1
|
Park J, Lim S. Review of the Proteomics and Metabolic Properties of Corynebacterium glutamicum. Microorganisms 2024; 12:1681. [PMID: 39203523 PMCID: PMC11356982 DOI: 10.3390/microorganisms12081681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Corynebacterium glutamicum (C. glutamicum) has become industrially important in producing glutamic acid and lysine since its discovery and has been the subject of proteomics and central carbon metabolism studies. The proteome changes depending on environmental conditions, nutrient availability, and stressors. Post-translational modification (PTMs), such as phosphorylation, methylation, and glycosylation, alter the function and activity of proteins, allowing them to respond quickly to environmental changes. Proteomics techniques, such as mass spectrometry and two-dimensional gel electrophoresis, have enabled the study of proteomes, identification of proteins, and quantification of the expression levels. Understanding proteomes and central carbon metabolism in microorganisms provides insight into their physiology, ecology, and biotechnological applications, such as biofuels, pharmaceuticals, and industrial enzyme production. Several attempts have been made to create efficient production strains to increase productivity in several research fields, such as genomics and proteomics. In addition to amino acids, C. glutamicum is used to produce vitamins, nucleotides, organic acids, and alcohols, expanding its industrial applications. Considerable information has been accumulated, but recent research has focused on proteomes and central carbon metabolism. The development of genetic engineering technologies, such as CRISPR-Cas9, has improved production efficiency by allowing precise manipulation of the metabolic pathways of C. glutamicum. In addition, methods for designing new metabolic pathways and developing customized strains using synthetic biology technology are gradually expanding. This review is expected to enhance the understanding of C. glutamicum and its industrial potential and help researchers identify research topics and design studies.
Collapse
Affiliation(s)
| | - Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, Asan-si 31499, Chungnam, Republic of Korea
| |
Collapse
|
2
|
Henke NA, Krahn I, Wendisch VF. Improved Plasmid-Based Inducible and Constitutive Gene Expression in Corynebacterium glutamicum. Microorganisms 2021; 9:204. [PMID: 33478126 PMCID: PMC7835838 DOI: 10.3390/microorganisms9010204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/18/2023] Open
Abstract
Corynebacterium glutamicum has been safely used in white biotechnology for the last 60 years and the portfolio of new pathways and products is increasing rapidly. Hence, expression vectors play a central role in discovering endogenous gene functions and in establishing heterologous gene expression. In this work, new expression vectors were designed based on two strategies: (i) a library screening of constitutive native and synthetic promoters and (ii) an increase of the plasmid copy number. Both strategies were combined and resulted in a very strong expression and overproduction of the fluorescence protein GfpUV. As a second test case, the improved vector for constitutive expression was used to overexpress the endogenous xylulokinase gene xylB in a synthetic operon with xylose isomerase gene xylA from Xanthomonas campestris. The xylose isomerase activity in crude extracts was increased by about three-fold as compared to that of the parental vector. In terms of application, the improved vector for constitutive xylA and xylB expression was used for production of the N-methylated amino acid sarcosine from monomethylamine, acetate, and xylose. As a consequence, the volumetric productivity of sarcosine production was 50% higher as compared to that of the strain carrying the parental vector.
Collapse
Affiliation(s)
| | | | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (N.A.H.); (I.K.)
| |
Collapse
|
3
|
Haas T, Graf M, Nieß A, Busche T, Kalinowski J, Blombach B, Takors R. Identifying the Growth Modulon of Corynebacterium glutamicum. Front Microbiol 2019; 10:974. [PMID: 31134020 PMCID: PMC6517550 DOI: 10.3389/fmicb.2019.00974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/18/2019] [Indexed: 12/16/2022] Open
Abstract
The growth rate (μ) of industrially relevant microbes, such as Corynebacterium glutamicum, is a fundamental property that indicates its production capacity. Therefore, understanding the mechanism underlying the growth rate is imperative for improving productivity and performance through metabolic engineering. Despite recent progress in the understanding of global regulatory interactions, knowledge of mechanisms directing cell growth remains fragmented and incomplete. The current study investigated RNA-Seq data of three growth rate transitions, induced by different pre-culture conditions, in order to identify transcriptomic changes corresponding to increasing growth rates. These transitions took place in minimal medium and ranged from 0.02 to 0.4 h-1 μ. This study enabled the identification of 447 genes as components of the growth modulon. Enrichment of genes within the growth modulon revealed 10 regulons exhibiting a significant effect over growth rate transition. In summary, central metabolism was observed to be regulated by a combination of metabolic and transcriptional activities orchestrating control over glycolysis, pentose phosphate pathway, and the tricarboxylic acid cycle. Additionally, major responses to changes in the growth rate were linked to iron uptake and carbon metabolism. In particular, genes encoding glycolytic enzymes and the glucose uptake system showed a positive correlation with the growth rate.
Collapse
Affiliation(s)
- Thorsten Haas
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Michaela Graf
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Alexander Nieß
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.,Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany.,Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Li C, Wu H, Yang Y, Liu J, Chen Z. Sesquiterpene lactone 6-O-angeloylplenolin reverses vincristine resistance by inhibiting YB-1 nuclear translocation in colon carcinoma cells. Oncol Lett 2018; 15:9673-9680. [PMID: 29928343 PMCID: PMC6004700 DOI: 10.3892/ol.2018.8592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 02/09/2018] [Indexed: 01/12/2023] Open
Abstract
Multidrug resistance (MDR) is a major obstacle to cancer chemotherapy efficacy. In the present study, 6-O-angeloylplenolin repressed the overexpression of ATP binding cassette subfamily B member 1 (MDR1) and increasing the intracellular concentration of anticancer drugs. A reduction in P-glycoprotein expression (encoded by MDR1) was observed in parallel with a decline in mRNA expression in vincristine-resistant HCT (HCT-8/VCR) cells treated with 6-O-angeloylplenolin. In addition, 6-O-angeloylplenolin suppressed the activity of the MDR1 gene promoter. Treatment with 6-O-angeloylplenolin also decreased the amount of the specific protein complex that interacted with the MDR1 gene promoter in HCT-8/VCR cells, potentially leading to the suppression of MDR1 expression. Treatment with 6-O-angeloylplenolin inhibited the nuclear translocation of Y-box binding protein-1 in HCT-8/VCR cells treated with 6-O-angeloylplenolin, contributing to the negative regulation of MDR1. Finally, 6-O-angeloylplenolin reversed VCR resistance in an HCT/VCR xenograft model. In conclusion, 6-O-angeloylplenolin exhibited a MDR-reversing effect by downregulating MDR1 expression and could represent a novel adjuvant agent for chemotherapy.
