1
|
Mani T, Joshi JB, Priyadharshini R, Sharmila JS, Uthandi S. Flagellin, a plant-defense-activating protein identified from Xanthomonas axonopodis pv. Dieffenbachiae invokes defense response in tobacco. BMC Microbiol 2023; 23:284. [PMID: 37798635 PMCID: PMC10552369 DOI: 10.1186/s12866-023-03028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Secretome analysis is a valuable tool to study host-pathogen protein interactions and to identify new proteins that are important for plant health. Microbial signatures elicit defense responses in plants, and by that, the plant immune system gets triggered prior to pathogen infection. Functional properties of secretory proteins from Xanthomonas axonopodis pv. dieffenbachiae (Xad1) involved in priming plant immunity was evaluated. RESULTS In this study, the secretome of Xad1 was analyzed under host plant extract-induced conditions, and mass spectroscopic analysis of differentially expressed protein was identified as plant-defense-activating protein viz., flagellin C (FliC). The flagellin and Flg22 peptides both elicited hypersensitive reaction (HR) in non-host tobacco, activated reactive oxygen species (ROS) scavenging enzymes, and increased pathogenesis-related (PR) gene expression viz., NPR1, PR1, and down-regulation of PR2 (β-1,3-glucanase). Protein docking studies revealed the Flg22 epitope of Xad1, a 22 amino acid peptide region in FliC that recognizes plant receptor FLS2 to initiate downstream defense signaling. CONCLUSION The flagellin or the Flg22 peptide from Xad1 was efficient in eliciting an HR in tobacco via salicylic acid (SA)-mediated defense signaling that subsequently triggers systemic immune response epigenetically. The insights from this study can be used for the development of bio-based products (small PAMPs) for plant immunity and health.
Collapse
Affiliation(s)
- Tamilarasi Mani
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - J Beslin Joshi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
- Centre for Water Resources Development and Management, Kozhikode, India
| | - R Priyadharshini
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Jeya Sundara Sharmila
- Department of Nano Science and Technology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, India.
| |
Collapse
|
2
|
Cloning and Molecular Characterization of CmOxdc3 Coding for Oxalate Decarboxylase in the Mycoparasite Coniothyrium minitans. J Fungi (Basel) 2022; 8:jof8121304. [PMID: 36547637 PMCID: PMC9785797 DOI: 10.3390/jof8121304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Coniothyrium minitans (Cm) is a mycoparasitic fungus of Sclerotinia sclerotiorum (Ss), the causal agent of Sclerotinia stem rot of oilseed rape. Ss can produce oxalic acid (OA) as a phytotoxin, whereas Cm can degrade OA, thereby nullifying the toxic effect of OA. Two oxalate decarboxylase (OxDC)-coding genes, CmOxdc1 and CmOxdc2, were cloned, and only CmOxdc1 was found to be partially responsible for OA degradation, implying that other OA-degrading genes may exist in Cm. This study cloned a novel OxDC gene (CmOxdc3) in Cm and its OA-degrading function was characterized by disruption and complementation of CmOxdc3. Sequence analysis indicated that, unlike CmOxdc1, CmOxdc3 does not have the signal peptide sequence, implying that CmOxDC3 may have no secretory capability. Quantitative RT-PCR showed that CmOxdc3 was up-regulated in the presence of OA, malonic acid and hydrochloric acid. Deletion of CmOxdc3 resulted in reduced capability to parasitize sclerotia of Ss. The polypeptide (CmOxDC3) encoded by CmOxdc3 was localized in cytoplasm and gathered in vacuoles in response to the extracellular OA. Taken together, our results demonstrated that CmOxdc3 is a novel gene responsible for OA degradation, which may work in a synergistic manner with CmOxdc1.
Collapse
|
3
|
Liu Q, Bai J, Li R, Gu W, Peng S, Wang J, Tang Z, Yu C. Electrochemical oxidation of copper-clad laminate for manufacturing printed circuit boards via bioleaching by the fungus Phanerochaete chrysosporium. Bioelectrochemistry 2022; 144:108002. [PMID: 34871848 DOI: 10.1016/j.bioelechem.2021.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 11/23/2022]
Abstract
The leaching and electrochemical oxidation of the copper-clad laminate for manufacturing printed circuit boards were investigated in systems with and without the fungus P. chrysosporium, which yielded the copper-leaching efficiencies of 54% and 7.0%, respectively. In particular, the formation of a biofilm on the electrode surface reduced the open-circuit potential and increased the corrosion level, and the degree of increase and the rate of change of the current density in the fungal leaching system were higher than those of the sterile system. In addition, the cyclic voltammetry curves showed oxidation peaks that correspond to the oxidation of Cu to Cu2+. Further, for the fungal leaching system, the peak potential was highly negative and the curve area and peak current density were relatively high. Moreover, the electrochemical polarization parameters and the impedance characteristics were affected by the fungus, and the leaching systems were controlled by charge transfer and diffusion. In summary, P. chrysosporium can accelerate the leaching of copper as a result of the formation of extracellular electron transfer-induced microbiologically influenced corrosion (EET-MIC) and metabolite-induced microbiologically influenced corrosion (M-MIC). The enzymes and organic acids, which act as fungal metabolites, participate in the leaching of copper.
Collapse
Affiliation(s)
- Qian Liu
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, China.
| | - Jianfeng Bai
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, China
| | - Ruyan Li
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, China
| | - Weihua Gu
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, China
| | - Shengjuan Peng
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, China
| | - Jingwei Wang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, China
| | - Zhouxiang Tang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, China
| | - Chen Yu
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, China
| |
Collapse
|
4
|
Khalil H, Legin E, Kurek B, Perre P, Taidi B. Morphological growth pattern of Phanerochaete chrysosporium cultivated on different Miscanthus x giganteus biomass fractions. BMC Microbiol 2021; 21:318. [PMID: 34784888 PMCID: PMC8597199 DOI: 10.1186/s12866-021-02350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Solid-state fermentation is a fungal culture technique used to produce compounds and products of industrial interest. The growth behaviour of filamentous fungi on solid media is challenging to study due to the intermixity of the substrate and the growing organism. Several strategies are available to measure indirectly the fungal biomass during the fermentation such as following the biochemical production of mycelium-specific components or microscopic observation. The microscopic observation of the development of the mycelium, on lignocellulosic substrate, has not been reported. In this study, we set up an experimental protocol based on microscopy and image processing through which we investigated the growth pattern of Phanerochaete chrysosporium on different Miscanthus x giganteus biomass fractions. RESULTS Object coalescence, the occupied surface area, and radial expansion of the colony were measured in time. The substrate was sterilized by autoclaving, which could be considered a type of pre-treatment. The fastest growth rate was measured on the unfractionated biomass, followed by the soluble fraction of the biomass, then the residual solid fractions. The growth rate on the different fractions of the substrate was additive, suggesting that both the solid and soluble fractions were used by the fungus. Based on the FTIR analysis, there were differences in composition between the solid and soluble fractions of the substrate, but the main components for growth were always present. We propose using this novel method for measuring the very initial fungal growth by following the variation of the number of objects over time. Once growth is established, the growth can be followed by measurement of the occupied surface by the mycelium. CONCLUSION Our data showed that the growth was affected from the very beginning by the nature of the substrate. The most extensive colonization of the surface was observed with the unfractionated substrate containing both soluble and solid components. The methodology was practical and may be applied to investigate the growth of other fungi, including the influence of environmental parameters on the fungal growth.
Collapse
Affiliation(s)
- Hassan Khalil
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110, Pomacle, France
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Estelle Legin
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Bernard Kurek
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Chaire AFERE, 51097, Reims, France
| | - Patrick Perre
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110, Pomacle, France
- LGPM, CentraleSupélec, Université Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France
| | - Behnam Taidi
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110, Pomacle, France.
- LGPM, CentraleSupélec, Université Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Wu B, Gaskell J, Held BW, Toapanta C, Vuong TV, Ahrendt S, Lipzen A, Zhang J, Schilling JS, Master E, Grigoriev IV, Blanchette RA, Cullen D, Hibbett DS. Retracted and Republished from: "Substrate-Specific Differential Gene Expression and RNA Editing in the Brown Rot Fungus Fomitopsis pinicola". Appl Environ Microbiol 2021; 87:e0032921. [PMID: 34313495 PMCID: PMC8353965 DOI: 10.1128/aem.00329-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed gene expression levels of F. pinicola from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and time points. Nevertheless, differential gene expression was observed across all pairwise comparisons of substrates and time points. Genes exhibiting differential expression encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi. IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that allow fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species—aspen, pine, and spruce—under various culture conditions. We found that F. pinicola is able to modify gene expression (transcription levels) across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This study provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates.
