1
|
Guo S, Yang L, Hou C, Jiang S, Ma X, Shi L, Zheng B, Ye L, He X. The low-entropy hydration shell mediated ice-binding mechanism of antifreeze proteins. Int J Biol Macromol 2024; 277:134562. [PMID: 39116982 DOI: 10.1016/j.ijbiomac.2024.134562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Antifreeze proteins (AFPs) can inhibit ice crystal growth. The ice-binding mechanism of AFPs remains unclear, yet the hydration shells of AFPs are thought to play an important role in modulating the binding of AFPs and ice. Here, we performed all-atom molecular dynamics simulations of an AFP from Choristoneura fumiferana (CfAFP) at four different temperatures, with a focus on analysis at 240 and 300 K, to investigate the dynamic and thermodynamic characteristics of hydration shells around ice-binding surfaces (IBS) and non-ice-binding surfaces (NIBS). Our results revealed that the dynamics of CfAFP hydration shells were highly heterogeneous, with its IBS favoring a less dense and more tetrahedral solvation shell, and NIBS hydration shells having opposite features to those of the IBS. The IBS of nine typical hyperactive AFPs were found to be in pure low-entropy hydration shell region, indicating that low-entropy hydration shell region of IBS and the tetrahedral arrangements of water molecules around them mediate the ice-binding mechanism of AFPs. It is because the entropy increase of the low-entropy hydration shell around IBS, while the higher entropy water molecules at NIBS most likely prevent ice crystal growth. These findings provide new mechanistic insights into the ice-binding of AFPs.
Collapse
Affiliation(s)
- Shuai Guo
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia.
| | - Chengyu Hou
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Shenda Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Xiaoliang Ma
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Liping Shi
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Bing Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150001, China
| | - Lin Ye
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; Shenzhen STRONG Advanced Materials Research Institute Co. Ltd., Shenzhen 518035, China.
| |
Collapse
|
2
|
Lopes JC, Kinasz CT, Luiz AMC, Kreusch MG, Duarte RTD. Frost fighters: unveiling the potential of microbial antifreeze proteins in biotech innovation. J Appl Microbiol 2024; 135:lxae140. [PMID: 38877650 DOI: 10.1093/jambio/lxae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/16/2024]
Abstract
Polar environments pose extreme challenges for life due to low temperatures, limited water, high radiation, and frozen landscapes. Despite these harsh conditions, numerous macro and microorganisms have developed adaptive strategies to reduce the detrimental effects of extreme cold. A primary survival tactic involves avoiding or tolerating intra and extracellular freezing. Many organisms achieve this by maintaining a supercooled state by producing small organic compounds like sugars, glycerol, and amino acids, or through increasing solute concentration. Another approach is the synthesis of ice-binding proteins, specifically antifreeze proteins (AFPs), which hinder ice crystal growth below the melting point. This adaptation is crucial for preventing intracellular ice formation, which could be lethal, and ensuring the presence of liquid water around cells. AFPs have independently evolved in different species, exhibiting distinct thermal hysteresis and ice structuring properties. Beyond their ecological role, AFPs have garnered significant attention in biotechnology for potential applications in the food, agriculture, and pharmaceutical industries. This review aims to offer a thorough insight into the activity and impacts of AFPs on water, examining their significance in cold-adapted organisms, and exploring the diversity of microbial AFPs. Using a meta-analysis from cultivation-based and cultivation-independent data, we evaluate the correlation between AFP-producing microorganisms and cold environments. We also explore small and large-scale biotechnological applications of AFPs, providing a perspective for future research.
