1
|
Finn JP, Luzinski C, Burton BM. Differential expression of the yfj operon in a Bacillus subtilis biofilm. Appl Environ Microbiol 2024; 90:e0136224. [PMID: 39436054 DOI: 10.1128/aem.01362-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 10/23/2024] Open
Abstract
Type VII protein secretion systems play an important role in the survival and virulence of pathogens and in the competition among some microbes. Potential polymorphic toxin substrates of the type VII secretion system (T7SS) in Bacillus subtilis are important for competition in the context of biofilm communities. Within a biofilm, there is significant physiological heterogeneity as cells within the population take on differential cell fates. Which cells express and deploy the various T7SS substrates is still unknown. To identify which cells express at least one of the T7SS substrates, we investigated the yfj operon. The yfjABCDEF operon encodes at least one predicted T7SS substrate. Starting with an in silico analysis of the yfj operon promoter region, we identified potential regulatory sequences. Using a yfj promoter-reporter fusion, we then identified several regulators that impact expression of the operon, including a regulator of biofilm formation, DegU. In a degU deletion mutant, yfj expression is completely abolished. Mutation of predicted DegU binding sites also results in a significant reduction in yfj reporter levels. Further analysis of yfj regulation reveals that deletion of spo0A has the opposite effect of the degU deletion. Following the yfj reporter by microscopy of cells harvested from biofilms, we find that the yfj operon is expressed specifically in the subset of cells undergoing sporulation. Together, our results define cells entering sporulation as the subpopulation most likely to express products of the yfj operon in B. subtilis.IMPORTANCEDifferential expression of genes in a bacterial community allows for the division of labor among cells in the community. The toxin substrates of the type VII secretions system (T7SS) are known to be active in Bacillus subtilis biofilm communities. This work describes the expression of one of the T7SS-associated operons, the yfj operon, which encodes the YFJ toxin, in the sporulating subpopulation within a biofilm. The evidence that the YFJ toxin may be deployed specifically in cells at the early stages of sporulation provides a potential role for deployment of T7SS in community-associated activities, such as cannibalism.
Collapse
Affiliation(s)
- James P Finn
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cora Luzinski
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Briana M Burton
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Miao S, Liang J, Xu Y, Yu G, Shao M. Bacillaene, sharp objects consist in the arsenal of antibiotics produced by Bacillus. J Cell Physiol 2024; 239:e30974. [PMID: 36790954 DOI: 10.1002/jcp.30974] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/05/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
Bacillus species act as plant growth-promoting rhizobacteria (PGPR) that can produce a large number of bioactive metabolites. Bacillaene, a linear polyketide/nonribosomal peptide produced by Bacillus strains, is synthesized by the trans-acyltransferase polyketide synthetase. The complexity of the chemical structure, particularity of biosynthesis, potent bioactivity, and the important role of competition make Bacillus an ideal antibiotic weapon to resist other microbes and maintain the optimal rhizosphere environment. This review provides an updated view of the structural features, biological activity, biosynthetic regulators of biosynthetic pathways, and the important competitive role of bacillaene during Bacillus survival.
Collapse
Affiliation(s)
- Shuang Miao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
| | - Jianhao Liang
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
| | - Yuan Xu
- College of Pharmaceutical Engineering, XinYang College Of Agriculture And Forestry, Xinyang, P.R. China
| | - Guohui Yu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
| | - Mingwei Shao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
| |
Collapse
|
3
|
Zhou C, Kong Y, Zhang N, Qin W, Li Y, Zhang H, Yang G, Lu F. Regulator DegU can remarkably influence alkaline protease AprE biosynthesis in Bacillus licheniformis 2709. Int J Biol Macromol 2024; 266:130818. [PMID: 38479659 DOI: 10.1016/j.ijbiomac.2024.130818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Alkaline protease AprE, produced by Bacillus licheniformis 2709 is an important edible hydrolase, which has potential applications in nutrient acquisition and medicine. The expression of AprE is finely regulated by a complex transcriptional regulation system. However, there is little study on transcriptional regulation mechanism of AprE biosynthesis in Bacillus licheniformis, which limits system engineering and further enhancement of AprE. Here, the severely depressed expression of aprE in degU and degS deletion mutants illustrated that the regulator DegU and its phosphorylation played a crucial part in AprE biosynthesis. Further electrophoretic mobility shift assay (EMSA) in vitro indicated that phosphorylated DegU can directly bind to the regulatory region though the DNase I foot-printing experiments failed to observe protected region. The plasmid-mediated overexpression of degU32 (Hy) obviously improved the yield of AprE by 41.6 % compared with the control strain, which demonstrated the importance of phosphorylation state of DegU on the transcription of aprE in vivo. In this study, the putative binding sequence of aprE (5'-TAAAT……AAAAT…….AACAT…TAAAA-3') located upstream -91 to -87 bp, -101 to -97 bp, -195 to -191 bp, -215 to -211 bp of the transcription start site (TSS) in B. licheniformis was computationally identified based on the DNA-binding sites of DegU in Bacillus subtilis. Overall, we systematically investigated the influence of the interplay between phosphorylated DegU and its cognate DNA sequence on expression of aprE, which not only contributes to the further AprE high-production in a genetically modified host in the future, but also significantly increases our understanding of the aprE transcription mechanism.
Collapse
Affiliation(s)
- Cuixia Zhou
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Ying Kong
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China
| | - Na Zhang
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China
| | - Weishuai Qin
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China
| | - Yanyan Li
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China
| | - Huitu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Guangcheng Yang
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China.
| |
Collapse
|
4
|
Mishra A, Hughes AC, Amon JD, Rudner DZ, Wang X, Kearns DB. SwrA-mediated Multimerization of DegU and an Upstream Activation Sequence Enhance Flagellar Gene Expression in Bacillus subtilis. J Mol Biol 2024; 436:168419. [PMID: 38141873 PMCID: PMC11462632 DOI: 10.1016/j.jmb.2023.168419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
The earliest genes in bacterial flagellar assembly are activated by narrowly-conserved proteins called master regulators that often act as heteromeric complexes. A complex of SwrA and the response-regulator transcription factor DegU is thought to form the master flagellar regulator in Bacillus subtilis but how the two proteins co-operate to activate gene expression is poorly-understood. Here we find using ChIP-Seq that SwrA interacts with a subset of DegU binding sites in the chromosome and does so in a DegU-dependent manner. Using this information, we identify a DegU-specific inverted repeat DNA sequence in the Pflache promoter region and show that SwrA synergizes with DegU phosphorylation to increase binding affinity. We further demonstrate that the SwrA/DegU footprint extends from the DegU binding site towards the promoter, likely through SwrA-induced DegU multimerization. The location of the DegU inverted repeat was critical and moving the binding site closer to the promoter impaired transcription by disrupting a previously-unrecognized upstream activation sequence (UAS). Thus, the SwrA-DegU heteromeric complex likely enables both remote binding and interaction between the activator and RNA polymerase. Small co-activator proteins like SwrA may allow selective activation of subsets of genes where activator multimerization is needed. Why some promoters require activator multimerization and some require UAS sequences is unknown.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Biology, Indiana University, Bloomington, IN 47408, USA
| | - Anna C Hughes
- Department of Biology, Indiana University, Bloomington, IN 47408, USA
| | - Jeremy D Amon
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN 47408, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN 47408, USA.
| |
Collapse
|
5
|
Maktabi S, Rashnavadi R, Tabandeh MR, Sourestani MM. Effective Inhibition of Listeria monocytogenes Biofilm Formation by Satureja rechingeri Essential Oil: Mechanisms and Implications. Curr Microbiol 2024; 81:77. [PMID: 38280935 DOI: 10.1007/s00284-023-03604-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/26/2023] [Indexed: 01/29/2024]
Abstract
Biofilm formation by foodborne pathogens, particularly Listeria monocytogenes, poses a significant challenge in food industry facilities. In this study, we investigated the inhibitory potential of Satureja rechingeri essential oil (Sr-EO) against L. monocytogenes growth and biofilm formation. Gas chromatography-mass spectrometry analysis revealed a high carvacrol content in Sr-EO, a compound with known antimicrobial properties. We examined the effects of Sr-EO on initial attachment and preformed biofilms, using crystal violet and MTT assays to quantify attached biomass and metabolic activity, respectively. Our results demonstrated that Sr-EO not only prevented initial attachment but also effectively disrupted preformed biofilms, indicating its potential as a biofilm-control agent. Microscopy analysis revealed alterations in bacterial cell membranes upon Sr-EO treatment, leading to increased permeability and cell death. Additionally, Sr-EO significantly suppressed bacterial motility, with concentrations exceeding 0.25 μL/mL completely inhibiting motility. Furthermore, gene expression analysis revealed the down regulation of genes associated with biofilm formation, attachment, and quorum sensing, suggesting that Sr-EO modulates bacterial gene transcription. These findings suggest that Sr-EO can be a promising candidate for controlling biofilm formation and bacterial contamination in food processing environments.
Collapse
Affiliation(s)
- Siavash Maktabi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Box: 61355-145, Ahvaz, Iran.
| | - Roya Rashnavadi
- Graduated from Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | |
Collapse
|
6
|
Rudakova NL, Sabirova AR, Khasanov DI, Danilova IV, Sharipova MR. Regulating Pathways of Bacillus pumilus Adamalysin-like Metalloendopeptidase Expression. Int J Mol Sci 2023; 25:62. [PMID: 38203233 PMCID: PMC10779165 DOI: 10.3390/ijms25010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
The minor secreted proteinase of B. pumilus 3-19 MprBp classified as the unique bacillary adamalysin-like enzyme of the metzincin clan. The functional role of this metalloproteinase in the bacilli cells is not clear. Analysis of the regulatory region of the mprBp gene showed the presence of potential binding sites to the transcription regulatory factors Spo0A (sporulation) and DegU (biodegradation). The study of mprBp activity in mutant strains of B. subtilis defective in regulatory proteins of the Spo- and Deg-systems showed that the mprBp gene is partially controlled by the Deg-system of signal transduction and independent from the Spo-system.