Collapse
Affiliation(s)
- Baojun Wu
- Biology Department, Clark University, Worcester, Massachusetts, USA
| | - Jill Gaskell
- USDA Forest Products Laboratory, Madison, Wisconsin, USA
| | - Benjamin W. Held
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Cristina Toapanta
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Thu V. Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Steven Ahrendt
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Anna Lipzen
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | - Jiwei Zhang
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Jonathan S. Schilling
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Emma Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Igor V. Grigoriev
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Robert A. Blanchette
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Dan Cullen
- USDA Forest Products Laboratory, Madison, Wisconsin, USA
| | - David S. Hibbett
- Biology Department, Clark University, Worcester, Massachusetts, USA
| |
Collapse
|
6
|
Graham EB, Yang F, Bell S, Hofmockel KS. High Genetic Potential for Proteolytic Decomposition in Northern Peatland Ecosystems. Appl Environ Microbiol 2019; 85:e02851-18. [PMID: 30850433 PMCID: PMC6498154 DOI: 10.1128/aem.02851-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/13/2019] [Indexed: 11/28/2022] Open
Abstract
Nitrogen (N) is a scarce nutrient commonly limiting primary productivity. Microbial decomposition of complex carbon (C) into small organic molecules (e.g., free amino acids) has been suggested to supplement biologically fixed N in northern peatlands. We evaluated the microbial (fungal, bacterial, and archaeal) genetic potential for organic N depolymerization in peatlands at Marcell Experimental Forest (MEF) in northern Minnesota. We used guided gene assembly to examine the abundance and diversity of protease genes and further compared them to those of N fixation (nifH) genes in shotgun metagenomic data collected across depths and in two distinct peatland environments (bogs and fens). Microbial protease genes greatly outnumbered nifH genes, with the most abundant genes (archaeal M1 and bacterial trypsin [S01]) each containing more sequences than all sequences attributed to nifH Bacterial protease gene assemblies were diverse and abundant across depth profiles, indicating a role for bacteria in releasing free amino acids from peptides through depolymerization of older organic material and contrasting with the paradigm of fungal dominance in depolymerization in forest soils. Although protease gene assemblies for fungi were much less abundant overall than those for bacteria, fungi were prevalent in surface samples and therefore may be vital in degrading large soil polymers from fresh plant inputs during the early stage of depolymerization. In total, we demonstrate that depolymerization enzymes from a diverse suite of microorganisms, including understudied bacterial and archaeal lineages, are prevalent within northern peatlands and likely to influence C and N cycling.IMPORTANCE Nitrogen (N) is a common limitation on primary productivity, and its source remains unresolved in northern peatlands that are vulnerable to environmental change. Decomposition of complex organic matter into free amino acids has been proposed as an important N source, but the genetic potential of microorganisms mediating this process has not been examined. Such information can inform possible responses of northern peatlands to environmental change. We show high genetic potential for microbial production of free amino acids across a range of microbial guilds in northern peatlands. In particular, the abundance and diversity of bacterial genes encoding proteolytic activity suggest a predominant role for bacteria in regulating productivity and contrasts with a paradigm of fungal dominance of organic N decomposition. Our results expand our current understanding of coupled carbon and nitrogen cycles in northern peatlands and indicate that understudied bacterial and archaeal lineages may be central in this ecosystem's response to environmental change.
Collapse
Affiliation(s)
- Emily B Graham
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Fan Yang
- Department of Agricultural & Biosystems Engineering, Iowa State University, Ames, Iowa, USA
| | - Sheryl Bell
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kirsten S Hofmockel
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
7
|
Qin X, Luo H, Zhang X, Yao B, Ma F, Su X. Dye-decolorizing peroxidases in Irpex lacteus combining the catalytic properties of heme peroxidases and laccase play important roles in ligninolytic system. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:302. [PMID: 30455731 PMCID: PMC6223037 DOI: 10.1186/s13068-018-1303-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/26/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND The white rot fungus Irpex lacteus exhibits a great potential in biopretreatment of lignocellulose as well as in biodegradation of xenobiotic compounds by extracellular ligninolytic enzymes. Among these enzymes, the possible involvement of dye-decolorizing peroxidase (DyP) in lignin degradation is not clear yet. RESULTS Based on the extracellular enzyme activities and secretome analysis, I. lacteus CD2 produced DyPs as the main ligninolytic enzymes when grown in Kirk's medium supplemented with lignin. Further transcriptome analysis revealed that induced transcription of genes encoding DyPs was accompanied by the increased expression of transcripts for H2O2-generating enzymes such as alcohol oxidase, pyranose 2-oxidase, and glyoxal oxidases. Meanwhile, accumulation of transcripts for glycoside hydrolase and protease was observed, in agreement with abundant proteins. Moreover, the biochemical analysis of IlDyP2 and IlDyP1 confirmed that DyPs were able to catalyze the oxidation of typical peroxidases substrates ABTS, phenolic lignin compounds DMP, and guaiacol as well as non-phenolic lignin compound, veratryl alcohol. More importantly, IlDyP1 enhanced catalytic activity for veratryl alcohol oxidation in the presence of mediator 1-hydroxybenzotriazole, which was similar to the laccase/1-hydroxybenzotriazole system. CONCLUSIONS The results proved for the first time that DyPs depolymerized lignin individually, combining catalytic features of different peroxidases on the functional level. Therefore, DyPs may be considered an important part of ligninolytic system in wood-decaying fungi.
Collapse
Affiliation(s)
- Xing Qin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Xiaoyu Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| | - Fuying Ma
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 China
| |
Collapse
|
8
|
Wu B, Gaskell J, Held BW, Toapanta C, Vuong T, Ahrendt S, Lipzen A, Zhang J, Schilling JS, Master E, Grigoriev IV, Blanchette RA, Cullen D, Hibbett DS. Substrate-Specific Differential Gene Expression and RNA Editing in the Brown Rot Fungus Fomitopsis pinicola. Appl Environ Microbiol 2018; 84:e00991-18. [PMID: 29884757 PMCID: PMC6070754 DOI: 10.1128/aem.00991-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/03/2018] [Indexed: 12/20/2022] Open
Abstract
Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed the gene expression levels and RNA editing profiles of F. pinicola from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and time points. Nevertheless, differential gene expression and RNA editing were observed across all pairwise comparisons of substrates and time points. Genes exhibiting differential expression and RNA editing encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. There was no overlap between differentially expressed and differentially edited genes, suggesting that these may provide F. pinicola with independent mechanisms for responding to different conditions. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. In contrast, the suites of genes subject to RNA editing were much less affected by culture conditions. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi.IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that enable fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species, aspen, pine, and spruce, under various culture conditions. We examined both gene expression (transcription levels) and RNA editing (posttranscriptional modification of RNA, which can potentially yield different proteins from the same gene). We found that F. pinicola is able to modify both gene expression and RNA editing profiles across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This work provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates.
Collapse
Affiliation(s)
- Baojun Wu
- Biology Department, Clark University, Worcester, Massachusetts, USA
| | - Jill Gaskell
- USDA Forest Products Laboratory, Madison, Wisconsin, USA
| | - Benjamin W Held
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Cristina Toapanta
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Thu Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Steven Ahrendt
- Department of Energy Joint Genome Institute, Walnut Creek, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Jiwei Zhang
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Jonathan S Schilling
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Emma Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Walnut Creek, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Robert A Blanchette
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Dan Cullen
- USDA Forest Products Laboratory, Madison, Wisconsin, USA
| | - David S Hibbett
- Biology Department, Clark University, Worcester, Massachusetts, USA
| |
Collapse
|
9
|
Baskaran R, Bandikari R, Zuo W, Qian J, Liu Z. Enhanced thermostability of halo-tolerant glutaminase from Bacillus licheniformis ATCC 14580 by immobilization onto nano magnetic cellulose sheet and its application in production of glutamic acid. Int J Biol Macromol 2018; 119:1256-1263. [PMID: 30096399 DOI: 10.1016/j.ijbiomac.2018.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 11/30/2022]
Abstract
A halo-tolerant glutaminase gene (BlglsA) was isolated from Bacillus licheniformis. Heterologous expression of BlglsA revealed that it encodes for a 36 kDa protein containing 327 amino acid residues. The purified enzyme showed optimal activity at a pH of 9.5 while 35 °C was found to be the optimum temperature. The enzyme retained about 92 and 97% stability at pH 12 and temperature (40 °C) respectively. Subsequent immobilization of BlglsA on nano magnetic cellulose sheet (NMCS) led to an enhanced tolerance to higher temperature. NMCS-BlglsA showed optimum activity at 45 °C, although it was stable even at 60 °C. NaCl tolerance (≥90% in 0.3 M) was almost similar to BlglsA and NMCS-BlglsA. The metal ions Fe2+ (5 mM) and Mn2+ (2.5 mM) improved the BlglsA relative activity by 61 and 48%, respectively. In contrast, 5 mM Mn2+ was found suitable to enhance the activity of NMCS-BlglsA up to 72%. The production of glutamic acid by NMCS-BlglsA was 1.61 g/l in 48 h. Reusability test of NMCS-BlglsA showed 76 and 35% retention of the actual activity after 4th and 7th cycle, respectively. Such remarkable biochemical properties of NMCS-BlglsA make it an attractive enzyme for food industries.
Collapse
Affiliation(s)
- Ram Baskaran
- College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ramesh Bandikari
- College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wu Zuo
- CAS Center for Excellence on Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China
| | - Jiaxin Qian
- College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziduo Liu
- College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Watanabe T, Yoshioka K, Kido A, Lee J, Akiyoshi H, Watanabe T. Preparation of intracellular proteins from a white-rot fungus surrounded by polysaccharide sheath and optimization of their two-dimensional electrophoresis for proteomic studies. J Microbiol Methods 2017; 142:63-70. [PMID: 28916445 DOI: 10.1016/j.mimet.2017.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 11/26/2022]
Abstract
The functions and properties of fungal sheath, an extracellular polysaccharide produced by many white-rot fungi, have been studied. However, the strong adherence of the sheath to fungal hyphae had been a major impediment in preparing intracellular proteins from the fungi and analyzing their cellular responses. To overcome this issue, we developed a rapid and easy method to remove the polysaccharide sheath using a selective lignin degrader, Ceriporiopsis subvermispora, which produces large sheath amounts in the presence of a lignin-derived aromatic compound. Using this approach, we achieved thorough removal of sheath and cell disruption using beads and a solution with a high protein-solubilizing power, which enabled the efficient extraction of intracellular proteins from C. subvermispora surrounded by sheath. In addition, for proteomic analysis, we investigated whether these extracted proteins were compatible with two-dimensional electrophoresis. By efficiently concentrating on protein solubilization in the first dimension and using a stacking gel in the second dimension, we successfully obtained a high-resolution proteome map of C. subvermispora. We also used the same proteins for fluorescence two-dimensional difference gel electrophoresis to obtain the quantitative protein expression profiles. These steps demonstrated that two-dimensional electrophoresis-based proteomics can be used to clarify the composition of intracellular proteins from sheath-producing white-rot fungi.
