1
|
Purtov YA, Ozoline ON. Neuromodulators as Interdomain Signaling Molecules Capable of Occupying Effector Binding Sites in Bacterial Transcription Factors. Int J Mol Sci 2023; 24:15863. [PMID: 37958845 PMCID: PMC10647483 DOI: 10.3390/ijms242115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Hormones and neurotransmitters are important components of inter-kingdom signaling systems that ensure the coexistence of eukaryotes with their microbial community. Their ability to affect bacterial physiology, metabolism, and gene expression was evidenced by various experimental approaches, but direct penetration into bacteria has only recently been reported. This opened the possibility of considering neuromodulators as potential effectors of bacterial ligand-dependent regulatory proteins. Here, we assessed the validity of this assumption for the neurotransmitters epinephrine, dopamine, and norepinephrine and two hormones (melatonin and serotonin). Using flexible molecular docking for transcription factors with ligand-dependent activity, we assessed the ability of neuromodulators to occupy their effector binding sites. For many transcription factors, including the global regulator of carbohydrate metabolism, CRP, and the key regulator of lactose assimilation, LacI, this ability was predicted based on the analysis of several 3D models. By occupying the ligand binding site, neuromodulators can sterically hinder the interaction of the target proteins with the natural effectors or even replace them. The data obtained suggest that the direct modulation of the activity of at least some bacterial transcriptional factors by neuromodulators is possible. Therefore, the natural hormonal background may be a factor that preadapts bacteria to the habitat through direct perception of host signaling molecules.
Collapse
Affiliation(s)
- Yuri A. Purtov
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Olga N. Ozoline
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
2
|
Wang N, Chen L, Yi K, Zhang B, Li C, Zhou X. The effects of microbiota on reproductive health: A review. Crit Rev Food Sci Nutr 2022; 64:1486-1507. [PMID: 36066460 DOI: 10.1080/10408398.2022.2117784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reproductive issues are becoming an increasing global problem. There is increasing interest in the relationship between microbiota and reproductive health. Stable microbiota communities exist in the gut, reproductive tract, uterus, testes, and semen. Various effects (e.g., epigenetic modifications, nervous system, metabolism) of dysbiosis in the microbiota can impair gamete quality; interfere with zygote formation, embryo implantation, and embryo development; and increase disease susceptibility, thus adversely impacting reproductive capacity and pregnancy. The maintenance of a healthy microbiota can protect the host from pathogens, increase reproductive potential, and reduce the rates of adverse pregnancy outcomes. In conclusion, this review discusses microbiota in the male and female reproductive systems of multiple animal species. It explores the effects and mechanisms of microbiota on reproduction, factors that influence microbiota composition, and applications of microbiota in reproductive disorder treatment and detection. The findings support novel approaches for managing reproductive diseases through microbiota improvement and monitoring. In addition, it will stimulate further systematic explorations of microbiota-mediated effects on reproduction.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
3
|
Sun Y, Wang X, Gong Q, Li J, Huang H, Xue F, Dai J, Tang F. Extraintestinal Pathogenic Escherichia coli Utilizes Surface-Located Elongation Factor G to Acquire Iron from Holo-Transferrin. Microbiol Spectr 2022; 10:e0166221. [PMID: 35477220 PMCID: PMC9045202 DOI: 10.1128/spectrum.01662-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) can cause systemic infections in both humans and animals. As an essential nutrient, iron is strictly sequestered by the host. Circumventing iron sequestration is a determinant factor for ExPEC infection. However, the ExPEC iron acquisition mechanism, particularly the mechanism of transferrin (TF) acquisition, remains unclear. This study reports that iron-saturated holo-TF can be utilized by ExPEC to promote its growth in culture medium and survival in macrophages. ExPEC specifically bound to holo-TF instead of iron-free apo-TF via the surface located elongation factor G (EFG) in both culture medium and macrophages. As a moonlighting protein, EFG specifically bound holo-TF and also released iron in TF. These two functions were performed by different domains of EFG, in which the N-terminal domains were responsible for holo-TF binding and the C-terminal domains were responsible for iron release. The functions of EFG and its domains have also been further confirmed by surface-display vectors. The surface overexpression of EFG bound significantly more holo-TF in macrophages and significantly improved bacterial intracellular survival ability. Our findings reveal a novel iron acquisition mechanism involving EFG, which suggests novel research avenues into the molecular mechanism of ExPEC resistance to nutritional immunity. IMPORTANCE Extraintestinal pathogenic Escherichia coli (ExPEC) is an important pathogen causing systemic infections in humans and animals. The competition for iron between ExPEC and the host is a determinant for ExPEC to establish a successful infection. Here, we sought to elucidate the role of transferrin (TF) in the interaction between ExPEC and the host. Our results revealed that holo-TF could be utilized by ExPEC to enhance its growth in culture medium and survival in macrophages. Furthermore, the role of elongation factor G (EFG), a novel holo-TF-binding and TF-iron release protein, was confirmed in this study. Our work provides insights into the iron acquisition mechanism of ExPEC, deepens understanding of the interaction between holo-TF and pathogens, and broadens further researches into the molecular mechanism of ExPEC pathogenicity.