Collapse
Affiliation(s)
| | | | | | | | - Margarita R. Sharipova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia; (N.L.R.); (D.I.K.); (I.V.D.)
| |
Collapse
|
7
|
Yu C, Qiao J, Ali Q, Jiang Q, Song Y, Zhu L, Gu Q, Borriss R, Dong S, Gao X, Wu H. degQ associated with the degS/degU two-component system regulates biofilm formation, antimicrobial metabolite production, and biocontrol activity in Bacillus velezensis DMW1. MOLECULAR PLANT PATHOLOGY 2023; 24:1510-1521. [PMID: 37731193 PMCID: PMC10632791 DOI: 10.1111/mpp.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/13/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
The gram-positive bacterium Bacillus velezensis strain DMW1 produces a high level of antimicrobial metabolites that can suppress the growth of phytopathogens. We investigated the mechanism used by degQ and the degS/degU two-component system to regulate the biocontrol characteristics of DMW1. When degQ and degU were deleted, the biofilm formation, cell motility, colonization activities, and antifungal abilities of ΔdegQ and ΔdegU were significantly reduced compared to wild-type DMW1. The expression levels of biofilm-related genes (epsA, epsB, epsC, and tasA) and swarming-related genes (swrA and swrB) were all down-regulated. We also evaluated the impact on secondary metabolites of these two genes. The degQ and degU genes reduced surfactin and macrolactin production and up-regulated the production of fengycin, iturin, bacillaene, and difficidin metabolites. The reverse transcription-quantitative PCR results were consistent with these observations. Electrophoretic mobility shift assay and microscale thermophoresis revealed that DegU can bind to the promoter regions of these six antimicrobial metabolite genes and regulate their synthesis. In conclusion, we provided systematic evidence to demonstrate that the degQ and degU genes are important regulators of multicellular behaviour and antimicrobial metabolic processes in B. velezensis DMW1 and suggested novel amenable strains to be used for the industrial production of antimicrobial metabolites.
Collapse
Affiliation(s)
- Chenjie Yu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Junqing Qiao
- Jiangsu Academy of Agricultural SciencesInstitute of Plant ProtectionNanjingChina
| | - Qurban Ali
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Qifan Jiang
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Yan Song
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Linli Zhu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Qin Gu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Rainer Borriss
- Institut für BiologieHumboldt University BerlinBerlinGermany
| | - Suomeng Dong
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Xuewen Gao
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| | - Huijun Wu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Sanya Institute of Nanjing Agricultural UniversityNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
8
|
Mishra A, Hughes AC, Amon JD, Rudner DZ, Wang X, Kearns DB. SwrA extends DegU over an UP element to activate flagellar gene expression in Bacillus subtilis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552067. [PMID: 37577504 PMCID: PMC10418190 DOI: 10.1101/2023.08.04.552067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
SwrA activates flagellar gene expression in Bacillus subtilis to increase the frequency of motile cells in liquid and elevate flagellar density to enable swarming over solid surfaces. Here we use ChIP-seq to show that SwrA interacts with many sites on the chromosome in a manner that depends on the response regulator DegU. We identify a DegU-specific inverted repeat DNA sequence and show that SwrA synergizes with phosphorylation to increase DegU DNA binding affinity. We further show that SwrA increases the size of the DegU footprint expanding the region bound by DegU towards the promoter. The location of the DegU inverted repeat was critical and moving the binding site closer to the promoter impaired transcription more that could be explained by deactivation. We conclude that SwrA/DegU forms a heteromeric complex that enables both remote binding and interaction between the activator and RNA polymerase in the context of an interceding UP element. We speculate that multimeric activators that resolve cis-element spatial conflicts are common in bacteria and likely act on flagellar biosynthesis loci and other long operons of other multi-subunit complexes. IMPORTANCE In Bacteria, the sigma subunit of RNA polymerase recognizes specific DNA sequences called promoters that determine where gene transcription begins. Some promoters also have sequences immediately upstream called an UP element that is bound by the alpha subunit of RNA polymerase and is often necessary for transcription. Finally, promoters may be activated by transcription factors that bind DNA specific sequences and help recruit RNA polymerase to weak promoter elements. Here we show that the promoter for the 32 gene long flagellar operon in Bacillus subtilis requires an UP element and is activated by a heteromeric transcription factor of DegU and SwrA. Our evidence suggests that SwrA oligomerizes DegU over the DNA to allow RNA polymerase to interact with DegU and the UP element simultaneously. Heteromeric activator complexes are known but poorly-understood in bacteria and we speculate they may be needed to resolve spatial conflicts in the DNA sequence.
Collapse
|
9
|
Rosazza T, Eigentler L, Earl C, Davidson FA, Stanley‐Wall NR. Bacillus subtilis extracellular protease production incurs a context-dependent cost. Mol Microbiol 2023; 120:105-121. [PMID: 37380434 PMCID: PMC10952608 DOI: 10.1111/mmi.15110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Microbes encounter a wide range of polymeric nutrient sources in various environmental settings, which require processing to facilitate growth. Bacillus subtilis, a bacterium found in the rhizosphere and broader soil environment, is highly adaptable and resilient due to its ability to utilise diverse sources of carbon and nitrogen. Here, we explore the role of extracellular proteases in supporting growth and assess the cost associated with their production. We provide evidence of the essentiality of extracellular proteases when B. subtilis is provided with an abundant, but polymeric nutrient source and demonstrate the extracellular proteases as a shared public good that can operate over a distance. We show that B. subtilis is subjected to a public good dilemma, specifically in the context of growth sustained by the digestion of a polymeric food source. Furthermore, using mathematical simulations, we uncover that this selectively enforced dilemma is driven by the relative cost of producing the public good. Collectively, our findings reveal how bacteria can survive in environments that vary in terms of immediate nutrient accessibility and the consequent impact on the population composition. These findings enhance our fundamental understanding of how bacteria respond to diverse environments, which has importance to contexts ranging from survival in the soil to infection and pathogenesis scenarios.
Collapse
Affiliation(s)
- Thibault Rosazza
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
| | - Lukas Eigentler
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
- Mathematics, School of Science and EngineeringUniversity of DundeeDundeeUK
- Present address:
Evolutionary Biology DepartmentUniversität BielefeldKonsequenz 45Bielefeld33615Germany
| | - Chris Earl
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
| | | | | |
Collapse
|
10
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
11
|
Liu D, Han Z, Hu Z, Yu C, Wang Y, Tong J, Fang X, Yue W, Nie G. Comparative analysis of the transcriptome of Bacillus subtilis natto incubated in different substrates for nattokinase production. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
12
|
Antimicrobial Activity of Sertraline on Listeria monocytogenes. Int J Mol Sci 2023; 24:ijms24054678. [PMID: 36902108 PMCID: PMC10002541 DOI: 10.3390/ijms24054678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
We explored the antimicrobial activity of sertraline on Listeria monocytogenes and further investigated the effects of sertraline on biofilm formation and the virulence gene expression of L. monocytogenes. The minimum inhibitory concentration and minimum bactericidal concentration for sertraline against L. monocytogenes were in the range of 16-32 μg/mL and 64 μg/mL, respectively. Sertraline-dependent damage of the cell membrane and a decrease in intracellular ATP and pHin in L. monocytogenes were observed. In addition, sertraline reduced the biofilm formation efficiency of the L. monocytogenes strains. Importantly, low concentrations (0.1 μg/mL and 1 μg/mL) of sertraline significantly down-regulated the expression levels of various L. monocytogens virulence genes (prfA, actA, degU, flaA, sigB, ltrC and sufS). These results collectively suggest a role of sertraline for the control of L. monocytogenes in the food industry.
Collapse
|
13
|
Milton ME, Cavanagh J. The Biofilm Regulatory Network from Bacillus subtilis: A Structure-Function Analysis. J Mol Biol 2023; 435:167923. [PMID: 36535428 DOI: 10.1016/j.jmb.2022.167923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Bacterial biofilms are notorious for their ability to protect bacteria from environmental challenges, most importantly the action of antibiotics. Bacillus subtilis is an extensively studied model organism used to understand the process of biofilm formation. A complex network of principal regulatory proteins including Spo0A, AbrB, AbbA, Abh, SinR, SinI, SlrR, and RemA, work in concert to transition B. subtilis from the free-swimming planktonic state to the biofilm state. In this review, we explore, connect, and summarize decades worth of structural and biochemical studies that have elucidated this protein signaling network. Since structure dictates function, unraveling aspects of protein molecular mechanisms will allow us to devise ways to exploit critical features of the biofilm regulatory pathway, such as possible therapeutic intervention. This review pools our current knowledge base of B. subtilis biofilm regulatory proteins and highlights potential therapeutic intervention points.
Collapse
Affiliation(s)
- Morgan E Milton
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, NC 27834, USA.
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, NC 27834, USA.
| |
Collapse
|
14
|
Hu LX, Zhao M, Hu WS, Zhou MJ, Huang JB, Huang XL, Gao XL, Luo YN, Li C, Liu K, Xue ZL, Liu Y. Poly-γ-Glutamic Acid Production by Engineering a DegU Quorum-Sensing Circuit in Bacillus subtilis. ACS Synth Biol 2022; 11:4156-4170. [PMID: 36416371 DOI: 10.1021/acssynbio.2c00464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
As a natural biological macromolecule, γ-polyglutamic acid (γ-PGA) plays a significant role in medicine, food, and cosmetic industries owing to its unique properties of biocompatibility, biodegradability, water solubility, and viscosity. Although many strategies have been adopted to increase the yield of γ-PGA in Bacillus subtilis, the effectiveness of these common approaches is not high because the strong viscosity affects cell growth. However, dynamic regulation based on quorum sensing (QS) has been extensively applied as a fundamental tool for fine-tuning gene expression in reaction to changes in cell density without adding expensive inducers. A modular PhrQ-RapQ-DegU QS system is developed based on promoter PD4, which is upregulated by phosphorylated DegU (DegU-P). In this study, first, we analyzed the DegU-based gene expression regulation system in B. subtilis 168. We constructed a promoter library of different abilities, selected suitable promoters from the library, and performed mutation screening on the selected promoters and degU region. Furthermore, we constructed a PhrQ-RapQ-DegU QS system to dynamically control the synthesis of γ-PGA in BS168. Cell growth and efficient synthesis of the target product can be dynamically balanced by the QS system. Our dynamic adjustment approach increased the yield of γ-PGA to 6.53-fold of that by static regulation in a 3 L bioreactor, which verified the effectiveness of this strategy. In summary, the PhrQ-RapQ-DegU QS system has been successfully integrated with biocatalytic functions to achieve dynamic metabolic pathway control in BS168, which can be stretched to a large number of microorganisms to fine-tune gene expression and enhance the production of metabolites.
