1
|
Dhayanithy G, Mukherjee S, Subban K, Radhakrishnan S, Chelliah J. Unsaturated fatty acid, Nonacosenoic acid isolated from an endophyte Chaetomium nigricolor inhabiting the stem of Catharanthus roseus and its bioactivity. Fungal Biol 2024; 128:1876-1884. [PMID: 38876540 DOI: 10.1016/j.funbio.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
The endophytic fungus Chaetomium nigricolor culture filtrate's hexane extract was used to identify a cytotoxic very long-chain fatty acid. Based on multiple spectroscopic investigations, the structure of the compound was predicted to be an unsaturated fatty acid, Nonacosenoic acid (NA). Using the MTT assay, the compound's cytotoxic potential was evaluated against MCF-7, A-431, U-251, and HEK-293 T cells. The compound was moderately cytotoxic to breast carcinoma cell line, MCF-7 cells and negligibly cytotoxic to non-cancerous cell line HEK-293 T cells. The compound exhibited mild cytotoxic activity against A-431 and U-251 cells. The compound also induced ROS generation and mitochondrial depolarization in MCF-7 cells when assessed via the NBT and JC-1 assays, respectively. This is the first report on the production of nonacosenoic acid from the endophytic fungus Chaetomium nigricolor and the assessment of its bioactivity.
Collapse
Affiliation(s)
| | - Somnath Mukherjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| | - Kamalraj Subban
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| | | | | |
Collapse
|
2
|
Job N, Sarasan M, Philip R. Mangrove-associated endomycota: diversity and functional significance as a source of novel drug leads. Arch Microbiol 2023; 205:349. [PMID: 37789248 DOI: 10.1007/s00203-023-03679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Endophytic fungi are known for their unprecedented ability to produce novel lead compounds of clinical and pharmaceutical importance. This review focuses on the unexplored fungal diversity associated with mangroves, emphasizing their biodiversity, distribution, and methodological approaches targeting isolation, and identification. Also highlights the bioactive compounds reported from the mangrove fungal endophytes. The compounds are categorized according to their reported biological activities including antimicrobial, antioxidant and cytotoxic property. In addition, protein kinase, α-glucosidase, acetylcholinesterase, tyrosinase inhibition, antiangiogenic, DNA-binding affinity, and calcium/potassium channel blocking activity are also reported. Exploration of these endophytes as a source of pharmacologically important compounds will be highly promising in the wake of emerging antibiotic resistance among pathogens. Thus, the aim of this review is to present a detailed report of mangrove derived endophytic fungi and to open an avenue for researchers to discover the possibilities of exploring these hidden mycota in developing novel drug leads.
Collapse
Affiliation(s)
- Neema Job
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
- Department of Marine Biosciences, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, 682506, Kerala, India
| | - Manomi Sarasan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India.
| |
Collapse
|
3
|
Jiang Y, Shi Z, Yu J, Wu D, Chen J, Tang Z, Zheng L. Low-Temperature Oxidation Reaction Processes of Cyclopentanone Unraveled by In Situ Mass Spectrometry and Theoretical Study. ACS OMEGA 2023; 8:22077-22087. [PMID: 37360462 PMCID: PMC10286269 DOI: 10.1021/acsomega.3c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Although cyclopentanone (CPO) is a promising bio-derived fuel, thermodynamic data of its low-temperature oxidation under high-pressure conditions are lacking. In this work, the low-temperature oxidation mechanism of CPO is investigated in a flow reactor in the temperature range of 500-800 K and at a total pressure of 3 atm by a molecular beam sampling vacuum ultraviolet photoionization time-of-flight mass spectrometer. The electronic structure and pressure-dependent kinetic calculations are carried out at the UCCSD(T)-F12a/aug-cc-pVDZ//B3LYP/6-31+G(d,p) level to explore the combustion mechanism of CPO. Experimental and theoretical observations showed that the dominant product channel in the reaction of CPO radicals with O2 is HO2 elimination, yielding 2-cyclopentenone. The hydroperoxyalkyl radical (•QOOH) generated by 1,5-H-shifting is easily reacted with second O2 and forms ketohydroperoxide (KHP) intermediates. Unfortunately, the third O2 addition products are not detected. In addition, the decomposition pathways of KHP during the low-temperature oxidation of CPO are further assessed, and the unimolecular dissociation pathways of CPO radicals are confirmed. The results of this study can be used for future research on the kinetic combustion mechanisms of CPO under high pressure.
Collapse
Affiliation(s)
- Yihuang Jiang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
| | - Zaifa Shi
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
- Innovation
Laboratory for Sciences and Technologies of Energy Materials of Fujian
Province (IKKEM), Xiamen, Fujian 361005, China
| | - Jingxiong Yu
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute
of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Di Wu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
| | - Jun Chen
- State
Key Laboratory of Structure Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information, Fuzhou 350002, China
- Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Zichao Tang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
| | - Lansun Zheng
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
| |
Collapse
|
4
|
Plaszkó T, Szűcs Z, Vasas G, Gonda S. Interactions of fungi with non-isothiocyanate products of the plant glucosinolate pathway: A review on product formation, antifungal activity, mode of action and biotransformation. PHYTOCHEMISTRY 2022; 200:113245. [PMID: 35623473 DOI: 10.1016/j.phytochem.2022.113245] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 05/05/2023]
Abstract
The glucosinolate pathway, which is present in the order Brassicales, is one of the most researched defensive natural product biosynthesis pathways. Its core molecules, the glucosinolates are broken down upon pathogen challenge or tissue damage to yield an array of natural products that may help plants defend against the stressor. Though the most widely known glucosinolate decomposition products are the antimicrobial isothiocyanates, there is a wide range of other volatile and non-volatile natural products that arise from this biosynthetic pathway. This review summarizes our current knowledge on the interaction of these much less examined, non-isothiocyanate products with fungi. It deals with compounds including (1) glucosinolates and their biosynthesis precursors; (2) glucosinolate-derived nitriles (e.g. derivatives of 1H-indole-3-acetonitrile), thiocyanates, epithionitriles and oxazolidine-2-thiones; (3) putative isothiocyanate downstream products such as raphanusamic acid, 1H-indole-3-methanol (= indole-3-carbinol) and its oligomers, 1H-indol-3-ylmethanamine and ascorbigen; (4) 1H-indole-3-acetonitrile downstream products such as 1H-indole-3-carbaldehyde (indole-3-carboxaldehyde), 1H-indole-3-carboxylic acid and their derivatives; and (5) indole phytoalexins including brassinin, cyclobrassinin and brassilexin. Herein, a literature review on the following aspects is provided: their direct antifungal activity and the proposed mechanisms of antifungal action, increased biosynthesis after fungal challenge, as well as data on their biotransformation/detoxification by fungi, including but not limited to fungal myrosinase activity.
Collapse
Affiliation(s)
- Tamás Plaszkó
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary; Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032, Debrecen, Hungary.
| | - Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary; Healthcare Industry Institute, University of Debrecen, 4032, Debrecen, Hungary.
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| |
Collapse
|
5
|
Mattoo AJ, Nonzom S. Endophytes in Lignin Valorization: A Novel Approach. Front Bioeng Biotechnol 2022; 10:895414. [PMID: 35928943 PMCID: PMC9343868 DOI: 10.3389/fbioe.2022.895414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Lignin, one of the essential components of lignocellulosic biomass, comprises an abundant renewable aromatic resource on the planet earth. Although 15%––40% of lignocellulose pertains to lignin, its annual valorization rate is less than 2% which raises the concern to harness and/or develop effective technologies for its valorization. The basic hindrance lies in the structural heterogeneity, complexity, and stability of lignin that collectively makes it difficult to depolymerize and yield common products. Recently, microbial delignification, an eco-friendly and cheaper technique, has attracted the attention due to the diverse metabolisms of microbes that can channelize multiple lignin-based products into specific target compounds. Also, endophytes, a fascinating group of microbes residing asymptomatically within the plant tissues, exhibit marvellous lignin deconstruction potential. Apart from novel sources for potent and stable ligninases, endophytes share immense ability of depolymerizing lignin into desired valuable products. Despite their efficacy, ligninolytic studies on endophytes are meagre with incomplete understanding of the pathways involved at the molecular level. In the recent years, improvement of thermochemical methods has received much attention, however, we lagged in exploring the novel microbial groups for their delignification efficiency and optimization of this ability. This review summarizes the currently available knowledge about endophytic delignification potential with special emphasis on underlying mechanism of biological funnelling for the production of valuable products. It also highlights the recent advancements in developing the most intriguing methods to depolymerize lignin. Comparative account of thermochemical and biological techniques is accentuated with special emphasis on biological/microbial degradation. Exploring potent biological agents for delignification and focussing on the basic challenges in enhancing lignin valorization and overcoming them could make this renewable resource a promising tool to accomplish Sustainable Development Goals (SDG’s) which are supposed to be achieved by 2030.
Collapse
Affiliation(s)
| | - Skarma Nonzom
- *Correspondence: Skarma Nonzom, , orcid.org/0000-0001-9372-7900
| |
Collapse
|
6
|
Santra HK, Banerjee D. Broad-Spectrum Antimicrobial Action of Cell-Free Culture Extracts and Volatile Organic Compounds Produced by Endophytic Fungi Curvularia Eragrostidis. Front Microbiol 2022; 13:920561. [PMID: 35814705 PMCID: PMC9260591 DOI: 10.3389/fmicb.2022.920561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Endophytes are the mutualistic microorganisms that reside within the host plant and promote plant growth in adverse conditions. Plants and their endophytes are engaged in a symbiotic relationship that enables endophytes to access bioactive genes of the ethnomedicinal plants, and, as a result, endophytes are constantly addressed in the sector of pharmaceuticals and agriculture for their multidomain bio-utility. The gradual increase of antimicrobial resistance can be effectively countered by the endophytic metabolites. In these circumstances, in the present investigation, endophytic Curvularia eragrostidis HelS1 was isolated from an ethnomedicinally valuable plant Helecteris isora from East India's forests. The secondary volatile and non-volatile metabolites are extracted from HelS1 and are found to be effective broad-spectrum antimicrobials. A total of 26 secondary metabolites (9 volatiles and 17 non-volatiles) are extracted from the isolate, which exhibits effective antibacterial [against six Gram-positive and seven Gram-negative pathogens with a minimum inhibitory concentrations (MIC) value ranging from 12.5 to 400 μg ml-1] and antifungal (against seven fungal plant pathogens) activity. The secondary metabolite production was optimised by one variable at a time technique coupled with the response surface methodology. The results revealed that there was a 34% increase in antibacterial activity in parameters with 6.87 g L-1 of fructose (as a carbon source), 3.79 g L-1 of peptone (as a nitrogen source), pH 6.75, and an inoculation period of 191.5 h for fermentation. The volatile metabolite production was also found to be optimum when the medium was supplemented with yeast extract and urea (0.2 g L-1) along with dextrose (40 g L-1). Amongst extracted volatile metabolites, 1-H-indene 1 methanol acetate, tetroquinone, N, N-diphenyl-2-nitro-thio benzamide, Trans 1, 2-diethyl-trans-2-decalinol, naphthalene, and azulene are found to be the most effective. Our investigation opens up opportunities in the sector of sustainable agriculture as well as the discovery of novel antimicrobials against dreadful phyto and human pathogens.