Collapse
Affiliation(s)
- Yu Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xuhang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qianwen Gong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haosheng Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Sun Y, Wang X, Li J, Xue F, Tang F, Dai J. Extraintestinal pathogenic Escherichia coli utilizes the surface-expressed elongation factor Tu to bind and acquire iron from holo-transferrin. Virulence 2022; 13:698-713. [PMID: 35443872 PMCID: PMC9037478 DOI: 10.1080/21505594.2022.2066274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a common anthropozoonotic pathogen that causes systemic infections. To establish infection, ExPEC must utilize essential nutrients including iron from the host. Transferrin is an important iron source for multiple bacteria. However, the mechanism by which ExPEC utilizes transferrin remains unclear. In this study, we found that iron-saturated holo-transferrin rather than iron-free apo-transferrin promoted the vitality of ExPEC in heat-inactivated human serum. The multifunctional protein Elongation factor Tu (EFTu) worked as a holo-transferrin binding protein. EFTu not only bound holo-transferrin rather than apo-transferrin but also released transferrin-related iron, with all domains of EFTu involved in holo-transferrin binding and iron release events. We also identified the surface location of EFTu on ExPEC. Overexpression of EFTu on the surface of nonpathogenic E. coli not only promoted the binding of bacteria to holo-transferrin but also facilitated the uptake of transferrin-related iron. More importantly, it significantly enhanced the survival of E. coli in heat-inactivated human serum, which was positively correlated with holo-transferrin but not apo-transferrin. Our research revealed a novel function of EFTu in binding holo-transferrin to promote iron uptake by bacteria, suggesting that EFTu was a potential virulence factor of ExPEC. In addition, our study provided research avenues into the iron acquisition and pathogenicity mechanisms of ExPEC.
Collapse
Affiliation(s)
- Yu Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xuhang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Hamed A, Pullinger G, Stevens M, Farveen F, Freestone P. Characterisation of the E. coli and Salmonella qseC and qseE mutants reveals a metabolic rather than adrenergic receptor role. FEMS Microbiol Lett 2022; 369:6524176. [PMID: 35137015 PMCID: PMC8897314 DOI: 10.1093/femsle/fnac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/31/2021] [Accepted: 02/04/2022] [Indexed: 11/14/2022] Open
Abstract
Catecholamine stress hormones (norepinephrine, epinephrine, and dopamine) are signals that have been shown to be used as environmental cues, which affect the growth and virulence of normal microbiota as well as pathogenic bacteria. It has been reported that Escherichia coli and Salmonella use the two-component system proteins QseC and QseE to recognise catecholamines and so act as bacterial adrenergic receptors. In this study, we mutated the E. coli O157:H7 and Salmonella enterica serovar Typhimurium genes encoding QseC and QseE and found that this did not block stress hormone responsiveness in either species. Motility, biofilm formation, and analysis of virulence of the mutants using two infection models were similar to the wild-type strains. The main differences in phenotypes of the qseC and qseE mutants were responses to changes in temperature and growth in different media particularly with respect to salt, carbon, and nitrogen salt sources. In this physiological respect, it was also found that the phenotypes of the qseC and qseE mutants differed between E. coli and Salmonella. These findings collectively suggest that QseC and QseE are not essential for E. coli and Salmonella to respond to stress hormones and that the proteins may be playing a role in regulating metabolism.