Collapse
Affiliation(s)
- Liu-Xiu Hu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China.,Anhui Zhang Hengchun Pharmaceutical Co., Ltd., Wuhu 241000, China
| | - Ming Zhao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu 241000, China
| | - Wen-Song Hu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Meng-Jie Zhou
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Jun-Bao Huang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xi-Lin Huang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xu-Li Gao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Ya-Ni Luo
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Chuang Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu 241000, China
| | - Kun Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu 241000, China
| | - Zheng-Lian Xue
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu 241000, China
| | - Yan Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu 241000, China
| |
Collapse
|
15
|
Transcription factor DegU-mediated multi-pathway regulation on lichenysin biosynthesis in Bacillus licheniformis. Metab Eng 2022; 74:108-120. [DOI: 10.1016/j.ymben.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/23/2022] [Accepted: 10/09/2022] [Indexed: 11/20/2022]
|
16
|
Structural and biochemical analyses of the flagellar expression regulator DegU from Listeria monocytogenes. Sci Rep 2022; 12:10856. [PMID: 35798759 PMCID: PMC9263151 DOI: 10.1038/s41598-022-14459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Listeria monocytogenes is a pathogenic bacterium that produces flagella, the locomotory organelles, in a temperature-dependent manner. At 37 °C inside humans, L. monocytogenes employs MogR to repress the expression of flagellar proteins, thereby preventing the production of flagella. However, in the low-temperature environment outside of the host, the antirepressor GmaR inactivates MogR, allowing flagellar formation. Additionally, DegU is necessary for flagellar expression at low temperatures. DegU transcriptionally activates the expression of GmaR and flagellar proteins by binding the operator DNA in the fliN-gmaR promoter as a response regulator of a two-component regulatory system. To determine the DegU-mediated regulation mechanism, we performed structural and biochemical analyses on the recognition of operator DNA by DegU. The DegU-DNA interaction is primarily mediated by a C-terminal DNA-binding domain (DBD) and can be fortified by an N-terminal receiver domain (RD). The DegU DBD adopts a tetrahelical helix-turn-helix structure and assembles into a dimer. The DegU DBD dimer recognizes the operator DNA using a positive patch. Unexpectedly, unlike typical response regulators, DegU interacts with operator DNA in both unphosphorylated and phosphorylated states with similar binding affinities. Therefore, we conclude that DegU is a noncanonical response regulator that is constitutively active irrespective of phosphorylation.
Collapse
|
17
|
Worlitzer VM, Jose A, Grinberg I, Bär M, Heidenreich S, Eldar A, Ariel G, Be’er A. Biophysical aspects underlying the swarm to biofilm transition. SCIENCE ADVANCES 2022; 8:eabn8152. [PMID: 35704575 PMCID: PMC9200279 DOI: 10.1126/sciadv.abn8152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bacteria organize in a variety of collective states, from swarming-rapid surface exploration, to biofilms-highly dense immobile communities attributed to stress resistance. It has been suggested that biofilm and swarming are oppositely controlled, making this transition particularly interesting for understanding the ability of bacterial colonies to adapt to challenging environments. Here, the swarm to biofilm transition is studied in Bacillus subtilis by analyzing the bacterial dynamics both on the individual and collective scales. We show that both biological and physical processes facilitate the transition. A few individual cells that initiate the biofilm program cause nucleation of large, approximately scale-free, stationary aggregates of trapped swarm cells. Around aggregates, cells continue swarming almost unobstructed, while inside, trapped cells are added to the biofilm. While our experimental findings rule out previously suggested purely physical effects as a trigger for biofilm formation, they show how physical processes, such as clustering and jamming, accelerate biofilm formation.
Collapse
Affiliation(s)
- Vasco M. Worlitzer
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestrasse 2-12, D-10587 Berlin, Germany
- Department of Mathematics, Bar-Ilan University, 52900 Ramat Gan, Israel
| | - Ajesh Jose
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
| | - Ilana Grinberg
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Markus Bär
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestrasse 2-12, D-10587 Berlin, Germany
| | - Sebastian Heidenreich
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestrasse 2-12, D-10587 Berlin, Germany
| | - Avigdor Eldar
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, 52900 Ramat Gan, Israel
- Corresponding author. (G.A.); (A.B.)
| | - Avraham Be’er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
- Corresponding author. (G.A.); (A.B.)
| |
Collapse
|
18
|
Insights in the Complex DegU, DegS, and Spo0A Regulation System of Paenibacillus polymyxa by CRISPR-Cas9-Based Targeted Point Mutations. Appl Environ Microbiol 2022; 88:e0016422. [PMID: 35588272 PMCID: PMC9195935 DOI: 10.1128/aem.00164-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite being unicellular organisms, bacteria undergo complex regulation mechanisms which coordinate different physiological traits. Among others, DegU, DegS, and Spo0A are the pleiotropic proteins which govern various cellular responses and behaviors. However, the functions and regulatory networks between these three proteins are rarely described in the highly interesting bacterium Paenibacillus polymyxa. In this study, we investigate the roles of DegU, DegS, and Spo0A by introduction of targeted point mutations facilitated by a CRISPR-Cas9-based system. In total, five different mutant strains were generated, the single mutants DegU Q218*, DegS L99F, and Spo0A A257V, the double mutant DegU Q218* DegS L99F, and the triple mutant DegU Q218* DegS L99F Spo0A A257V. Characterization of the wild-type and the engineered strains revealed differences in swarming behavior, conjugation efficiency, sporulation, and viscosity formation of the culture broth. In particular, the double mutant DegU Q218* DegS L99F showed a significant increase in conjugation efficiency as well as a stable exopolysaccharides formation. Furthermore, we highlight similarities and differences in the roles of DegU, DegS, and Spo0A between P. polymyxa and related species. Finally, this study provides novel insights into the complex regulatory system of P. polymyxa DSM 365. IMPORTANCE To date, only limited knowledge is available on how complex cellular behaviors are regulated in P. polymyxa. In this study, we investigate several regulatory proteins which play a role in governing different physiological traits. Precise targeted point mutations were introduced to their respective genes by employing a highly efficient CRISPR-Cas9-based system. Characterization of the strains revealed some similarities, but also differences, to the model bacterium Bacillus subtilis with regard to the regulation of cellular behaviors. Furthermore, we identified several strains which have superior performance over the wild-type. The applicability of the CRISPR-Cas9 system as a robust genome editing tool, in combination with the engineered strain with increased genetic accessibility, would boost further research in P. polymyxa and support its utilization for biotechnological applications. Overall, our study provides novel insights, which will be of importance in understanding how multiple cellular processes are regulated in Paenibacillus species.
Collapse
|
19
|
Vasilchenko NG, Prazdnova EV, Lewitin E. Epigenetic Mechanisms of Gene Expression Regulation in Bacteria of the Genus Bacillus. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Lilge L, Vahidinasab M, Adiek I, Becker P, Kuppusamy Nesamani C, Treinen C, Hoffmann M, Morabbi Heravi K, Henkel M, Hausmann R. Expression of degQ gene and its effect on lipopeptide production as well as formation of secretory proteases in Bacillus subtilis strains. Microbiologyopen 2021; 10:e1241. [PMID: 34713601 PMCID: PMC8515880 DOI: 10.1002/mbo3.1241] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/12/2022] Open
Abstract
Bacillus subtilis is described as a promising production strain for lipopeptides. In the case of B. subtilis strains JABs24 and DSM10T , surfactin and plipastatin are produced. Lipopeptide formation is controlled, among others, by the DegU response regulator. The activating phospho-transfer by the DegS sensor kinase is stimulated by the pleiotropic regulator DegQ, resulting in enhanced DegU activation. In B. subtilis 168, a point mutation in the degQ promoter region leads to a reduction in gene expression. Corresponding reporter strains showed a 14-fold reduced expression. This effect on degQ expression and the associated impact on lipopeptide formation was examined for B. subtilis JABs24, a lipopeptide-producing derivative of strain 168, and B. subtilis wild-type strain DSM10T , which has a native degQ expression. Based on the stimulatory effects of the DegU regulator on secretory protease formation, the impact of degQ expression on extracellular protease activity was additionally investigated. To follow the impact of degQ, a deletion mutant was constructed for DSM10T , while a natively expressed degQ version was integrated into strain JABs24. This allowed strain-specific quantification of the stimulatory effect of degQ expression on plipastatin and the negative effect on surfactin production in strains JABs24 and DSM10T . While an unaffected degQ expression reduced surfactin production in JABs24 by about 25%, a sixfold increase in plipastatin was observed. In contrast, degQ deletion in DSM10T increased surfactin titer by threefold but decreased plipastatin production by fivefold. In addition, although significant differences in extracellular protease activity were detected, no decrease in plipastatin and surfactin produced during cultivation was observed.
Collapse
Affiliation(s)
- Lars Lilge
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Maliheh Vahidinasab
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Isabel Adiek
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Philipp Becker
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Chanthiya Kuppusamy Nesamani
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Chantal Treinen
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Mareen Hoffmann
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Kambiz Morabbi Heravi
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Marius Henkel
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150k)Institute of Food Science and Biotechnology (150)University of HohenheimStuttgartGermany
| |
Collapse
|
21
|
Direct Antibiotic Activity of Bacillibactin Broadens the Biocontrol Range of Bacillus amyloliquefaciens MBI600. mSphere 2021; 6:e0037621. [PMID: 34378986 PMCID: PMC8386435 DOI: 10.1128/msphere.00376-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus amyloliquefaciens is considered the most successful biological control agent due to its ability to colonize the plant rhizosphere and phyllosphere where it outgrows plant pathogens by competition, antibiosis, and inducing plant defense. Its antimicrobial function is thought to depend on a diverse spectrum of secondary metabolites, including peptides, cyclic lipopeptides, and polyketides, which have been shown to target mostly fungal pathogens. In this study, we isolated and characterized the catecholate siderophore bacillibactin by B. amyloliquefaciens MBI600 under iron-limiting conditions and we further identified its potential antibiotic activity against plant pathogens. Our data show that bacillibactin production restrained in vitro and in planta growth of the nonsusceptible (to MBI600) pathogen Pseudomonas syringae pv. tomato. Notably, it was also related to increased antifungal activity of MBI600. In addition to bacillibactin biosynthesis, iron starvation led to upregulation of specific genes involved in microbial fitness and competition. IMPORTANCE Siderophores have mostly been studied concerning their contribution to the fitness and virulence of bacterial pathogens. In the present work, we isolated and characterized for the first time the siderophore bacillibactin from a commercial bacterial biocontrol agent. We proved that its presence in the culture broth has significant biocontrol activity against nonsusceptible bacterial and fungal phytopathogens. In addition, we suggest that its activity is due to a new mechanism of action, that of direct antibiosis, rather than by competition through iron scavenging. Furthermore, we showed that bacillibactin biosynthesis is coregulated with the transcription of antimicrobial metabolite synthases and fitness regulatory genes that maximize competition capability. Finally, this work highlights that the efficiency and range of existing bacterial biocontrol agents can be improved and broadened via the rational modification of the growth conditions of biocontrol organisms.