Collapse
Affiliation(s)
- Takahito Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan.
| | - Koichi Yoshioka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Ayako Kido
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Junseok Lee
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Hikari Akiyoshi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| |
Collapse
|
11
|
Genetics, Molecular, and Proteomics Advances in Filamentous Fungi. Curr Microbiol 2017; 74:1226-1236. [PMID: 28733909 DOI: 10.1007/s00284-017-1308-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
Filamentous fungi play a dynamic role in health and the environment. In addition, their unique and complex hyphal structures are involved in their morphogenesis, integrity, synthesis, and degradation, according to environmental and physiological conditions and resource availability. However, in biotechnology, it has a great value in the production of enzymes, pharmaceuticals, and food ingredients. The beginning of nomenclature of overall fungi started in early 1990 after which the categorization, interior and exterior mechanism, function, molecular and genetics study took pace. This mini-review has emphasized some of the important aspects of filamentous fungi, their pattern of life cycle, history, and development of different strategic methods applied to exploit this unique organism. New trends and concepts that have been applied to overcome obstacle because of their basic structure related to genomics and systems biology has been presented. Furthermore, the future aspects and challenges that need to be deciphered to get a bigger and better picture of filamentous fungi have been discussed.
Collapse
|
12
|
Cong B, Wang N, Liu S, Liu F, Yin X, Shen J. Isolation, characterization and transcriptome analysis of a novel Antarctic Aspergillus sydowii strain MS-19 as a potential lignocellulosic enzyme source. BMC Microbiol 2017; 17:129. [PMID: 28558650 PMCID: PMC5450402 DOI: 10.1186/s12866-017-1028-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/10/2017] [Indexed: 12/02/2022] Open
Abstract
Background With the growing demand for fossil fuels and the severe energy crisis, lignocellulose is widely regarded as a promising cost-effective renewable resource for ethanol production, and the use of lignocellulose residues as raw material is remarkable. Polar organisms have important value in scientific research and development for their novelty, uniqueness and diversity. Results In this study, a fungus Aspergillus sydowii MS-19, with the potential for lignocellulose degradation was screened out and isolated from an Antarctic region. The growth profile of Aspergillus sydowii MS-19 was measured, revealing that Aspergillus sydowii MS-19 could utilize lignin as a sole carbon source. Its ability to synthesize low-temperature lignin peroxidase (Lip) and manganese peroxidase (Mnp) enzymes was verified, and the properties of these enzymes were also investigated. High-throughput sequencing was employed to identify and characterize the transcriptome of Aspergillus sydowii MS-19. Carbohydrate-Active Enzymes (CAZyme)-annotated genes in Aspergillus sydowii MS-19 were compared with those in the brown-rot fungus representative species, Postia placenta and Penicillium decumbens. There were 701CAZymes annotated in Aspergillus sydowii MS-19, including 17 cellulases and 19 feruloyl esterases related to lignocellulose-degradation. Remarkably, one sequence annotated as laccase was obtained, which can degrade lignin. Three peroxidase sequences sharing a similar structure with typical lignin peroxidase and manganese peroxidase were also found and annotated as haem-binding peroxidase, glutathione peroxidase and catalase-peroxidase. Conclusions In this study, the fungus Aspergillus sydowii MS-19 was isolated and shown to synthesize low-temperature lignin-degrading enzymes: lignin peroxidase (Lip) and manganese peroxidase (Mnp). These findings provide useful information to improve our understanding of low-temperature lignocellulosic enzyme production by polar microorganisms and to facilitate research and applications of the novel Antarctic Aspergillus sydowii strain MS-19 as a potential lignocellulosic enzyme source. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1028-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bailin Cong
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, People's Republic of China.
| | - Nengfei Wang
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, People's Republic of China
| | - Shenghao Liu
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, People's Republic of China
| | - Feng Liu
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, People's Republic of China
| | - Xiaofei Yin
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, People's Republic of China
| | - Jihong Shen
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, People's Republic of China
| |
Collapse
|
13
|
Mukherjee S, Khowala S. Unraveling the secretome of Termitomyces clypeatus grown on agroresidues as a potential source for bioethanol production. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
M. S, Singh S, Tiwari R, Goel R, Nain L. Do cultural conditions induce differential protein expression: Profiling of extracellular proteome of Aspergillus terreus CM20. Microbiol Res 2016; 192:73-83. [DOI: 10.1016/j.micres.2016.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/07/2016] [Accepted: 06/17/2016] [Indexed: 11/29/2022]
|
15
|
Vasina DV, Pavlov AR, Koroleva OV. Extracellular proteins of Trametes hirsuta st. 072 induced by copper ions and a lignocellulose substrate. BMC Microbiol 2016; 16:106. [PMID: 27296712 PMCID: PMC4906887 DOI: 10.1186/s12866-016-0729-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 06/06/2016] [Indexed: 11/10/2022] Open
Abstract
Background Fungi are organisms with the highest natural capacity to degrade lignocellulose substrates, which is enabled by complex systems of extracellular enzymes, whose expression and secretion depend on the characteristics of substrates and the environment. Results This study reports a secretome analysis for white-rot basidiomycete Trametes hirsuta cultivated on a synthetic media and a lignocellulose substrate. We demonstrate that T. hirsuta st. 072 produces multiple extracellular ligninolytic, cellulolytic, hemicellulolytic, peroxide generating, and proteolytic enzymes, as well as cerato-platanins. In contrast to other white rot species described earlier, which mostly secreted glucanases and mannosidases in response to the presence of the lignocellulose substrate, T. hirsuta expressed a spectrum of extracellular cellulolytic enzymes containing predominantly cellobiases and xylanases. As proteomic analysis could not detect lignin peroxidase (LiP) among the secreted lignin degrading enzymes, we attributed the observed extracellular LiP - like activity to the expressed versatile peroxidase (VP). An accessory enzyme, glyoxal oxidase, was found among the proteins secreted in the media during submerged cultivation of T. hirsuta both in the presence and in the absence of copper. However, aryl-alcohol oxidase (AAO) was not identified, despite the presence of AAO enzymatic activity secreted by the fungus. The spectra of the expressed enzymes dramatically changed depending on the growth conditions. Transfer from submerged cultivation to surface cultivation with the lignocellulose substrate switched off expression of exo-β-1,3-glucanase and α-amylase and turned on secretion of endo-β-1,3-glucanase and a range of glycosidases. In addition, an aspartic peptidase started being expressed instead of family S53 protease. For the first time, we report production of cerato-platanin proteins by Trametes species. The secretion of cerato-platanins was observed only in response to contact with lignocellulose, thus indicating a specific role of these proteins in degradation of the lignocellulose substrates. Conclusions Our results suggest a sequential mechanism of natural substrate degradation by T. hirsuta, in which the fungus produces different sets of enzymes to digest all main components of the substrate during cultivation. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0729-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria V Vasina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, Moscow, 119071, Russia.
| | - Andrey R Pavlov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, Moscow, 119071, Russia
| | - Olga V Koroleva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, Moscow, 119071, Russia
| |
Collapse
|
16
|
Bazaraa W, Alian A, El-Shimi N, Mohamed R. Purification and characterization of extracellular glutaminase from Aspergillus oryzae NRRL 32567. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
McCotter SW, Horianopoulos LC, Kronstad JW. Regulation of the fungal secretome. Curr Genet 2016; 62:533-45. [DOI: 10.1007/s00294-016-0578-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 02/07/2023]
|
18
|
Kuuskeri J, Häkkinen M, Laine P, Smolander OP, Tamene F, Miettinen S, Nousiainen P, Kemell M, Auvinen P, Lundell T. Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:192. [PMID: 27602055 PMCID: PMC5011852 DOI: 10.1186/s13068-016-0608-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/30/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND The white-rot Agaricomycetes species Phlebia radiata is an efficient wood-decaying fungus degrading all wood components, including cellulose, hemicellulose, and lignin. We cultivated P. radiata in solid state cultures on spruce wood, and extended the experiment to 6 weeks to gain more knowledge on the time-scale dynamics of protein expression upon growth and wood decay. Total proteome and transcriptome of P. radiata were analyzed by peptide LC-MS/MS and RNA sequencing at specific time points to study the enzymatic machinery on the fungus' natural growth substrate. RESULTS According to proteomics analyses, several CAZy oxidoreductase class-II peroxidases with glyoxal and alcohol oxidases were the most abundant proteins produced on wood together with enzymes important for cellulose utilization, such as GH7 and GH6 cellobiohydrolases. Transcriptome additionally displayed expression of multiple AA9 lytic polysaccharide monooxygenases indicative of oxidative cleavage of wood carbohydrate polymers. Large differences were observed for individual protein quantities at specific time points, with a tendency of enhanced production of specific peroxidases on the first 2 weeks of growth on wood. Among the 10 class-II peroxidases, new MnP1-long, characterized MnP2-long and LiP3 were produced in high protein abundances, while LiP2 and LiP1 were upregulated at highest level as transcripts on wood together with the oxidases and one acetyl xylan esterase, implying their necessity as primary enzymes to function against coniferous wood lignin to gain carbohydrate accessibility and fungal growth. Majority of the CAZy encoding transcripts upregulated on spruce wood represented activities against plant cell wall and were identified in the proteome, comprising main activities of white-rot decay. CONCLUSIONS Our data indicate significant changes in carbohydrate-active enzyme expression during the six-week surveillance of P. radiata growing on wood. Response to wood substrate is seen already during the first weeks. The immediate oxidative enzyme action on lignin and wood cell walls is supported by detected lignin substructure sidechain cleavages, release of phenolic units, and visual changes in xylem cell wall ultrastructure. This study contributes to increasing knowledge on fungal genetics and lignocellulose bioconversion pathways, allowing us to head for systems biology, development of biofuel production, and industrial applications on plant biomass utilizing wood-decay fungi.