Collapse
Affiliation(s)
| | - Debdulal Banerjee
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore, India
| |
Collapse
|
7
|
Achimón F, Brito VD, Pizzolitto RP, Zygadlo JA. Effect of Carbon Sources on the Production of Volatile Organic Compounds by Fusarium verticillioides. J Fungi (Basel) 2022; 8:jof8020158. [PMID: 35205912 PMCID: PMC8880662 DOI: 10.3390/jof8020158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of the present study was to evaluate the effect of different carbon sources on the hydrocarbon-like volatile organic compounds (VOCs) of Fusarium verticillioides strain 7600 through a Principal Component Analysis approach, and to explore their diesel potential by using data from the literature. The fungus was cultivated in GYAM culture medium, and five carbon sources were evaluated: glucose, sucrose, xylose, lactose, and fructose. The VOCs were collected using a close-loop apparatus and identified through GC-MS. The same profile of 81 VOCs was detected with all treatments, but with different relative percentages among carbon sources. The production of branched-chain alkanes (30 compounds) ranged from 25.80% to 38.64%, straight-chain alkanes (12 compounds) from 22.04% to 24.18%, benzene derivatives (12 compounds) from 7.48% to 35.58%, and the biosynthesis of branched-chain alcohols (11 compounds) was from 6.82% to 16.71%, with lower values for the remaining groups of VOCs. Our results show that F. verticillioides has the metabolic potential to synthesize diesel-like VOCs. Further research should include the optimization of culture conditions other than carbon sources to increase the production of certain groups of VOCs.
Collapse
Affiliation(s)
- Fernanda Achimón
- Multidisciplinary Institute of Plant Biology (IMBIV-CONICET), National University of Cordoba, Cordoba X5016GCA, Argentina; (F.A.); (V.D.B.); (J.A.Z.)
- Science and Food Technology Institute (ICTA), National University of Cordoba, Cordoba X5016GCA, Argentina
| | - Vanessa D. Brito
- Multidisciplinary Institute of Plant Biology (IMBIV-CONICET), National University of Cordoba, Cordoba X5016GCA, Argentina; (F.A.); (V.D.B.); (J.A.Z.)
- Science and Food Technology Institute (ICTA), National University of Cordoba, Cordoba X5016GCA, Argentina
| | - Romina P. Pizzolitto
- Multidisciplinary Institute of Plant Biology (IMBIV-CONICET), National University of Cordoba, Cordoba X5016GCA, Argentina; (F.A.); (V.D.B.); (J.A.Z.)
- Science and Food Technology Institute (ICTA), National University of Cordoba, Cordoba X5016GCA, Argentina
- Correspondence:
| | - Julio A. Zygadlo
- Multidisciplinary Institute of Plant Biology (IMBIV-CONICET), National University of Cordoba, Cordoba X5016GCA, Argentina; (F.A.); (V.D.B.); (J.A.Z.)
- Science and Food Technology Institute (ICTA), National University of Cordoba, Cordoba X5016GCA, Argentina
- Chemistry Department, Faculty of Exact, Physical and Natural Science, National University of Cordoba, Cordoba X5016GCA, Argentina
| |
Collapse
|
8
|
A novel characteristic of a phytoplankton as a potential source of straight-chain alkanes. Sci Rep 2021; 11:14190. [PMID: 34276049 PMCID: PMC8286971 DOI: 10.1038/s41598-021-93204-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/22/2021] [Indexed: 11/08/2022] Open
Abstract
Biosynthesis of hydrocarbons is a promising approach for the production of alternative sources of energy because of the emerging need to reduce global consumption of fossil fuels. However, the suitability of biogenic hydrocarbons as fuels is limited because their range of the number of carbon atoms is small, and/or they contain unsaturated carbon bonds. Here, we report that a marine phytoplankton, Dicrateria rotunda, collected from the western Arctic Ocean, can synthesize a series of saturated hydrocarbons (n-alkanes) from C10H22 to C38H78, which are categorized as petrol (C10-C15), diesel oils (C16-C20), and fuel oils (C21-C38). The observation that these n-alkanes were also produced by ten other cultivated strains of Dicrateria collected from the Atlantic and Pacific oceans suggests that this capability is a common characteristic of Dicrateria. We also identified that the total contents of the n-alkanes in the Arctic D. rotunda strain increased under dark and nitrogen-deficient conditions. The unique characteristic of D. rotunda could contribute to the development of a new approach for the biosynthesis of n-alkanes.
Collapse
|
9
|
In Silico Analysis of Functionalized Hydrocarbon Production Using Ehrlich Pathway and Fatty Acid Derivatives in an Endophytic Fungus. J Fungi (Basel) 2021; 7:jof7060435. [PMID: 34072611 PMCID: PMC8228540 DOI: 10.3390/jof7060435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Functionalized hydrocarbons have various ecological and industrial uses, from signaling molecules and antifungal/antibacterial agents to fuels and specialty chemicals. The potential to produce functionalized hydrocarbons using the cellulolytic, endophytic fungus, Ascocoryne sarcoides, was quantified using genome-enabled, stoichiometric modeling. In silico analysis identified available routes to produce these hydrocarbons, including both anabolic- and catabolic-associated strategies, and determined correlations between the type and size of the hydrocarbons and culturing conditions. The analysis quantified the limits of the wild-type metabolic network to produce functionalized hydrocarbons from cellulose-based substrates and identified metabolic engineering targets, including cellobiose phosphorylase (CP) and cytosolic pyruvate dehydrogenase complex (PDHcyt). CP and PDHcyt activity increased the theoretical production limits under anoxic conditions where less energy was extracted from the substrate. The incorporation of both engineering targets resulted in near-complete conservation of substrate electrons in functionalized hydrocarbons. The in silico framework was integrated with in vitro fungal batch growth experiments to support O2 limitation and functionalized hydrocarbon production predictions. The metabolic reconstruction of this endophytic filamentous fungus describes pathways for both specific and general production strategies of 161 functionalized hydrocarbons applicable to many eukaryotic hosts.
Collapse
|
10
|
Sharma H, Rai AK, Dahiya D, Chettri R, Nigam PS. Exploring endophytes for in vitro synthesis of bioactive compounds similar to metabolites produced in vivo by host plants. AIMS Microbiol 2021; 7:175-199. [PMID: 34250374 PMCID: PMC8255908 DOI: 10.3934/microbiol.2021012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
Endophytes represent microorganisms residing within plant tissues without typically causing any adverse effect to the plants for considerable part of their life cycle and are primarily known for their beneficial role to their host-plant. These microorganisms can in vitro synthesize secondary metabolites similar to metabolites produced in vivo by their host plants. If microorganisms are isolated from certain plants, there is undoubtedly a strong possibility of obtaining beneficial endophytes strains producing host-specific secondary metabolites for their potential applications in sustainable agriculture, pharmaceuticals and other industrial sectors. Few products derived from endophytes are being used for cultivating resilient crops and developing non-toxic feeds for livestock. Our better understanding of the complex relationship between endophytes and their host will immensely improve the possibility to explore their unlimited functionalities. Successful production of host-secondary metabolites by endophytes at commercial scale might progressively eliminate our direct dependence on high-valued vulnerable plants, thus paving a viable way for utilizing plant resources in a sustainable way.
Collapse
Affiliation(s)
- Hemant Sharma
- Department of Botany, Sikkim University, 6th Mile Tadong, Gangtok, Sikkim, India
| | - Arun Kumar Rai
- Department of Botany, Sikkim University, 6th Mile Tadong, Gangtok, Sikkim, India
| | - Divakar Dahiya
- School of Human Sciences, London Metropolitan University, Holloway Road, London, UK
| | - Rajen Chettri
- Department of Botany, Sikkim Government Science College, Chakung, Sikkim, India
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
11
|
Annulohypoxylon sp. strain MUS1, an endophytic fungus isolated from Taxus wallichiana Zucc., produces taxol and other bioactive metabolites. 3 Biotech 2021; 11:152. [PMID: 33747702 DOI: 10.1007/s13205-021-02693-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/13/2021] [Indexed: 01/19/2023] Open
Abstract
The current study focuses on the isolation and in vitro characterization of bioactive metabolites produced by endophytic fungi isolated from the Himalayan yew (Taxus wallichiana Zucc.). The endophytic fungi were isolated on artificial media from inner tissues of bark and needles. Antimicrobial and antioxidant activity, along with total phenolic- and flavonoid-content assays were used in the evaluation of bioactivity of the fermented crude extracts. The ability of the endophytes to produce the anticancer compound Taxol was also analyzed using thin-layer chromatography (TLC) and reverse-phase high-performance liquid chromatography (RP-HPLC). A total of 16 fungal morphotypes were obtained from asymptomatic inner tissues of the bark and needles of T. wallichiana. Among the 16 isolates, the ethyl acetate (EA) fraction of isolate MUS1, showed antibacterial and antifungal activity against all test-pathogens used (Streptococcus faecalis ATCC 19433, Staphylococcus aureus ATCC 12600, Bacillus subtilis ATCC 6633, Escherichia coli ATCC 25922, Salmonella enterica ATCC 13076, Pseudomonas aeruginosa ATCC 27853, and Candida albicans). MUS1 showed significant inhibition against Pseudomonas aeruginosa ATCC 27853 (minimum inhibitory concentration (MIC): 250 µg/ml) and the pathogenic yeast, Candida albicans (MIC: 125 µg/ml). Antioxidant activity, total phenolic, and total flavonoid content as well as in vitro Taxol production were evaluated for EA fraction of isolate MUS1. Antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. At a concentration of 100 µg/ml, the % DPPH radical scavenging activity was 83.15 ± 0.40, 81.62 ± 0.11, and 62.36 ± 0.29, for ascorbic acid, butylated hydroxytoluene (BHT), and the EA fraction of MUS1, respectively. The DPPH-Half maximal inhibitory concentration (DPPH-IC50) value for the EA fraction was 81.52 ± 0.23 µg/ml, compared to BHT (62.87 ± 0.08 µg/ml) and ascorbic acid (56.15 ± 0.19 µg/ml). The total phenolic and flavonoid content in the EA fraction were 16.90 ± 0.075 µg gallic acid equivalent (GAE) and 11.59 ± 0.148 µg rutin equivalent (RE), per mg of dry crude extract, respectively. TLC and RP-HPLC analysis showed that the isolate MUS1 also produces Taxol (282.05 µg/l of fermentation broth). Isolate MUS1 was identified as Annulohypoxylon sp. by internal transcribed spacer (ITS) sequencing. Having the ability to produce antimicrobial and antioxidant metabolites, as well as the anticancer compound Taxol, makes Annulohypoxylon sp. strain MUS1, a promising candidate for further study of naturally occurring bioactive metabolites. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02693-z.