Collapse
Affiliation(s)
- Changlong Li
- School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China.,School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Hezhen Wu
- Key Laboratory of Resources and Chemistry of Chinese Medicine of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Yanfang Yang
- Key Laboratory of Resources and Chemistry of Chinese Medicine of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Jianwen Liu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Zhenwen Chen
- School of Basic Medical Science, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
5
|
Shang X, Chai X, Lu X, Li Y, Zhang Y, Wang G, Zhang C, Liu S, Zhang Y, Ma J, Wen T. Native promoters of Corynebacterium glutamicum and its application in L-lysine production. Biotechnol Lett 2017; 40:383-391. [PMID: 29164417 DOI: 10.1007/s10529-017-2479-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/09/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To identify useful native promoters of Corynebacterium glutamicum for fine-tuning of gene expression in metabolic engineering. RESULTS Sixteen native promoters of C. glutamicum were characterized. These promoters covered a strength range of 31-fold with small increments and exhibited relatively stable activity during the whole growth phase using β-galactosidase as the reporter. The mRNA level and enzymatic activity of the lacZ reporter gene exhibited high correlation (R 2 = 0.96) under the control of these promoters. Sequence analysis found that strong promoters had high similarity of the -10 hexamer to the consensus sequence and preference of the AT-rich UP element upstream the -35 region. To test the utility of the promoter library, the characterized native promoters were applied to modulate the sucCD-encoded succinyl-CoA synthetase expression for L-lysine overproduction. CONCLUSIONS The native promoters with various strengths realize the efficient and precise regulation of gene expression in metabolic engineering of C. glutamicum.
Collapse
Affiliation(s)
- Xiuling Shang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Xin Chai
- Beijing Zhongke EPPEN Biotechnology Co., Ltd, Beijing, 100085, China.,Ningxia EPPEN Biotechnology Co., Ltd, Yongning, 750100, Ningxia, China
| | - Xuemei Lu
- Beijing Zhongke EPPEN Biotechnology Co., Ltd, Beijing, 100085, China.,Ningxia EPPEN Biotechnology Co., Ltd, Yongning, 750100, Ningxia, China
| | - Yuan Li
- Beijing Zhongke EPPEN Biotechnology Co., Ltd, Beijing, 100085, China.,Ningxia EPPEN Biotechnology Co., Ltd, Yongning, 750100, Ningxia, China
| | - Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Guoqiang Wang
- Beijing Zhongke EPPEN Biotechnology Co., Ltd, Beijing, 100085, China.,Ningxia EPPEN Biotechnology Co., Ltd, Yongning, 750100, Ningxia, China
| | - Chen Zhang
- Beijing Zhongke EPPEN Biotechnology Co., Ltd, Beijing, 100085, China.,Ningxia EPPEN Biotechnology Co., Ltd, Yongning, 750100, Ningxia, China
| | - Shuwen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Yu Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Jiyin Ma
- Beijing Zhongke EPPEN Biotechnology Co., Ltd, Beijing, 100085, China.,Ningxia EPPEN Biotechnology Co., Ltd, Yongning, 750100, Ningxia, China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China. .,Beijing Zhongke EPPEN Biotechnology Co., Ltd, Beijing, 100085, China. .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Chai X, Shang X, Zhang Y, Liu S, Liang Y, Zhang Y, Wen T. A novel pyruvate kinase and its application in lactic acid production under oxygen deprivation in Corynebacterium glutamicum. BMC Biotechnol 2016; 16:79. [PMID: 27852252 PMCID: PMC5112673 DOI: 10.1186/s12896-016-0313-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022] Open
Abstract
Background Pyruvate kinase (Pyk) catalyzes the generation of pyruvate and ATP in glycolysis and functions as a key switch in the regulation of carbon flux distribution. Both the substrates and products of Pyk are involved in the tricarboxylic acid cycle, anaplerosis and energy anabolism, which places Pyk at a primary metabolic intersection. Pyks are highly conserved in most bacteria and lower eukaryotes. Corynebacterium glutamicum is an industrial workhorse for the production of various amino acids and organic acids. Although C. glutamicum was assumed to possess only one Pyk (pyk1, NCgl2008), NCgl2809 was annotated as a pyruvate kinase with an unknown role. Results Here, we identified that NCgl2809 was a novel pyruvate kinase (pyk2) in C. glutamicum. Complementation of the WTΔpyk1Δpyk2 strain with the pyk2 gene restored its growth on d-ribose, which demonstrated that Pyk2 could substitute for Pyk1 in vivo. Pyk2 was co-dependent on Mn2+ and K+ and had a higher affinity for ADP than phosphoenolpyruvate (PEP). The catalytic activity of Pyk2 was allosterically regulated by fructose 1,6-bisphosphate (FBP) activation and ATP inhibition. Furthermore, pyk2 and ldhA, which encodes l-lactate dehydrogenase, were co-transcribed as a bicistronic mRNA under aerobic conditions and pyk2 deficiency had a slight effect on the intracellular activity of Pyk. However, the mRNA level of pyk2 in the wild-type strain under oxygen deprivation was 14.24-fold higher than that under aerobic conditions. Under oxygen deprivation, pyk1 or pyk2 deficiency decreased the generation of lactic acid, and the overexpression of either pyk1 or pyk2 increased the production of lactic acid as the activity of Pyk increased. Fed-batch fermentation of the pyk2-overexpressing WTΔpyk1 strain produced 60.27 ± 1.40 g/L of lactic acid, which was a 47% increase compared to the parent strain under oxygen deprivation. Conclusions Pyk2 functioned as a pyruvate kinase and contributed to the increased level of Pyk activity under oxygen deprivation. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0313-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiuling Shang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yu Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shuwen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yong Liang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
7
|