Collapse
Affiliation(s)
- Jaana Kuuskeri
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, P.O.Box 56, Viikki Biocenter 1, 00014 Helsinki, Finland
| | - Mari Häkkinen
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, P.O.Box 56, Viikki Biocenter 1, 00014 Helsinki, Finland
| | - Pia Laine
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Olli-Pekka Smolander
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Fitsum Tamene
- Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Sini Miettinen
- Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Paula Nousiainen
- Laboratory of Organic Chemistry, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Marianna Kemell
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Taina Lundell
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, P.O.Box 56, Viikki Biocenter 1, 00014 Helsinki, Finland
| |
Collapse
|
19
|
Fernández-Fueyo E, Ruiz-Dueñas FJ, López-Lucendo MF, Pérez-Boada M, Rencoret J, Gutiérrez A, Pisabarro AG, Ramírez L, Martínez AT. A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:49. [PMID: 26933449 PMCID: PMC4772462 DOI: 10.1186/s13068-016-0462-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/11/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Pleurotus ostreatus is the second edible mushroom worldwide, and a model fungus for delignification applications, with the advantage of growing on woody and nonwoody feedstocks. Its sequenced genome is available, and this gave us the opportunity to perform proteomic studies to identify the enzymes overproduced in lignocellulose cultures. RESULTS Monokaryotic P. ostreatus (PC9) was grown with poplar wood or wheat straw as the sole C/N source and the extracellular proteins were analyzed, together with those from glucose medium. Using nano-liquid chromatography coupled to tandem mass spectrometry of whole-protein hydrolyzate, over five-hundred proteins were identified. Thirty-four percent were unique of the straw cultures, while only 15 and 6 % were unique of the glucose and poplar cultures, respectively (20 % were produced under the three conditions, and additional 19 % were shared by the two lignocellulose cultures). Semi-quantitative analysis showed oxidoreductases as the main protein type both in the poplar (39 % total abundance) and straw (31 %) secretomes, while carbohydrate-active enzymes (CAZys) were only slightly overproduced (14-16 %). Laccase 10 (LACC10) was the main protein in the two lignocellulose secretomes (10-14 %) and, together with LACC2, LACC9, LACC6, versatile peroxidase 1 (VP1), and manganese peroxidase 3 (MnP3), were strongly overproduced in the lignocellulose cultures. Seven CAZys were also among the top-50 proteins, but only CE16 acetylesterase was overproduced on lignocellulose. When the woody and nonwoody secretomes were compared, GH1 and GH3 β-glycosidases were more abundant on poplar and straw, respectively and, among less abundant proteins, VP2 was overproduced on straw, while VP3 was only found on poplar. The treated lignocellulosic substrates were analyzed by two-dimensional nuclear magnetic resonance (2D NMR), and a decrease of lignin relative to carbohydrate signals was observed, together with the disappearance of some minor lignin substructures, and an increase of sugar reducing ends. CONCLUSIONS Oxidoreductases are strongly induced when P. ostreatus grows on woody and nonwoody lignocellulosic substrates. One laccase occupied the first position in both secretomes, and three more were overproduced together with one VP and one MnP, suggesting an important role in lignocellulose degradation. Preferential removal of lignin vs carbohydrates was shown by 2D NMR, in agreement with the above secretomic results.
Collapse
Affiliation(s)
- Elena Fernández-Fueyo
- />Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | | | | | - Marta Pérez-Boada
- />Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jorge Rencoret
- />Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, PO Box 1052, 41080 Seville, Spain
| | - Ana Gutiérrez
- />Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, PO Box 1052, 41080 Seville, Spain
| | - Antonio G. Pisabarro
- />Department of Agrarian Production, Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - Lucía Ramírez
- />Department of Agrarian Production, Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - Angel T. Martínez
- />Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
20
|
Hori C, Cullen D. Prospects for Bioprocess Development Based on Recent Genome Advances in Lignocellulose Degrading Basidiomycetes. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Abstract
SUMMARY Biomass is constructed of dense recalcitrant polymeric materials: proteins, lignin, and holocellulose, a fraction constituting fibrous cellulose wrapped in hemicellulose-pectin. Bacteria and fungi are abundant in soil and forest floors, actively recycling biomass mainly by extracting sugars from holocellulose degradation. Here we review the genome-wide contents of seven Aspergillus species and unravel hundreds of gene models encoding holocellulose-degrading enzymes. Numerous apparent gene duplications followed functional evolution, grouping similar genes into smaller coherent functional families according to specialized structural features, domain organization, biochemical activity, and genus genome distribution. Aspergilli contain about 37 cellulase gene models, clustered in two mechanistic categories: 27 hydrolyze and 10 oxidize glycosidic bonds. Within the oxidative enzymes, we found two cellobiose dehydrogenases that produce oxygen radicals utilized by eight lytic polysaccharide monooxygenases that oxidize glycosidic linkages, breaking crystalline cellulose chains and making them accessible to hydrolytic enzymes. Among the hydrolases, six cellobiohydrolases with a tunnel-like structural fold embrace single crystalline cellulose chains and cooperate at nonreducing or reducing end termini, splitting off cellobiose. Five endoglucanases group into four structural families and interact randomly and internally with cellulose through an open cleft catalytic domain, and finally, seven extracellular β-glucosidases cleave cellobiose and related oligomers into glucose. Aspergilli contain, on average, 30 hemicellulase and 7 accessory gene models, distributed among 9 distinct functional categories: the backbone-attacking enzymes xylanase, mannosidase, arabinase, and xyloglucanase, the short-side-chain-removing enzymes xylan α-1,2-glucuronidase, arabinofuranosidase, and xylosidase, and the accessory enzymes acetyl xylan and feruloyl esterases.
Collapse
|
22
|
Bashir H, Gangwar R, Mishra S. Differential production of lignocellulolytic enzymes by a white rot fungus Termitomyces sp. OE147 on cellulose and lactose. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1290-9. [PMID: 26164778 DOI: 10.1016/j.bbapap.2015.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 01/10/2023]
Abstract
White-rot fungi are the only organisms known to degrade all basic wood polymers using different strategies of employing a variety of hydrolytic and oxidative enzymes. A comparative secretome analysis of Termitomyces sp. OE147 cultivated on cellulose and lactose was carried out by two-dimensional gel electrophoresis followed by MALDI-TOF/TOF-MS analysis to identify the enzymes coordinately expressed on cellulose. A total of 29 proteins, belonging to CAZy hydrolases (11), CAZy oxidoreductases (13) and some 'other' (5) proteins were identified. Among the CAZy hydrolases, a distinct repertoire of cellulolytic and hemicellulolytic enzymes were produced while among the CAZy oxidoreductases, cellobiose dehydrogenase and laccase were the predominant enzymes along with H2O2 dependent peroxidases. This coordinated expression indicated a unique and integrated system for degradation of not only crystalline cellulose but also other components of lignocellulolytic substrates, namely lignin and xylan. Activities of the identified proteins were confirmed by plate assays and activity measurements. Many of the enzyme activities were also correlated with reduction in the crystallinity index of cellulose. Based on the enhanced production of CDH, β-glucosidases and several oxidoreductases, a more prominent role of these enzymes is indicated in this fungus in cellulose breakdown.
Collapse
Affiliation(s)
- Humayra Bashir
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Rishabh Gangwar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
23
|
Jing Z, Feng H. Studies on the molecular docking and amino Acid residues involving in recognition of substrate in proline iminopeptidase by site-directed mutagenesis. Protein J 2015; 34:173-80. [PMID: 25957260 DOI: 10.1007/s10930-015-9611-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 11/29/2022]
Abstract
The proline iminopeptidase (PchPiPA) of Phanerochaete chrysosporium catalyze specifically hydrolysis of N-terminal proline from peptides. The substrate Pro-pNA was docked into the catalytic pocket and several amino acid residues were identified to interact or associate with the substrate. Eight residues were selected for site-directed mutagenesis. The wild-type and mutant proteins were expressed in Escherichia coli and purified. Kinetic parameters were calculated by hydrolyzing Pro-pNA for these enzymes. Substitution of two Glu residues (Glu198 and Glu227) which interact with the substrate via formation of hydrogen bond, led to deleterious effect on catalytic efficiency (k(cat)/K(m)) due to decrease of k(cat) and increase of K(m). Four Phe residues consisting of catalytic pocket and surrounding the docked substrate, were substituted with Ala, resulting in decrease in k(cat)/K(m) to various extents. Substitution of two residues (Val267 and Cys267) localized at the deep end of the catalytic pocket also yielded negative influence on the substrate hydrolysis. Besides, all the mutants except E227Q exhibited lower thermostability than the wild-type did, indicating that these mutations may modulate the local structure. In conclusion, these amino acid residues may play an important role in maintaining local environment of the impacted catalytic pocket and be involved in recognizing or positioning the substrate.