Collapse
|
22
|
Dergham Y, Sanchez-Vizuete P, Le Coq D, Deschamps J, Bridier A, Hamze K, Briandet R. Comparison of the Genetic Features Involved in Bacillus subtilis Biofilm Formation Using Multi-Culturing Approaches. Microorganisms 2021; 9:microorganisms9030633. [PMID: 33803642 PMCID: PMC8003051 DOI: 10.3390/microorganisms9030633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Surface-associated multicellular assemblage is an important bacterial trait to withstand harsh environmental conditions. Bacillus subtilis is one of the most studied Gram-positive bacteria, serving as a model for the study of genetic pathways involved in the different steps of 3D biofilm formation. B. subtilis biofilm studies have mainly focused on pellicle formation at the air-liquid interface or complex macrocolonies formed on nutritive agar. However, only few studies focus on the genetic features of B. subtilis submerged biofilm formation and their link with other multicellular models at the air interface. NDmed, an undomesticated B. subtilis strain isolated from a hospital, has demonstrated the ability to produce highly structured immersed biofilms when compared to strains classically used for studying B. subtilis biofilms. In this contribution, we have conducted a multi-culturing comparison (between macrocolony, swarming, pellicle, and submerged biofilm) of B. subtilis multicellular communities using the NDmed strain and mutated derivatives for genes shown to be required for motility and biofilm formation in pellicle and macrocolony models. For the 15 mutated NDmed strains studied, all showed an altered phenotype for at least one of the different culture laboratory assays. Mutation of genes involved in matrix production (i.e., tasA, epsA-O, cap, ypqP) caused a negative impact on all biofilm phenotypes but favored swarming motility on semi-solid surfaces. Mutation of bslA, a gene coding for an amphiphilic protein, affected the stability of the pellicle at the air-liquid interface with no impact on the submerged biofilm model. Moreover, mutation of lytF, an autolysin gene required for cell separation, had a greater effect on the submerged biofilm model than that formed at aerial level, opposite to the observation for lytABC mutant. In addition, B. subtilis NDmed with sinR mutation formed wrinkled macrocolony, less than that formed by the wild type, but was unable to form neither thick pellicle nor structured submerged biofilm. The results are discussed in terms of the relevancy to determine whether genes involved in colony and pellicle formation also govern submerged biofilm formation, by regarding the specificities in each model.
Collapse
Affiliation(s)
- Yasmine Dergham
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
- Faculty of Science, Lebanese University, 1003 Beirut, Lebanon;
| | - Pilar Sanchez-Vizuete
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
| | - Dominique Le Coq
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
- Centre National de la Recherche Scientifique (CNRS), Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Julien Deschamps
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
| | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, Anses, 35300 Fougères, France;
| | - Kassem Hamze
- Faculty of Science, Lebanese University, 1003 Beirut, Lebanon;
| | - Romain Briandet
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (Y.D.); (P.S.-V.); (D.L.C.); (J.D.)
- Correspondence:
| |
Collapse
|
23
|
Barreto HC, Cordeiro TN, Henriques AO, Gordo I. Rampant loss of social traits during domestication of a Bacillus subtilis natural isolate. Sci Rep 2020; 10:18886. [PMID: 33144634 PMCID: PMC7642357 DOI: 10.1038/s41598-020-76017-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
Most model bacteria have been domesticated in laboratory conditions. Yet, the tempo with which a natural isolate diverges from its ancestral phenotype under domestication to a novel laboratory environment is poorly understood. Such knowledge, however is essential to understanding the rate of evolution, the time scale over which a natural isolate can be propagated without loss of its natural adaptive traits, and the reliability of experimental results across labs. Using experimental evolution, phenotypic assays, and whole-genome sequencing, we show that within a week of propagation in a common laboratory environment, a natural isolate of Bacillus subtilis acquires mutations that cause changes in a multitude of traits. A single adaptive mutational step in the gene coding for the transcriptional regulator DegU impairs a DegU-dependent positive autoregulatory loop and leads to loss of robust biofilm architecture, impaired swarming motility, reduced secretion of exoproteases, and to changes in the dynamics of sporulation across environments. Importantly, domestication also resulted in improved survival when the bacteria face pressure from cells of the innate immune system. These results show that degU is a target for mutations during domestication and underscores the importance of performing careful and extremely short-term propagations of natural isolates to conserve the traits encoded in their original genomes.
Collapse
Affiliation(s)
- Hugo C Barreto
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
24
|
Ali MM, Provoost A, Mijnendonckx K, Van Houdt R, Charlier D. DNA-Binding and Transcription Activation by Unphosphorylated Response Regulator AgrR From Cupriavidus metallidurans Involved in Silver Resistance. Front Microbiol 2020; 11:1635. [PMID: 32765465 PMCID: PMC7380067 DOI: 10.3389/fmicb.2020.01635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
Even though silver and silver nanoparticles at low concentrations are considered safe for human health, their steadily increasing use and associated release in nature is not without risk since it may result in the selection of silver-resistant microorganisms, thus impeding the utilization of silver as antimicrobial agent. Furthermore, increased resistance to metals may be accompanied by increased antibiotic resistance. Inactivation of the histidine kinase and concomitant upregulation of the cognate response regulator (RR) of the AgrRS two-component system was previously shown to play an important role in the increased silver resistance of laboratory adapted mutants of Cupriavidus metallidurans. However, binding of AgrR, a member of the OmpR/PhoP family of RRs with a conserved phosphoreceiver aspartate residue, to potential target promoters has never been demonstrated. Here we identify differentially expressed genes in the silver-resistant mutant NA4S in non-selective conditions by RNA-seq and demonstrate sequence-specific binding of AgrR to six selected promoter regions of upregulated genes and divergent operons. We delimit binding sites by DNase I and in gel copper-phenanthroline footprinting of AgrR-DNA complexes, and establish a high resolution base-specific contact map of AgrR-DNA interactions using premodification binding interference techniques. We identified a 16-bp core AgrR binding site (AgrR box) arranged as an imperfect inverted repeat of 6 bp (ATTACA) separated by 4 bp variable in sequence (6-4-6). AgrR interacts with two major groove segments and the intervening minor groove, all aligned on one face of the helix. Furthermore, an additional in phase imperfect direct repeat of the half-site may be observed slightly up and/or downstream of the inverted repeat at some operators. Mutant studies indicated that both inverted and direct repeats contribute to AgrR binding in vitro and AgrR-mediated activation in vivo. From the position of the AgrR box it appears that AgrR may act as a Type II activator for most investigated promoters, including positive autoregulation. Furthermore, we show in vitro binding and in vivo activation with dephosphomimetic AgrR mutant D51A, indicating that unphosphorylated AgrR is the active form of the RR in mutant NA4S.
Collapse
Affiliation(s)
- Md Muntasir Ali
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Ann Provoost
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Kristel Mijnendonckx
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
25
|
Inhibition of nattokinase against the production of poly (γ-glutamic Acid) in Bacillus subtilis natto. Biotechnol Lett 2020; 42:2285-2291. [PMID: 32596743 DOI: 10.1007/s10529-020-02941-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/09/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To study the effect of nattokinse (NK) on the synthesis of poly(γ-glutamic acid) (γ-PGA) in Bacillus subtilis natto. RESULTS γ-PGA yield significantly decreased as NK was added in the original medium. With the increment of NK dosage, the yield decreased increasingly, but biomass increased instead of decreasing. The fact that cell density triggers the synthesis of γ-PGA is a controversial issue. γ-PGA yield and biomass closely correlate with addition time of NK. The later the addition of NK, the more γ-PGA yield decreased but the more biomass increased. It is concluded that cell hunger is a key factor to trigger the transmission of the cell density signal, and NK may inhibit γ-PGA synthesis by alleviating cell hunger. Besides, NK may reduce γ-PGA yield by degrading extracellular γ-PGA molecules. The study of adding L-glutamate of 0-20 g/L to the original medium showed that low concentration of L-glutamate (less than 5 g/L) could promote the synthesis of NK and γ-PGA, and thus NK may inhibit γ-PGA synthesis through strengthening substrate competition. CONCLUSIONS NK mainly inhibits γ-PGA synthesis in Bacillus subtilis natto through alleviating cell starvation and strengthening substrate competition, and reduces γ-PGA yield through degrading extracellular γ-PGA molecules.
Collapse
|
26
|
Rath H, Sappa PK, Hoffmann T, Gesell Salazar M, Reder A, Steil L, Hecker M, Bremer E, Mäder U, Völker U. Impact of high salinity and the compatible solute glycine betaine on gene expression of Bacillus subtilis. Environ Microbiol 2020; 22:3266-3286. [PMID: 32419322 DOI: 10.1111/1462-2920.15087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis is frequently exposed to hyperosmotic conditions. In addition to the induction of genes involved in the accumulation of compatible solutes, high salinity exerts widespread effects on B. subtilis physiology, including changes in cell wall metabolism, induction of an iron limitation response, reduced motility and suppression of sporulation. We performed a combined whole-transcriptome and proteome analysis of B. subtilis 168 cells continuously cultivated at low or high (1.2 M NaCl) salinity. Our study revealed significant changes in the expression of more than one-fourth of the protein-coding genes and of numerous non-coding RNAs. New aspects in understanding the impact of high salinity on B. subtilis include a sustained low-level induction of the SigB-dependent general stress response and strong repression of biofilm formation under high-salinity conditions. The accumulation of compatible solutes such as glycine betaine aids the cells to cope with water stress by maintaining physiologically adequate levels of turgor and also affects multiple cellular processes through interactions with cellular components. Therefore, we additionally analysed the global effects of glycine betaine on the transcriptome and proteome of B. subtilis and revealed that it influences gene expression not only under high-salinity, but also under standard growth conditions.