Collapse
|
12
|
Burragoni SG, Jeon J. Applications of endophytic microbes in agriculture, biotechnology, medicine, and beyond. Microbiol Res 2021; 245:126691. [PMID: 33508761 DOI: 10.1016/j.micres.2020.126691] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022]
Abstract
Endophytes are emerging as integral components of plant microbiomes. Some of them play pivotal roles in plant development and plant responses to pathogens and abiotic stresses, whereas others produce useful and/or interesting secondary metabolites. The appreciation of their abilities to affect plant phenotypes and produce useful compounds via genetic and molecular interactions has paved the way for these abilities to be exploited for health and welfare of plants, humans and ecosystems. Here we comprehensively review current and potential applications of endophytes in the agricultural, pharmaceutical, and industrial sectors. In addition, we briefly discuss the research objectives that should be focused upon in the coming years in order for endophytes and their metabolites to be fully harnessed for potential use in diverse areas.
Collapse
Affiliation(s)
- Sravanthi Goud Burragoni
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Junhyun Jeon
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
13
|
Mahmoud YAG, Abd El-Zaher EH. Recent advancements in biofuels production with a special attention to fungi. SUSTAINABLE BIOFUELS 2021:73-99. [DOI: 10.1016/b978-0-12-820297-5.00009-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
14
|
Abdel-Azeem AM, Abu-Elsaoud AM, Abo Nahas HH, Abdel-Azeem MA, Balbool BA, Mousa MK, Ali NH, Darwish AMG. Biodiversity and Industrial Applications of Genus Chaetomium. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Fungal Secondary Metabolites: Current Research, Commercial Aspects, and Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Deka D, Sonowal S, Chikkaputtaiah C, Velmurugan N. Symbiotic Associations: Key Factors That Determine Physiology and Lipid Accumulation in Oleaginous Microorganisms. Front Microbiol 2020; 11:555312. [PMID: 33391195 PMCID: PMC7772188 DOI: 10.3389/fmicb.2020.555312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/16/2020] [Indexed: 01/14/2023] Open
Abstract
Symbiosis naturally provides an opportunity for microorganisms to live together by mutual or one-way benefit. In symbiotic relationships, the microorganisms usually overcome the limitations of being free-living. Understanding the symbiotic relationships of oleaginous microorganisms provides potential route for the sustainable production of microbial-based alternative fuels. So far, several studies have been conducted in oleaginous microorganisms for the production of alternative fuels. However, some oleaginous microorganisms require high quantity of nutrients for their growth, and high level of energy and chemicals for harvest and separation of lipid bodies. Symbiotic associations can successfully be applied to address these issues. Of symbiotic associations, lichens and selective species of oleaginous endosymbiotic mucoromycotina have received substantial interest as better models to study the evolutionary relationships as well as single-cell oil production. Construction of artificial lichen system composed of cyanobacteria and oleaginous yeast has been achieved for sustainable production of lipids with minimum energy demand. Recently, endosymbiotic mucoromycotina species have been recognized as potential sources for biofuels. Studies found that endohyphal bacterium influences lipid profiling in endosymbiotic mucoromycotina species. Studies on the genetic factors related to oleaginous characteristics of endosymbiotic mucoromycotina species are scarce. In this regard, this review summarizes the different forms of symbiotic associations of oleaginous microorganisms and how symbiotic relationships are impacting the lipid formation in microorganisms. Further, the review also highlights the importance of evolutionary relationships and benefits of co-culturing (artificial symbiosis) approaches for sustainable production of biofuels.
Collapse
Affiliation(s)
- Deepi Deka
- Biological Sciences Division, Branch Laboratory-Itanagar, CSIR-North East Institute of Science and Technology, Naharlagun, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, India
| | - Shashanka Sonowal
- Biological Sciences Division, Branch Laboratory-Itanagar, CSIR-North East Institute of Science and Technology, Naharlagun, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, India
| | - Channakeshavaiah Chikkaputtaiah
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, India
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, India
| | - Natarajan Velmurugan
- Biological Sciences Division, Branch Laboratory-Itanagar, CSIR-North East Institute of Science and Technology, Naharlagun, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, India
| |
Collapse
|
17
|
Passarini MRZ, E Silva TR, Bernal SPF, Cecchet NL, Sartoratto A, Boroski M, Duarte AWF, Ottoni JR, Rosa LH, de Oliveira VM. Undecane production by cold-adapted bacteria from Antarctica. Extremophiles 2020; 24:863-873. [PMID: 32944821 DOI: 10.1007/s00792-020-01200-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/03/2020] [Indexed: 11/27/2022]
Abstract
In the last decades, efforts to reduce the use of fossil fuels have increased the search for alternative sustainable sources of renewable energy. In this scenario, hydrocarbons derived from fatty acids are among the compounds that have been drawing attention. The intracellular production of hydrocarbons by bacteria derived from cold environments such as the Antarctic continent is currently poorly investigated, as extremophilic microorganisms provide a great range of metabolic capabilities and may represent a key tool in the production of biofuels. The aim of this study was to explore the ability of bacterial cells derived from extreme environments to produce hydrocarbons with potential for further use as biofuels. Seven bacteria isolated from Antarctic samples were evaluated for hydrocarbon production using GC-MS approaches. Two isolates, identified as Arthrobacter livingstonensis 593 and Pseudoalteromonas arctica 628, were able to produce the hydrocarbon undecane (CH3-(CH2)9-CH3) in concentrations of 1.39 mg L-1 and 1.81 mg L-1, respectively. Results from the present work encourage further research focusing on the optimization of hydrocarbon production by the isolates identified as producers, which may be used in further aircraft biofuel production. This is the first report on the production of the undecane compound by bacteria isolated from waterlogged soil and sponge from Antarctica.
Collapse
Affiliation(s)
- Michel Rodrigo Zambrano Passarini
- UNILA-Universidade Federal da Integração Latino-Americana. Laboratório de Biotecnologia Ambiental, Av. Tarquínio Joslin dos Santos, 1000-Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil.
| | - Tiago Rodrigues E Silva
- CPQBA/UNICAMP-Divisão de Recursos Microbianos, Rua Alexandre Caselatto 999, Vila Betel, CP 6171, Campinas, SP, 13083-970, Brazil
| | - Suzan Prado Fernandes Bernal
- UNILA-Universidade Federal da Integração Latino-Americana. Laboratório de Biotecnologia Ambiental, Av. Tarquínio Joslin dos Santos, 1000-Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil
| | - Nathália Luana Cecchet
- UNILA-Universidade Federal da Integração Latino-Americana. Laboratório de Biotecnologia Ambiental, Av. Tarquínio Joslin dos Santos, 1000-Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil
| | - Adilson Sartoratto
- CPQBA/UNICAMP-Divisão de Química Orgânica e Farmacêutica, Rua Alexandre Caselatto 999, Vila Betel, CP 6171, Campinas, SP, 13083-970, Brazil
| | - Marcela Boroski
- UNILA-Universidade Federal da Integração Latino-Americana. Laboratório de Química, Av. Tancredo Neves 6731- Conjunto B, Foz do Iguaçu, PR, 85867-970, Brazil
| | - Alysson Wagner Fernandes Duarte
- UFAL-Universidade Federal de Alagoas, Av. Manoel Severino Barbosa-Rodovia AL-115, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Júlia Ronzella Ottoni
- UDC-Centro Universitário Dinâmica das Cataratas, Rua Castelo Branco, 349, Centro, Foz do Iguaçu, PR, Brazil
| | - Luiz Henrique Rosa
- UFMG-Departamento de Microbiologia, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Valéria Maia de Oliveira
- CPQBA/UNICAMP-Divisão de Recursos Microbianos, Rua Alexandre Caselatto 999, Vila Betel, CP 6171, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
18
|
Singh J, Yadav AN. Natural Products as Fungicide and Their Role in Crop Protection. NATURAL BIOACTIVE PRODUCTS IN SUSTAINABLE AGRICULTURE 2020. [PMCID: PMC7212785 DOI: 10.1007/978-981-15-3024-1_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Seeking solutions from nature for solving one and all problems is the age-old practice for mankind, and natural products are proved to be the most effective one for keeping up the balance of development as well as the “healthy, wealthy, and well” condition of mother nature. Fungal pathogens are proved to be a common and popular contaminant of agroecosystem that approximately causes 70–80% of total microbial crop loss. To meet the proper global increasing need of food products as a result of population explosion, managing agricultural system in an eco-friendly and profitable manner is the prime target; thus the word “sustainable agriculture” plays it part, and this package is highly effective when coupled with nature-derived fungicidal products that can minimize the event of fungal infections in agrarian ecosystem. Present study enlists the most common and effective natural products that might be of plant or microbial origin, their mode of action, day-by-day development of phytopathogenic resistance against the prevailing fungicides, and also their role in maintenance of sustainability of agricultural practices with special emphasis on their acceptance over the synthetic or chemical one. A large number of bioactive compounds ranging from direct plant (both cryptogams algae and moss and phanerogams)-derived natural extracts, essential oil of aromatic plants, and low-molecular-weight antimicrobial compounds known as phytoalexins to secondary metabolites that are both volatile and nonvolatile organic compounds of microbes (fungal and actinobacterial members) residing inside the host tissue, called endophyte, are widely used as agricultural bioweapons. The rhizospheric partners of plant, mycorrhizae, are also a prime agent of this chemical warfare and protect their green partners from fungal invaders and emphasize the concept of “sustainable agriculture.”