Collapse
Affiliation(s)
- Zhixin Jing
- The Key Laboratory for Biological Resources and the Environment of Ministry of Education, The Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | | |
Collapse
|
24
|
Bianco L, Perrotta G. Methodologies and perspectives of proteomics applied to filamentous fungi: from sample preparation to secretome analysis. Int J Mol Sci 2015; 16:5803-29. [PMID: 25775160 PMCID: PMC4394507 DOI: 10.3390/ijms16035803] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/17/2015] [Accepted: 03/03/2015] [Indexed: 11/17/2022] Open
Abstract
Filamentous fungi possess the extraordinary ability to digest complex biomasses and mineralize numerous xenobiotics, as consequence of their aptitude to sensing the environment and regulating their intra and extra cellular proteins, producing drastic changes in proteome and secretome composition. Recent advancement in proteomic technologies offers an exciting opportunity to reveal the fluctuations of fungal proteins and enzymes, responsible for their metabolic adaptation to a large variety of environmental conditions. Here, an overview of the most commonly used proteomic strategies will be provided; this paper will range from sample preparation to gel-free and gel-based proteomics, discussing pros and cons of each mentioned state-of-the-art technique. The main focus will be kept on filamentous fungi. Due to the biotechnological relevance of lignocellulose degrading fungi, special attention will be finally given to their extracellular proteome, or secretome. Secreted proteins and enzymes will be discussed in relation to their involvement in bio-based processes, such as biomass deconstruction and mycoremediation.
Collapse
Affiliation(s)
- Linda Bianco
- UTTRI-GENER Genetics and Genomics for Energy and Environment Laboratory-ENEA TRISAIA Research Center, 75025 Rotondella (Matera), Italy.
| | - Gaetano Perrotta
- UTTRI-GENER Genetics and Genomics for Energy and Environment Laboratory-ENEA TRISAIA Research Center, 75025 Rotondella (Matera), Italy.
| |
Collapse
|
25
|
Influence of Populus genotype on gene expression by the wood decay fungus Phanerochaete chrysosporium. Appl Environ Microbiol 2014; 80:5828-35. [PMID: 25015893 DOI: 10.1128/aem.01604-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We examined gene expression patterns in the lignin-degrading fungus Phanerochaete chrysosporium when it colonizes hybrid poplar (Populus alba × tremula) and syringyl (S)-rich transgenic derivatives. A combination of microarrays and liquid chromatography-tandem mass spectrometry (LC-MS/MS) allowed detection of a total of 9,959 transcripts and 793 proteins. Comparisons of P. chrysosporium transcript abundance in medium containing poplar or glucose as a sole carbon source showed 113 regulated genes, 11 of which were significantly higher (>2-fold, P < 0.05) in transgenic line 64 relative to the parental line. Possibly related to the very large amounts of syringyl (S) units in this transgenic tree (94 mol% S), several oxidoreductases were among the upregulated genes. Peptides corresponding to a total of 18 oxidoreductases were identified in medium consisting of biomass from line 64 or 82 (85 mol% S) but not in the parental clone (65 mol% S). These results demonstrate that P. chrysosporium gene expression patterns are substantially influenced by lignin composition.
Collapse
|
26
|
Comparative analysis of secretomes in basidiomycete fungi. J Proteomics 2014; 102:28-43. [DOI: 10.1016/j.jprot.2014.03.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/19/2014] [Accepted: 03/03/2014] [Indexed: 12/29/2022]
|
27
|
Fernandes I, Alves A, Correia A, Devreese B, Esteves AC. Secretome analysis identifies potential virulence factors of Diplodia corticola, a fungal pathogen involved in cork oak (Quercus suber) decline. Fungal Biol 2014; 118:516-23. [DOI: 10.1016/j.funbio.2014.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/16/2014] [Accepted: 04/09/2014] [Indexed: 01/06/2023]
|
28
|
Mäkelä MR, Sietiö OM, de Vries RP, Timonen S, Hildén K. Oxalate-metabolising genes of the white-rot fungus Dichomitus squalens are differentially induced on wood and at high proton concentration. PLoS One 2014; 9:e87959. [PMID: 24505339 PMCID: PMC3914892 DOI: 10.1371/journal.pone.0087959] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/03/2014] [Indexed: 11/23/2022] Open
Abstract
Oxalic acid is a prevalent fungal metabolite with versatile roles in growth and nutrition, including degradation of plant biomass. However, the toxicity of oxalic acid makes regulation of its intra- and extracellular concentration crucial. To increase the knowledge of fungal oxalate metabolism, a transcriptional level study on oxalate-catabolising genes was performed with an effective lignin-degrading white-rot fungus Dichomitus squalens, which has demonstrated particular abilities in production and degradation of oxalic acid. The expression of oxalic-acid decomposing oxalate decarboxylase (ODC) and formic-acid decomposing formate dehydrogenase (FDH) encoding genes was followed during the growth of D. squalens on its natural spruce wood substrate. The effect of high proton concentration on the regulation of the oxalate-catabolising genes was determined after addition of organic acid (oxalic acid) and inorganic acid (hydrochloric acid) to the liquid cultures of D. squalens. In order to evaluate the co-expression of oxalate-catabolising and manganese peroxidase (MnP) encoding genes, the expression of one MnP encoding gene, mnp1, of D. squalens was also surveyed in the solid state and liquid cultures. Sequential action of ODC and FDH encoding genes was detected in the studied cultivations. The odc1, fdh2 and fdh3 genes of D. squalens showed constitutive expression, whereas ODC2 and FHD1 most likely are the main responsible enzymes for detoxification of high concentrations of oxalic and formic acids. The results also confirmed the central role of ODC1 when D. squalens grows on coniferous wood. Phylogenetic analysis revealed that fungal ODCs have evolved from at least two gene copies whereas FDHs have a single ancestral gene. As a conclusion, the multiplicity of oxalate-catabolising genes and their differential regulation on wood and in acid-amended cultures of D. squalens point to divergent physiological roles for the corresponding enzymes.
Collapse
Affiliation(s)
- Miia R. Mäkelä
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, Viikki Biocenter 1, University of Helsinki, Helsinki, Finland
| | - Outi-Maaria Sietiö
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, Viikki Biocenter 1, University of Helsinki, Helsinki, Finland
| | | | - Sari Timonen
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, Viikki Biocenter 1, University of Helsinki, Helsinki, Finland
| | - Kristiina Hildén
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, Viikki Biocenter 1, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Temporal alterations in the secretome of the selective ligninolytic fungus Ceriporiopsis subvermispora during growth on aspen wood reveal this organism's strategy for degrading lignocellulose. Appl Environ Microbiol 2014; 80:2062-70. [PMID: 24441164 DOI: 10.1128/aem.03652-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The white-rot basidiomycetes efficiently degrade all wood cell wall polymers. Generally, these fungi simultaneously degrade cellulose and lignin, but certain organisms, such as Ceriporiopsis subvermispora, selectively remove lignin in advance of cellulose degradation. However, relatively little is known about the mechanism of selective ligninolysis. To address this issue, C. subvermispora was grown in liquid medium containing ball-milled aspen, and nano-liquid chromatography-tandem mass spectrometry was used to identify and estimate extracellular protein abundance over time. Several manganese peroxidases and an aryl alcohol oxidase, both associated with lignin degradation, were identified after 3 days of incubation. A glycoside hydrolase (GH) family 51 arabinofuranosidase was also identified after 3 days but then successively decreased in later samples. Several enzymes related to cellulose and xylan degradation, such as GH10 endoxylanase, GH5_5 endoglucanase, and GH7 cellobiohydrolase, were detected after 5 days. Peptides corresponding to potential cellulose-degrading enzymes GH12, GH45, lytic polysaccharide monooxygenase, and cellobiose dehydrogenase were most abundant after 7 days. This sequential production of enzymes provides a mechanism consistent with selective ligninolysis by C. subvermispora.
Collapse
|
30
|
Baldrian P, López-Mondéjar R. Microbial genomics, transcriptomics and proteomics: new discoveries in decomposition research using complementary methods. Appl Microbiol Biotechnol 2014; 98:1531-7. [PMID: 24384749 DOI: 10.1007/s00253-013-5457-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/30/2013] [Accepted: 12/05/2013] [Indexed: 11/28/2022]
Abstract
Molecular methods for the analysis of biomolecules have undergone rapid technological development in the last decade. The advent of next-generation sequencing methods and improvements in instrumental resolution enabled the analysis of complex transcriptome, proteome and metabolome data, as well as a detailed annotation of microbial genomes. The mechanisms of decomposition by model fungi have been described in unprecedented detail by the combination of genome sequencing, transcriptomics and proteomics. The increasing number of available genomes for fungi and bacteria shows that the genetic potential for decomposition of organic matter is widespread among taxonomically diverse microbial taxa, while expression studies document the importance of the regulation of expression in decomposition efficiency. Importantly, high-throughput methods of nucleic acid analysis used for the analysis of metagenomes and metatranscriptomes indicate the high diversity of decomposer communities in natural habitats and their taxonomic composition. Today, the metaproteomics of natural habitats is of interest. In combination with advanced analytical techniques to explore the products of decomposition and the accumulation of information on the genomes of environmentally relevant microorganisms, advanced methods in microbial ecophysiology should increase our understanding of the complex processes of organic matter transformation.