Collapse
Affiliation(s)
- Hermann Rath
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Praveen K Sappa
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Reder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Michael Hecker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
| |
Collapse
|
27
|
Steinberg N, Keren-Paz A, Hou Q, Doron S, Yanuka-Golub K, Olender T, Hadar R, Rosenberg G, Jain R, Cámara-Almirón J, Romero D, van Teeffelen S, Kolodkin-Gal I. The extracellular matrix protein TasA is a developmental cue that maintains a motile subpopulation within Bacillus subtilis biofilms. Sci Signal 2020; 13:13/632/eaaw8905. [PMID: 32430292 DOI: 10.1126/scisignal.aaw8905] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In nature, bacteria form biofilms-differentiated multicellular communities attached to surfaces. Within these generally sessile biofilms, a subset of cells continues to express motility genes. We found that this subpopulation enabled Bacillus subtilis biofilms to expand on high-friction surfaces. The extracellular matrix (ECM) protein TasA was required for the expression of flagellar genes. In addition to its structural role as an adhesive fiber for cell attachment, TasA acted as a developmental signal stimulating a subset of biofilm cells to revert to a motile phenotype. Transcriptomic analysis revealed that TasA stimulated the expression of a specific subset of genes whose products promote motility and repress ECM production. Spontaneous suppressor mutations that restored motility in the absence of TasA revealed that activation of the biofilm-motility switch by the two-component system CssR/CssS antagonized the TasA-mediated reversion to motility in biofilm cells. Our results suggest that although mostly sessile, biofilms retain a degree of motility by actively maintaining a motile subpopulation.
Collapse
Affiliation(s)
- Nitai Steinberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.,Department of Microbiology, Institute Pasteur, Paris, France
| | - Alona Keren-Paz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Qihui Hou
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shany Doron
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Yanuka-Golub
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Hadar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Rosenberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rakeshkumar Jain
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jesus Cámara-Almirón
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | | | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
28
|
Vyas R, Pandya M, Pohnerkar J, Kumar GN. Vitreoscilla hemoglobin promotes biofilm expansion and mitigates sporulation in Bacillus subtilis DK1042. 3 Biotech 2020; 10:118. [PMID: 32117679 DOI: 10.1007/s13205-020-2115-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/02/2020] [Indexed: 11/29/2022] Open
Abstract
Biofilm formation is considered as a stress combating strategy adopted by bacteria in response to variety of cellular and environmental signals. Impaired respiration due to low oxygen concentrations is one such signal that triggers wrinkling and robust biofilm formation in Bacillus subtilis. Vitreoscilla hemoglobin (VHb) improves microaerobic growth and bioproduct synthesis in a variety of bacteria by supplying oxygen to the respiratory chain. Present study was carried out to determine the effect of VHb on multicellularity of B. subtilis. Thus, B. subtilis DK1042 (WT) was genetically modified to express vgb and gfp genes under the control of P43 promoter at amyE locus by double cross over events. Biofilm formation by the integrant NRM1113 and WT was monitored on Lysogeny broth (LB) and LB containing glycerol and manganese (LBGM) medium. The WT produced more wrinkled colonies than NRM1113 on LB and LBGM medium. Concomitantly, biofilm-associated sporulation and production of pulcherriminic acid was decreased in NRM1113 as compared to WT on LB as well as LBGM. Expression studies of genes encoding structural components of biofilms revealed ~ 70% down-regulation of bslA gene in NRM1113 on both LB and LBGM which is correlated with reduced wrinkling in NRM1113. Moreover, NRM1113 showed increased colony expansion compared to WT in LB, LBGM and high osmolarity conditions. VHb expression alters various processes in different host cells, our study represents that VHb modulates biofilm formation, sporulation and pulcherriminic acid formation in B. subtilis DK1042.
Collapse
Affiliation(s)
- Riddhi Vyas
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002 India
| | - Maharshi Pandya
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002 India
| | - Jayashree Pohnerkar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002 India
| | - G Naresh Kumar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002 India
| |
Collapse
|
29
|
Hegde SR. Computational Identification of the Proteins Associated With Quorum Sensing and Biofilm Formation in Mycobacterium tuberculosis. Front Microbiol 2020; 10:3011. [PMID: 32038515 PMCID: PMC6988586 DOI: 10.3389/fmicb.2019.03011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022] Open
Abstract
With prolonged therapy and increased instances of drug resistance, tuberculosis is viewed as a serious infectious disease causing high mortality. Emerging concepts in Mycobacterium tuberculosis pathogenicity include biofilm formation, which endows bacterial survival in the host for a long time. To tackle chronic tuberculosis infection, a detailed understanding of the bacterial survival mechanisms is crucial. Using comparative genomics and literature mining, 115 M. tuberculosis proteins were shortlisted for their likely association with biofilm formation or quorum sensing. These include essential genes such as secA2, lpqY-sugABC, Rv1176c, and Rv0195, many of which are also known virulence factors. Furthermore, the functional relationship among these proteins was established by considering known protein-protein interactions, regulatory interactions, and gene expression correlation data/information. Graph centrality and motif analyses predicted the importance of proteins, such as Rv0081, DevR, RegX3, Rv0097, and Rv1996 in M. tuberculosis biofilm formation. Analysis of conservation across other biofilm-forming bacteria suggests that most of these genes are conserved in mycobacteria. As the processes, such as quorum sensing, leading to biofilm formation involve diverse pathways and interactions between proteins, these system-wide studies provide a novel perspective toward understanding mycobacterial persistence.
Collapse
Affiliation(s)
- Shubhada R Hegde
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| |
Collapse
|
30
|
Chawla R, Gupta R, Lele TP, Lele PP. A Skeptic's Guide to Bacterial Mechanosensing. J Mol Biol 2020; 432:523-533. [PMID: 31629771 PMCID: PMC7002054 DOI: 10.1016/j.jmb.2019.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 12/28/2022]
Abstract
Surface sensing in bacteria is a precursor to the colonization of biotic and abiotic surfaces, and an important cause of drug resistance and virulence. As a motile bacterium approaches and adheres to a surface from the bulk fluid, the mechanical forces that act on it change. Bacteria are able to sense these changes in the mechanical load through a process termed mechanosensing. Bacterial mechanosensing has featured prominently in recent literature as playing a key role in surface sensing. However, the changes in mechanical loads on different parts of the cell at a surface vary in magnitudes as well as in signs. This confounds the determination of a causal relationship between the activation of specific mechanosensors and surface sensing. Here, we explain how contrasting mechanical stimuli arise on a surface-adherent cell and how known mechanosensors respond to these stimuli. The evidence for mechanosensing in select bacterial species is reinterpreted, with a focus on mechanosensitive molecular motors. We conclude with proposed criteria that bacterial mechanosensors must satisfy to successfully mediate surface sensing.
Collapse
Affiliation(s)
- Ravi Chawla
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Rachit Gupta
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, Fl, USA
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
31
|
Hong LTT, Hachiya T, Hase S, Shiwa Y, Yoshikawa H, Sakakibara Y, Nguyen SLT, Kimura K. Poly-γ-glutamic acid production of Bacillus subtilis (natto) in the absence of DegQ: A gain-of-function mutation in yabJ gene. J Biosci Bioeng 2019; 128:690-696. [PMID: 31272833 DOI: 10.1016/j.jbiosc.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Abstract
Poly-γ-glutamic acid (γPGA) production by Bacillus subtilis is regulated by the quorum sensing system where DegQ transmits the cell density signal to a DNA-binding protein DegU. A mutation suppressing the γPGA-negative phenotype of degQ gene knock-out mutant (ΔdegQ) was identified through whole genome sequencing. The mutation conferred an amino acid substitution of Ser103 to phenylalanine (S103F) in yabJ that belongs to the highly conserved YjgF/YER057c/UK114 family. Genetic experiments including LacZ-fusion assay of γPGA synthetic operon confirmed that the suppressor mutation (yabJS103F) was responsible for the recovery of γPGA production. The yabJ itself was not essential for the γPGA production and the mutant allele enabled γPGA production of the ΔdegQ strain even in the presence of wild type yabJ. Thus, yabJS103F was a dominant positive allele. degU-lacZ fusion gene was hyper-expressed in cells carrying the yabJS103F, but disruption of yabJ did not affect the transcription level of the degU-lacZ. These observations suggested that YabJ acquired a function to stimulate expression of degU by the S103F mutation which is involved in the regulation of γPGA synthesis.
Collapse
Affiliation(s)
- Le Thi Thu Hong
- Food Research Institute, National Agriculture and Food Research Organization (NFRI/NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Tsuyoshi Hachiya
- Department of Bioscience and Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Sumitaka Hase
- Department of Bioscience and Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Yuh Shiwa
- Department of Molecular Microbiology, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan; Department of Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Yasubumi Sakakibara
- Department of Bioscience and Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Sy Le Thanh Nguyen
- Food Research Institute, National Agriculture and Food Research Organization (NFRI/NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Keitarou Kimura
- Food Research Institute, National Agriculture and Food Research Organization (NFRI/NARO), Tsukuba, Ibaraki 305-8642, Japan.
| |
Collapse
|
32
|
Abstract
Bacterial biofilms are ubiquitous in natural environments and play an important role in many clinical, industrial, and ecological settings. Although much is known about the transcriptional regulatory networks that control biofilm formation in model bacteria such as Bacillus subtilis, very little is known about the role of metabolism in this complex developmental process. To address this important knowledge gap, we performed a time-resolved analysis of the metabolic changes associated with bacterial biofilm development in B. subtilis by combining metabolomic, transcriptomic, and proteomic analyses. Here, we report a widespread and dynamic remodeling of metabolism affecting central carbon metabolism, primary biosynthetic pathways, fermentation pathways, and secondary metabolism. This report serves as a unique hypothesis-generating resource for future studies on bacterial biofilm physiology. Outside the biofilm research area, this work should also prove relevant to any investigators interested in microbial physiology and metabolism. Biofilms are structured communities of tightly associated cells that constitute the predominant state of bacterial growth in natural and human-made environments. Although the core genetic circuitry that controls biofilm formation in model bacteria such as Bacillus subtilis has been well characterized, little is known about the role that metabolism plays in this complex developmental process. Here, we performed a time-resolved analysis of the metabolic changes associated with pellicle biofilm formation and development in B. subtilis by combining metabolomic, transcriptomic, and proteomic analyses. We report surprisingly widespread and dynamic remodeling of metabolism affecting central carbon metabolism, primary biosynthetic pathways, fermentation pathways, and secondary metabolism. Most of these metabolic alterations were hitherto unrecognized as biofilm associated. For example, we observed increased activity of the tricarboxylic acid (TCA) cycle during early biofilm growth, a shift from fatty acid biosynthesis to fatty acid degradation, reorganization of iron metabolism and transport, and a switch from acetate to acetoin fermentation. Close agreement between metabolomic, transcriptomic, and proteomic measurements indicated that remodeling of metabolism during biofilm development was largely controlled at the transcriptional level. Our results also provide insights into the transcription factors and regulatory networks involved in this complex metabolic remodeling. Following upon these results, we demonstrated that acetoin production via acetolactate synthase is essential for robust biofilm growth and has the dual role of conserving redox balance and maintaining extracellular pH. This report represents a comprehensive systems-level investigation of the metabolic remodeling occurring during B. subtilis biofilm development that will serve as a useful road map for future studies on biofilm physiology.
