lipid A/LPS with inflammatory caspases and related proteins.
Collapse
Affiliation(s)
- Alla Zamyatina
- Institute of Organic Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Holger Heine
- Research Group Innate Immunity, Research Center Borstel—Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Disease (DZL), Borstel, Germany
| |
Collapse
|
14
|
Transcriptomic profiling of the digestive tract of the rat flea, Xenopsylla cheopis, following blood feeding and infection with Yersinia pestis. PLoS Negl Trop Dis 2020; 14:e0008688. [PMID: 32946437 PMCID: PMC7526888 DOI: 10.1371/journal.pntd.0008688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/30/2020] [Accepted: 08/10/2020] [Indexed: 01/29/2023] Open
Abstract
Yersinia pestis, the causative agent of plague, is a highly lethal pathogen transmitted by the bite of infected fleas. Once ingested by a flea, Y. pestis establish a replicative niche in the gut and produce a biofilm that promotes foregut colonization and transmission. The rat flea Xenopsylla cheopis is an important vector to several zoonotic bacterial pathogens including Y. pestis. Some fleas naturally clear themselves of infection; however, the physiological and immunological mechanisms by which this occurs are largely uncharacterized. To address this, RNA was extracted, sequenced, and distinct transcript profiles were assembled de novo from X. cheopis digestive tracts isolated from fleas that were either: 1) not fed for 5 days; 2) fed sterile blood; or 3) fed blood containing ~5x108 CFU/ml Y. pestis KIM6+. Analysis and comparison of the transcript profiles resulted in identification of 23 annotated (and 11 unknown or uncharacterized) digestive tract transcripts that comprise the early transcriptional response of the rat flea gut to infection with Y. pestis. The data indicate that production of antimicrobial peptides regulated by the immune-deficiency pathway (IMD) is the primary flea immune response to infection with Y. pestis. The remaining infection-responsive transcripts, not obviously associated with the immune response, were involved in at least one of 3 physiological themes: 1) alterations to chemosensation and gut peristalsis; 2) modification of digestion and metabolism; and 3) production of chitin-binding proteins (peritrophins). Despite producing several peritrophin transcripts shortly after feeding, including a subset that were infection-responsive, no thick peritrophic membrane was detectable by histochemistry or electron microscopy of rat flea guts for the first 24 hours following blood-feeding. Here we discuss the physiological implications of rat flea infection-responsive transcripts, the function of X. cheopis peritrophins, and the mechanisms by which Y. pestis may be cleared from the flea gut. The goal of this study was to characterize the transcriptional response of the digestive tract of the rat flea, Xenopsylla cheopis, to infection with Yersinia pestis, the causative agent of plague. This flea is generally considered the most prevalent and efficient vector of Y. pestis. Because most pathogens transmitted by fleas, including Y. pestis, reside in the insect digestive tract prior to transmission, the transcriptional program induced in the gut epithelium likely influences bacterial colonization of the flea. To determine the specific response to infection, RNA profiles were generated from fleas that were either unfed, fed sterile blood, or fed blood containing Y. pestis. Comparative analyses of the transcriptomes resulted in identification of 34 infection-responsive transcripts. The functions of these differentially regulated genes indicate that infection of fleas with Y. pestis induces a limited immune response and potentially alters the insect’s behavior, metabolism, and other aspects of its physiology. Based on these data, we describe potential mechanisms fleas use to eliminate bacteria and the corresponding strategies Y. pestis uses to resist elimination. These findings may be helpful for developing targeted strategies to make fleas resistant to microbial infection and thereby reduce the incidence of diseases they spread.