Collapse
Affiliation(s)
- Abdalla Hamed
- Department of Microbiology and Immunology, Faculty of Medicine, University of Zawia, Zawiya QP7X+536, Libya
| | - Gillian Pullinger
- Division of Microbiology, Institute for Animal Health, Compton, Newbury RG20 7NN, United Kingdom
| | - Mark Stevens
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Fathima Farveen
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Primrose Freestone
- Corresponding author: Department of Respiratory Sciences, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom. Tel: +44 (0)116 2525656; Fax: +44 (0)116 2525030; E-mail:
| |
Collapse
|
6
|
Boukerb AM, Cambronel M, Rodrigues S, Mesguida O, Knowlton R, Feuilloley MGJ, Zommiti M, Connil N. Inter-Kingdom Signaling of Stress Hormones: Sensing, Transport and Modulation of Bacterial Physiology. Front Microbiol 2021; 12:690942. [PMID: 34690943 PMCID: PMC8526972 DOI: 10.3389/fmicb.2021.690942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
Prokaryotes and eukaryotes have coexisted for millions of years. The hormonal communication between microorganisms and their hosts, dubbed inter-kingdom signaling, is a recent field of research. Eukaryotic signals such as hormones, neurotransmitters or immune system molecules have been shown to modulate bacterial physiology. Among them, catecholamines hormones epinephrine/norepinephrine, released during stress and physical effort, or used therapeutically as inotropes have been described to affect bacterial behaviors (i.e., motility, biofilm formation, virulence) of various Gram-negative bacteria (e.g., Escherichia coli, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, Vibrio sp.). More recently, these molecules were also shown to influence the physiology of some Gram-positive bacteria like Enterococcus faecalis. In E. coli and S. enterica, the stress-associated mammalian hormones epinephrine and norepinephrine trigger a signaling cascade by interacting with the QseC histidine sensor kinase protein. No catecholamine sensors have been well described yet in other bacteria. This review aims to provide an up to date report on catecholamine sensors in eukaryotes and prokaryotes, their transport, and known effects on bacteria.
Collapse
Affiliation(s)
- Amine Mohamed Boukerb
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Melyssa Cambronel
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Sophie Rodrigues
- EA 3884, LBCM, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Ouiza Mesguida
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Rikki Knowlton
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Marc G J Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Mohamed Zommiti
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, Université de Rouen, Normandie Université, Évreux, France
| |
Collapse
|
7
|
Nairz M, Weiss G. Iron in infection and immunity. Mol Aspects Med 2020; 75:100864. [PMID: 32461004 DOI: 10.1016/j.mam.2020.100864] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Iron is an essential micronutrient for virtually all living cells. In infectious diseases, both invading pathogens and mammalian cells including those of the immune system require iron to sustain their function, metabolism and proliferation. On the one hand, microbial iron uptake is linked to the virulence of most human pathogens. On the other hand, the sequestration of iron from bacteria and other microorganisms is an efficient strategy of host defense in line with the principles of 'nutritional immunity'. In an acute infection, host-driven iron withdrawal inhibits the growth of pathogens. Chronic immune activation due to persistent infection, autoimmune disease or malignancy however, sequesters iron not only from infectious agents, autoreactive lymphocytes and neoplastic cells but also from erythroid progenitors. This is one of the key mechanisms which collectively result in the anemia of chronic inflammation. In this review, we highlight the most important interconnections between iron metabolism and immunity, focusing on host defense against relevant infections and on the clinical consequences of anemia of inflammation.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
8
|