Collapse
|
33
|
Xu Z, Xie J, Zhang H, Wang D, Shen Q, Zhang R. Enhanced Control of Plant Wilt Disease by a Xylose-Inducible degQ Gene Engineered into Bacillus velezensis Strain SQR9XYQ. PHYTOPATHOLOGY 2019; 109:36-43. [PMID: 29927357 DOI: 10.1094/phyto-02-18-0048-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacillus velezensis SQR9 (former B. amyloliquefaciens SQR9) is a plant-growth-promoting rhizobacterium (PGPR) that promotes plant growth and health. The colonization of PGPR strains along plant roots is a prerequisite for them to execute their specific functions. However, one problem of microbial introduction in practice is that the applied PGPR strains do not always successfully colonize the rhizosphere. In Bacillus spp., two-component signal transduction system (TCS) DegS/U regulates flagellar motility, biofilm formation and antibiotic production. Phosphorylation of DegU by DegS is positively affected by DegQ protein. In this study, we constructed a xylose-inducible degQ genetically engineered strain SQR9XYQ to improve the biocontrol activity. The results from in vitro, root in situ, greenhouse experiments and RT-qPCR studies demonstrate that (i) the phosphorylation of DegU in SQR9XYQ can be gradually activated by xylose, which is a component of both cucumber and tomato root exudates, and (ii) biofilm formation, antibiotic expression, colonization activity, and biocontrol efficiency were improved in SQR9XYQ compared with the wild-type strain SQR9. These results suggest that colonization trait is important to biocontrol strains for maintenance of plant health.
Collapse
Affiliation(s)
- Zhihui Xu
- First, second, third, fourth, and fifth authors: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, China; and sixth author: Nanjing Agricultural University, College of Resources and Environmental Sciences, Weigang 1#, Nanjing, Jiangsu, China, 210095
| | - Jiyu Xie
- First, second, third, fourth, and fifth authors: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, China; and sixth author: Nanjing Agricultural University, College of Resources and Environmental Sciences, Weigang 1#, Nanjing, Jiangsu, China, 210095
| | - Huihui Zhang
- First, second, third, fourth, and fifth authors: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, China; and sixth author: Nanjing Agricultural University, College of Resources and Environmental Sciences, Weigang 1#, Nanjing, Jiangsu, China, 210095
| | - Dandan Wang
- First, second, third, fourth, and fifth authors: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, China; and sixth author: Nanjing Agricultural University, College of Resources and Environmental Sciences, Weigang 1#, Nanjing, Jiangsu, China, 210095
| | - Qirong Shen
- First, second, third, fourth, and fifth authors: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, China; and sixth author: Nanjing Agricultural University, College of Resources and Environmental Sciences, Weigang 1#, Nanjing, Jiangsu, China, 210095
| | - Ruifu Zhang
- First, second, third, fourth, and fifth authors: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, China; and sixth author: Nanjing Agricultural University, College of Resources and Environmental Sciences, Weigang 1#, Nanjing, Jiangsu, China, 210095
| |
Collapse
|
34
|
Screening and Whole-Genome Sequencing of Two Streptomyces Species from the Rhizosphere Soil of Peony Reveal Their Characteristics as Plant Growth-Promoting Rhizobacteria. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2419686. [PMID: 30255092 PMCID: PMC6145153 DOI: 10.1155/2018/2419686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/24/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
Two bacteria, Streptomyces albireticuli MDJK11 and S. alboflavus MDJK44, which are potential plant growth-promoting rhizobacteria against pathogenic fungi were isolated from the rhizosphere soil of peony in Shandong, China. Their biological characteristics and complete genome sequences were reported in this study. The total genome size of MDJK11 was only 8.14 Mb with 6,550 protein-coding genes and a high GC content of 72.8 mol%. The MDJK44 genome comprises a 9.62 Mb chromosome with 72.1 mol% GC content, 7,285 protein-coding genes, and two plasmids. Some gene sequences in these two genomes were analyzed to be heterologously obtained by horizontal transfer. Gene or gene cluster candidates responding to secondary metabolites production, antimicrobial activities, and plant growth-promoting capacities were also analyzed in this paper. The genomic information and biological characteristics will facilitate the understanding and application of S. albireticuli and S. alboflavus species as biocontrol agents in future agriculture.
Collapse
|
35
|
Okshevsky M, Louw MG, Lamela EO, Nilsson M, Tolker‐Nielsen T, Meyer RL. A transposon mutant library of Bacillus cereus ATCC 10987 reveals novel genes required for biofilm formation and implicates motility as an important factor for pellicle-biofilm formation. Microbiologyopen 2018; 7:e00552. [PMID: 29164822 PMCID: PMC5911993 DOI: 10.1002/mbo3.552] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 11/16/2022] Open
Abstract
Bacillus cereus is one of the most common opportunistic pathogens causing foodborne illness, as well as a common source of contamination in the dairy industry. B. cereus can form robust biofilms on food processing surfaces, resulting in food contamination due to shedding of cells and spores. Despite the medical and industrial relevance of this species, the genetic basis of biofilm formation in B. cereus is not well studied. In order to identify genes required for biofilm formation in this bacterium, we created a library of 5000 + transposon mutants of the biofilm-forming strain B. cereusATCC 10987, using an unbiased mariner transposon approach. The mutant library was screened for the ability to form a pellicle biofilm at the air-media interface, as well as a submerged biofilm at the solid-media interface. A total of 91 genes were identified as essential for biofilm formation. These genes encode functions such as chemotaxis, amino acid metabolism and cellular repair mechanisms, and include numerous genes not previously known to be required for biofilm formation. Although the majority of disrupted genes are not directly responsible for motility, further investigations revealed that the vast majority of the biofilm-deficient mutants were also motility impaired. This observation implicates motility as a pivotal factor in the formation of a biofilm by B. cereus. These results expand our knowledge of the fundamental molecular mechanisms of biofilm formation by B. cereus.
Collapse
Affiliation(s)
- Mira Okshevsky
- Interdisciplinary Nanoscience CenterAarhus UniversityAarhusDenmark
| | | | | | - Martin Nilsson
- Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Tim Tolker‐Nielsen
- Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience CenterAarhus UniversityAarhusDenmark
- Department of BioscienceAarhus UniversityAarhusDenmark
| |
Collapse
|
36
|
Spacapan M, Danevčič T, Mandic-Mulec I. ComX-Induced Exoproteases Degrade ComX in Bacillus subtilis PS-216. Front Microbiol 2018; 9:105. [PMID: 29449835 PMCID: PMC5799266 DOI: 10.3389/fmicb.2018.00105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
Gram-positive bacteria use peptides as auto-inducing (AI) signals to regulate the production of extracellular enzymes (e.g., proteases). ComX is an AI peptide, mostly known for its role in the regulation of bacterial competence and surfactant production in Bacillus subtilis. These two traits are regulated accordingly to the bacterial population size, thus classifying ComX as a quorum sensing signal. ComX also indirectly regulates exoprotease production through the intermediate transcriptional regulator DegQ. We here use this peptide-based AI system (the ComQXPA system) as a model to address exoprotease regulation by ComX in biofilms. We also investigate the potential of ComX regulated proteases to degrade the ComX AI peptide. Results indicate that ComX indeed induces the expression of aprE, the gene for the major serine protease subtilisin, and stimulates overall exoprotease production in biofilms of B. subtilis PS-216 and several other B. subtilis soil isolates. We also provide evidence that these exoproteases can degrade ComX. The ComX biological activity decay is reduced in the spent media of floating biofilms with low proteolytic activity found in the comP and degQ mutants. ComX biological activity decay can be restored by the addition of subtilisin to such media. In contrast, inhibition of metalloproteases by EDTA reduces ComX biological activity decay. This suggests that both serine and metalloproteases, which are induced by ComX, are ultimately capable of degrading this signaling peptide. This work brings novel information on regulation of exoproteases in B. subtilis floating biofilms and reveals that these proteolytic enzymes degrade the AI signaling peptide ComX, which is also a major determinant of their expression in biofilms.
Collapse
Affiliation(s)
- Mihael Spacapan
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Danevčič
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ines Mandic-Mulec
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
37
|
Hölscher T, Schiklang T, Dragoš A, Dietel AK, Kost C, Kovács ÁT. Impaired competence in flagellar mutants of Bacillus subtilis is connected to the regulatory network governed by DegU. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:23-32. [PMID: 29124898 DOI: 10.1111/1758-2229.12601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
The competent state is a developmentally distinct phase, in which bacteria are able to take up and integrate exogenous DNA into their genome. Bacillus subtilis is one of the naturally competent bacterial species and the domesticated laboratory strain 168 is easily transformable. In this study, we report a reduced transformation frequency of B. subtilis mutants lacking functional and structural flagellar components. This includes hag, the gene encoding the flagellin protein forming the filament of the flagellum. We confirm that the observed decrease of the transformation frequency is due to reduced expression of competence genes, particularly of the main competence regulator gene comK. The impaired competence is due to an increase in the phosphorylated form of the response regulator DegU, which is involved in regulation of both flagellar motility and competence. Altogether, our study identified a close link between motility and natural competence in B. subtilis suggesting that hindrance in motility has great impact on differentiation of this bacterium not restricted only to the transition towards sessile growth stage.