Collapse
|
15
|
Lemon A, Silva-Rohwer A, Sagawa J, Vadyvaloo V. Co-infection Assay to Determine Yersinia pestis Competitive Fitness in Fleas. Methods Mol Biol 2020; 2010:153-166. [PMID: 31177437 DOI: 10.1007/978-1-4939-9541-7_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Co-infection refers to the simultaneous infection of a host by multiple pathogenic organisms. Experimental co-infection studies using a mutant and its isogenic wild type have proven to be profoundly sensitive to analysis of pathogen factor mutation-associated fitness effects in in vivo models of infectious disease. Here we discuss the use of such co-infection experiments in studying the interaction between Yersinia pestis and its flea vector to more sensitively determine the critical bacterial determinants for Y. pestis survival, adaptation, and transmission from fleas. This chapter comprises two main sections, the first detailing how to infect fleas with mutant and wild type Y. pestis strains, and secondly how to process infected fleas and specifically quantify distinct Y. pestis strain burdens per flea. The Y. pestis competitive fitness co-infection model in fleas is insightful in evaluating the consequence of a mutation which may not be obvious in single-strain flea infections where there is less selective pressure.
Collapse
Affiliation(s)
- Athena Lemon
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Amelia Silva-Rohwer
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Janelle Sagawa
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.
| |
Collapse
|
16
|
Hotinger JA, May AE. Animal Models of Type III Secretion System-Mediated Pathogenesis. Pathogens 2019; 8:pathogens8040257. [PMID: 31766664 PMCID: PMC6963218 DOI: 10.3390/pathogens8040257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 01/22/2023] Open
Abstract
The type III secretion system (T3SS) is a conserved virulence factor used by many Gram-negative pathogenic bacteria and has become an important target for anti-virulence drugs. Most T3SS inhibitors to date have been discovered using in vitro screening assays. Pharmacokinetics and other important characteristics of pharmaceuticals cannot be determined with in vitro assays alone. In vivo assays are required to study pathogens in their natural environment and are an important step in the development of new drugs and vaccines. Animal models are also required to understand whether T3SS inhibition will enable the host to clear the infection. This review covers selected animal models (mouse, rat, guinea pig, rabbit, cat, dog, pig, cattle, primates, chicken, zebrafish, nematode, wax moth, flea, fly, and amoeba), where T3SS activity and infectivity have been studied in relation to specific pathogens (Escherichia coli, Salmonella spp., Pseudomonas spp., Shigella spp., Bordetella spp., Vibrio spp., Chlamydia spp., and Yersinia spp.). These assays may be appropriate for those researching T3SS inhibition.
Collapse
|
17
|
Brown LD. Immunity of fleas (Order Siphonaptera). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:76-79. [PMID: 31002845 DOI: 10.1016/j.dci.2019.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
The immune response of arthropod vectors plays a key role in the spread and transmission of vector-borne diseases. Although fleas transmit several human pathogens (e.g., Bartonella henselae, Rickettsia felis, R. typhi, and Yersinia pestis), few studies have examined how these vectors respond to infection. In hematophagous arthropods, imbibed pathogens must survive the hostile environment of blood meal digestion, which includes proteolytic digestive enzymes, protease inhibitors and expression of genes associated with protection of epithelial linings. Additionally, insect epithelial cells exhibit local immune defense against ingested pathogens by producing antimicrobial peptides and reactive oxygen species. This review details these and other aspects of insect immunity as it relates to fleas, with an emphasis on the gut immune response to two blood-borne pathogens, R. typhi and Y. pestis.
Collapse
Affiliation(s)
- Lisa D Brown
- Department of Biology, Georgia Southern University, P.O. Box 8042-1, Statesboro, GA, 30460, USA.