Collapse
Affiliation(s)
- Joginder Singh
- grid.449005.cDepartment of Microbiology, Lovely Professional University, Phagwara, Punjab India
| | - Ajar Nath Yadav
- grid.448698.f0000 0004 0462 8006Department of Biotechnology, Eternal University, Sirmour, Himachal Pradesh India
| |
Collapse
|
19
|
Sun ZB, Li SD, Ren Q, Xu JL, Lu X, Sun MH. Biology and applications of Clonostachys rosea. J Appl Microbiol 2020; 129:486-495. [PMID: 32115828 DOI: 10.1111/jam.14625] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 01/07/2023]
Abstract
Clonostachys rosea is a promising saprophytic filamentous fungus that belongs to phylum Ascomycota. Clonostachys rosea is widespread around the world and exists in many kinds of habitats, with the highest frequency in soil. As an excellent mycoparasite, C. rosea exhibits strong biological control ability against numerous fungal plant pathogens, nematodes and insects. These behaviours are based on the activation of multiple mechanisms such as secreted cell-wall-degrading enzymes, production of antifungal secondary metabolites and induction of plant defence systems. Besides having significant biocontrol activity, C. rosea also functions in the biodegradation of plastic waste, biotransformation of bioactive compounds, as a bioenergy sources and in fermentation. This mini review summarizes information about the biology and various applications of C. rosea and expands on its possible uses.
Collapse
Affiliation(s)
- Z-B Sun
- School of Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - S-D Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Q Ren
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - J-L Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - X Lu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - M-H Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Fungi (Mold)-Based Lipid Production. Methods Mol Biol 2020. [PMID: 31148121 DOI: 10.1007/978-1-4939-9484-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
There is an increasing need for the development of alternative energy sources with a focus on reducing greenhouse gas emissions and striving toward a sustainable economy. Bioethanol and biodiesel are currently the primary choices of alternative transportation fuels. At present, biodiesel is not competitive with conventional fuel due to its high price, and the only way to compete with conventional fuel is to improve the quality, reduce the costs, and coproduce value-added products. With the high demand for lipids in the energy sector and other industrial applications, microbial lipids accumulated from microorganisms, especially oleaginous fungi and yeasts have been the important topic of many recent research studies. This chapter summarizes the current status of knowledge and technology about lipid production by oleaginous fungi and yeasts for biofuel applications and other value-added products. The chapter focuses on several aspects such as the most promising oleaginous strains, strain development, improvement of lipid production, methods and protocols to cultivate oleaginous fungi, substrate utilization, fermentation process design, and downstream processing. The feasibility and challenges during the large-scale commercial production of microbial lipids as fuel sources are also discussed. It provides an overview of microbial lipid production biorefinery and also future development directions.
Collapse
|
21
|
|
22
|
Song XY, Wang H, Ren F, Wang K, Dou G, Lv X, Yan DH, Strobel G. An Endophytic Diaporthe apiculatum Produces Monoterpenes with Inhibitory Activity against Phytopathogenic Fungi. Antibiotics (Basel) 2019; 8:E231. [PMID: 31766670 PMCID: PMC6963576 DOI: 10.3390/antibiotics8040231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 11/24/2022] Open
Abstract
Volatile organic compounds (VOCs) from endophytic fungi are becoming a potential antibiotic resource. The inhibitive effects of VOCs produced by an endophytic fungus in Leucaena leucocephala were investigated on plant pathogens in this study. Using standard morphological methods and multigene phylogeny, the fungus was identified as Diaporthe apiculatum strain FPYF 3052. Utilizing a two- compartment Petri plate bioassay method, the VOCs from this fungus showed bioactivity ranging from 23.8% to 66.7% inhibition on eight plant pathogens within 24 hours. The SPME-GC/MS technique identified fifteen volatile compounds with dominant terpenoids γ-terpinene (39.8%), α-terpinene (17.2%), and (-)-4-terpineol (8.4%) from the VOCs. Commercial α-terpinene, γ-terpinene, and (-)-4-terpineol demonstrated inhibition on the tested pathogens at concentrations from 0.2 to 1.0 µl/ml within 72 h in the bioassay system. The inhibition rates were from 28% to 100% percent using 1.0 µl/ml within 48 h. (-)-4-Terpineol was the most active of the terpenoids causing up to 100% inhibition. The data illustrate that these monoterpenes play an important role in the inhibitive bioactivity of the VOCs of D. apiculatum FPYF 3052. Most importantly, (-)-4-terpineol is now for the first time, reported to have capability of strong antifungal activity and could be developed as an antibiotic substance.
Collapse
Affiliation(s)
- Xiao-Yu Song
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Open Laboratory of Forest Protection of National Forestry and Grassland Administration, Beijing 100091, China; (X.-Y.S.); (G.D.); (X.L.)
| | - Huihua Wang
- Department of Food and Biological Engineering, Beijing Vocational College of Agriculture, Beijing 102442, China;
| | - Fei Ren
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China;
| | - Kaiying Wang
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Open Laboratory of Forest Protection of National Forestry and Grassland Administration, Beijing 100091, China; (X.-Y.S.); (G.D.); (X.L.)
| | - Guiming Dou
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Open Laboratory of Forest Protection of National Forestry and Grassland Administration, Beijing 100091, China; (X.-Y.S.); (G.D.); (X.L.)
| | - Xing Lv
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Open Laboratory of Forest Protection of National Forestry and Grassland Administration, Beijing 100091, China; (X.-Y.S.); (G.D.); (X.L.)
| | - Dong-Hui Yan
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Open Laboratory of Forest Protection of National Forestry and Grassland Administration, Beijing 100091, China; (X.-Y.S.); (G.D.); (X.L.)
| | - Gary Strobel
- Department of Plant Sciences, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
23
|
Lee S, Behringer G, Hung R, Bennett J. Effects of fungal volatile organic compounds on Arabidopsis thaliana growth and gene expression. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Chowdhury FT, Islam MR, Islam MR, Khan H. Diversity of Plant Endophytic Volatile Organic Compound (VOC) and Their Potential Applications. REFERENCE SERIES IN PHYTOCHEMISTRY 2019. [DOI: 10.1007/978-3-319-90484-9_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
A Solvent-Free Approach for Converting Cellulose Waste into Volatile Organic Compounds with Endophytic Fungi. J Fungi (Basel) 2018; 4:jof4030102. [PMID: 30149666 PMCID: PMC6162512 DOI: 10.3390/jof4030102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 12/03/2022] Open
Abstract
Simple sugars produced from a solvent-free mechanocatalytic degradation of cellulose were evaluated for suitability as a growth medium carbon source for fungi that produce volatile organic compounds. An endophytic Hypoxylon sp. (CI-4) known to produce volatiles having potential value as fuels was initially evaluated. The growth was obtained on a medium containing the degraded cellulose as the sole carbon source, and the volatile compounds produced were largely the same as those produced from a conventional dextrose/starch diet. A second Hypoxylon sp. (BS15) was also characterized and shown to be phylogenetically divergent from any other named species. The degraded cellulose medium supported the growth of BS15, and approximately the same quantity of the volatile compounds was produced as from conventional diets. Although the major products from BS15 grown on the degraded cellulose were identical to those from dextrose, the minor products differed. Neither CI-4 or BS15 exhibited growth on cellulose that had not been degraded. The extraction of volatiles from the growth media was achieved using solid-phase extraction in order to reduce the solvent waste and more efficiently retain compounds having low vapor pressures. A comparison to more conventional liquid–liquid extraction demonstrated that, for CI-4, both methods gave similar results. The solid-phase extraction of BS15 retained a significantly larger variety of the volatile compounds than did the liquid–liquid extraction. These advances position the coupling of solvent-free cellulose conversion and endophyte metabolism as a viable strategy for the production of important hydrocarbons.
Collapse
|
26
|
Ferrari R, Lacaze I, Le Faouder P, Bertrand-Michel J, Oger C, Galano JM, Durand T, Moularat S, Chan Ho Tong L, Boucher C, Kilani J, Petit Y, Vanparis O, Trannoy C, Brun S, Lalucque H, Malagnac F, Silar P. Cyclooxygenases and lipoxygenases are used by the fungus Podospora anserina to repel nematodes. Biochim Biophys Acta Gen Subj 2018; 1862:2174-2182. [PMID: 30025856 DOI: 10.1016/j.bbagen.2018.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Oxylipins are secondary messengers used universally in the living world for communication and defense. The paradigm is that they are produced enzymatically for the eicosanoids and non-enzymatically for the isoprostanoids. They are supposed to be degraded into volatile organic compounds (VOCs) and to participate in aroma production. Some such chemicals composed of eight carbons are also envisoned as alternatives to fossil fuels. In fungi, oxylipins have been mostly studied in Aspergilli and shown to be involved in signalling asexual versus sexual development, mycotoxin production and interaction with the host for pathogenic species. Through targeted gene deletions of genes encoding oxylipin-producing enzymes and chemical analysis of oxylipins and volatile organic compounds, we show that in the distantly-related ascomycete Podospora anserina, isoprostanoids are likely produced enzymatically. We show the disappearance in the mutants lacking lipoxygenases and cyclooxygenases of the production of 10-hydroxy-octadecadienoic acid and that of 1-octen-3-ol, a common volatile compound. Importantly, this was correlated with the inability of the mutants to repel nematodes as efficiently as the wild type. Overall, our data show that in this fungus, oxylipins are not involved in signalling development but may rather be used directly or as precursors in the production of odors against potential agressors. SIGNIFICANCE We analyzse the role in inter-kingdom communication of lipoxygenase (lox) and cyclooxygenase (cox) genes in the model fungus Podospora anserina. Through chemical analysis we define the oxylipins and volatile organic compounds (VOCs)produce by wild type and mutants for cox and lox genes, We show that the COX and LOX genes are required for the production of some eight carbon VOCs. We show that COX and LOX genes are involved in the production of chemicals repelling nematodes. This role is very different from the ones previously evidenced in other fungi.