Collapse
Affiliation(s)
- Theresa Hölscher
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Tina Schiklang
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Anna Dragoš
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Anne-Kathrin Dietel
- Experimental Ecology and Evolution Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Christian Kost
- Experimental Ecology and Evolution Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Ákos T Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
38
|
Hu Y, Cai Q, Tian S, Ge Y, Yuan Z, Hu X. Regulator DegU is required for multicellular behavior in Lysinibacillus sphaericus. Res Microbiol 2018; 169:177-187. [PMID: 29378340 DOI: 10.1016/j.resmic.2017.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 11/28/2022]
Abstract
DegS and DegU make up a two component system belonging to a class of signal transduction systems that play important roles in a broad range of bacterial responses to the environment. However, little study has been done to explore the physiological functions of DegS-DegU in mosquitocidal Lysinibacillus sphaericus. In this study, it was found that deletion of degU or degS-degU inhibited the swarming motility, biofilm formation, sporulation and binary toxin production through regulating the related genes, and phosphorylation was necessary for the functions of DegU. Based on the findings, a regulation network mediated by DegU was delineated. Both DegU-pi and Spo0A-pi positively regulates genes which are linked with the transition from stage Ⅱ to the end of the sporulation process and also influences the production of binary toxins via regulation on sigE. Both DegU-pi and Spo0A-pi negatively regulate abrB/sinR and influence the biofilm formation. DegU-pi can positively regulate the motility via the regulation on sigD. Whether the regulations are directly or indirectly need to be explored. Moreover, Spo0A-pi may indirectly regulate the swarming motility through negatively regulating DegU. It was concluded that DegU is a global transcriptional regulator on cell swarming motility, biofilm formation, sporulation and virulence in L. sphaericus.
Collapse
Affiliation(s)
- Yimin Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Quanxin Cai
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Shen Tian
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Yong Ge
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Zhiming Yuan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China.
| | - Xiaomin Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China.
| |
Collapse
|
39
|
Park HJ, Han SW. Functional and Proteomic Analyses Reveal That ScpBXv Is Involved in Bacterial Growth, Virulence, and Biofilm Formation in Xanthomonas campestris pv. vesicatoria. THE PLANT PATHOLOGY JOURNAL 2017; 33:602-607. [PMID: 29238284 PMCID: PMC5720608 DOI: 10.5423/ppj.nt.07.2017.0151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 05/24/2023]
Abstract
Segregation and condensation protein B (ScpB) is essential for replication and segregation in living organisms. Here, we reported the functions of ScpBXv (ScpB-like protein in Xanthomonas campestris pv. vesicatoria) using phenotypic and proteomic analyses. Growth of XcvΔscpBXv (ScpBXv knockout mutant) was reduced under both slow and fast growth conditions in rich medium, but comparable to this of the wild-type in plant-mimic conditions. Interestingly, the mutant was significantly less virulent than the wild-type in tomato, indicating that ScpBXv is involved in virulence. To investigate ScpBXv-associated mechanisms, comparative proteomic analyses were carried out and the abundance of 187 proteins was altered. Among them, diverse transcriptional regulators involved in biofilm formation and virulence were abundant in the wild-type. We further showed that biofilm formation of XcvΔscpBXv was reduced. This study provides new insights into the functions of ScpBXv in bacterial replication and biofilm formation, which may contribute to the virulence of Xcv.
Collapse
Affiliation(s)
| | - Sang-Wook Han
- Corresponding author. Phone) +82-31-670-3150, FAX) +82-2-670-8845, E-mail)
| |
Collapse
|
40
|
Diethmaier C, Chawla R, Canzoneri A, Kearns DB, Lele PP, Dubnau D. Viscous drag on the flagellum activates Bacillus subtilis entry into the K-state. Mol Microbiol 2017; 106:367-380. [PMID: 28800172 DOI: 10.1111/mmi.13770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2017] [Indexed: 12/23/2022]
Abstract
Bacillus subtilis flagella are not only required for locomotion but also act as sensors that monitor environmental changes. Although how the signal transmission takes place is poorly understood, it has been shown that flagella play an important role in surface sensing by transmitting a mechanical signal to control the DegS-DegU two-component system. Here we report a role for flagella in the regulation of the K-state, which enables transformability and antibiotic tolerance (persistence). Mutations impairing flagellar synthesis are inferred to increase DegU-P, which inhibits the expression of ComK, the master regulator for the K-state, and reduces transformability. Tellingly, both deletion of the flagellin gene and straight filament (hagA233V ) mutations increased DegU phosphorylation despite the fact that both mutants had wild type numbers of basal bodies and the flagellar motors were functional. We propose that higher viscous loads on flagellar motors result in lower DegU-P levels through an unknown signaling mechanism. This flagellar-load based mechanism ensures that cells in the motile subpopulation have a tenfold enhanced likelihood of entering the K-state and taking up DNA from the environment. Further, our results suggest that the developmental states of motility and competence are related and most commonly occur in the same epigenetic cell type.
Collapse
Affiliation(s)
- Christine Diethmaier
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Ravi Chawla
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station Texas, TX, USA
| | | | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station Texas, TX, USA
| | - David Dubnau
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
41
|
Liao S, De A, Thompson T, Chapman L, Bitoun JP, Yao X, Yu Q, Ma F, Wen ZT. Expression of BrpA in Streptococcus mutans is regulated by FNR-box mediated repression. Mol Oral Microbiol 2017; 32:517-525. [PMID: 28744965 DOI: 10.1111/omi.12193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2017] [Indexed: 11/30/2022]
Abstract
Our previous studies showed that brpA in Streptococcus mutans, which encodes a member of the LytR-CpsA-Psr family of proteins, can be co-transcribed with brpB upstream as a bicistronic operon, and the intergenic region also has strong promoter activity. To elucidate how brpA expression is regulated, the promoter regions were analyzed using polymerase chain reaction-based deletions and site-directed mutagenesis and a promoterless luciferase gene as a reporter. Allelic exchange mutagenesis was also used to examine genes encoding putative trans-acting factors, and the impact of such mutations on brpA expression was analyzed by reporter assays. Multiple elements in the short brpA promoter (nucleotide -1 to -344 relative to start cordon ATG) were shown to have a major impact on brpA expression, including an FNR-box, for a putative binding site of an FNR-type of transcriptional regulator. When compared with the intact brpA promoter, mutations of the highly conserved nucleotides in FNR-box from TTGATgtttAcCtt to TTACAgaaaGtTac resulted in 1362-fold increases of luciferase activity (P < .001), indicative of the FNR-box-mediated repression as a major mechanism in regulation of brpA expression. When luciferase reporter was fused to the upstream brpBA promoter (nucleotides -784 to -1144), luciferase activity was decreased by 4.5-fold (P < .001) in the brpA mutant, TW14D, and by 67.7-fold (P < .001) in the brpB mutant, JB409, compared with the wild-type, UA159. However, no such effects were observed when the reporter gene was fused to the short brpA promoter and its derivatives. These results also suggest that brpA expression in S. mutans is auto-regulated through the upstream brpBA promoter.
Collapse
Affiliation(s)
- S Liao
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - A De
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - T Thompson
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - L Chapman
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - J P Bitoun
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - X Yao
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Q Yu
- Department of Biostatistics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - F Ma
- Center for Virology, University of Nebraska, Lincoln, NE, USA
| | - Z T Wen
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
42
|
Tasaki S, Nakayama M, Shoji W. Morphologies of Bacillus subtilis communities responding to environmental variation. Dev Growth Differ 2017; 59:369-378. [PMID: 28675458 DOI: 10.1111/dgd.12383] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/24/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022]
Abstract
Bacterial communities exhibit a variety of growth morphologies in constructing robust systems under different environmental conditions. We review the diverse morphologies of Bacillus subtilis communities and their mechanisms of self-organization. B. subtilis uses different cell types to suit environmental conditions and cell density. The subpopulation of each cell type exhibits various environment-sensitive properties. Furthermore, division of labor among the subpopulations results in flexible development for the community as a whole. We review how B. subtilis community morphologies and growth strategies respond to environmental perturbations.
Collapse
Affiliation(s)
- Sohei Tasaki
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Japan.,Graduate School of Science, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Japan
| | - Madoka Nakayama
- Sendai National College of Technology, 48 Nodayama, Medeshima-Shiote, Natori, Miyagi, 981-1239, Japan
| | - Wataru Shoji
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Japan.,Institute of Development, Aging and Cancer, Tohoku University, 1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
43
|
Oloketuyi SF, Khan F. Inhibition strategies of Listeria monocytogenes biofilms-current knowledge and future outlooks. J Basic Microbiol 2017; 57:728-743. [PMID: 28594071 DOI: 10.1002/jobm.201700071] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 12/30/2022]
Abstract
There is an increasing trend in the food industry on the Listeria monocytogenes biofilm formation and inhibition. This is attributed to its easy survival on contact surfaces, resistance to disinfectants or antibiotics and growth under the stringent condition used for food processing and preservation thereby leading to food contamination products by direct or indirect exposure. Though, there is a lack of conclusive evidences about the mechanism of biofilm formation, in this review, the concept of biofilm formation and various chemical, physical, and green technology approaches to prevent or control the biofilm formed is discussed. State-of-the-art approaches ranging from the application of natural to synthetic molecules with high effectiveness and non-toxicity targeted at the different steps of biofilm formation could positively influence the biofilm inhibition in the future.
Collapse
Affiliation(s)
- Sandra F Oloketuyi
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Fazlurrahman Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| |
Collapse
|
44
|
Gupta V, Chaudhary N, Aggarwal S, Adlakha N, Gulati P, Bhatnagar R. Functional analysis of BAS2108-2109 two component system: Evidence for protease regulation in Bacillus anthracis. Int J Biochem Cell Biol 2017; 89:71-84. [PMID: 28602714 DOI: 10.1016/j.biocel.2017.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND Bacillus anthracis (BA) is a major bioterrorism concern which has evolved complex regulatory mechanisms for its virulence factors. Secreted proteases play an imperative role in the pathogenesis of BA, however their regulation remains elusive. Two component systems (TCS) are often employed by bacteria to sense and adapt to the environmental perturbations. In several pathogens, TCS are commonly associated with the regulation of virulence factors including proteases. The genome of BA encodes 41 TCS pairs, however, the role of any TCS in regulation of its proteases is not known. PRINCIPAL FINDINGS The study established BAS2108-2109 as a prototypical TCS where BAS2108 functions as a histidine kinase and BAS2109 as the response regulator. The expression of BAS2109 was found to be elevated under host simulated conditions and in pellicle forming cells. Electrophoretic mobility shift assay (EMSA) and lacZ reporter assay revealed positive autoregulation of the BAS2108-2109 operon by BAS2109. Collective analysis of ANS assay and EMSA demonstrated Lys167, Thr179 and Thr182 residues are crucial for the DNA binding activity of BAS2109. EMSA analysis further highlighted BAS2109 as the transcriptional regulator for different genes of BA, particularly proteases. Upregulation of proteases in BA overexpressing BAS2109 further strengthen its role in protease regulation. SIGNIFICANCE This is the first report to identify a TCS pair for its role in the regulation of proteases of BA. Importance of proteases in the pathogenesis of BA is well documented, therefore, studying the regulatory networks governing their expression will help in identification of new drug targets.