Xiao X, Si M, Yang Z, Zhang Y, Guan J, Chaudhry MT, Wang Y, Shen X. Molecular characterization of a eukaryotic-like phenol hydroxylase from Corynebacterium glutamicum. J GEN APPL MICROBIOL 2016; 61:99-107. [PMID: 26377129 DOI: 10.2323/jgam.61.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study focuses on the genetic and biochemical characterization of phenol hydroxylase (Phe, NCgl2588) from Corynebacterium glutamicum that shares 31% identity in amino acids with phenol hydroxylase from yeast Trichosporon cutaneum but less similarity with that from bacteria. The phe deletion mutant significantly reduced its ability to grow with phenol as the sole carbon and energy source. Expression of the phe gene was strongly induced with phenol and also subject to the control of carbon catabolite repression (CCR). The molecular weight of purified Phe protein determined by gel filtration chromatography was 70 kDa, indicating that Phe exists as a monomer in the purification condition. However, Phe protein pre-incubated with phenol showed a molecular weight of 140 kDa, suggesting that Phe is likely active as a dimer. In addition to phenol, the Phe protein could utilize various other phenolic compounds as substrates. Site-directed mutagenesis revealed that D75, P261, R262, R269, C349 and C476 are key amino acid residues closely related to the enzyme activity of Phe.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Becker J, Gießelmann G, Hoffmann SL, Wittmann C. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 162:217-263. [DOI: 10.1007/10_2016_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Toyoda K, Inui M. Regulons of global transcription factors in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2015; 100:45-60. [DOI: 10.1007/s00253-015-7074-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/03/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
|
10
|
Townsend PD, Jungwirth B, Pojer F, Bußmann M, Money VA, Cole ST, Pühler A, Tauch A, Bott M, Cann MJ, Pohl E. The crystal structures of apo and cAMP-bound GlxR from Corynebacterium glutamicum reveal structural and dynamic changes upon cAMP binding in CRP/FNR family transcription factors. PLoS One 2014; 9:e113265. [PMID: 25469635 PMCID: PMC4254451 DOI: 10.1371/journal.pone.0113265] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/16/2014] [Indexed: 12/01/2022] Open
Abstract
The cyclic AMP-dependent transcriptional regulator GlxR from Corynebacterium glutamicum is a member of the super-family of CRP/FNR (cyclic AMP receptor protein/fumarate and nitrate reduction regulator) transcriptional regulators that play central roles in bacterial metabolic regulatory networks. In C. glutamicum, which is widely used for the industrial production of amino acids and serves as a non-pathogenic model organism for members of the Corynebacteriales including Mycobacterium tuberculosis, the GlxR homodimer controls the transcription of a large number of genes involved in carbon metabolism. GlxR therefore represents a key target for understanding the regulation and coordination of C. glutamicum metabolism. Here we investigate cylic AMP and DNA binding of GlxR from C. glutamicum and describe the crystal structures of apo GlxR determined at a resolution of 2.5 Å, and two crystal forms of holo GlxR at resolutions of 2.38 and 1.82 Å, respectively. The detailed structural analysis and comparison of GlxR with CRP reveals that the protein undergoes a distinctive conformational change upon cyclic AMP binding leading to a dimer structure more compatible to DNA-binding. As the two binding sites in the GlxR homodimer are structurally identical dynamic changes upon binding of the first ligand are responsible for the allosteric behavior. The results presented here show how dynamic and structural changes in GlxR lead to optimization of orientation and distance of its two DNA-binding helices for optimal DNA recognition.
Collapse
Affiliation(s)
- Philip D. Townsend
- School of Biological and Biomedical Sciences & Department of Chemistry, Biophysical Sciences Institute, Durham University, Durham, United Kingdom
| | - Britta Jungwirth
- Institute for Genome Research and Systems Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Florence Pojer
- Global Health Institute, Protein Crystallography Core Facility, Ecole Poytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michael Bußmann
- Institute of Bio- and Geosciences, IBG-1:Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Victoria A. Money
- School of Biological and Biomedical Sciences & Department of Chemistry, Biophysical Sciences Institute, Durham University, Durham, United Kingdom
| | - Stewart T. Cole
- Global Health Institute, Protein Crystallography Core Facility, Ecole Poytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alfred Pühler
- Institute for Genome Research and Systems Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Andreas Tauch
- Institute for Genome Research and Systems Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1:Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Martin J. Cann
- School of Biological and Biomedical Sciences & Department of Chemistry, Biophysical Sciences Institute, Durham University, Durham, United Kingdom
| | - Ehmke Pohl
- School of Biological and Biomedical Sciences & Department of Chemistry, Biophysical Sciences Institute, Durham University, Durham, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Genome-wide analysis of the role of global transcriptional regulator GntR1 in Corynebacterium glutamicum. J Bacteriol 2014; 196:3249-58. [PMID: 24982307 DOI: 10.1128/jb.01860-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional regulator GntR1 downregulates the genes for gluconate catabolism and pentose phosphate pathway in Corynebacterium glutamicum. Gluconate lowers the DNA binding affinity of GntR1, which is probably the mechanism of gluconate-dependent induction of these genes. In addition, GntR1 positively regulates ptsG, a gene encoding a major glucose transporter, and pck, a gene encoding phosphoenolpyruvate carboxykinase. Here, we searched for the new target of GntR1 on a genome-wide scale by chromatin immunoprecipitation in conjunction with microarray (ChIP-chip) analysis. This analysis identified 56 in vivo GntR1 binding sites, of which 7 sites were previously reported. The newly identified GntR1 sites include the upstream regions of carbon metabolism genes such as pyk, maeB, gapB, and icd, encoding pyruvate kinase, malic enzyme, glyceraldehyde 3-phosphate dehydrogenase B, and isocitrate dehydrogenase, respectively. Binding of GntR1 to the promoter region of these genes was confirmed by electrophoretic mobility shift assay. The activity of the icd, gapB, and maeB promoters was reduced by the mutation at the GntR1 binding site, in contrast to the pyk promoter activity, which was increased, indicating that GntR1 is a transcriptional activator of icd, gapB, and maeB and is a repressor of pyk. Thus, it is likely that GntR1 stimulates glucose uptake by inducing the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) gene while repressing pyk to increase PEP availability in the absence of gluconate. Repression of zwf and gnd may reduce the NADPH supply, which may be compensated by the induction of maeB and icd. Upregulation of icd, gapB, and maeB and downregulation of pyk by GntR1 probably support gluconeogenesis.