Tullius MV, Nava S, Horwitz MA. PPE37 Is Essential for Mycobacterium tuberculosis Heme-Iron Acquisition (HIA), and a Defective PPE37 in Mycobacterium bovis BCG Prevents HIA. Infect Immun 2019; 87:e00540-18. [PMID: 30455201 PMCID: PMC6346139 DOI: 10.1128/iai.00540-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/08/2018] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis, one of the world's leading causes of death, must acquire nutrients, such as iron, from the host to multiply and cause disease. Iron is an essential metal and M. tuberculosis possesses two different systems to acquire iron from its environment: siderophore-mediated iron acquisition (SMIA) and heme-iron acquisition (HIA), involving uptake and degradation of heme to release ferrous iron. We have discovered that Mycobacterium bovis BCG, the tuberculosis vaccine strain, is severely deficient in HIA, and we exploited this phenotypic difference between BCG and M. tuberculosis to identify genes involved in HIA by complementing BCG's defect with a fosmid library. We identified ppe37, an iron-regulated PPE family gene, as being essential for HIA. BCG complemented with M. tuberculosisppe37 exhibits HIA as efficient as that of M. tuberculosis, achieving robust growth with <0.2 µM hemin. Conversely, deletion of ppe37 from M. tuberculosis results in a strain severely attenuated in HIA, with a phenotype nearly identical to that of BCG, requiring a 200-fold higher concentration of hemin to achieve growth equivalent to that of its parental strain. A nine-amino-acid deletion near the N terminus of BCG PPE37 (amino acids 31 to 39 of the M. tuberculosis PPE37 protein) underlies BCG's profound defect in HIA. Significant genetic variability exists in ppe37 genes across different M. tuberculosis strains, with more than 60% of sequences from completely sequenced M. tuberculosis genomes having mutations that result in altered PPE37 proteins; furthermore, these altered PPE37 proteins are nonfunctional in HIA. Our findings should allow delineation of the relative roles of HIA and SMIA in M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Michael V Tullius
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Susana Nava
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Marcus A Horwitz
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| |
Collapse
|
9
|
Cai R, Wu M, Zhang H, Zhang Y, Cheng M, Guo Z, Ji Y, Xi H, Wang X, Xue Y, Sun C, Feng X, Lei L, Tong Y, Liu X, Han W, Gu J. A Smooth-Type, Phage-Resistant Klebsiella pneumoniae Mutant Strain Reveals that OmpC Is Indispensable for Infection by Phage GH-K3. Appl Environ Microbiol 2018; 84:e01585-18. [PMID: 30171001 PMCID: PMC6193389 DOI: 10.1128/aem.01585-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
Bacteriophage can be used as an alternative or complementary therapy to antibiotics for treating multidrug-resistant bacterial infections. However, the rapid emergence of resistant host variants during phage treatment has limited its therapeutic applications. In this study, a potential phage-resistant mechanism of Klebsiella pneumoniae was revealed. After phage GH-K3 treatment, a smooth-type colony, named K7RB, was obtained from the K. pneumoniae K7 culture. Treatment with IO4- and/or proteinase K indicated that polysaccharides of K7 played an important role in phage recruitment, and protein receptors on K7 were essential for effective infection by GH-K3. Differences in protein expression between K7 and K7RB were quantitatively analyzed by liquid chromatography-tandem mass spectrometry. Among differentially expressed proteins, OmpC, OmpN, KPN_02430, and OmpF were downregulated significantly in K7RBtrans-Complementation of OmpC in K7RB conferred rapid adsorption and sensitivity to GH-K3. In contrast, a single-base deletion mutation of ompC in K7, which resulted in OmpC silencing, led to lower adsorption efficiency and resistance to GH-K3. These assays proved that OmpC is the key receptor-binding protein for GH-K3. In addition, the native K. pneumoniae strains KPP14, KPP27, and KPP36 showed low or no sensitivity to GH-K3. However, these strains became more sensitive to GH-K3 after their native receptors were replaced by OmpC of K7, suggesting that OmpCK7 was the most suitable receptor for GH-K3. This study revealed that K7RB became resistant to GH-K3 due to gene mutation of ompC and that OmpC of K7 is essential for effective infection by GH-K3.IMPORTANCE With increased incidence of multidrug-resistant (MDR) bacterial strains, phages have regained attention as promising potential antibacterial agents. However, the rapid emergence of resistant variants during phage treatment has limited the therapeutic applications of phage. According to our trans-complementation, ompC mutation, and phage adsorption efficiency assays, we identified OmpC as the key receptor-binding protein (RBP) for phage GH-K3, which is essential for effective infection. This study revealed that the phage secondary receptor of K. pneumoniae, OmpC, is the essential RBP not only for phage infecting Gram-negative bacteria, such as Escherichia coli and Salmonella, but also for K. pneumoniae.