| |
Collapse
|
18
|
Zhang H, Srinivas S, Xu Y, Wei W, Feng Y. Genetic and Biochemical Mechanisms for Bacterial Lipid A Modifiers Associated with Polymyxin Resistance. Trends Biochem Sci 2019; 44:973-988. [PMID: 31279652 DOI: 10.1016/j.tibs.2019.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 01/29/2023]
Abstract
Polymyxins are a group of detergent-like antimicrobial peptides that are the ultimate line of defense against carbapenem-resistant pathogens in clinical settings. Polymyxin resistance primarily originates from structural remodeling of lipid A anchored on bacterial surfaces. We integrate genetic, structural, and biochemical aspects of three major types of lipid A modifiers that have been shown to confer intrinsic colistin resistance. Namely, we highlight ArnT, a glycosyltransferase, EptA, a phosphoethanolamine transferase, and the AlmEFG tripartite system, which is restricted to EI Tor biotype of Vibrio cholerae O1. We also discuss the growing family of mobile colistin resistance (MCR) enzymes, each of which is analogous to EptA, and which pose great challenges to global public health.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Swaminath Srinivas
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yongchang Xu
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wenhui Wei
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Youjun Feng
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; College of Animal Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
19
|
Shaikhutdinova RZ, Ivanov SA, Dentovskaya SV, Titareva GM, Knirel YA. Characterization of a Transposon Tn5-Generated Mutant of Yersinia pestis Defective in Lipooligosaccharide Biosynthesis. BIOCHEMISTRY (MOSCOW) 2019; 84:398-406. [PMID: 31228931 DOI: 10.1134/s0006297919040072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To identify Yersinia pestis genes involved in the microbe's resistance to cationic antimicrobial peptides, the strategy of random transposon mutagenesis with a Tn5 minitransposon was used, and the library was screened for detecting polymyxin B (PMB) susceptible mutants. The mutation responsible for PMB-sensitive phenotype and the lipopolysaccharide (LPS) structure were characterized for the Y. pestis strain KM218-A3. In this strain the mini-Tn5 was located in an open reading frame with the product homologous to the E. coli protein GmhB (82% identity) functioning as d-glycero-d-manno-heptose-1,7-diphosphate phosphatase. ESI FT ICR mass spectrometry of anions was used to study the structure of the unmodified LPS of Y. pestis KM218-A3, and molecules were revealed with the full-size LPS core or with two types of an incomplete core: consisting of Kdo-Kdo or Ko-Kdo disaccharides and Hep-(Kdo)-Kdo or Hep-(Ko)-Kdo trisaccharides. The performed complementation confirmed that the defect in the biological properties of the mutant strain was caused by inactivation of the gmhB gene. These findings indicated that the gmhB gene product of Y. pestis is essential for production of wild-type LPS resistant to antimicrobial peptides and serum.
Collapse
Affiliation(s)
- R Z Shaikhutdinova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - S A Ivanov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - S V Dentovskaya
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia.
| | - G M Titareva
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - Yu A Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
20
|
Hinnebusch BJ, Jarrett CO, Bland DM. "Fleaing" the Plague: Adaptations of Yersinia pestis to Its Insect Vector That Lead to Transmission. Annu Rev Microbiol 2018; 71:215-232. [PMID: 28886687 DOI: 10.1146/annurev-micro-090816-093521] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interest in arthropod-borne pathogens focuses primarily on how they cause disease in humans. How they produce a transmissible infection in their arthropod host is just as critical to their life cycle, however. Yersinia pestis adopts a unique life stage in the digestive tract of its flea vector, characterized by rapid formation of a bacterial biofilm that is enveloped in a complex extracellular polymeric substance. Localization and adherence of the biofilm to the flea foregut is essential for transmission. Here, we review the molecular and genetic mechanisms of these processes and present a comparative evaluation and updated model of two related transmission mechanisms.