Collapse
|
12
|
Involvement of the global regulator GlxR in 3-hydroxybenzoate and gentisate utilization by Corynebacterium glutamicum. Appl Environ Microbiol 2014; 80:4215-25. [PMID: 24795375 DOI: 10.1128/aem.00290-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum is an industrially important producer of amino acids and organic acids, as well as an emerging model system for aromatic assimilation. An IclR-type regulator GenR has been characterized to activate the transcription of genDFM and genKH operons for 3-hydroxybenzoate and gentisate catabolism and represses its own expression. On the other hand, GlxR, a global regulator of the cyclic AMP (cAMP) receptor protein-fumarate nitrate reductase regulator (CRP-FNR) type, was also predicted to be involved in this pathway. In this study, electrophoretic mobility shift assays and footprinting analyses demonstrated that GlxR bound to three sites in the promoter regions of three gen operons. A combination of site-directed mutagenesis of the biding sites, promoter activity assay, and GlxR overexpression demonstrated that GlxR repressed their expression by binding these sites. One GlxR binding site (DFMx) was found to be located -13 to +8 bp upstream of the genDFM promoter, which was involved in negative regulation of genDFM transcription. The GlxR binding site R-KHx01 (located between positions -11 to +5) was upstream of the genKH promoter sequence and involved in negative regulation of its transcription. The binding site R-KHx02, at which GlxR binds to genR promoter to repress its expression, was found within a footprint extending from positions -71 to -91 bp. These results reveal that GlxR represses the transcription of all three gen operons and then contributes to the synchronization of their expression for 3-hydroxybenzoate and gentisate catabolism in collaboration with the specific regulator GenR.
Collapse
|
13
|
Hong EJ, Park JS, Kim Y, Lee HS. Role of Corynebacterium glutamicum sprA encoding a serine protease in glxR-mediated global gene regulation. PLoS One 2014; 9:e93587. [PMID: 24691519 PMCID: PMC3972247 DOI: 10.1371/journal.pone.0093587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/05/2014] [Indexed: 11/19/2022] Open
Abstract
The global regulator glxR of Corynebacterium glutamicum is involved in many cellular activities. Considering its role, the GlxR protein likely interacts with other proteins to obtain, maintain, and control its activity. To isolate proteins interacting with GlxR, we used a two-hybrid system with GlxR as the bait. Subsequently, the partner, a subtilisin-like serine protease, was isolated from a C. glutamicum genomic library. Unlike glxR, which showed constitutive expression, the expression of sprA, encoding a serine protease, was maximal in the log phase. Purified His6-SprA protein underwent self-proteolysis and proteolyzed purified GlxR. The proteolytic action of SprA on GlxR was not observed in the presence of cyclic adenosine monophosphate, which modulates GlxR activity. The C. glutamicum sprA deletion mutant (ΔsprA) and sprA-overexpressing (P180-sprA) strains showed reduced growth. The activity of isocitrate dehydrogenase (a tricarboxylic acid cycle enzyme) in these strains decreased to 30–50% of that in the wild-type strain. In the P180-sprA strain, proteins involved in diverse cellular functions such as energy and carbon metabolism (NCgl2809), nitrogen metabolism (NCgl0049), methylation reactions (NCgl0719), and peptidoglycan biosynthesis (NCgl1267), as well as stress, starvation, and survival (NCgl0938) were affected and showed decreased transcription. Taken together, these data suggest that SprA, as a serine protease, performs a novel regulatory role not only in glxR-mediated gene expression but also in other areas of cell physiology. In addition, the tight control of SprA and GlxR availability may indicate their importance in global gene regulation.
Collapse
Affiliation(s)
- Eun-Ji Hong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro, Sejong-si, Korea
| | - Joon-Song Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro, Sejong-si, Korea
| | - Younhee Kim
- Department of Oriental Medicine, Semyung University, Checheon, Chungbuk, Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro, Sejong-si, Korea
- * E-mail:
| |
Collapse
|
14
|
Schatschneider S, Huber C, Neuweger H, Watt TF, Pühler A, Eisenreich W, Wittmann C, Niehaus K, Vorhölter FJ. Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner–Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. ACTA ACUST UNITED AC 2014; 10:2663-76. [DOI: 10.1039/c4mb00198b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complex metabolic flux pattern ofX. campestris.
Collapse
Affiliation(s)
- Sarah Schatschneider
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Claudia Huber
- Lehrstuhl für Biochemie
- Center of Isotopologue Profiling
- Technische Universität München
- Garching, Germany
| | - Heiko Neuweger
- Computational Genomics
- Centrum für Biotechnology (CeBiTec)
- Universität Bielefeld
- Germany
| | - Tony Francis Watt
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Alfred Pühler
- Institut für Genomforschung und Systembiologie
- Centrum für Biotechnology (CeBiTec)
- Universität Bielefeld
- Bielefeld, Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie
- Center of Isotopologue Profiling
- Technische Universität München
- Garching, Germany
| | - Christoph Wittmann
- Institut für Systembiotechnologie
- Universität des Saarlandes
- Saarbrücken, Germany
| | - Karsten Niehaus
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
| | - Frank-Jörg Vorhölter
- Abteilung für Proteom- und Metabolomforschung
- Fakultät für Biologie
- Universität Bielefeld
- Bielefeld, Germany
- Institut für Genomforschung und Systembiologie
| |
Collapse
|
15
|
Hyeon JE, Jeon SD, Han SO. Cellulosome-based, Clostridium-derived multi-functional enzyme complexes for advanced biotechnology tool development: advances and applications. Biotechnol Adv 2013; 31:936-44. [PMID: 23563098 DOI: 10.1016/j.biotechadv.2013.03.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 12/20/2022]
Abstract
The cellulosome is one of nature's most elegant and elaborate nanomachines and a key biological and biotechnological macromolecule that can be used as a multi-functional protein complex tool. Each protein module in the cellulosome system is potentially useful in an advanced biotechnology application. The high-affinity interactions between the cohesin and dockerin domains can be used in protein-based biosensors to improve both sensitivity and selectivity. The scaffolding protein includes a carbohydrate-binding module (CBM) that attaches strongly to cellulose substrates and facilitates the purification of proteins fused with the dockerin module through a one-step CBM purification method. Although the surface layer homology (SLH) domain of CbpA is not present in other strains, replacement of the cell surface anchoring domain allows a foreign protein to be displayed on the surface of other strains. The development of a hydrolysis enzyme complex is a useful strategy for consolidated bioprocessing (CBP), enabling microorganisms with biomass hydrolysis activity. Thus, the development of various configurations of multi-functional protein complexes for use as tools in whole-cell biocatalyst systems has drawn considerable attention as an attractive strategy for bioprocess applications. This review provides a detailed summary of the current achievements in Clostridium-derived multi-functional complex development and the impact of these complexes in various areas of biotechnology.