Collapse
Affiliation(s)
- Ruopeng Cai
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Mei Wu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hao Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Yufeng Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Mengjun Cheng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Zhimin Guo
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Yalu Ji
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Hengyu Xi
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Xinwu Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Yibing Xue
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Changjiang Sun
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Xin Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Liancheng Lei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wenyu Han
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jingmin Gu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
10
|
Boother EJ, Brownlow S, Tighe HC, Bamford KB, Jackson JE, Shovlin CL. Cerebral Abscess Associated With Odontogenic Bacteremias, Hypoxemia, and Iron Loading in Immunocompetent Patients With Right-to-Left Shunting Through Pulmonary Arteriovenous Malformations. Clin Infect Dis 2018; 65:595-603. [PMID: 28430880 PMCID: PMC5849101 DOI: 10.1093/cid/cix373] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/17/2017] [Indexed: 12/18/2022] Open
Abstract
Background Cerebral abscess is a recognized complication of pulmonary arteriovenous malformations (PAVMs) that allow systemic venous blood to bypass the pulmonary capillary bed through anatomic right-to-left shunts. Broader implications and mechanisms remain poorly explored. Methods Between June 2005 and December 2016, at a single institution, 445 consecutive adult patients with computed tomography–confirmed PAVMs (including 403 [90.5%] with hereditary hemorrhagic telangiectasia) were recruited to a prospective series. Multivariate logistic regression was performed and detailed periabscess histories were evaluated to identify potential associations with cerebral abscess. Rates were compared to an earlier nonoverlapping series. Results Thirty-seven of the 445 (8.3%) patients experienced a cerebral abscess at a median age of 50 years (range, 19–76 years). The rate adjusted for ascertainment bias was 27 of 435 (6.2%). Twenty-nine of 37 (78.4%) patients with abscess had no PAVM diagnosis prior to their abscess, a rate unchanged from earlier UK series. Twenty-one of 37 (56.7%) suffered residual neurological deficits (most commonly memory/cognition impairment), hemiparesis, and visual defects. Isolation of periodontal microbes, and precipitating dental and other interventional events, emphasized potential sources of endovascular inoculations. In multivariate logistic regression, cerebral abscess was associated with low oxygen saturation (indicating greater right-to-left shunting); higher transferrin iron saturation index; intravenous iron use for anemia (adjusted odds ratio, 5.4 [95% confidence interval, 1.4–21.1]); male sex; and venous thromboemboli. There were no relationships with anatomic attributes of PAVMs, or red cell indices often increased due to secondary polycythemia. Conclusions Greater appreciation of the risk of cerebral abscess in undiagnosed PAVMs is required. Lower oxygen saturation and intravenous iron may be modifiable risk factors.
Collapse
Affiliation(s)
- Emily J Boother
- NHLI Cardiovascular Sciences, Imperial College London, London, UK.,Imperial College School of Medicine, Imperial College London
| | - Sheila Brownlow
- Respiratory Medicine, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Hannah C Tighe
- Respiratory Medicine, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Kathleen B Bamford
- Department of Microbiology, Hammersmith Campus, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - James E Jackson
- Department of Imaging, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Claire L Shovlin
- NHLI Cardiovascular Sciences, Imperial College London, London, UK.,Respiratory Medicine, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
11
|
Moumène A, Gonzalez-Rizzo S, Lefrançois T, Vachiéry N, Meyer DF. Iron Starvation Conditions Upregulate Ehrlichia ruminantium Type IV Secretion System, tr1 Transcription Factor and map1 Genes Family through the Master Regulatory Protein ErxR. Front Cell Infect Microbiol 2018; 7:535. [PMID: 29404278 PMCID: PMC5780451 DOI: 10.3389/fcimb.2017.00535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/22/2017] [Indexed: 11/13/2022] Open
Abstract
Ehrlichia ruminantium is an obligatory intracellular bacterium that causes heartwater, a fatal disease in ruminants. Due to its intracellular nature, E. ruminantium requires a set of specific virulence factors, such as the type IV secretion system (T4SS), and outer membrane proteins (Map proteins) in order to avoid and subvert the host's immune response. Several studies have been conducted to understand the regulation of the T4SS or outer membrane proteins, in Ehrlichia, but no integrated approach has been used to understand the regulation of Ehrlichia pathogenicity determinants in response to environmental cues. Iron is known to be a key nutrient for bacterial growth both in the environment and within hosts. In this study, we experimentally demonstrated the regulation of virB, map1, and tr1 genes by the newly identified master regulator ErxR (for Ehrlichia ruminantium expression regulator). We also analyzed the effect of iron depletion on the expression of erxR gene, tr1 transcription factor, T4SS and map1 genes clusters in E. ruminantium. We show that exposure of E. ruminantium to iron starvation induces erxR and subsequently tr1, virB, and map1 genes. Our results reveal tight co-regulation of T4SS and map1 genes via the ErxR regulatory protein at the transcriptional level, and, for the first time link map genes to the virulence function sensu stricto, thereby advancing our understanding of Ehrlichia's infection process. These results suggest that Ehrlichia is able to sense changes in iron concentrations in the environment and to regulate the expression of virulence factors accordingly.