Collapse
Affiliation(s)
- Roselyne Ferrari
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France
| | - Isabelle Lacaze
- Direction Santé Confort, Division Agents Biologiques et Aérocontaminants, Centre Scientifique et Technique du Bâtiment (CSTB), 84, avenue Jean Jaurès, Marne-la-Vallée Cedex F-77447, France
| | - Pauline Le Faouder
- MetaToul-Lipidomic Core Facility, MetaboHUB, Inserm U1048, Toulouse 31 432, France
| | | | - Camille Oger
- Institut des Biomolécules Max Mousseron, (IBMM), CNRS, ENSCM, Université de Montpellier, UMR 5247, 15 Av. Ch. Flahault, Montpellier Cedex F-34093, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, (IBMM), CNRS, ENSCM, Université de Montpellier, UMR 5247, 15 Av. Ch. Flahault, Montpellier Cedex F-34093, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, (IBMM), CNRS, ENSCM, Université de Montpellier, UMR 5247, 15 Av. Ch. Flahault, Montpellier Cedex F-34093, France
| | - Stéphane Moularat
- Direction Santé Confort, Division Agents Biologiques et Aérocontaminants, Centre Scientifique et Technique du Bâtiment (CSTB), 84, avenue Jean Jaurès, Marne-la-Vallée Cedex F-77447, France
| | - Laetitia Chan Ho Tong
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France
| | - Charlie Boucher
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France
| | - Jaafar Kilani
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France
| | - Yohann Petit
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France
| | - Océane Vanparis
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France
| | - César Trannoy
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France
| | - Sylvain Brun
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France
| | - Hervé Lalucque
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France
| | - Fabienne Malagnac
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France; Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Orsay 91400, France
| | - Philippe Silar
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France.
| |
Collapse
|
27
|
Deshmukh SK, Gupta MK, Prakash V, Saxena S. Endophytic Fungi: A Source of Potential Antifungal Compounds. J Fungi (Basel) 2018; 4:E77. [PMID: 29941838 PMCID: PMC6162562 DOI: 10.3390/jof4030077] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 01/27/2023] Open
Abstract
The emerging and reemerging forms of fungal infections encountered in the course of allogeneic bone marrow transplantations, cancer therapy, and organ transplants have necessitated the discovery of antifungal compounds with enhanced efficacy and better compatibility. A very limited number of antifungal compounds are in practice against the various forms of topical and systemic fungal infections. The trends of new antifungals being introduced into the market have remained insignificant while resistance towards the introduced drug has apparently increased, specifically in patients undergoing long-term treatment. Considering the immense potential of natural microbial products for the isolation and screening of novel antibiotics for different pharmaceutical applications as an alternative source has remained largely unexplored. Endophytes are one such microbial community that resides inside all plants without showing any symptoms with the promise of producing diverse bioactive molecules and novel metabolites which have application in medicine, agriculture, and industrial set ups. This review substantially covers the antifungal compounds, including volatile organic compounds, isolated from fungal endophytes of medicinal plants during 2013⁻2018. Some of the methods for the activation of silent biosynthetic genes are also covered. As such, the compounds described here possess diverse configurations which can be a step towards the development of new antifungal agents directly or precursor molecules after the required modification.
Collapse
Affiliation(s)
- Sunil K Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute (TERI), Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, India.
| | - Manish K Gupta
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute (TERI), Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, India.
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211004, India.
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Deemed to be a University, Patiala, Punjab 147004, India.
| |
Collapse
|
28
|
Wang Y, Harper JK. Restoring Waning Production of Volatile Organic Compounds in the Endophytic Fungus Hypoxylon sp. (BS15). J Fungi (Basel) 2018; 4:jof4020069. [PMID: 29895739 PMCID: PMC6023504 DOI: 10.3390/jof4020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/30/2018] [Accepted: 06/06/2018] [Indexed: 11/16/2022] Open
Abstract
Certain endophytic fungi belonging to the Hypoxylon genus have recently been found to produce volatile organic compounds (VOCs) that have potential relevance as hydrocarbon fuels. Here, a recently discovered Hypoxylon sp. (BS15) was demonstrated to also produce VOCs, but with diminished VOC production after an extended period of in vitro growth. Restoring VOC production was partially achieved by growing BS15 in growth media containing finely ground woody tissue from the original host plant (Taxodium distichum). In an effort to isolate VOC production modulators, extracts from this woody tissue were made by sequentially extracting with dichloromethane, methanol, and water. Both the dichloromethane and water extracts were found to modulate VOC production, while the methanol extract had no effect. Surprisingly, the woody tissue remaining after exhaustive extraction was also shown to act as a VOC production modulator when included in the growth media, with changes observed in the production of four compounds. This woody tissue also induced production of two compounds not observed in the original BS15 extract. Filter paper had the same modulating effect as exhaustively extracted woody tissue, suggesting the modulation was perhaps due to cellulose degradation products. Overall, this study demonstrated that VOC production in BS15 can be influenced by multiple compounds in the woody tissue rather than a single modulator.
Collapse
Affiliation(s)
- Yuemin Wang
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA.
| | - James K Harper
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA.
| |
Collapse
|
29
|
Strobel G. The Emergence of Endophytic Microbes and Their Biological Promise. J Fungi (Basel) 2018; 4:E57. [PMID: 29772685 PMCID: PMC6023353 DOI: 10.3390/jof4020057] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022] Open
Abstract
As is true with animal species, plants also have an associated microflora including endophytes as well as microbes associated with the phyllosphere and rhizosphere (plant surfaces) and this is considered the plant microbiome. However, those organisms within virtually all tissues and organs of the plant are known as endophytes. Most often fungi are the most frequently recovered endophytes from plant tissues, but bacterial forms generally occur in greater numbers, but not in species varieties. The exact biological/biochemical role of the endophyte in the plant and how it interacts with the plant and other endophytes and plant associated organisms has not been intensely and carefully examined. However, this has not stopped investigators in exploring the direct utility of endophytes in boosting plant production, and discovering that endophytes can directly influence the plant to resist temperature extremes, drought, as well as the presence of disease causing organisms. Also, because of the relationships that endophytes seem to have with their host plants, they make a myriad of biologically active compounds some of which are classified as antibiotics, antioxidants, anticancer agents, volatile antimicrobial agents, immunosuppressive compounds, plant growth promoting agents, and insecticides. These endophytic compounds represent a wide range of organic molecules including terpenoids, peptides, carbohydrates, aromatics, hydrocarbons and others and it seems that these compounds may have a role in the host microbe relationship. Most recently and quite surprisingly, some endophytes have been discovered that make hydrocarbons of the types found in diesel and gasoline fuels. In addition, recently discovered are epigenetic factors relating to the biology and biochemistry of endophytes. Interestingly, only about 1⁻2% of the entire spectrum of 300,000 known plants have been studied for their endophyte composition. Additionally, only a few plants have ever been completely studied including all tissues for the microbes within them. Likewise, the vast majority of plants, including those in oceans and lower plant forms, have never been examined for their endophytes. Furthermore, endophytes representing the "microbiome" of world's major food plants as they exist in their native "centers of origin" are largely unknown. This non-classical review is intended to provide background information on aspects of developments in endophyte biology and more importantly the identification of new questions in this field that need to be addressed. The review is primarily based on the author's long held experience in this field.
Collapse
Affiliation(s)
- Gary Strobel
- Department of Plant Sciences, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
30
|
Page JP, Robinson JW, Albrecht KO, Cosimbescu L. Synthesis of a biofuel target through conventional organic chemistry. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Schoen HR, Knighton WB, Peyton BM. Endophytic fungal production rates of volatile organic compounds are highest under microaerophilic conditions. MICROBIOLOGY-SGM 2017; 163:1767-1777. [PMID: 29111963 DOI: 10.1099/mic.0.000555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Volatile organic compound (VOC) production from an endophytic fungus was quantified at four oxygen concentrations (0, 1, 13 and 21 %) throughout culture growth phases. The filamentous fungus, a Nodulisporium sp. (designated TI-13), was grown in a solid-state reactor with an agricultural byproduct, beet pulp, as the solid substrate. The VOCs, with potential applications as biofuels, natural flavour compounds and bioactive mixtures, were measured with a recently introduced platinum catalyst and proton transfer reaction mass spectrometry quantification system. The highest-specific production rates of carbon number four and higher VOCs were observed under microaerophilic conditions, which is the expected environment within the plant host. Specific production rates of two ester compounds increased by at least 19 times under microaerophilic conditions compared with those under any other oxygen concentration studied. Total VOC production, including small molecules such as ethanol and acetaldehyde, increased by 23 times when compared between aerobic and anoxic conditions, predominately due to increased production of ethanol. Additionally, total specific production for all 21 compounds quantified was highest under reduced oxygen conditions.
Collapse
Affiliation(s)
- Heidi R Schoen
- Department of Chemical and Biological Engineering, Montana State University, 305 Cobleigh Hall, PO Box 173920, Bozeman, MT 59717, USA.,Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, PO Box 173980, Bozeman, MT 59717, USA
| | - Walter Berk Knighton
- Department of Chemistry and Biochemistry, Montana State University, 103 Chemistry and Biochemistry Building, PO Box 173400, Bozeman, MT 59717, USA
| | - Brent M Peyton
- Department of Chemical and Biological Engineering, Montana State University, 305 Cobleigh Hall, PO Box 173920, Bozeman, MT 59717, USA.,Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, PO Box 173980, Bozeman, MT 59717, USA
| |
Collapse
|
32
|
Sinha M, Weyda I, Sørensen A, Bruno KS, Ahring BK. Alkane biosynthesis by Aspergillus carbonarius ITEM 5010 through heterologous expression of Synechococcus elongatus acyl-ACP/CoA reductase and aldehyde deformylating oxygenase genes. AMB Express 2017; 7:18. [PMID: 28058634 PMCID: PMC5216010 DOI: 10.1186/s13568-016-0321-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/26/2016] [Indexed: 01/20/2023] Open
Abstract
In this study we describe the heterologous expression of the recently identified cyanobacterial pathway for long chain alkane biosynthesis, involving the reduction of fatty acyl-ACP to fatty aldehyde and the subsequent conversion of this into alkanes, in the filamentous fungus Aspergillus carbonarius ITEM 5010. Genes originating from Synechococcus elongatus strain PCC7942, encoding acyl-ACP/CoA reductase and aldehyde deformylating oxygenase enzymes, were successfully expressed in A. carbonarius, which lead to the production of pentadecane and heptadecane, alkanes that have not been previously produced by this fungus. Titers of 0.2, 0.5 and 2.7 mg/l pentadecane and 0.8, 1.6 and 10.2 mg/l heptadecane were achieved using glucose, Yeast malt and oatmeal media, respectively. Besides producing alkanes, we found elevated levels of internal free fatty acids and triglycerides in the alkane producing transformant. These findings can indicate that a yet unidentified, native fatty aldehyde dehydrogenase channels back the fatty aldehydes into the fatty acid metabolism, thus competing for substrate with the heterologously expressed fatty aldehyde deformylating oxygenase. These findings will potentially facilitate the future application of robust, fungal cell factories for the production of advanced biofuels from various substrates.