Collapse
Affiliation(s)
- Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, Vídeňská 1083, 14220, Prague 4, Czech Republic,
| | | |
Collapse
|
31
|
Rohr CO, Levin LN, Mentaberry AN, Wirth SA. A first insight into Pycnoporus sanguineus BAFC 2126 transcriptome. PLoS One 2013; 8:e81033. [PMID: 24312521 PMCID: PMC3846667 DOI: 10.1371/journal.pone.0081033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/09/2013] [Indexed: 12/12/2022] Open
Abstract
Fungi of the genus Pycnoporus are white-rot basidiomycetes widely studied because of their ability to synthesize high added-value compounds and enzymes of industrial interest. Here we report the sequencing, assembly and analysis of the transcriptome of Pycnoporus sanguineus BAFC 2126 grown at stationary phase, in media supplemented with copper sulfate. Using the 454 pyrosequencing platform we obtained a total of 226,336 reads (88,779,843 bases) that were filtered and de novo assembled to generate a reference transcriptome of 7,303 transcripts. Putative functions were assigned for 4,732 transcripts by searching similarities of six-frame translated sequences against a customized protein database and by the presence of conserved protein domains. Through the analysis of translated sequences we identified transcripts encoding 178 putative carbohydrate active enzymes, including representatives of 15 families with roles in lignocellulose degradation. Furthermore, we found many transcripts encoding enzymes related to lignin hydrolysis and modification, including laccases and peroxidases, as well as GMC oxidoreductases, copper radical oxidases and other enzymes involved in the generation of extracellular hydrogen peroxide and iron homeostasis. Finally, we identified the transcripts encoding all of the enzymes involved in terpenoid backbone biosynthesis pathway, various terpene synthases related to the biosynthesis of sesquiterpenoids and triterpenoids precursors, and also cytochrome P450 monooxygenases, glutathione S-transferases and epoxide hydrolases with potential functions in the biodegradation of xenobiotics and the enantioselective biosynthesis of biologically active drugs. To our knowledge this is the first report of a transcriptome of genus Pycnoporus and a resource for future molecular studies in P. sanguineus.
Collapse
Affiliation(s)
- Cristian O. Rohr
- Instituto de Ecología, Genética y Evolución, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Laura N. Levin
- Laboratorio de Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro N. Mentaberry
- Laboratorio de Agrobiotecnología, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Sonia A. Wirth
- Laboratorio de Agrobiotecnología, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
32
|
Abstract
Abstract. In this study, the arsenopyrite was used as representative of gold-bearing sulfides in Carlin-Type gold ores to test the ability of oxidation on them by P. chrysosporium. After shaking incubation for 20 days, the conversion rates of iron, sulfur and arsenic in arsenopyrite were 6.28%, 35% and 21.76%, which were 44.86, 2.98 and 48.36 times compared with the asepsis system, respectively. It indicated that the P. chrysosporium could improve obviously the biotransformation rate of arsenopyrite by its own metabolic activity. The electrochemical oxidation behavior of arsenopyrite in the leaching system without and with P. chrysosporium were detected with electrochemical technology. The results showed that the P. chrysosporium did not change the oxidation mechanism of arsenopyrite, but strong oxidizing environment, which was structured by its products-oxidative enzymes and hydrogen peroxide, could promote the transformation from Fe2+ to Fe3+. P. chrysosporium could significantly decrease pitting potential and improve polarization current of arsenopyrite electrode and then accelerate its corrosion process. These indicated that P. chrysosporium was an available microorganism for degrading and transforming sulfides. P. chrysosporium could break gold inclusion and improve gold leaching rate, and finally realized economical and efficient application of Carlin-type gold ores.
Collapse
|
33
|
Salvachúa D, Martínez AT, Tien M, López-Lucendo MF, García F, de los Ríos V, Martínez MJ, Prieto A. Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:115. [PMID: 23937687 PMCID: PMC3750859 DOI: 10.1186/1754-6834-6-115] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/06/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Identifying new high-performance enzymes or enzyme complexes to enhance biomass degradation is the key for the development of cost-effective processes for ethanol production. Irpex lacteus is an efficient microorganism for wheat straw pretreatment, yielding easily hydrolysable products with high sugar content. Thus, this fungus was selected to investigate the enzymatic system involved in lignocellulose decay, and its secretome was compared to those from Phanerochaete chrysosporium and Pleurotus ostreatus which produced different degradation patterns when growing on wheat straw. Extracellular enzymes were analyzed through 2D-PAGE, nanoLC/MS-MS, and homology searches against public databases. RESULTS In wheat straw, I. lacteus secreted proteases, dye-decolorizing and manganese-oxidizing peroxidases, and H2O2 producing-enzymes but also a battery of cellulases and xylanases, excluding those implicated in cellulose and hemicellulose degradation to their monosaccharides, making these sugars poorly available for fungal consumption. In contrast, a significant increase of β-glucosidase production was observed when I. lacteus grew in liquid cultures. P. chrysosporium secreted more enzymes implicated in the total hydrolysis of the polysaccharides and P. ostreatus produced, in proportion, more oxidoreductases. CONCLUSION The protein pattern secreted during I. lacteus growth in wheat straw plus the differences observed among the different secretomes, justify the fitness of I. lacteus for biopretreatment processes in 2G-ethanol production. Furthermore, all these data give insight into the biological degradation of lignocellulose and suggest new enzyme mixtures interesting for its efficient hydrolysis.
Collapse
Affiliation(s)
- Davinia Salvachúa
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Ming Tien
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park PA, 16802 USA
| | - María F López-Lucendo
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Francisco García
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Vivian de los Ríos
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Alicia Prieto
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| |
Collapse
|
34
|
Hori C, Gaskell J, Igarashi K, Samejima M, Hibbett D, Henrissat B, Cullen D. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay. Mycologia 2013; 105:1412-27. [PMID: 23935027 DOI: 10.3852/13-072] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To degrade the polysaccharides, wood-decay fungi secrete a variety of glycoside hydrolases (GHs) and carbohydrate esterases (CEs) classified into various sequence-based families of carbohydrate-active enzymes (CAZys) and their appended carbohydrate-binding modules (CBM). Oxidative enzymes, such as cellobiose dehydrogenase (CDH) and lytic polysaccharide monooxygenase (LPMO, formerly GH61), also have been implicated in cellulose degradation. To examine polysaccharide-degrading potential between white- and brown-rot fungi, we performed genomewide analysis of CAZys and these oxidative enzymes in 11 Polyporales, including recently sequenced monokaryotic strains of Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora. Furthermore, we conducted comparative secretome analysis of seven Polyporales grown on wood culture. As a result, it was found that genes encoding cellulases belonging to families GH6, GH7, GH9 and carbohydrate-binding module family CBM1 are lacking in genomes of brown-rot polyporales. In addition, the presence of CDH and the expansion of LPMO were observed only in white-rot genomes. Indeed, GH6, GH7, CDH and LPMO peptides were identified only in white-rot polypores. Genes encoding aldose 1-epimerase (ALE), previously detected with CDH and cellulases in the culture filtrates, also were identified in white-rot genomes, suggesting a physiological connection between ALE, CDH, cellulase and possibly LPMO. For hemicellulose degradation, genes and peptides corresponding to GH74 xyloglucanase, GH10 endo-xylanase, GH79 β-glucuronidase, CE1 acetyl xylan esterase and CE15 glucuronoyl methylesterase were significantly increased in white-rot genomes compared to brown-rot genomes. Overall, relative to brown-rot Polyporales, white-rot Polyporales maintain greater enzymatic diversity supporting lignocellulose attack.
Collapse
Affiliation(s)
- Chiaki Hori
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, l-l-l, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, and Institute for Microbial and Biochemical Technology, Forest Products Laboratory, 1 Gifford Pinchot Drive, Madison, Wisconsin 53726
| | | | | | | | | | | | | |
Collapse
|
35
|
Ribeiro DA, Cota J, Alvarez TM, Brüchli F, Bragato J, Pereira BMP, Pauletti BA, Jackson G, Pimenta MTB, Murakami MT, Camassola M, Ruller R, Dillon AJP, Pradella JGC, Paes Leme AF, Squina FM. The Penicillium echinulatum secretome on sugar cane bagasse. PLoS One 2012; 7:e50571. [PMID: 23227186 PMCID: PMC3515617 DOI: 10.1371/journal.pone.0050571] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/23/2012] [Indexed: 12/22/2022] Open
Abstract
Plant feedstocks are at the leading front of the biofuel industry based on the potential to promote economical, social and environmental development worldwide through sustainable scenarios related to energy production. Penicillium echinulatum is a promising strain for the bioethanol industry based on its capacity to produce large amounts of cellulases at low cost. The secretome profile of P. echinulatum after grown on integral sugarcane bagasse, microcrystalline cellulose and three types of pretreated sugarcane bagasse was evaluated using shotgun proteomics. The comprehensive chemical characterization of the biomass used as the source of fungal nutrition, as well as biochemical activity assays using a collection of natural polysaccharides, were also performed. Our study revealed that the enzymatic repertoire of P. echinulatum is geared mainly toward producing enzymes from the cellulose complex (endogluganases, cellobiohydrolases and β-glucosidases). Glycoside hydrolase (GH) family members, important to biomass-to-biofuels conversion strategies, were identified, including endoglucanases GH5, 7, 6, 12, 17 and 61, β-glycosidase GH3, xylanases GH10 and GH11, as well as debranching hemicellulases from GH43, GH62 and CE2 and pectinanes from GH28. Collectively, the approach conducted in this study gave new insights on the better comprehension of the composition and degradation capability of an industrial cellulolytic strain, from which a number of applied technologies, such as biofuel production, can be generated.