Collapse
Affiliation(s)
- Amal Moumène
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, UMR ASTRE, Petit-Bourg, France.,ASTRE, Univ Montpellier, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Institut National de la Recherche Agronomique, Montpellier, France.,UFR Sciences Exactes et Naturelles, Université des Antilles, Pointe-à-Pitre, France
| | - Silvina Gonzalez-Rizzo
- Institut de Biologie Paris Seine (EPS - IBPS), Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles, Univ Nice Sophia Antipolis, Centre National de la Recherche Scientifique Evolution Paris Seine, Paris, France.,Equipe Biologie de la Mangrove, UFR Sciences Exactes et Naturelles, Université des Antilles, Pointe-à-Pitre, France
| | - Thierry Lefrançois
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, UMR ASTRE, Petit-Bourg, France.,ASTRE, Univ Montpellier, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Institut National de la Recherche Agronomique, Montpellier, France
| | - Nathalie Vachiéry
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, UMR ASTRE, Petit-Bourg, France.,ASTRE, Univ Montpellier, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Institut National de la Recherche Agronomique, Montpellier, France
| | - Damien F Meyer
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, UMR ASTRE, Petit-Bourg, France.,ASTRE, Univ Montpellier, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Institut National de la Recherche Agronomique, Montpellier, France
| |
Collapse
|
12
|
Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection. Clin Microbiol Rev 2017; 29:819-36. [PMID: 27464994 DOI: 10.1128/cmr.00031-16] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial pathogens have coevolved with humans in order to efficiently infect, replicate within, and be transmitted to new hosts to ensure survival and a continual infection cycle. For enteric pathogens, the ability to adapt to numerous host factors under the harsh conditions of the gastrointestinal tract is critical for establishing infection. One such host factor readily encountered by enteric bacteria is bile, an innately antimicrobial detergent-like compound essential for digestion and nutrient absorption. Not only have enteric pathogens evolved to resist the bactericidal conditions of bile, but these bacteria also utilize bile as a signal to enhance virulence regulation for efficient infection. This review provides a comprehensive and up-to-date analysis of bile-related research with enteric pathogens. From common responses to the unique expression of specific virulence factors, each pathogen has overcome significant challenges to establish infection in the gastrointestinal tract. Utilization of bile as a signal to modulate virulence factor expression has led to important insights for our understanding of virulence mechanisms for many pathogens. Further research on enteric pathogens exposed to this in vivo signal will benefit therapeutic and vaccine development and ultimately enhance our success at combating such elite pathogens.
Collapse
|
13
|
Pogoutse AK, Moraes TF. Iron acquisition through the bacterial transferrin receptor. Crit Rev Biochem Mol Biol 2017; 52:314-326. [PMID: 28276700 DOI: 10.1080/10409238.2017.1293606] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transferrin is one of the sources of iron that is most readily available to colonizing and invading pathogens. In this review, we look at iron uptake by the bacterial transferrin receptor that is found in the families Neisseriaceae, Pasteurellaceae and Moraxellaceae. This bipartite receptor consists of the TonB-dependent transporter, TbpA, and the surface lipoprotein, TbpB. In the past three decades, major advancements have been made in our understanding of the mechanism through which the Tbps take up iron. We summarize these findings and discuss how they relate to the diversity and specificity of the transferrin receptor. We also outline several of the remaining unanswered questions about iron uptake via the bacterial transferrin receptor and suggest directions for future research.