Collapse
Affiliation(s)
- B Joseph Hinnebusch
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840;
| | - Clayton O Jarrett
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840;
| | - David M Bland
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840;
| |
Collapse
|
21
|
Fukuto HS, Vadyvaloo V, McPhee JB, Poinar HN, Holmes EC, Bliska JB. A Single Amino Acid Change in the Response Regulator PhoP, Acquired during Yersinia pestis Evolution, Affects PhoP Target Gene Transcription and Polymyxin B Susceptibility. J Bacteriol 2018; 200:e00050-18. [PMID: 29440252 PMCID: PMC5892123 DOI: 10.1128/jb.00050-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis, the causative agent of plague, evolved from the closely related pathogen Yersinia pseudotuberculosis During its emergence, Y. pestis is believed to have acquired its unique pathogenic characteristics through numerous gene gains/losses, genomic rearrangements, and single nucleotide polymorphism (SNP) changes. One such SNP creates a single amino acid variation in the DNA binding domain of PhoP, the response regulator in the PhoP/PhoQ two-component system. Y. pseudotuberculosis and the basal human-avirulent strains of Y. pestis harbor glycines at position 215 of PhoP, whereas the modern human-virulent strains (e.g., KIM and CO92) harbor serines at this residue. Since PhoP plays multiple roles in the adaptation of Y. pestis to stressful host conditions, we tested whether this amino acid substitution affects PhoP activity or the ability of Y. pestis to survive in host environments. Compared to the parental KIM6+ strain carrying the modern allele of phoP (phoP-S215), a derivative carrying the basal allele (phoP-G215) exhibited slightly defective growth under a low-Mg2+ condition and decreased transcription of a PhoP target gene, ugd, as well as an ∼8-fold increase in the susceptibility to the antimicrobial peptide polymyxin B. The phoP-G215 strain showed no apparent defect in flea colonization, although a phoP-null mutant showed decreased flea infectivity in competition experiments. Our results suggest that the amino acid variation at position 215 of PhoP causes subtle changes in the PhoP activity and raise the possibility that the change in this residue have contributed to the evolution of increased virulence in Y. pestisIMPORTANCEY. pestis acquired a single nucleotide polymorphism (SNP) in phoP when the highly human-virulent strains diverged from less virulent basal strains, resulting in an amino acid substitution in the DNA binding domain of the PhoP response regulator. We show that Y. pestis carrying the modern phoP allele has an increased ability to induce the PhoP-regulated ugd gene and resist antimicrobial peptides compared to an isogenic strain carrying the basal allele. Given the important roles PhoP plays in host adaptation, the results raise an intriguing possibility that this amino acid substitution contributed to the evolution of increased virulence in Y. pestis Additionally, we present the first evidence that phoP confers a survival fitness advantage to Y. pestis inside the flea midgut.
Collapse
Affiliation(s)
- Hana S Fukuto
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
- Clinical Laboratory Sciences Program, School of Health Technology and Management, Stony Brook University, Stony Brook, New York, USA
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| | - Joseph B McPhee
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| | - Hendrik N Poinar
- McMaster Ancient DNA Center, Department of Anthropology, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - James B Bliska
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
22
|
Destoumieux-Garzón D, Mavingui P, Boetsch G, Boissier J, Darriet F, Duboz P, Fritsch C, Giraudoux P, Le Roux F, Morand S, Paillard C, Pontier D, Sueur C, Voituron Y. The One Health Concept: 10 Years Old and a Long Road Ahead. Front Vet Sci 2018; 5:14. [PMID: 29484301 PMCID: PMC5816263 DOI: 10.3389/fvets.2018.00014] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 01/22/2018] [Indexed: 02/05/2023] Open
Abstract
Over the past decade, a significant increase in the circulation of infectious agents was observed. With the spread and emergence of epizootics, zoonoses, and epidemics, the risks of pandemics became more and more critical. Human and animal health has also been threatened by antimicrobial resistance, environmental pollution, and the development of multifactorial and chronic diseases. This highlighted the increasing globalization of health risks and the importance of the human-animal-ecosystem interface in the evolution and emergence of pathogens. A better knowledge of causes and consequences of certain human activities, lifestyles, and behaviors in ecosystems is crucial for a rigorous interpretation of disease dynamics and to drive public policies. As a global good, health security must be understood on a global scale and from a global and crosscutting perspective, integrating human health, animal health, plant health, ecosystems health, and biodiversity. In this study, we discuss how crucial it is to consider ecological, evolutionary, and environmental sciences in understanding the emergence and re-emergence of infectious diseases and in facing the challenges of antimicrobial resistance. We also discuss the