Collapse
Affiliation(s)
- Daniela A. Ribeiro
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, (CNPEM), Campinas, São Paulo, Brazil
| | - Júnio Cota
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, (CNPEM), Campinas, São Paulo, Brazil
| | - Thabata M. Alvarez
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, (CNPEM), Campinas, São Paulo, Brazil
| | - Fernanda Brüchli
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, (CNPEM), Campinas, São Paulo, Brazil
| | - Juliano Bragato
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, (CNPEM), Campinas, São Paulo, Brazil
| | - Beatriz M. P. Pereira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, (CNPEM), Campinas, São Paulo, Brazil
| | - Bianca A. Pauletti
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, (CNPEM), Campinas, São Paulo, Brazil
| | - George Jackson
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, (CNPEM), Campinas, São Paulo, Brazil
| | - Maria T. B. Pimenta
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, (CNPEM), Campinas, São Paulo, Brazil
| | - Mario T. Murakami
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, (CNPEM), Campinas, São Paulo, Brazil
| | - Marli Camassola
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sol, Brazil
| | - Roberto Ruller
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, (CNPEM), Campinas, São Paulo, Brazil
| | - Aldo J. P. Dillon
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sol, Brazil
| | - Jose G. C. Pradella
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, (CNPEM), Campinas, São Paulo, Brazil
| | - Adriana F. Paes Leme
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, (CNPEM), Campinas, São Paulo, Brazil
| | - Fabio M. Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, (CNPEM), Campinas, São Paulo, Brazil
| |
Collapse
|
36
|
Hunt CG, Houtman CJ, Jones DC, Kitin P, Korripally P, Hammel KE. Spatial mapping of extracellular oxidant production by a white rot basidiomycete on wood reveals details of ligninolytic mechanism. Environ Microbiol 2012. [PMID: 23206186 DOI: 10.1111/1462-2920.12039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oxidative cleavage of the recalcitrant plant polymer lignin is a crucial step in global carbon cycling, and is accomplished most efficiently by fungi that cause white rot of wood. These basidiomycetes secrete many enzymes and metabolites with proposed ligninolytic roles, and it is not clear whether all of these agents are physiologically important during attack on natural lignocellulosic substrates. One new approach to this problem is to infer properties of ligninolytic oxidants from their spatial distribution relative to the fungus on the lignocellulose. We grew Phanerochaete chrysosporium on wood sections in the presence of oxidant-sensing beads based on the ratiometric fluorescent dye BODIPY 581/591. The beads, having fixed locations relative to the fungal hyphae, enabled spatial mapping of cumulative extracellular oxidant distributions by confocal fluorescence microscopy. The results showed that oxidation gradients occurred around the hyphae, and data analysis using a mathematical reaction-diffusion model indicated that the dominant oxidant during incipient white rot had a half-life under 0.1 s. The best available hypothesis is that this oxidant is the cation radical of the secreted P. chrysosporium metabolite veratryl alcohol.
Collapse
|
37
|
Quantitative proteomic analysis of secretome of microbial consortium during saw dust utilization. J Proteomics 2012; 75:5590-603. [DOI: 10.1016/j.jprot.2012.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/28/2012] [Accepted: 08/13/2012] [Indexed: 11/23/2022]
|
38
|
Bidard F, Coppin E, Silar P. The transcriptional response to the inactivation of the PaMpk1 and PaMpk2 MAP kinase pathways in Podospora anserina. Fungal Genet Biol 2012; 49:643-52. [PMID: 22721649 DOI: 10.1016/j.fgb.2012.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/29/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
Transcription pattern during mycelium growth of Podospora anserina was assayed by microarray analysis in wild type and in mutants affected in the MAP kinase genes PaMpk1 and PaMpk2 and in the NADPH oxidase gene PaNox1. 15% of the genes have their expression modified by a factor two or more as growth proceeds in wild type. The genes whose expression is modified during growth in P. anserina are either not conserved or differently regulated in Neurospora crassa and Aspergillus niger, two fungi for which transcriptome data during growth are available. The P. anserina mutants display a similar alteration of their transcriptome profile, with nearly 1000 genes affected similarly in the three mutants, accounting for their similar growth phenotypes. Yet, each mutant has its specific set of modified transcripts, in line with particular phenotypes exhibited by each mutant. Again, there is limited conservation during evolution of the genes regulated at the transcription level by MAP kinases, as indicated by the comparison the P. anserina data, with those of Aspergillus fumigatus and N. crassa, two fungi for which gene expression data are available for mutants of the MAPK pathways. Among the genes regulated in wild type and affected in the mutants, those involved in carbohydrate and secondary metabolisms appear prominent. The vast majority of the genes differentially expressed are of unknown function. Availability of their transcription profile at various stages of development should help to decipher their role in fungal physiology and development.
Collapse
Affiliation(s)
- Frédérique Bidard
- Univ Paris Sud, Institut de Génétique et Microbiologie, UMR8621 Orsay, France
| | | | | |
Collapse
|
39
|
Sugiura T, Mori T, Kamei I, Hirai H, Kawagishi H, Kondo R. Improvement of ligninolytic properties in the hyper lignin-degrading fungus Phanerochaete sordida YK-624 using a novel gene promoter. FEMS Microbiol Lett 2012; 331:81-8. [DOI: 10.1111/j.1574-6968.2012.02556.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/24/2012] [Accepted: 03/21/2012] [Indexed: 11/27/2022] Open
Affiliation(s)
- Tatsuki Sugiura
- Department of Bioscience, Graduate School of Science and Technology; Shizuoka University; Shizuoka; Japan
| | - Toshio Mori
- Department of Agro-environmental Sciences, Faculty of Agriculture; Kyushu University; Fukuoka; Japan
| | - Ichiro Kamei
- Faculty of Agriculture; University of Miyazaki; Miyazaki; Japan
| | - Hirofumi Hirai
- Department of Applied Biological Chemistry, Faculty of Agriculture; Shizuoka University; Shizuoka; Japan
| | | | - Ryuichiro Kondo
- Department of Agro-environmental Sciences, Faculty of Agriculture; Kyushu University; Fukuoka; Japan
| |
Collapse
|
40
|
Segato F, Damasio ARL, Gonçalves TA, Murakami MT, Squina FM, Polizeli M, Mort AJ, Prade RA. Two structurally discrete GH7-cellobiohydrolases compete for the same cellulosic substrate fiber. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:21. [PMID: 22494694 PMCID: PMC3431977 DOI: 10.1186/1754-6834-5-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/30/2012] [Indexed: 05/14/2023]
Abstract
BACKGROUND Cellulose consisting of arrays of linear beta-1,4 linked glucans, is the most abundant carbon-containing polymer present in biomass. Recalcitrance of crystalline cellulose towards enzymatic degradation is widely reported and is the result of intra- and inter-molecular hydrogen bonds within and among the linear glucans. Cellobiohydrolases are enzymes that attack crystalline cellulose. Here we report on two forms of glycosyl hydrolase family 7 cellobiohydrolases common to all Aspergillii that attack Avicel, cotton cellulose and other forms of crystalline cellulose. RESULTS Cellobiohydrolases Cbh1 and CelD have similar catalytic domains but only Cbh1 contains a carbohydrate-binding domain (CBD) that binds to cellulose. Structural superpositioning of Cbh1 and CelD on the Talaromyces emersonii Cel7A 3-dimensional structure, identifies the typical tunnel-like catalytic active site while Cbh1 shows an additional loop that partially obstructs the substrate-fitting channel. CelD does not have a CBD and shows a four amino acid residue deletion on the tunnel-obstructing loop providing a continuous opening in the absence of a CBD. Cbh1 and CelD are catalytically functional and while specific activity against Avicel is 7.7 and 0.5 U.mg prot-1, respectively specific activity on pNPC is virtually identical. Cbh1 is slightly more stable to thermal inactivation compared to CelD and is much less sensitive to glucose inhibition suggesting that an open tunnel configuration, or absence of a CBD, alters the way the catalytic domain interacts with the substrate. Cbh1 and CelD enzyme mixtures on crystalline cellulosic substrates show a strong combinatorial effort response for mixtures where Cbh1 is present in 2:1 or 4:1 molar excess. When CelD was overrepresented the combinatorial effort could only be partially overcome. CelD appears to bind and hydrolyze only loose cellulosic chains while Cbh1 is capable of opening new cellulosic substrate molecules away from the cellulosic fiber. CONCLUSION Cellobiohydrolases both with and without a CBD occur in most fungal genomes where both enzymes are secreted, and likely participate in cellulose degradation. The fact that only Cbh1 binds to the substrate and in combination with CelD exhibits strong synergy only when Cbh1 is present in excess, suggests that Cbh1 unties enough chains from cellulose fibers, thus enabling processive access of CelD.