Collapse
Affiliation(s)
| | - Trevor F Moraes
- a Department of Biochemistry , University of Toronto , Toronto , Canada
| |
Collapse
|
14
|
Gart EV, Suchodolski JS, Welsh TH, Alaniz RC, Randel RD, Lawhon SD. Salmonella Typhimurium and Multidirectional Communication in the Gut. Front Microbiol 2016; 7:1827. [PMID: 27920756 PMCID: PMC5118420 DOI: 10.3389/fmicb.2016.01827] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022] Open
Abstract
The mammalian digestive tract is home to trillions of microbes, including bacteria, archaea, protozoa, fungi, and viruses. In monogastric mammals the stomach and small intestine harbor diverse bacterial populations but are typically less populated than the colon. The gut bacterial community (microbiota hereafter) varies widely among different host species and individuals within a species. It is influenced by season of the year, age of the host, stress and disease. Ideally, the host and microbiota benefit each other. The host provides nutrients to the microbiota and the microbiota assists the host with digestion and nutrient metabolism. The resident microbiota competes with pathogens for space and nutrients and, through this competition, protects the host in a phenomenon called colonization resistance. The microbiota participates in development of the host immune system, particularly regulation of autoimmunity and mucosal immune response. The microbiota also shapes gut–brain communication and host responses to stress; and, indeed, the microbiota is a newly recognized endocrine organ within mammalian hosts. Salmonella enterica serovar Typhimurium (S. Typhimurium hereafter) is a food-borne pathogen which adapts to and alters the gastrointestinal (GI) environment. In the GI tract, S. Typhimurium competes with the microbiota for nutrients and overcomes colonization resistance to establish infection. To do this, S. Typhimurium uses multiple defense mechanisms to resist environmental stressors, like the acidic pH of the stomach, and virulence mechanisms which allow it to invade the intestinal epithelium and disseminate throughout the host. To coordinate gene expression and disrupt signaling within the microbiota and between host and microbiota, S. Typhimurium employs its own chemical signaling and may regulate host hormone metabolism. This review will discuss the multidirectional interaction between S. Typhimurium, host and microbiota as well as mechanisms that allow S. Typhimurium to succeed in the gut.
Collapse
Affiliation(s)
- Elena V Gart
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station TX, USA
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station TX, USA
| | - Thomas H Welsh
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station TX, USA
| | - Robert C Alaniz
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station TX, USA
| | | | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station TX, USA
| |
Collapse
|
15
|
Sharma M, Dixit A. Immune response characterization and vaccine potential of a recombinant chimera comprising B-cell epitope of Aeromonas hydrophila outer membrane protein C and LTB. Vaccine 2016; 34:6259-6266. [PMID: 27832917 DOI: 10.1016/j.vaccine.2016.10.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/28/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
Aeromonas hydrophila is one of the most virulent fish pathogens, causing colossal economic losses to the aquaculture industry annually. The absence of a safe and effective vaccine makes it very difficult to control this infection. Outer membrane proteins have been widely illustrated to confer protective immunity against a broad spectrum of gram negative bacteria. In the current study, we have analyzed the ability of B-cell epitopes of A. hydrophila's outer membrane protein C (OmpC) to confer protection against bacterial virulence. Bioinformatic algorithms were used to predict linear B-cell epitopes of OmpC and the corresponding nucleotide sequences were cloned in translational fusion with heat labile enterotoxin B subunit (LTB) of E. coli. Of the three recombinant LTB.epitope fusion proteins evaluated, antisera against the fusion protein comprising the epitope stretch of 143-175 amino acids gave maximum cross reactivity with the parent protein OmpC. The anti-fusion protein antisera contained both OmpC- and LTB-specific antibodies. The fusion proteins' LTB moiety retained its ability to bind to the GM1 ganglioside receptor, an essential requirement for its adjuvanicity. Antibody isotyping, cytokine ELISA, and cytokine array analysis revealed a Th2 skewed type immune response along with the presence of some relevant Th17 and Th1 cytokines involved in conferring protective immunity. Surface exposure of the epitope143-175 on live A. hydrophila membrane was investigated and validated using bacterial agglutination and flow cytometry analysis using anti-fusion protein antisera. Our results strongly support the potential of B-cell epitope143-175 of OmpC of A. hydrophila, in fusion with the LTB, as an effective and promising vaccine candidate against this bacterium.