application of the "One Health" concept to non-communicable chronic diseases linked to exposure to multiple stresses, including toxic stress, and new lifestyles. Finally, we draw up a list of barriers that need removing and the ambitions that we must nurture for the effective application of the "One Health" concept. We conclude that the success of this One Health concept now requires breaking down the interdisciplinary barriers that still separate human and veterinary medicine from ecological, evolutionary, and environmental sciences. The development of integrative approaches should be promoted by linking the study of factors underlying stress responses to their consequences on ecosystem functioning and evolution. This knowledge is required for the development of novel control strategies inspired by environmental mechanisms leading to desired equilibrium and dynamics in healthy ecosystems and must provide in the near future a framework for more integrated operational initiatives.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- CNRS, Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR5244, Université de Perpignan Via Domitia, Université de Montpellier, Ifremer, Montpellier, France
| | - Patrick Mavingui
- Université de La Reunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Sainte-Clotilde, La Réunion, France
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne, France
| | - Gilles Boetsch
- UMI 3189 “Environnement, Santé, Sociétés”, Faculty of Medicine, Cheikh Anta Diop University, Dakar-Fann, Senegal
- Téssékéré International Human-Environment Observatory Labex DRIIM, CNRS and Cheikh Anta Diop University, Dakar, Senegal
| | - Jérôme Boissier
- Université de Perpignan Via Domitia, Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR5244, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | - Frédéric Darriet
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Priscilla Duboz
- UMI 3189 “Environnement, Santé, Sociétés”, Faculty of Medicine, Cheikh Anta Diop University, Dakar-Fann, Senegal
- Téssékéré International Human-Environment Observatory Labex DRIIM, CNRS and Cheikh Anta Diop University, Dakar, Senegal
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté Usc, INRA, Besançon, France
| | - Patrick Giraudoux
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté Usc, INRA, Besançon, France
- Institut Universitaire de France, Paris, France
| | - Frédérique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, Plouzané, France
| | - Serge Morand
- Institut des Sciences de l’Évolution (ISEM), UMR 5554, CNRS, Université de Montpellier, CIRAD, IRD, EPHE, Montpellier, France
- UPR ASTRE, CIRAD, Montpellier, France
| | - Christine Paillard
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UMR 6539, CNRS, UBO, IRD, Ifremer, Plouzané, France
| | - Dominique Pontier
- Laboratoire de Biométrie et Biologie Evolutive UMR5558, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
- LabEx Ecofect, Eco-Evolutionary Dynamics of Infectious Diseases, University of Lyon, Lyon, France
| | - Cédric Sueur
- Université de Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Yann Voituron
- Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023, CNRS, Université Claude Bernard Lyon1, Université de Lyon, Villeurbanne, France
| |
Collapse
|
23
|
Alencar VC, Jabes DL, Menegidio FB, Sassaki GL, de Souza LR, Puzer L, Meneghetti MCZ, Lima MA, Tersariol ILDS, de Oliveira RC, Nunes LR. Functional and Evolutionary Characterization of a UDP-Xylose Synthase Gene from the Plant Pathogen Xylella fastidiosa, Involved in the Synthesis of Bacterial Lipopolysaccharide. Biochemistry 2017; 56:779-792. [PMID: 28125217 DOI: 10.1021/acs.biochem.6b00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xylella fastidiosa is a plant-infecting bacillus, responsible for many important crop diseases, such as Pierce's disease of vineyards, citrus variegated chlorosis, and coffee leaf scorch (CLS), among others. Recent genomic comparisons involving two CLS-related strains, belonging to X. fastidiosa subsp. pauca, revealed that one of them carries a frameshift mutation that inactivates a gene encoding an oxidoreductase of the short-chain dehydrogenase/reductase (SDR) superfamily, which may play important roles in determining structural variations in bacterial glycans and glycoconjugates. However, the exact nature of this SDR has been a matter of controversy, as different annotations of X. fastidiosa genomes have implicated it in distinct reactions. To confirm the nature of this mutated SDR, a comparative analysis was initially performed, suggesting that it belongs to a subgroup of SDR decarboxylases, representing a UDP-xylose synthase (Uxs). Functional assays, using a recombinant derivative of this enzyme, confirmed its nature as XfUxs, and carbohydrate composition analyses, performed with lipopolysaccharide (LPS) molecules obtained from different strains, indicate that inactivation of the X. fastidiosa uxs gene affects the LPS structure among CLS-related X. fastidiosa strains. Finally, a comparative sequence analysis suggests that this mutation is likely to result in a morphological and evolutionary hallmark that differentiates two subgroups of CLS-related strains, which may influence interactions between these bacteria and their plant and/or insect hosts.