Collapse
Affiliation(s)
- Jeong Eun Hyeon
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | | | | |
Collapse
|
16
|
Complex regulation of the phosphoenolpyruvate carboxykinase gene pck and characterization of its GntR-type regulator IolR as a repressor of myo-inositol utilization genes in Corynebacterium glutamicum. J Bacteriol 2013; 195:4283-96. [PMID: 23873914 DOI: 10.1128/jb.00265-13] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA affinity chromatography with the promoter region of the Corynebacterium glutamicum pck gene, encoding phosphoenolpyruvate carboxykinase, led to the isolation of four transcriptional regulators, i.e., RamA, GntR1, GntR2, and IolR. Determination of the phosphoenolpyruvate carboxykinase activity of the ΔramA, ΔgntR1 ΔgntR2, and ΔiolR deletion mutants indicated that RamA represses pck during growth on glucose about 2-fold, whereas GntR1, GntR2, and IolR activate pck expression about 2-fold irrespective of whether glucose or acetate served as the carbon source. The DNA binding sites of the four regulators in the pck promoter region were identified and their positions correlated with the predicted functions as repressor or activators. The iolR gene is located upstream and in a divergent orientation with respect to a iol gene cluster, encoding proteins involved in myo-inositol uptake and degradation. Comparative DNA microarray analysis of the ΔiolR mutant and the parental wild-type strain revealed strongly (>100-fold) elevated mRNA levels of the iol genes in the mutant, indicating that the primary function of IolR is the repression of the iol genes. IolR binding sites were identified in the promoter regions of iolC, iolT1, and iolR. IolR therefore is presumably subject to negative autoregulation. A consensus DNA binding motif (5'-KGWCHTRACA-3') which corresponds well to those of other GntR-type regulators of the HutC family was identified. Taken together, our results disclose a complex regulation of the pck gene in C. glutamicum and identify IolR as an efficient repressor of genes involved in myo-inositol catabolism of this organism.
Collapse
|
17
|
Vasco-Cárdenas MF, Baños S, Ramos A, Martín JF, Barreiro C. Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C₄ and C₅ dicarboxylic acids. J Proteomics 2013; 85:65-88. [PMID: 23624027 DOI: 10.1016/j.jprot.2013.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/05/2013] [Accepted: 04/09/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED More than fifty years of industrial and scientific developments on the amino acid-producer strain Corynebacterium glutamicum has generated an extremely huge knowledge highly applicable to the development of new products. Despite the production of dicarboxylic acids has already been engineered in C. glutamicum, the effect caused by these acids at competitive industrial levels has not yet been described. Thus, aspartic, fumaric, itaconic, malic and succinic acids have been tested on the growth of C. glutamicum to obtain their minimal inhibitory concentrations and their intracellular effects analyzed by 2D-DIGE. This analysis showed the modification of the central metabolism of C. glutamicum, the cross-regulation between malic acid and glucose as well as the aspartic acid utilization as nitrogen source. The analysis of the transcriptional regulators involved in the control of the detected proteins pointed to the ramB gene as a candidate for strain improvement. The analysis of the ΔramB mutant demonstrated its function as an enhancer of the growth speed or resistance level against aspartic, fumaric, itaconic and malic acids in C. glutamicum. BIOLOGICAL SIGNIFICANCE The effect of dicarboxylic acids addition to the C. glutamicum culture broth has been described. This proteome response is detailed and the deletion of a global regulator (ramB) has been described as a possible improving method for industrial strains. In addition, the consumption of aspartic acid as nitrogen source has been described for the first time in C. glutamicum, as well as, the cross-regulation between malic acid and glucose through the F0F1 respiratory system.
Collapse
Affiliation(s)
- María F Vasco-Cárdenas
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | | | | | | | | |
Collapse
|
18
|
High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum. Microbiology (Reading) 2013; 159:12-22. [DOI: 10.1099/mic.0.062059-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Pátek M, Nešvera J. Promoters and Plasmid Vectors of Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Teramoto H, Inui M. Regulation of Sugar Uptake, Glycolysis, and the Pentose Phosphate Pathway in Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
GntR-type transcriptional regulator PckR negatively regulates the expression of phosphoenolpyruvate carboxykinase in Corynebacterium glutamicum. J Bacteriol 2012; 194:2181-8. [PMID: 22366416 DOI: 10.1128/jb.06562-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pck (cg3169) gene of Corynebacterium glutamicum encodes a phosphoenolpyruvate carboxykinase (PEPCK). Here, a candidate transcriptional regulator that binds to the promoter region of pck was detected using a DNA affinity purification approach. An isolated protein was identified to be PckR (Cg0196), a GntR family transcriptional regulator which consists of 253 amino acids with a mass of 27 kDa as measured by peptide mass fingerprinting. The results of electrophoretic mobility shift assays verified that PckR specifically binds to the pck promoter. The putative regulator binding region extended from position -44 to -27 (an 18-bp sequence) relative to the transcriptional start point of the pck gene. We measured the expression of pck in a pckR deletion mutant by using quantitative real-time reverse transcription-PCR. The expression level of pck in the pckR mutant was 7.6 times higher than that in wild-type cells grown in glucose. Comparative DNA microarray hybridizations and bioinformatic searches revealed the gene composition of the transcriptional regulon of C. glutamicum. Based on these results, PckR seemed to play an important role in the regulation of PEPCK in C. glutamicum grown in glucose. In particular, these assays revealed that PckR acts as a repressor of pck expression during glucose metabolism.