Collapse
Affiliation(s)
- Fernando Segato
- Department of Microbiology & Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisas em Energia e Materiais, Campinas, Sao Paulo, Brazil
| | - André R L Damasio
- Department of Microbiology & Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
- Department of Biochemistry, Ribeirão Preto School of Medicine, Ribeirão Preto, Sao Paulo, Brazil
| | - Thiago Augusto Gonçalves
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisas em Energia e Materiais, Campinas, Sao Paulo, Brazil
| | - Mario T Murakami
- Laboratório Nacional de Biociências (LNBio), Campinas, Sao Paulo, Brazil
| | - Fabio M Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisas em Energia e Materiais, Campinas, Sao Paulo, Brazil
| | | | - Andrew J Mort
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Rolf A Prade
- Department of Microbiology & Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisas em Energia e Materiais, Campinas, Sao Paulo, Brazil
| |
Collapse
|
41
|
Scully ED, Hoover K, Carlson J, Tien M, Geib SM. Proteomic analysis of Fusarium solani isolated from the Asian longhorned beetle, Anoplophora glabripennis. PLoS One 2012; 7:e32990. [PMID: 22496740 PMCID: PMC3322136 DOI: 10.1371/journal.pone.0032990] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 02/05/2012] [Indexed: 11/20/2022] Open
Abstract
Wood is a highly intractable food source, yet many insects successfully colonize and thrive in this challenging niche. Overcoming the lignin barrier of wood is a key challenge in nutrient acquisition, but full depolymerization of intact lignin polymers has only been conclusively demonstrated in fungi and is not known to occur by enzymes produced by insects or bacteria. Previous research validated that lignocellulose and hemicellulose degradation occur within the gut of the wood boring insect, Anoplophora glabripennis (Asian longhorned beetle), and that a fungal species, Fusarium solani (ATCC MYA 4552), is consistently associated with the larval stage. While the nature of this relationship is unresolved, we sought to assess this fungal isolate's ability to degrade lignocellulose and cell wall polysaccharides and to extract nutrients from woody tissue. This gut-derived fungal isolate was inoculated onto a wood-based substrate and shotgun proteomics using Multidimensional Protein Identification Technology (MudPIT) was employed to identify 400 expressed proteins. Through this approach, we detected proteins responsible for plant cell wall polysaccharide degradation, including proteins belonging to 28 glycosyl hydrolase families and several cutinases, esterases, lipases, pectate lyases, and polysaccharide deacetylases. Proteinases with broad substrate specificities and ureases were observed, indicating that this isolate has the capability to digest plant cell wall proteins and recycle nitrogenous waste under periods of nutrient limitation. Additionally, several laccases, peroxidases, and enzymes involved in extracellular hydrogen peroxide production previously implicated in lignin depolymerization were detected. In vitro biochemical assays were conducted to corroborate MudPIT results and confirmed that cellulases, glycosyl hydrolases, xylanases, laccases, and Mn- independent peroxidases were active in culture; however, lignin- and Mn- dependent peroxidase activities were not detected While little is known about the role of filamentous fungi and their associations with insects, these findings suggest that this isolate has the endogenous potential to degrade lignocellulose and extract nutrients from woody tissue.
Collapse
Affiliation(s)
- Erin D. Scully
- Intercollege Program in Genetics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kelli Hoover
- Department of Entomology, Center for Chemical Ecology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - John Carlson
- School of Forest Resources, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Bioenergy Science and Technology (World Class University), Chonnam National University, Buk-Gu, Gwangju, Korea
| | - Ming Tien
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Scott M. Geib
- Tropical Crop and Commodity Protection Research Unit, USDA-ARS Pacific Basin Agricultural Research Center, Hilo, Hawaii, United States of America
| |
Collapse
|
42
|
MacDonald J, Suzuki H, Master ER. Expression and regulation of genes encoding lignocellulose-degrading activity in the genus Phanerochaete. Appl Microbiol Biotechnol 2012; 94:339-51. [PMID: 22391967 DOI: 10.1007/s00253-012-3937-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
Abstract
As white-rot basidiomycetes, Phanerochaete species are critical to the cycling of carbon sequestered as woody biomass, and are predicted to encode many enzymes that can be harnessed to promote the conversion of lignocellulose to sugars for fermentation to fuels and chemicals. Advances in genomic, transcriptomic, and proteomic technologies have enabled detailed analyses of different Phanerochaete species and have revealed numerous enzyme families required for lignocellulose utilization, as well as insight into the regulation of corresponding genes. Recent studies of Phanerochaete are also exemplified by molecular analyses following cultivation on different wood preparations, and show substrate-dependent responses that were difficult to predict using model compounds or isolated plant polysaccharides. The aim of this mini-review is to synthesize results from studies that have applied recent advances in molecular tools to evaluate the expression and regulation of proteins that contribute to lignocellulose conversion in Phanerochaete species. The identification of proteins with as yet unknown function are also highlighted and noted as important targets for future investigation of white-rot decay.
Collapse
Affiliation(s)
- Jacqueline MacDonald
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
43
|
Quantitative proteomic analysis of lignocellulolytic enzymes by Phanerochaete chrysosporium on different lignocellulosic biomass. J Proteomics 2012; 75:1493-504. [DOI: 10.1016/j.jprot.2011.11.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/29/2011] [Accepted: 11/17/2011] [Indexed: 11/23/2022]
|
44
|
Phanerochaete chrysosporium produces a diverse array of extracellular enzymes when grown on sorghum. Appl Microbiol Biotechnol 2012; 93:2075-89. [DOI: 10.1007/s00253-012-3907-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/11/2012] [Accepted: 01/14/2012] [Indexed: 11/27/2022]
|
45
|
Santhanam N, Badri DV, Decker SR, Manter DK, Reardon KF, Vivanco JM. Lignocellulose Decomposition by Microbial Secretions. SIGNALING AND COMMUNICATION IN PLANTS 2012. [DOI: 10.1007/978-3-642-23047-9_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Manavalan A, Adav SS, Sze SK. iTRAQ-based quantitative secretome analysis of Phanerochaete chrysosporium. J Proteomics 2011; 75:642-54. [DOI: 10.1016/j.jprot.2011.09.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/11/2011] [Accepted: 09/03/2011] [Indexed: 10/17/2022]
|
47
|
Cook C, Devoto A. Fuel from plant cell walls: recent developments in second generation bioethanol research. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:1729-32. [PMID: 21681755 DOI: 10.1002/jsfa.4455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
As bioethanol from sugarcane and wheat falls out of favour due to concerns about food security, research is ongoing into genetically engineering model plants and microorganisms to find the optimum cell wall structure for the ultimate second generation bioethanol crop. Charis Cook and Alessandra Devoto highlight here the progress made to tailor the plant cell wall to improve the accessibility of cellulose by acting on the regulation, the structure or the relative composition of other cell wall components to ultimately improve saccharification efficiency. They also consider possible side effects of cell wall modification and focus on the latest advances made to improve the efficiency of digestion of lignocellulosic materials by cell wall degrading microorganisms.
Collapse
Affiliation(s)
- Charis Cook
- Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey TW200EX, UK.
| | | |
Collapse
|
48
|
Hori C, Igarashi K, Katayama A, Samejima M. Effects of xylan and starch on secretome of the basidiomycete Phanerochaete chrysosporium grown on cellulose. FEMS Microbiol Lett 2011; 321:14-23. [DOI: 10.1111/j.1574-6968.2011.02307.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
Significant alteration of gene expression in wood decay fungi Postia placenta and Phanerochaete chrysosporium by plant species. Appl Environ Microbiol 2011; 77:4499-507. [PMID: 21551287 DOI: 10.1128/aem.00508-11] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification of specific genes and enzymes involved in conversion of lignocellulosics from an expanding number of potential feedstocks is of growing interest to bioenergy process development. The basidiomycetous wood decay fungi Phanerochaete chrysosporium and Postia placenta are promising in this regard because they are able to utilize a wide range of simple and complex carbon compounds. However, systematic comparative studies with different woody substrates have not been reported. To address this issue, we examined gene expression of these fungi colonizing aspen (Populus grandidentata) and pine (Pinus strobus). Transcript levels of genes encoding extracellular glycoside hydrolases, thought to be important for hydrolytic cleavage of hemicelluloses and cellulose, showed little difference for P. placenta colonizing pine versus aspen as the sole carbon source. However, 164 genes exhibited significant differences in transcript accumulation for these substrates. Among these, 15 cytochrome P450s were upregulated in pine relative to aspen. Of 72 P. placenta extracellular proteins identified unambiguously by mass spectrometry, 52 were detected while colonizing both substrates and 10 were identified in pine but not aspen cultures. Most of the 178 P. chrysosporium glycoside hydrolase genes showed similar transcript levels on both substrates, but 13 accumulated >2-fold higher levels on aspen than on pine. Of 118 confidently identified proteins, 31 were identified in both substrates and 57 were identified in pine but not aspen cultures. Thus, P. placenta and P. chrysosporium gene expression patterns are influenced substantially by wood species. Such adaptations to the carbon source may also reflect fundamental differences in the mechanisms by which these fungi attack plant cell walls.
Collapse
|
50
|
Secretome of the Coprophilous Fungus Doratomyces stemonitis C8, Isolated from Koala Feces. Appl Environ Microbiol 2011; 77:3793-801. [PMID: 21498763 DOI: 10.1128/aem.00252-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coprophilous fungi inhabit herbivore feces, secreting enzymes to degrade the most recalcitrant parts of plant biomass that have resisted the digestive process. Consequently, the secretomes of coprophilous fungi have high potential to contain novel and efficient plant cell wall degrading enzymes of biotechnological interest. We have used one-dimensional and two-dimensional gel electrophoresis, matrix-assisted laser desorption ionization-time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS/MS), and quadrupole time-of-flight liquid chromatography-tandem mass spectrometry (Q-TOF LC-MS/MS) to identify proteins from the secretome of the coprophilous fungus Doratomyces stemonitis C8 (EU551185) isolated from koala feces. As the genome of D. stemonitis has not been sequenced, cross-species identification, de novo sequencing, and zymography formed an integral part of the analysis. A broad range of enzymes involved in the degradation of cellulose, hemicellulose, pectin, lignin, and protein were revealed, dominated by cellobiohydrolase of the glycosyl hydrolase family 7 and endo-1,4-β-xylanase of the glycosyl hydrolase family 10. A high degree of specialization for pectin degradation in the D. stemonitis C8 secretome distinguishes it from the secretomes of some other saprophytic fungi, such as the industrially exploited T. reesei. In the first proteomic analysis of the secretome of a coprophilous fungus reported to date, the identified enzymes provide valuable insight into how coprophilous fungi subsist on herbivore feces, and these findings hold potential for increasing the efficiency of plant biomass degradation in industrial processes such as biofuel production in the future.
Collapse
|