Collapse
Affiliation(s)
- Valquíria Campos Alencar
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Daniela Leite Jabes
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Fabiano Bezerra Menegidio
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Guilherme Lanzi Sassaki
- Setor de Ciências Biológicas-Departamento de Bioquímica e Biologia Molecular Laboratório de Química de Carboidratos, Universidade Federal do Paraná (UFPR) , Rua Cel. Francisco H. dos Santos, 100, Curitiba, Paraná CEP 81531-980, Brazil
| | - Lucas Rodrigo de Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC) , Rua Santa Adélia, 166, Santo André, SP CEP 09210-170, Brazil
| | - Luciano Puzer
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC) , Rua Santa Adélia, 166, Santo André, SP CEP 09210-170, Brazil
| | - Maria Cecília Zorél Meneghetti
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP) , Rua Três de Maio, Vila Clementino, São Paulo CEP 04044-020, Brazil
| | - Marcelo Andrade Lima
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP) , Rua Três de Maio, Vila Clementino, São Paulo CEP 04044-020, Brazil
| | - Ivarne Luis Dos Santos Tersariol
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP) , Rua Três de Maio, Vila Clementino, São Paulo CEP 04044-020, Brazil
| | - Regina Costa de Oliveira
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Luiz R Nunes
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC) , Rua Santa Adélia, 166, Santo André, SP CEP 09210-170, Brazil
| |
Collapse
|
24
|
Hollaus R, Kosma P, Zamyatina A. Stereoselective Synthesis of α- and β-l-Ara4N Glycosyl H-Phosphonates and a Neoglycoconjugate Comprising Glycosyl Phosphodiester Linked β-l-Ara4N. Org Lett 2016; 19:78-81. [PMID: 28009171 PMCID: PMC5223274 DOI: 10.1021/acs.orglett.6b03358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Stereoselective synthesis
of variably protected α- and β-l-Ara4N glycosyl
H-phosphonates as key intermediates in the
syntheses of β-l-Ara4N-modified LPS structures and
α-l-Ara4N-containing biosynthetic precursors is reported.
A facile one-pot approach toward β-l-Ara4N glycosyl
H-phosphonates includes anomeric deallylation of protected 4-azido
β-l-Ara4N via terminal olefin isomerization followed
by ozonolysis and methanolysis of formyl groups to furnish exclusively
β-configured lactols that are phosphitylated with retention
of configuration. The carbohydrate epitope of β-l-Ara4N-modified
Lipid A, βGlcN(1→6)αGlcN(1→P←1)β-l-Ara4N, was stereoselectively synthesized and linked to maleimide-activated
bovine serum albumin.
Collapse
Affiliation(s)
- Ralph Hollaus
- Department of Chemistry, University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
25
|
Erickson DL, Lew CS, Kartchner B, Porter NT, McDaniel SW, Jones NM, Mason S, Wu E, Wilson E. Lipopolysaccharide Biosynthesis Genes of Yersinia pseudotuberculosis Promote Resistance to Antimicrobial Chemokines. PLoS One 2016; 11:e0157092. [PMID: 27275606 PMCID: PMC4898787 DOI: 10.1371/journal.pone.0157092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 05/24/2016] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial chemokines (AMCs) are a recently described family of host defense peptides that play an important role in protecting a wide variety of organisms from bacterial infection. Very little is known about the bacterial targets of AMCs or factors that influence bacterial susceptibility to AMCs. In an effort to understand how bacterial pathogens resist killing by AMCs, we screened Yersinia pseudotuberculosis transposon mutants for those with increased binding to the AMCs CCL28 and CCL25. Mutants exhibiting increased binding to AMCs were subjected to AMC killing assays, which revealed their increased sensitivity to chemokine-mediated cell death. The majority of the mutants exhibiting increased binding to AMCs contained transposon insertions in genes related to lipopolysaccharide biosynthesis. A particularly strong effect on susceptibility to AMC mediated killing was observed by disruption of the hldD/waaF/waaC operon, necessary for ADP-L-glycero-D-manno-heptose synthesis and a complete lipopolysaccharide core oligosaccharide. Periodate oxidation of surface carbohydrates also enhanced AMC binding, whereas enzymatic removal of surface proteins significantly reduced binding. These results suggest that the structure of Y. pseudotuberculosis LPS greatly affects the antimicrobial activity of AMCs by shielding a protein ligand on the bacterial cell surface.