Collapse
|
22
|
Sigma factors and promoters in Corynebacterium glutamicum. J Biotechnol 2011; 154:101-13. [DOI: 10.1016/j.jbiotec.2011.01.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/05/2011] [Accepted: 01/18/2011] [Indexed: 11/19/2022]
|
23
|
Transcriptional regulators of multiple genes involved in carbon metabolism in Corynebacterium glutamicum. J Biotechnol 2011; 154:114-25. [DOI: 10.1016/j.jbiotec.2011.01.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/07/2011] [Accepted: 01/18/2011] [Indexed: 11/21/2022]
|
24
|
Genome-wide identification of in vivo binding sites of GlxR, a cyclic AMP receptor protein-type regulator in Corynebacterium glutamicum. J Bacteriol 2011; 193:4123-33. [PMID: 21665967 DOI: 10.1128/jb.00384-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Corynebacterium glutamicum GlxR is a cyclic AMP (cAMP) receptor protein-type regulator. Although over 200 GlxR-binding sites in the C. glutamicum genome are predicted in silico, studies on the physiological function of GlxR have been hindered by the severe growth defects of a glxR mutant. This study identified the GlxR regulon by chromatin immunoprecipitation in conjunction with microarray (ChIP-chip) analyses. In total, 209 regions were detected as in vivo GlxR-binding sites. In vitro binding assays and promoter-reporter assays demonstrated that GlxR directly activates expression of genes for aerobic respiration, ATP synthesis, and glycolysis and that it is required for expression of genes for cell separation and mechanosensitive channels. GlxR also directly represses a citrate uptake gene in the presence of citrate. Moreover, ChIP-chip analyses showed that GlxR was still able to interact with its target sites in a mutant with a deletion of cyaB, the sole adenylate cyclase gene in the genome, even though binding affinity was markedly decreased. Thus, GlxR is physiologically functional at the relatively low cAMP levels in the cyaB mutant, allowing the cyaB mutant to grow much better than the glxR mutant.
Collapse
|
25
|
Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum. Enzyme Microb Technol 2011; 48:371-7. [PMID: 22112952 DOI: 10.1016/j.enzmictec.2010.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/08/2010] [Accepted: 12/27/2010] [Indexed: 11/24/2022]
Abstract
Although cellulosic materials of plant origin are the most abundant utilizable biomass resource, the amino acid-producing organism Corynebacterium glutamicum can not utilize these materials. Here we report the engineering of a C. glutamicum strain expressing functional minicellulosomes containing chimeric endoglucanase E bound to miniCbpA from Clostridium cellulovorans that can hydrolyze cellulosic materials. The chimeric endoglucanase E consists of the endoglucanase E catalytic backbone of Clostridium thermocellum fused with the endoglucanase B dockerin domain of C. cellulovorans. The resulting strain degraded cellulose efficiently by substrate targeting via the carbohydrate binding module. The assembly of minicellulosomes increased the activity against carboxymethyl cellulose approximately 2.8-fold compared with that for the corresponding enzymes alone. This is the first report of the formation of Clostridium minicellulosomes by C. glutamicum. The development of C. glutamicum strain that is capable of more effective cellulose hydrolysis brings about a realization of consolidated bioprocessing for the utilization of cellulosic biomass.
Collapse
|
26
|
Teramoto H, Inui M, Yukawa H. Regulation of genes involved in sugar uptake, glycolysis and lactate production in Corynebacterium glutamicum. Future Microbiol 2010; 5:1475-81. [DOI: 10.2217/fmb.10.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Corynebacterium glutamicum is a nonpathogenic, GC-rich, Gram-positive bacterium with a long history in the industrial production of amino acids. Recently, the species has become of increasing interest as a model bacterium for closely related, medically important pathogenic species such as Corynebacterium diphtheriae and Mycobacterium tuberculosis. In this article, recent advances in understanding of the C. glutamicum regulatory network of genes involved in carbohydrate metabolism are reviewed with regards to sugar uptake, glycolysis and lactate production.
Collapse
Affiliation(s)
- Haruhiko Teramoto
- Research Institute of Innovative Technology for the Earth, 9–2, Kizugawadai, Kizugawa, Kyoto 619–0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9–2, Kizugawadai, Kizugawa, Kyoto 619–0292, Japan
| | | |
Collapse
|
27
|
Schröder J, Tauch A. Transcriptional regulation of gene expression inCorynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 2010; 34:685-737. [DOI: 10.1111/j.1574-6976.2010.00228.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
28
|
Panhorst M, Sorger-Herrmann U, Wendisch VF. The pstSCAB operon for phosphate uptake is regulated by the global regulator GlxR in Corynebacterium glutamicum. J Biotechnol 2010; 154:149-55. [PMID: 20638427 DOI: 10.1016/j.jbiotec.2010.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 06/14/2010] [Accepted: 07/09/2010] [Indexed: 11/18/2022]
Abstract
The pstSCAB operon of Corynebacterium glutamicum, which encodes a high affinity transport system for uptake of the phosphorus source inorganic phosphate, is induced upon phosphate starvation involving activation by the two-component regulatory system PhoS-PhoR. Partial phosphate starvation induction of the pstSCAB operon in a ΔphoRS mutant indicated the involvement of (an) additional transcriptional regulator(s). Here, GlxR, a global cAMP-dependent transcriptional regulator, was shown to bind to the pstS promoter -133 bp to -117 bp upstream of the transcriptional start site as shown by gel shift and mutation experiments. Transcriptional fusion analysis revealed that GlxR activates the pstSCAB operon under phosphate limiting conditions in a carbon source dependent manner. Commensurate with these findings, overexpression of glxR was shown to stimulate growth under phosphate limiting conditions with glucose, but not with acetate, as carbon source. Thus, in C. glutamicum pstSCAB expression is regulated in response to the availability of phosphorus and carbon sources.
Collapse
Affiliation(s)
- Maren Panhorst
- Chair of Genetics of Prokaryotes, Bielefeld University, Germany
| | | | | |
Collapse
|
29
|
Auchter M, Cramer A, Hüser A, Rückert C, Emer D, Schwarz P, Arndt A, Lange C, Kalinowski J, Wendisch VF, Eikmanns BJ. RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. J Biotechnol 2010; 154:126-39. [PMID: 20620178 DOI: 10.1016/j.jbiotec.2010.07.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 04/12/2010] [Accepted: 07/01/2010] [Indexed: 11/17/2022]
Abstract
In Corynebacterium glutamicum, the transcriptional regulators of acetate metabolism RamA (encoded by cg2831) and RamB (encoded by cg0444) play an important role in expression control of genes involved in acetate and ethanol metabolism. Both regulators were speculated to have broader significance in expression control of further genes in the central metabolism of C. glutamicum. Here we investigated the RamA and RamB regulons by genome-wide transcriptome analysis with special emphasis on genes encoding enzymes of the central carbon metabolism. When compared to the parental wild-type, 253 genes and 81 genes showed different mRNA levels in defined RamA- and RamB-deficient C. glutamicum strains, respectively. Among these were genes involved in sugar uptake, glycolysis, gluconeogenesis, acetate, l-lactate or ethanol metabolism. The direct interaction of RamA and RamB proteins with the respective promoter/operator fragments was demonstrated in vitro by electrophoretic mobility shift assays. Taken together, we present evidence for an important role of RamA and RamB in global gene expression control in C. glutamicum.