Collapse
Affiliation(s)
- Mahima Sharma
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Aparna Dixit
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
16
|
Vyas M, Fisher TW, He R, Nelson W, Yin G, Cicero JM, Willer M, Kim R, Kramer R, May GA, Crow JA, Soderlund CA, Gang DR, Brown JK. Asian Citrus Psyllid Expression Profiles Suggest Candidatus Liberibacter Asiaticus-Mediated Alteration of Adult Nutrition and Metabolism, and of Nymphal Development and Immunity. PLoS One 2015; 10:e0130328. [PMID: 26091106 PMCID: PMC4474670 DOI: 10.1371/journal.pone.0130328] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 05/19/2015] [Indexed: 11/29/2022] Open
Abstract
The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is the insect vector of the fastidious bacterium Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening disease, or Huanglongbing (HLB). The widespread invasiveness of the psyllid vector and HLB in citrus trees worldwide has underscored the need for non-traditional approaches to manage the disease. One tenable solution is through the deployment of RNA interference technology to silence protein-protein interactions essential for ACP-mediated CLas invasion and transmission. To identify psyllid interactor-bacterial effector combinations associated with psyllid-CLas interactions, cDNA libraries were constructed from CLas-infected and CLas-free ACP adults and nymphs, and analyzed for differential expression. Library assemblies comprised 24,039,255 reads and yielded 45,976 consensus contigs. They were annotated (UniProt), classified using Gene Ontology, and subjected to in silico expression analyses using the Transcriptome Computational Workbench (TCW) (http://www.sohomoptera.org/ACPPoP/). Functional-biological pathway interpretations were carried out using the Kyoto Encyclopedia of Genes and Genomes databases. Differentially expressed contigs in adults and/or nymphs represented genes and/or metabolic/pathogenesis pathways involved in adhesion, biofilm formation, development-related, immunity, nutrition, stress, and virulence. Notably, contigs involved in gene silencing and transposon-related responses were documented in a psyllid for the first time. This is the first comparative transcriptomic analysis of ACP adults and nymphs infected and uninfected with CLas. The results provide key initial insights into host-parasite interactions involving CLas effectors that contribute to invasion-virulence, and to host nutritional exploitation and immune-related responses that appear to be essential for successful ACP-mediated circulative, propagative CLas transmission.
Collapse
Affiliation(s)
- Meenal Vyas
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Tonja W. Fisher
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Ruifeng He
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
| | - William Nelson
- BIO5, The University of Arizona, Tucson, Arizona, United States of America
| | - Guohua Yin
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Joseph M. Cicero
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Mark Willer
- BIO5, The University of Arizona, Tucson, Arizona, United States of America
| | - Ryan Kim
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Robin Kramer
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Greg A. May
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - John A. Crow
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Carol A. Soderlund
- BIO5, The University of Arizona, Tucson, Arizona, United States of America
| | - David R. Gang
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
17
|
Sandrini S, Aldriwesh M, Alruways M, Freestone P. Microbial endocrinology: host-bacteria communication within the gut microbiome. J Endocrinol 2015; 225:R21-34. [PMID: 25792117 DOI: 10.1530/joe-14-0615] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2015] [Indexed: 12/28/2022]
Abstract
The human body is home to trillions of micro-organisms, which are increasingly being shown to have significant effects on a variety of disease states. Evidence exists that a bidirectional communication is taking place between us and our microbiome co-habitants, and that this dialogue is capable of influencing our health in a variety of ways. This review considers how host hormonal signals shape the microbiome, and what in return the microbiome residents may be signalling to their hosts.
Collapse
Affiliation(s)
- Sara Sandrini
- Department of Infection Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN, UK
| | - Marwh Aldriwesh
- Department of Infection Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN, UK
| | - Mashael Alruways
- Department of Infection Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN, UK
| | - Primrose Freestone
- Department of Infection Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN, UK
| |
Collapse
|