Collapse
|
33
|
Park J, Kim MK, Yun BR, Han JH, Kim SB. Pseudogracilibacillus endophyticus sp. nov., a moderately thermophilic and halophilic species isolated from plant root. Int J Syst Evol Microbiol 2017; 68:165-169. [PMID: 29125459 DOI: 10.1099/ijsem.0.002475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive strain, designated DT7-02T, was isolated from the surface-sterilized root of Oenotherabiennis (evening primrose) and subjected to taxonomic characterization. Cells of DT7-02T were slender rod-shaped, motile by means of flagella, and oxidase- and catalase-positive. The colonies were circular, pinkish-yellow, opaque, glistering and 1-2 mm in diameter. The strain was moderately thermophilic and halophilic, as growth occurred at 20-44 °C (optimum 40 °C), pH 7-10 (optimum pH 8-9) and in the presence of 0-8 % of NaCl (optimum 4 %) in tryptic soy broth. The analysis of 16S rRNA gene sequences indicated that the strain represented a member of the genus Pseudogracilibacillus of the family Bacillaceae, and the sequence similarity was 96.5 % with Pseudogracilibacillus auburnensis P-207T and 95.9 % with Pseudogracilibacillus marinus NIOT-bflm-S4T. Other related taxa were Ornithinibacillus contaminans DSM 22953T and Sinibacillus soli KCTC 33117T, with 16S rRNA gene sequence similarities of 95.4 and 94.3 %, respectively. The major cellular fatty acids of DT7-02T were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The DNA G+C content was 35.1 mol%, and the respiratory quinone was MK-7. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. The combination of chemotaxonomic properties enabled differentiation of DT7-02T from the other two species of the genus Pseudogracilibacillus. The results of phylogenetic, phenotypic and chemotaxonomic analyses demonstrate that strain DT7-02T (=KCTC 33854T=JCM 31192T) merits recognition as representing a novel species of the genus Pseudogracilibacillus, for which the name Pseudogracilibacillusendophyticus sp. nov. is proposed.
Collapse
Affiliation(s)
- Jisun Park
- Department of Microbiology and Molecular Biology, Chungnam National University, 99 Daehak-Ro, Yuseong, Daejeon 34134, Republic of Korea
| | - Min-Kyeong Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, 99 Daehak-Ro, Yuseong, Daejeon 34134, Republic of Korea
| | - Bo-Ram Yun
- Department of Microbiology and Molecular Biology, Chungnam National University, 99 Daehak-Ro, Yuseong, Daejeon 34134, Republic of Korea
| | - Ji-Hye Han
- Bacterial Resources Research Team, Freshwater Bioresources Research Division, Nakdonggang National Institute of Biological Resources, Republic of Korea
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, 99 Daehak-Ro, Yuseong, Daejeon 34134, Republic of Korea
| |
Collapse
|
34
|
Carbon chain length of biofuel- and flavor-relevant volatile organic compounds produced by lignocellulolytic fungal endophytes changes with culture temperature. MYCOSCIENCE 2017. [DOI: 10.1016/j.myc.2017.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
Strobel G, Ericksen A, Sears J, Xie J, Geary B, Blatt B. Urnula sp., an Endophyte of Dicksonia antarctica, Making a Fragrant Mixture of Biologically Active Volatile Organic Compounds. MICROBIAL ECOLOGY 2017; 74:312-321. [PMID: 28188331 DOI: 10.1007/s00248-017-0947-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Urnula sp. was isolated as an endophyte of Dicksonia antarctica and identified primarily on the basis of its ITS sequence and morphological features. The anamorphic state of the fungus appeared as a hyphomyceteous-like fungus as based on its features in culture and scanning electron microscopy examination of its spores. On potato dextrose agar (PDA), the organism makes a characteristic fragrance resembling peach pie with vanilla overtones. A GC/MS analysis done on the volatile organic compounds (VOCs) of this organism, trapped by carbotrap methodology, revealed over 150 compounds with high MS matching quality being noted for 44 of these. Some of the most abundantly produced compounds included 4-decene, tridecane, 2-decene (E), 2-dodecene, (Z,E)-alpha-farnesene, butanoic acid, pentyl ester, and 1-hexanol,2-ethyl. In addition, vanillin, methyl vanillin, and many other fragrant substances were noted including isomenthol, pyrazine derivatives, and 3-decanone. In split plate bioassay tests on potato dextrose agar (PDA), Botrytis cinerea, Ceratocystis ulmi, Pythium ultimum, Fusarium solani, and Rhizoctonia solani were inhibited at levels of 24 to 50% of their normal growth on this medium. Bioreactors supporting fungal growth on 50 g of beet pulp waste, using stainless steel carbotraps, yielded over 180 mg of hydrocarbon-based products collected over 6 weeks of incubation. Similarly, because this organism is making one of the largest sets of VOCs as any fungus examined to date, producing many compounds of commercial interest, it has enormous biotechnical potential. The role of the VOCs in the biology and ecology of this endophyte may be related to the antimicrobial activities that they possess.
Collapse
Affiliation(s)
- Gary Strobel
- Department of Plant Sciences, Montana State University, Bozeman, MT, 59717, USA.
| | - Amy Ericksen
- Endophytics, 920 Technology Blvd, Bozeman, MT, 59718, USA
| | - Joe Sears
- Center for Lab Services/RJ Lee Group, 2710 North 20th Ave., Pasco, WA, 99301, USA
| | - Jie Xie
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Brad Geary
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, 84602, USA
| | - Bryan Blatt
- Endophytics, 920 Technology Blvd, Bozeman, MT, 59718, USA
| |
Collapse
|
36
|
Katoch M, Bindu K, Phull S, Verma MK. An endophytic Fusarium sp. isolated from Monarda citriodora produces the industrially important plant-like volatile organic compound hexanal. MICROBIOLOGY-SGM 2017. [PMID: 28640741 DOI: 10.1099/mic.0.000479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An endophytic fungus, MC_25L, has been isolated from the leaves of MonardacitriodoraCerv. ex Lag., a medicinal and aromatic herb from the northwestern Himalayas. It produces a fruity fragrance while growing on potato dextrose agar, suggesting that it is producing volatile organic compounds (VOCs). The endophyte inhibited the growth of plant pathogens such asSclerotiniasp. and Aspergillusflavus by virtue of VOCs. Identification of MC_25L based on morphological and microscopic features, as well as ITS-based rDNA sequence analysis, revealed that it is a Fusariumsp. GC-MS analysis revealed that this endophyte produces a unique array of VOCs, in particular hexanal, p-fluoroanisole, pentafluoropropionic acid 2-ethylhexyl, (5E)-5-ethyl-2-methyl-5-hepten-3-one, 2-butyl-2-hexanol, (7E)-2-methyl-7-hexadecene and acoradiene. Three major compounds were hexanal, (5E)-5-ethyl-2-methyl-5-hepten-3-one and acoradiene, and they account for around 84.57 % of the total VOCs. Moreover, of interest was the presence of hexanal, which has applications in the food and cosmetic industries, as well as in mycofumigation. This is the first report of a fungal endophyte producing the industrially important plant-like VOC hexanal. Hexanal is also active biologically. Thus this study indicates that Fusariumsp. (MC_25L) is a potential candidate for the up-scaling of hexanal.
Collapse
Affiliation(s)
- Meenu Katoch
- Microbial Biotechnology Department, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu 180 001, India
| | - Kushal Bindu
- Instrumentation Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu 180 001, India
| | - Shipra Phull
- Microbial Biotechnology Department, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu 180 001, India
| | - M K Verma
- Instrumentation Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu 180 001, India
| |
Collapse
|
37
|
Mishra VK, Passari AK, Leo VV, Singh BP. Molecular Diversity and Detection of Endophytic Fungi Based on Their Antimicrobial Biosynthetic Genes. Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Liarzi O, Bar E, Lewinsohn E, Ezra D. Use of the Endophytic Fungus Daldinia cf. concentrica and Its Volatiles as Bio-Control Agents. PLoS One 2016; 11:e0168242. [PMID: 27977739 PMCID: PMC5158029 DOI: 10.1371/journal.pone.0168242] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/10/2016] [Indexed: 11/23/2022] Open
Abstract
Endophytic fungi are organisms that spend most of their life cycle within plant tissues without causing any visible damage to the host plant. Many endophytes were found to secrete specialized metabolites and/or emit volatile organic compounds (VOCs), which may be biologically active and assist fungal survival inside the plant as well as benefit their hosts. We report on the isolation and characterization of a VOCs-emitting endophytic fungus, isolated from an olive tree (Olea europaea L.) growing in Israel; the isolate was identified as Daldinia cf. concentrica. We found that the emitted VOCs were active against various fungi from diverse phyla. Results from postharvest experiments demonstrated that D. cf. concentrica prevented development of molds on organic dried fruits, and eliminated Aspergillus niger infection in peanuts. Gas chromatography-mass spectrometry analysis of the volatiles led to identification of 27 VOCs. On the basis of these VOCs we prepared two mixtures that displayed a broad spectrum of antifungal activity. In postharvest experiments these mixtures prevented development of molds on wheat grains, and fully eliminated A. niger infection in peanuts. In light of these findings, we suggest use of D. cf. concentrica and/or its volatiles as an alternative approach to controlling phytopathogenic fungi in the food industry and in agriculture.