Collapse
Affiliation(s)
- Marc Auchter
- Institute of Microbiology and Biotechnology, University of Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Park SY, Moon MW, Subhadra B, Lee JK. Functional characterization of theglxRdeletion mutant ofCorynebacterium glutamicumATCC 13032: involvement of GlxR in acetate metabolism and carbon catabolite repression. FEMS Microbiol Lett 2010; 304:107-15. [DOI: 10.1111/j.1574-6968.2009.01884.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Kohl TA, Tauch A. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: Detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model. J Biotechnol 2009; 143:239-46. [DOI: 10.1016/j.jbiotec.2009.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/30/2009] [Accepted: 08/04/2009] [Indexed: 11/27/2022]
|
32
|
Transcriptional control of the succinate dehydrogenase operon sdhCAB of Corynebacterium glutamicum by the cAMP-dependent regulator GlxR and the LuxR-type regulator RamA. J Biotechnol 2009; 143:173-82. [PMID: 19583988 DOI: 10.1016/j.jbiotec.2009.06.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/22/2009] [Accepted: 06/26/2009] [Indexed: 01/31/2023]
Abstract
In experiments performed to identify transcriptional regulators of the tricarboxylic acid cycle of Corynebacterium glutamicum, the cAMP-dependent regulator GlxR and the regulators of acetate metabolism RamA and RamB were enriched by DNA affinity chromatography with the promoter region of the sdhCAB operon encoding succinate dehydrogenase. The binding of purified GlxR, RamA and RamB was verified by electrophoretic mobility shift assays and the regulatory effects of these proteins on sdhCAB gene expression were tested by promoter activity assays and SDH activity measurements. Evidence was obtained that GlxR functions as a repressor and RamA as an activator of sdhCAB expression, whereas RamB had no obvious influence under the conditions tested.
Collapse
|
33
|
Characterization of an adenylate cyclase gene (cyaB) deletion mutant of Corynebacterium glutamicum ATCC 13032. Appl Microbiol Biotechnol 2009; 85:1061-8. [PMID: 19568747 DOI: 10.1007/s00253-009-2066-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 05/12/2009] [Accepted: 05/28/2009] [Indexed: 11/30/2022]
Abstract
Genome analysis of C. glutamicum ATCC 13032 has showed one putative adenylate cyclase gene, cyaB (cg0375) which encodes membrane protein belonging to class III adenylate cyclases. To characterize the function of cyaB, a deletion mutant was constructed, and the mutant showed decreased level of intracellular cyclic AMP compared to that of wild-type. Interestingly, the cyaB mutant displayed growth defect on acetate medium, and this effect was reversed by complementation with cyaB gene. Similarly, it showed growth defect on glucose-acetate mixture minimal medium, and the utilization of glucose was retarded in the presence of acetate. The deletion mutant retained the activity of glyoxylate bypass enzymes. Additionally, the mutant could grow on ethanol but not on propionate medium. The data obtained from this study suggests that adenylate cyclase plays an essential role in the acetate metabolism of C. glutamicum, even though detailed regulatory mechanisms involving cAMP are not yet clearly defined. The observation that glyoxylate bypass enzymes are derepressed in cyaB mutant indicates the involvement of cAMP in the repression of aceB and aceA.
Collapse
|
34
|
Krawczyk J, Kohl TA, Goesmann A, Kalinowski J, Baumbach J. From Corynebacterium glutamicum to Mycobacterium tuberculosis--towards transfers of gene regulatory networks and integrated data analyses with MycoRegNet. Nucleic Acids Res 2009; 37:e97. [PMID: 19494184 PMCID: PMC2724278 DOI: 10.1093/nar/gkp453] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Year by year, approximately two million people die from tuberculosis, a disease caused by the bacterium Mycobacterium tuberculosis. There is a tremendous need for new anti-tuberculosis therapies (antituberculotica) and drugs to cope with the spread of tuberculosis. Despite many efforts to obtain a better understanding of M. tuberculosis' pathogenicity and its survival strategy in humans, many questions are still unresolved. Among other cellular processes in bacteria, pathogenicity is controlled by transcriptional regulation. Thus, various studies on M. tuberculosis concentrate on the analysis of transcriptional regulation in order to gain new insights on pathogenicity and other essential processes ensuring mycobacterial survival. We designed a bioinformatics pipeline for the reliable transfer of gene regulations between taxonomically closely related organisms that incorporates (i) a prediction of orthologous genes and (ii) the prediction of transcription factor binding sites. In total, 460 regulatory interactions were identified for M. tuberculosis using our comparative approach. Based on that, we designed a publicly available platform that aims to data integration, analysis, visualization and finally the reconstruction of mycobacterial transcriptional gene regulatory networks: MycoRegNet. It is a comprehensive database system and analysis platform that offers several methods for data exploration and the generation of novel hypotheses. MycoRegNet is publicly available at http://mycoregnet.cebitec.uni-bielefeld.de.
Collapse
Affiliation(s)
- Justina Krawczyk
- Computational Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, Germany and International Computer Science Institute, Berkeley, CA, USA
| | | | | | | | | |
Collapse
|
35
|
Involvement of the LuxR-type transcriptional regulator RamA in regulation of expression of the gapA gene, encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum. J Bacteriol 2008; 191:968-77. [PMID: 19047347 DOI: 10.1128/jb.01425-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SugR, RamA, GlxR, GntR1, and a MarR-type transcriptional regulator bind to the promoter region of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH), essential for glycolysis in Corynebacterium glutamicum. We previously showed that SugR, a transcriptional repressor of phosphotransferase system genes for the sugar transport system, is involved in the downregulation of gapA expression in the absence of sugar. In this study, the role of RamA in the expression of the gapA gene was examined. Comparing the gapA expression and GAPDH activity of a ramA mutant with those of the wild type revealed that RamA is involved in upregulation of gapA expression in glucose-grown cells. DNase I footprint analyses and electrophoretic mobility shift assays revealed that RamA binds with different affinities to three sites in the gapA promoter. lacZ reporter assays with mutated RamA binding sites in the gapA promoter showed that the middle binding site is the most important for RamA to activate gapA expression and that binding of RamA to the gapA promoter activates the gene expression not only in glucose-grown cells but also in acetate-grown cells. Furthermore, RamA also directly activates sugR expression, indicating that two global regulators, RamA and SugR, are coordinately involved in the complex regulation of gapA expression in C. glutamicum.