Collapse
Affiliation(s)
- Vatika Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India, India; Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Neha Chaudhary
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India, India
| | - Somya Aggarwal
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India, India
| | - Nidhi Adlakha
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India, India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India, India.
| |
Collapse
|
45
|
Rodriguez Ayala F, Bauman C, Bartolini M, Saball E, Salvarrey M, Leñini C, Cogliati S, Strauch M, Grau R. Transcriptional regulation of adhesive properties ofBacillus subtilisto extracellular matrix proteins through the fibronectin-binding protein YloA. Mol Microbiol 2017; 104:804-821. [DOI: 10.1111/mmi.13666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Facundo Rodriguez Ayala
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Carlos Bauman
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Marco Bartolini
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Ester Saball
- Departamento de Bioquímica Clínica, Área Inmunología, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario, Argentina
| | - Marcela Salvarrey
- Departamento de Bioquímica Clínica, Área Inmunología, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario, Argentina
| | - Cecilia Leñini
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Sebastián Cogliati
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Mark Strauch
- Biomedical Sciences Department, Dental School; University of Maryland; Baltimore MD USA
| | - Roberto Grau
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| |
Collapse
|
46
|
Din L, Rudakova N, Sharipova M. Factors Influencing the Formation of Biofilms on Bacilli Model Systems. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Mwita L, Chan WY, Pretorius T, Lyantagaye SL, Lapa SV, Avdeeva LV, Reva ON. Gene expression regulation in the plant growth promoting Bacillus atrophaeus UCMB-5137 stimulated by maize root exudates. Gene 2016; 590:18-28. [PMID: 27259668 DOI: 10.1016/j.gene.2016.05.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/04/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022]
Abstract
Despite successful use of Plant Growth Promoting Rhizobacteria (PGPR) in agriculture, little is known about specific mechanisms of gene regulation facilitating the effective communication between bacteria and plants during plant colonization. Active PGPR strain Bacillus atrophaeus UCMB-5137 was studied in this research. RNA sequencing profiles were generated in experiments where root exudate stimulations were used to mimic interactions between bacteria and plants. It was found that the gene regulation in B. atrophaeus UCMB-5137 in response to the root exudate stimuli differed from the reported gene regulation at similar conditions in B. amyloliquefaciens FZB42, which was considered as a paradigm PGPR. This difference was explained by hypersensitivity of UCMB-5137 to the root exudate stimuli impelling it to a sessile root colonization behavior through the CcpA-CodY-AbrB regulation. It was found that the transcriptional factor DegU also could play an important role in gene regulations during plant colonization. A significant stress caused by the root exudates on in vitro cultivated B. atrophaeus UCMB-5137 was noticed and discussed. Multiple cases of conflicted gene regulations showed scantiness of our knowledge on the regulatory network in Bacillus. Some of these conflicted regulations could be explained by interference of non-coding RNA (ncRNA). Search through differential expressed intergenic regions revealed 49 putative loci of ncRNA regulated by the root exudate stimuli. Possible target mRNA were predicted and a general regulatory network of B. atrophaeus UCMB-5137 genome was designed.
Collapse
Affiliation(s)
- Liberata Mwita
- Centre for Bioinformatics and Computational Biology, Dep. Biochemistry, University of Pretoria, Lynnwood Rd, Hillcrest, Pretoria 0002, South Africa
| | - Wai Yin Chan
- Department of Microbiology and Plant Pathology, University of Pretoria, Lynnwood Rd, Hillcrest, Pretoria 0002, South Africa
| | - Theresa Pretorius
- Department of Microbiology and Plant Pathology, University of Pretoria, Lynnwood Rd, Hillcrest, Pretoria 0002, South Africa
| | - Sylvester L Lyantagaye
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35179, Dar es Salaam, Tanzania
| | - Svitlana V Lapa
- Dep. Antibiotics, D. K. Zabolotnogo Institute of Microbiology and Virology, 154 Zabolotnogo Str., Kiev, Ukraine
| | - Lilia V Avdeeva
- Dep. Antibiotics, D. K. Zabolotnogo Institute of Microbiology and Virology, 154 Zabolotnogo Str., Kiev, Ukraine
| | - Oleg N Reva
- Centre for Bioinformatics and Computational Biology, Dep. Biochemistry, University of Pretoria, Lynnwood Rd, Hillcrest, Pretoria 0002, South Africa.
| |
Collapse
|
48
|
Abstract
The dense aggregation of cells on a surface, as seen in biofilms, inevitably results in both environmental and cellular heterogeneity. For example, nutrient gradients can trigger cells to differentiate into various phenotypic states. Not only do cells adapt physiologically to the local environmental conditions, but they also differentiate into cell types that interact with each other. This allows for task differentiation and, hence, the division of labor. In this article, we focus on cell differentiation and the division of labor in three bacterial species: Myxococcus xanthus, Bacillus subtilis, and Pseudomonas aeruginosa. During biofilm formation each of these species differentiates into distinct cell types, in some cases leading to cooperative interactions. The division of labor and the cooperative interactions between cell types are assumed to yield an emergent ecological benefit. Yet in most cases the ecological benefits have yet to be elucidated. A notable exception is M. xanthus, in which cell differentiation within fruiting bodies facilitates the dispersal of spores. We argue that the ecological benefits of the division of labor might best be understood when we consider the dynamic nature of both biofilm formation and degradation.
Collapse
|
49
|
Molière N, Hoßmann J, Schäfer H, Turgay K. Role of Hsp100/Clp Protease Complexes in Controlling the Regulation of Motility in Bacillus subtilis. Front Microbiol 2016; 7:315. [PMID: 27014237 PMCID: PMC4793158 DOI: 10.3389/fmicb.2016.00315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022] Open
Abstract
The Hsp100/Clp protease complexes of Bacillus subtilis ClpXP and ClpCP are involved in the control of many interconnected developmental and stress response regulatory networks, including competence, redox stress response, and motility. Here we analyzed the role of regulatory proteolysis by ClpXP and ClpCP in motility development. We have demonstrated that ClpXP acts on the regulation of motility by controlling the levels of the oxidative and heat stress regulator Spx. We obtained evidence that upon oxidative stress Spx not only induces the thiol stress response, but also transiently represses the transcription of flagellar genes. Furthermore, we observed that in addition to the known impact of ClpCP via the ComK/FlgM-dependent pathway, ClpCP also affects flagellar gene expression via modulating the activity and levels of the global regulator DegU-P. This adds another layer to the intricate involvement of Clp mediated regulatory proteolysis in different gene expression programs, which may allow to integrate and coordinate different signals for a better-adjusted response to the changing environment of B. subtilis cells.
Collapse
Affiliation(s)
- Noël Molière
- Naturwissenschaftliche Fakultät, Institut für Mikrobiologie, Leibniz Universität HannoverHannover, Germany; Institut für Biologie-Mikrobiologie, Freie Universität BerlinBerlin, Germany
| | - Jörn Hoßmann
- Institut für Biologie-Mikrobiologie, Freie Universität Berlin Berlin, Germany
| | - Heinrich Schäfer
- Naturwissenschaftliche Fakultät, Institut für Mikrobiologie, Leibniz Universität Hannover Hannover, Germany
| | - Kürşad Turgay
- Naturwissenschaftliche Fakultät, Institut für Mikrobiologie, Leibniz Universität HannoverHannover, Germany; Institut für Biologie-Mikrobiologie, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
50
|
Sinsuwan S, Jangchud A, Rodtong S, Roytrakul S, Yongsawatdigul J. Statistical Optimization of the Production of NaCl-Tolerant Proteases by a Moderate Halophile, Virgibacillus sp. SK37. Food Technol Biotechnol 2015; 53:136-145. [PMID: 27904342 PMCID: PMC5068400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/09/2015] [Indexed: 06/06/2023] Open
Abstract
The objectives of this study are to optimize the conditions for providing high yield of NaCl-tolerant extracellular protease from Virgibacillus sp. SK37 based on a fish-based medium and to investigate the effects of the key factors (mass per volume ratios of dried anchovy, yeast extract and NaCl, and initial pH of the medium) on the secretion pattern of proteases. Based on the predicted response model, the optimized medium contained 1.81% of dried anchovy, 0.33% of yeast extract and 1.25% of NaCl at pH=7.8. Under these conditions, a 5.3-fold increase in protease production was achieved, compared with the broth containing only 1.2% of dried anchovy (5% of NaCl at pH=7). The cubic regression adequately described the protease production. Protease activity was determined using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) on the synthetic substrate (Suc-Ala-Ala-Pro-Phe-AMC). Proteases of molecular masses of 19, 34, 35 and 44 kDa were secreted in the presence of NaCl, whereas those of 22 and 42 kDa were the main proteases detected in the absence of NaCl. In addition, no secreted proteases were detected when initial pH of the medium was pH=6. The peptide mass fingerprint of the medium cultured with 10% NaCl showed a higher abundance of peptides with lower mass of 500-1000 m/z compared with the medium containing 0% NaCl, indicating the higher proteolytic activity of the high-salt medium. The Virgibacillus sp. SK37 proteases showed a marked preference towards Lys, Arg and Tyr in the presence of NaCl and towards Lys and Arg in the absence of NaCl.
Collapse
Affiliation(s)
- Sornchai Sinsuwan
- School of Food Technology, Institute of Agricultural Technology,
Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Anuvat Jangchud
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University,
Bangkok 10900, Thailand
| | - Sureelak Rodtong
- School of Microbiology, Institute of Science, Suranaree University of Technology,
Nakhon Ratchasima 30000, Thailand
| | - Sittirak Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC),
National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology,
Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|