Collapse
Affiliation(s)
- Orna Liarzi
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| | - Einat Bar
- Newe Ya'ar Regional Research Center, Ramat Yishai, Israel
| | | | - David Ezra
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
39
|
Zhu F, Pan Z, Hong C, Wang W, Chen X, Xue Z, Yao Y. Analysis of volatile organic compounds in compost samples: A potential tool to determine appropriate composting time. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 58:98-106. [PMID: 27346593 DOI: 10.1016/j.wasman.2016.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Changes in volatile organic compound contents in compost samples during pig manure composting were studied using a headspace, solid-phase micro-extraction method (HS-SPME) followed by gas chromatography with mass spectrometric detection (GC/MS). Parameters affecting the SPME procedure were optimized as follows: the coating was carbon molecular sieve/polydimethylsiloxane (CAR/PDMS) fiber, the temperature was 60°C and the time was 30min. Under these conditions, 87 compounds were identified from 17 composting samples. Most of the volatile components could only be detected before day 22. However, benzenes, alkanes and alkenes increased and eventually stabilized after day 22. Phenol and acid substances, which are important factors for compost quality, were almost undetectable on day 39 in natural compost (NC) samples and on day 13 in maggot-treated compost (MC) samples. Our results indicate that the approach can be effectively used to determine the composting times by analysis of volatile substances in compost samples. An appropriate composting time not only ensures the quality of compost and reduces the loss of composting material but also reduces the generation of hazardous substances. The appropriate composting times for MC and NC were approximately 22days and 40days, respectively, during the summer in Zhejiang.
Collapse
Affiliation(s)
- Fengxiang Zhu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Zaifa Pan
- College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chunlai Hong
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Weiping Wang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xiaoyang Chen
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Zhiyong Xue
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Yanlai Yao
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
40
|
Junne S, Kabisch J. Fueling the future with biomass: Processes and pathways for a sustainable supply of hydrocarbon fuels and biogas. Eng Life Sci 2016; 17:14-26. [PMID: 32624725 DOI: 10.1002/elsc.201600112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022] Open
Abstract
Global economic growth, wealth and security rely upon the availability of cheap, mostly fossil-derived energy and chemical compounds. The replacement by sustainable resources is widely discussed. However, the current state of biotechnological processes usually restricts them to be used as a true alternative in terms of economic feasibility and even sustainability. Among the rare examples of bioprocesses applied for the energetic use of biomass are biogas and bioethanol production. Usually, these processes lack in efficiency and they cannot be operated without the support of legislation. Although they represent a first step towards a greater share of bio-based processes for energy provision, there is no doubt that tremendous improvements in strain and process development, feedstock and process flexibility as well as in the integration of these processes into broader supply and production networks, in this review called smart bioproduction grids, are required to make them economically attractive, robust enough, and wider acceptance by society. All this requires an interdisciplinary approach, which includes the use of residues in closed carbon cycles and issues concerning the process safety. This short review aims to depict some of the promising strategies to achieve an improved process performance as a basis for future application.
Collapse
Affiliation(s)
- Stefan Junne
- Department of Biotechnology Chair of Bioprocess Engineering Technische Universität Berlin Berlin Germany
| | - Johannes Kabisch
- Institute of Biochemistry Ernst-Moritz-Arndt University Greifswald Greifswald Germany
| |
Collapse
|
41
|
Zhou CW, Simmie JM, Pitz WJ, Curran HJ. Toward the Development of a Fundamentally Based Chemical Model for Cyclopentanone: High-Pressure-Limit Rate Constants for H Atom Abstraction and Fuel Radical Decomposition. J Phys Chem A 2016; 120:7037-44. [PMID: 27558073 DOI: 10.1021/acs.jpca.6b03994] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Theoretical aspects of the development of a chemical kinetic model for the pyrolysis and combustion of a cyclic ketone, cyclopentanone, are considered. Calculated thermodynamic and kinetic data are presented for the first time for the principal species including 2- and 3-oxo-cyclopentyl radicals, which are in reasonable agreement with the literature. These radicals can be formed via H atom abstraction reactions by Ḣ and Ö atoms and ȮH, HȮ2, and ĊH3 radicals, the rate constants of which have been calculated. Abstraction from the β-hydrogen atom is the dominant process when ȮH is involved, but the reverse holds true for HȮ2 radicals. The subsequent β-scission of the radicals formed is also determined, and it is shown that recent tunable VUV photoionization mass spectrometry experiments can be interpreted in this light. The bulk of the calculations used the composite model chemistry G4, which was benchmarked in the simplest case with a coupled cluster treatment, CCSD(T), in the complete basis set limit.
Collapse
Affiliation(s)
- Chong-Wen Zhou
- School of Chemistry & Combustion Chemistry Centre, National University of Ireland Galway , Galway H91 TK33, Ireland
| | - John M Simmie
- School of Chemistry & Combustion Chemistry Centre, National University of Ireland Galway , Galway H91 TK33, Ireland
| | - William J Pitz
- Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Henry J Curran
- School of Chemistry & Combustion Chemistry Centre, National University of Ireland Galway , Galway H91 TK33, Ireland
| |
Collapse
|
42
|
Wu W, Tran W, Taatjes CA, Alonso-Gutierrez J, Lee TS, Gladden JM. Rapid Discovery and Functional Characterization of Terpene Synthases from Four Endophytic Xylariaceae. PLoS One 2016; 11:e0146983. [PMID: 26885833 PMCID: PMC4757406 DOI: 10.1371/journal.pone.0146983] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/23/2015] [Indexed: 01/20/2023] Open
Abstract
Endophytic fungi are ubiquitous plant endosymbionts that establish complex and poorly understood relationships with their host organisms. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds (VOCs) with potential energy applications, which have been described as "mycodiesel". Many of these mycodiesel hydrocarbons are terpenes, a chemically diverse class of compounds produced by many plants, fungi, and bacteria. Due to their high energy densities, terpenes, such as pinene and bisabolene, are actively being investigated as potential "drop-in" biofuels for replacing diesel and aviation fuel. In this study, we rapidly discovered and characterized 26 terpene synthases (TPSs) derived from four endophytic fungi known to produce mycodiesel hydrocarbons. The TPS genes were expressed in an E. coli strain harboring a heterologous mevalonate pathway designed to enhance terpene production, and their product profiles were determined using Solid Phase Micro-Extraction (SPME) and GC-MS. Out of the 26 TPS's profiled, 12 TPS's were functional, with the majority of them exhibiting both monoterpene and sesquiterpene synthase activity.
Collapse
Affiliation(s)
- Weihua Wu
- Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, California, United States of America
| | - William Tran
- Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, California, United States of America
| | - Craig A. Taatjes
- Combustion Chemistry Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Jorge Alonso-Gutierrez
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Joint BioEnergy Institute, Emeryville, California, United States of America
| | - Taek Soon Lee
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Joint BioEnergy Institute, Emeryville, California, United States of America
| | - John M. Gladden
- Biomass Science & Conversion Technologies, Sandia National Laboratories, Livermore, California, United States of America
- Joint BioEnergy Institute, Emeryville, California, United States of America
- * E-mail: ;
| |
Collapse
|
43
|
Monreal CM, Chahal A, Schnitzer M, Rowland O. Chemical characterization of fatty acids, alkanes, n-diols and alkyl esters produced by a mixed culture of Trichoderma koningii and Penicillium janthinellum grown aerobically on undecanoic acid, potatoe dextrose and their mixture. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2016; 51:326-339. [PMID: 26852878 DOI: 10.1080/03601234.2015.1128746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Little is known about the mixed fungal synthesis of high-value aliphatics derived from the metabolism of simple and complex carbon substrates. Trichoderma koningii and Penicillium janthinellum were fed with undecanoic acid (UDA), potatoe dextrose broth (PDB), and their mixture. Pyrolysis Field Ionization Mass Spectrometry (Py-FIMS) together with (1)H and (13)C Nuclear Magnetic Resonance (NMR) characterized CHCl3 soluble aliphatics in the fungal cell culture. Data from NMR and Py-FIMS analysis were complementary to each other. On average, the mixed fungal species produced mostly fatty acids (28% of total ion intensity, TII) > alkanes (2% of TII) > n-diols (2% of TII) > and alkyl esters (0.8% of TII) when fed with UDA, PDB or UDA+PDB. The cell culture accumulated aliphatics extracellularly, although most of the identified compounds accumulated intracellularly. The mixed fungal culture produced high-value chemicals from the metabolic conversion of simple and complex carbon substrates.
Collapse
Affiliation(s)
- Carlos M Monreal
- a Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre , Ottawa , Ontario , Canada
- b Department of Biology , Carleton University , Ottawa , Ontario , Canada
| | - Amarpreet Chahal
- b Department of Biology , Carleton University , Ottawa , Ontario , Canada
| | - Morris Schnitzer
- a Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre , Ottawa , Ontario , Canada
| | - Owen Rowland
- b Department of Biology , Carleton University , Ottawa , Ontario , Canada
| |
Collapse
|
44
|
Ogórek R, Višňovská Z, Tančinová D. Mycobiota of Underground Habitats: Case Study of Harmanecká Cave in Slovakia. MICROBIAL ECOLOGY 2016; 71:87-99. [PMID: 26463685 DOI: 10.1007/s00248-015-0686-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
Harmanecká Cave is located in the Harmanec Valley to the northwest of Banská Bystrica city, in the southern part of the Great Fatra Mountains, Slovakia. This cave is the most important underground locality of bat occurrence in Slovakia (population of 1000 to 1500 individuals). The study aimed at mycological evaluation of the air, the water, and the rock surface of Harmanecká Cave in Slovakia. The samples were taken on 24 July 2014. To examine the air, the Air Ideal 3P sampler was used. Microbiological evaluation of the rock surface was performed using swab sampling and the water by using the serial dilution technique. The authors observed a relationship between air temperature and the concentration of fungi. The concentration of airborne fungi increased with the increase in the air temperature and decreased with distance from the entrance to the cave. The density of airborne fungi isolated from the outdoor air samples was 810.5 colony-forming units (CFU) per 1 m3 of air and from 27.4 to 128.5 CFU for the indoor air samples. From the rock surface inside the cave, 45.0 to 106.6 CFU per 1 cm2 were isolated, whereas from the water, 29.9 CFU per 1 ml were isolated. Seven species of filamentous fungi were isolated from the external air samples and 12 species of filamentous fungi and 3 species of yeast-like fungi from the internal air samples. From the surface of the rocks inside the cave, 5 species of filamentous fungi and 1 species of yeast-like fungi were cultured, whereas from the water samples, 6 species of filamentous fungi were cultured. Cladosporium spp. were the fungi most frequently isolated from the external air; from the internal air, Penicillium urticae was most frequently isolated; from the rock surface, it was Gliocladium roseum; and from the water, it was P. chrysogenum. The species found in the cave can be pathogenic for humans and animals, especially for immunocompromised persons, and they can also cause biodegradation of the rocks. However, the concentration of airborne fungi inside the cave did not exceed official limits and norms stated as dangerous for the health of tourists.