Collapse
Affiliation(s)
- David L. Erickson
- Department of Microbiology and Molecular Biology, 4007 LSB, Brigham Young University, Provo, UT 84602, United States of America
- * E-mail:
| | - Cynthia S. Lew
- Department of Microbiology and Molecular Biology, 4007 LSB, Brigham Young University, Provo, UT 84602, United States of America
| | - Brittany Kartchner
- Department of Microbiology and Molecular Biology, 4007 LSB, Brigham Young University, Provo, UT 84602, United States of America
| | - Nathan T. Porter
- Department of Microbiology and Molecular Biology, 4007 LSB, Brigham Young University, Provo, UT 84602, United States of America
| | - S. Wade McDaniel
- Department of Microbiology and Molecular Biology, 4007 LSB, Brigham Young University, Provo, UT 84602, United States of America
| | - Nathan M. Jones
- Department of Microbiology and Molecular Biology, 4007 LSB, Brigham Young University, Provo, UT 84602, United States of America
| | - Sara Mason
- Department of Microbiology and Molecular Biology, 4007 LSB, Brigham Young University, Provo, UT 84602, United States of America
| | - Erin Wu
- Department of Microbiology and Molecular Biology, 4007 LSB, Brigham Young University, Provo, UT 84602, United States of America
| | - Eric Wilson
- Department of Microbiology and Molecular Biology, 4007 LSB, Brigham Young University, Provo, UT 84602, United States of America
| |
Collapse
|
26
|
Earl SC, Rogers MT, Keen J, Bland DM, Houppert AS, Miller C, Temple I, Anderson DM, Marketon MM. Resistance to Innate Immunity Contributes to Colonization of the Insect Gut by Yersinia pestis. PLoS One 2015; 10:e0133318. [PMID: 26177454 PMCID: PMC4503695 DOI: 10.1371/journal.pone.0133318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/25/2015] [Indexed: 01/29/2023] Open
Abstract
Yersinia pestis, the causative agent of bubonic and pneumonic plague, is typically a zoonotic vector-borne disease of wild rodents. Bacterial biofilm formation in the proventriculus of the flea contributes to chronic infection of fleas and facilitates efficient disease transmission. However prior to biofilm formation, ingested bacteria must survive within the flea midgut, and yet little is known about vector-pathogen interactions that are required for flea gut colonization. Here we establish a Drosophila melanogaster model system to gain insight into Y. pestis colonization of the insect vector. We show that Y. pestis establishes a stable infection in the anterior midgut of fly larvae, and we used this model system to study the roles of genes involved in biofilm production and/or resistance to gut immunity stressors. We find that PhoP and GmhA both contribute to colonization and resistance to antimicrobial peptides in flies, and furthermore, the data suggest biofilm formation may afford protection against antimicrobial peptides. Production of reactive oxygen species in the fly gut, as in fleas, also serves to limit bacterial infection, and OxyR mediates Y. pestis survival in both insect models. Overall, our data establish the fruit fly as an informative model to elucidate the relationship between Y. pestis and its flea vector.
Collapse
Affiliation(s)
- Shaun C. Earl
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Miles T. Rogers
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Jennifer Keen
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - David M. Bland
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Andrew S. Houppert
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Caitlynn Miller
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Ian Temple
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Melanie M. Marketon
- Department of Biology, Indiana University, Bloomington, IN, United States of America
- * E-mail:
| |
Collapse
|