Collapse
|
36
|
Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum. J Bacteriol 2008; 191:940-8. [PMID: 19028892 DOI: 10.1128/jb.01155-08] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metabolism of monocarboxylic acids is of central importance for bacteria in their natural habitat as well as during biotechnological production. Although biosynthesis and degradation are well understood, the transport of such compounds is still a matter of discussion. Here we present the identification and characterization of a new transport system in Corynebacterium glutamicum with high affinity for acetate and propionate and with lower affinity for pyruvate. Biochemical analysis of this monocarboxylic acid transporter (MctC) revealed for the first time a quantitative discrimination of passive diffusion and active transport of acetate by bacterial cells. MctC is a secondary transporter and belongs to the class of sodium solute symporters, but it is driven by the electrochemical proton potential. The mctC gene is preceded by and cotranscribed with cg0952, a locus encoding a small membrane protein, and the transcription of the cg0952-mctC operon is under the control of the transcriptional regulators RamA and RamB. Both of these proteins directly bind to the promoter region of the operon; RamA is essential for expression and RamB exerts a slightly negative control on expression of the cg0952-mctC operon. mctC expression is induced in the presence of pyruvate and beneficial under substrate-limiting conditions for C. glutamicum.
Collapse
|
37
|
Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB. J Biotechnol 2008; 140:84-91. [PMID: 19041911 DOI: 10.1016/j.jbiotec.2008.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Revised: 09/29/2008] [Accepted: 10/21/2008] [Indexed: 11/18/2022]
Abstract
Corynebacterium glutamicum has been shown to grow with ethanol as the sole or as additional carbon and energy source and accordingly, to possess both alcohol dehydrogenase and acetaldehyde dehydrogenase (ALDH) activities, which are responsible for the two-step ethanol oxidation to acetate. Here we identify and functionally analyze the C. glutamicum ALDH gene (cg3096, ald), its expression and its regulation. Directed inactivation of the chromosomal ald gene led to the absence of detectable ALDH activity and to the inability to grow on or to utilize ethanol, indicating that the ald gene product is essential for ethanol metabolism and that no ALDH isoenzymes are present in C. glutamicum. Transcriptional analysis revealed that ald from C. glutamicum is monocistronic, that ald transcription is initiated 92 nucleotides upstream of the translational start codon ATG and that ald expression is much lower in the presence of glucose in the growth medium. Further analysis revealed that transcription of the ald gene is under control of the transcriptional regulators RamA and RamB. Both these proteins directly bind to the respective promoter region, RamA is essential for expression and RamB exerts a slightly negative effect on ald expression on all carbon sources tested.
Collapse
|
38
|
Toyoda K, Teramoto H, Inui M, Yukawa H. Expression of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum is regulated by the global regulator SugR. Appl Microbiol Biotechnol 2008; 81:291-301. [DOI: 10.1007/s00253-008-1682-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/19/2008] [Accepted: 08/21/2008] [Indexed: 10/21/2022]
|
39
|
Han SO, Inui M, Yukawa H. Effect of carbon source availability and growth phase on expression of Corynebacterium glutamicum genes involved in the tricarboxylic acid cycle and glyoxylate bypass. Microbiology (Reading) 2008; 154:3073-3083. [DOI: 10.1099/mic.0.2008/019828-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Sung Ok Han
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
- Molecular Microbiology and Biotechnology Group, Research Institute of Innovative Technology for the Earth (RITE), Kyoto 619-0292, Japan
| | - Masayuki Inui
- Molecular Microbiology and Biotechnology Group, Research Institute of Innovative Technology for the Earth (RITE), Kyoto 619-0292, Japan
| | - Hideaki Yukawa
- Molecular Microbiology and Biotechnology Group, Research Institute of Innovative Technology for the Earth (RITE), Kyoto 619-0292, Japan
| |
Collapse
|
40
|
Ehira S, Shirai T, Teramoto H, Inui M, Yukawa H. Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation. Appl Environ Microbiol 2008; 74:5146-52. [PMID: 18567683 PMCID: PMC2519270 DOI: 10.1128/aem.00944-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 06/16/2008] [Indexed: 11/20/2022] Open
Abstract
The sigB gene of Corynebacterium glutamicum encodes a group 2 sigma factor of RNA polymerase. Under conditions of oxygen deprivation, the sigB gene is upregulated and cells exhibit high productivity of organic acids as a result of an elevated glucose consumption rate. Using DNA microarray and quantitative reverse transcription-PCR (RT-PCR) analyses, we found that sigB disruption led to reduced transcript levels of genes involved in the metabolism of glucose into organic acids. This in turn resulted in retardation of glucose consumption by cells under conditions of oxygen deprivation. These results indicate that SigB is involved in positive regulation of glucose metabolism genes and enhances glucose consumption under conditions of oxygen deprivation. Moreover, sigB disruption reduced the transcript levels of genes involved in various cellular functions, including the glucose metabolism genes not only in the growth-arrested cells under conditions of oxygen deprivation but also in the cells during aerobic exponential growth, suggesting that SigB functions as another vegetative sigma factor.
Collapse
Affiliation(s)
- Shigeki Ehira
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | | | | | | | | |
Collapse
|
41
|
Kohl TA, Baumbach J, Jungwirth B, Pühler A, Tauch A. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: In silico and in vitro detection of DNA binding sites of a global transcription regulator. J Biotechnol 2008; 135:340-50. [DOI: 10.1016/j.jbiotec.2008.05.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 05/20/2008] [Accepted: 05/23/2008] [Indexed: 10/22/2022]
|
42
|
Brinkrolf K, Plöger S, Solle S, Brune I, Nentwich SS, Hüser AT, Kalinowski J, Pühler A, Tauch A. The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. Microbiology (Reading) 2008; 154:1068-1081. [DOI: 10.1099/mic.0.2007/014001-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Karina Brinkrolf
- International NRW Graduate School in Bioinformatics and Genome Research, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Svenja Plöger
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Sandra Solle
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Iris Brune
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Svenja S. Nentwich
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Andrea T. Hüser
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Alfred Pühler
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Andreas Tauch
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|