Collapse
|
45
|
White and Brown Rot Fungi as Decomposers of Lignocellulosic Materials and Their Role in Waste and Pollution Control. FUNGAL APPLICATIONS IN SUSTAINABLE ENVIRONMENTAL BIOTECHNOLOGY 2016. [DOI: 10.1007/978-3-319-42852-9_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
46
|
Yang Y, Jin Z, Jin Q, Dong M. Isolation and fatty acid analysis of lipid-producing endophytic fungi from wild Chinese Torreya Grandis. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715050173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
47
|
Dos Santos Dias AC, Ruiz N, Couzinet-Mossion A, Bertrand S, Duflos M, Pouchus YF, Barnathan G, Nazih H, Wielgosz-Collin G. The Marine-Derived Fungus Clonostachys rosea, Source of a Rare Conjugated 4-Me-6E,8E-hexadecadienoic Acid Reducing Viability of MCF-7 Breast Cancer Cells and Gene Expression of Lipogenic Enzymes. Mar Drugs 2015; 13:4934-48. [PMID: 26258780 PMCID: PMC4557008 DOI: 10.3390/md13084934] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 01/05/2023] Open
Abstract
A marine-derived strain of Clonostachys rosea isolated from sediments of the river Loire estuary (France) was investigated for its high lipid production. The fungal strain was grown on six different culture media to explore lipid production changes. An original branched conjugated fatty acid, mainly present in triglycerides and mostly produced when grown on DCA (23% of total fatty acid composition). It was identified as 4-Me-6E,8E-hexadecadienoic on the basis of spectroscopic analyses. This fatty acid reduced viability of MCF-7 breast cancer cells in a dose dependent manner (up to 63%) at physiological free fatty acid human plasma concentration (100 μM). Reduction of gene expression of two lipogenic enzymes, the acetyl CoA carboxylase (ACC) and the fatty acid synthase (FAS) was evaluated to explore the mechanisms of action of 4-Me-6E,8E-16:2 acid. At 50 μM, 50% and 35% of mRNA gene expression inhibition were observed for ACC and FAS, respectively.
Collapse
Affiliation(s)
- Ana Camila Dos Santos Dias
- Faculty of Pharmacy, University of Nantes, MMS, 9, Rue Bias, 44000 Nantes, France; E-Mails: (A.C.D.S.D.); (N.R.); (A.C.-M.); (S.B.); (Y.-F.P.); (G.B.)
| | - Nicolas Ruiz
- Faculty of Pharmacy, University of Nantes, MMS, 9, Rue Bias, 44000 Nantes, France; E-Mails: (A.C.D.S.D.); (N.R.); (A.C.-M.); (S.B.); (Y.-F.P.); (G.B.)
| | - Aurélie Couzinet-Mossion
- Faculty of Pharmacy, University of Nantes, MMS, 9, Rue Bias, 44000 Nantes, France; E-Mails: (A.C.D.S.D.); (N.R.); (A.C.-M.); (S.B.); (Y.-F.P.); (G.B.)
| | - Samuel Bertrand
- Faculty of Pharmacy, University of Nantes, MMS, 9, Rue Bias, 44000 Nantes, France; E-Mails: (A.C.D.S.D.); (N.R.); (A.C.-M.); (S.B.); (Y.-F.P.); (G.B.)
| | - Muriel Duflos
- Faculty of Pharmacy, University of Nantes, IICiMed, 9 Rue Bias, 44000 Nantes, France; E-Mail:
| | - Yves-François Pouchus
- Faculty of Pharmacy, University of Nantes, MMS, 9, Rue Bias, 44000 Nantes, France; E-Mails: (A.C.D.S.D.); (N.R.); (A.C.-M.); (S.B.); (Y.-F.P.); (G.B.)
| | - Gilles Barnathan
- Faculty of Pharmacy, University of Nantes, MMS, 9, Rue Bias, 44000 Nantes, France; E-Mails: (A.C.D.S.D.); (N.R.); (A.C.-M.); (S.B.); (Y.-F.P.); (G.B.)
| | - Hassan Nazih
- Faculty of Pharmacy, University of Nantes, MMS, 9, Rue Bias, 44000 Nantes, France; E-Mails: (A.C.D.S.D.); (N.R.); (A.C.-M.); (S.B.); (Y.-F.P.); (G.B.)
- Authors to whom correspondence should be addressed; E-Mails: (H.N.); (G.W.-C.); Tel.: +33-272-641-154 (H.N.); +33-276-645-081 (G.W.-C.)
| | - Gaetane Wielgosz-Collin
- Faculty of Pharmacy, University of Nantes, MMS, 9, Rue Bias, 44000 Nantes, France; E-Mails: (A.C.D.S.D.); (N.R.); (A.C.-M.); (S.B.); (Y.-F.P.); (G.B.)
- Authors to whom correspondence should be addressed; E-Mails: (H.N.); (G.W.-C.); Tel.: +33-272-641-154 (H.N.); +33-276-645-081 (G.W.-C.)
| |
Collapse
|
48
|
Schaible GA, Strobel GA, Mends MT, Geary B, Sears J. Characterization of an Endophytic Gloeosporium sp. and Its Novel Bioactivity with "Synergistans". MICROBIAL ECOLOGY 2015; 70:41-50. [PMID: 25501886 DOI: 10.1007/s00248-014-0542-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
Gloeosporium sp. (OR-10) was isolated as an endophyte of Tsuga heterophylla (Western hemlock). Both ITS and 18S sequence analyses indicated that the organism best fits either Hypocrea spp. or Trichoderma spp., but neither of these organisms possess conidiophores associated with acervuli, in which case the endophytic isolate OR-10 does. Therefore, the preferred taxonomic assignment was primarily based on the morphological features of the organism as one belonging to the genus Gloeosporium sp. These taxonomic observations clearly point out that limited ITS and 18S sequence information can be misleading when solely used in making taxonomic assignments. The volatile phase of this endophyte was active against a number of plant pathogenic fungi including Phytophthora palmivora, Rhizoctonia solani, Ceratocystis ulmi, Botrytis cinerea, and Verticillium dahliae. Among several terpenes and furans, the most abundantly produced compound in the volatile phase was 6-pentyl-2H-pyran-2-one, a compound possessing antimicrobial activities. When used in conjunction with microliter amounts of any in a series of esters or isobutyric acid, an enhanced inhibitory response occurred with each test fungus that was greater than that exhibited by Gloeosporium sp. or the compounds tested individually. Compounds behaving in this manner are hereby designated "synergistans." An expression of the "median synergistic effect," under prescribed conditions, has been termed the mSE50. This value describes the amount of a potential synergistan that is required to yield an additional median 50% inhibition of a target organism. In this report, the mSE50s are reported for a series of esters and isobutyric acid. The results indicated that isoamyl acetate, allyl acetate, and isobutyric acid generally possessed the lowest mSE50 values. The value and potential importance of these microbial synergistic effects to the microbial environment are also discussed.
Collapse
Affiliation(s)
- George A Schaible
- Department of Plant Sciences, Montana State University, Bozeman, MT, 59717, USA
| | | | | | | | | |
Collapse
|
49
|
Massimo NC, Nandi Devan MM, Arendt KR, Wilch MH, Riddle JM, Furr SH, Steen C, U'Ren JM, Sandberg DC, Arnold AE. Fungal endophytes in aboveground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts. MICROBIAL ECOLOGY 2015; 70:61-76. [PMID: 25645243 PMCID: PMC4457668 DOI: 10.1007/s00248-014-0563-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 12/26/2014] [Indexed: 05/02/2023]
Abstract
In hot deserts, plants cope with aridity, high temperatures, and nutrient-poor soils with morphological and biochemical adaptations that encompass intimate microbial symbioses. Whereas the root microbiomes of arid-land plants have received increasing attention, factors influencing assemblages of symbionts in aboveground tissues have not been evaluated for many woody plants that flourish in desert environments. We evaluated the diversity, host affiliations, and distributions of endophytic fungi associated with photosynthetic tissues of desert trees and shrubs, focusing on nonsucculent woody plants in the species-rich Sonoran Desert. To inform our strength of inference, we evaluated the effects of two different nutrient media, incubation temperatures, and collection seasons on the apparent structure of endophyte assemblages. Analysis of >22,000 tissue segments revealed that endophytes were isolated four times more frequently from photosynthetic stems than leaves. Isolation frequency was lower than expected given the latitude of the study region and varied among species a function of sampling site and abiotic factors. However, endophytes were very species-rich and phylogenetically diverse, consistent with less arid sites of a similar latitudinal position. Community composition differed among host species, but not as a function of tissue type, sampling site, sampling month, or exposure. Estimates of abundance, diversity, and composition were not influenced by isolation medium or incubation temperature. Phylogenetic analyses of the most commonly isolated genus (Preussia) revealed multiple evolutionary origins of desert-plant endophytism and little phylogenetic structure with regard to seasonality, tissue preference, or optimal temperatures and nutrients for growth in vitro. Together, these results provide insight into endophytic symbioses in desert-plant communities and can be used to optimize strategies for capturing endophyte biodiversity at regional scales.
Collapse
Affiliation(s)
- Nicholas C Massimo
- School of Plant Sciences, The University of Arizona, 1140 E. South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Samaga PV, Rai VR. Diversity and bioactive potential of endophytic fungi from Nothapodytes foetida, Hypericum mysorense and Hypericum japonicum collected from Western Ghats of India. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1099-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|