Collapse
Affiliation(s)
- Joana Camila Lopes
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina-Campus Reitor João David Ferreira Lima, s/n Trindade, Florianópolis, SC 88040-900, Brazil
- Postgraduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n Trindade, Florianópolis, SC 88040-900, Brazil
| | - Camila Tomazini Kinasz
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina-Campus Reitor João David Ferreira Lima, s/n Trindade, Florianópolis, SC 88040-900, Brazil
- Postgraduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima,, s/n Trindade, Florianópolis, SC 88040-900, Brazil
| | - Alanna Maylle Cararo Luiz
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina-Campus Reitor João David Ferreira Lima, s/n Trindade, Florianópolis, SC 88040-900, Brazil
- Postgraduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima,, s/n Trindade, Florianópolis, SC 88040-900, Brazil
| | - Marianne Gabi Kreusch
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina-Campus Reitor João David Ferreira Lima, s/n Trindade, Florianópolis, SC 88040-900, Brazil
| | - Rubens Tadeu Delgado Duarte
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina-Campus Reitor João David Ferreira Lima, s/n Trindade, Florianópolis, SC 88040-900, Brazil
- Postgraduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima,, s/n Trindade, Florianópolis, SC 88040-900, Brazil
| |
Collapse
|
3
|
Lopes JC, Veiga VP, Seminiuk B, Santos LOF, Luiz AMC, Fernandes CA, Kinasz CT, Pellizari VH, Duarte RTD. Freezing and thawing in Antarctica: characterization of antifreeze protein (AFP) producing microorganisms isolated from King George Island, Antarctica. Braz J Microbiol 2024; 55:1451-1463. [PMID: 38656427 PMCID: PMC11153389 DOI: 10.1007/s42770-024-01345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Antarctic temperature variations and long periods of freezing shaped the evolution of microorganisms with unique survival mechanisms. These resilient organisms exhibit several adaptations for life in extreme cold. In such ecosystems, microorganisms endure the absence of liquid water and exhibit resistance to freezing by producing water-binding molecules such as antifreeze proteins (AFP). AFPs modify the ice structure, lower the freezing point, and inhibit recrystallization. The objective of this study was to select and identify microorganisms isolated from different Antarctic ecosystems based on their resistance to temperatures below 0 °C. Furthermore, the study sought to characterize these microorganisms regarding their potential antifreeze adaptive mechanisms. Samples of soil, moss, permafrost, and marine sediment were collected on King George Island, located in the South Shetland archipelago, Antarctica. Bacteria and yeasts were isolated and subjected to freezing-resistance and ice recrystallization inhibition (IR) tests. A total of 215 microorganisms were isolated, out of which 118 were molecularly identified through molecular analysis using the 16S rRNA and ITS regions. Furthermore, our study identified 24 freezing-resistant isolates, including two yeasts and 22 bacteria. A total of 131 protein extracts were subjected to the IR test, revealing 14 isolates positive for AFP production. Finally, four isolates showed both freeze-resistance and IR activity (Arthrobacter sp. BGS04, Pseudomonas sp. BGS05, Cryobacterium sp. P64, and Acinetobacter sp. M1_25C). This study emphasizes the diversity of Antarctic microorganisms with the ability to tolerate freezing conditions. These microorganisms warrant further investigation to conduct a comprehensive analysis of their antifreeze capabilities, with the goal of exploring their potential for future biotechnological applications.
Collapse
Affiliation(s)
- J C Lopes
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n Trindade, 88040-900, Florianópolis, SC, Brazil
- Postgraduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - V P Veiga
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n Trindade, 88040-900, Florianópolis, SC, Brazil
| | - B Seminiuk
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n Trindade, 88040-900, Florianópolis, SC, Brazil
| | - L O F Santos
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n Trindade, 88040-900, Florianópolis, SC, Brazil
| | - A M C Luiz
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n Trindade, 88040-900, Florianópolis, SC, Brazil
- Postgraduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - C A Fernandes
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n Trindade, 88040-900, Florianópolis, SC, Brazil
| | - C T Kinasz
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n Trindade, 88040-900, Florianópolis, SC, Brazil
- Postgraduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - V H Pellizari
- Oceanographic Institute, Department of Biological Oceanography, University of São Paulo, 05508-120, São Paulo, SP, Brazil
| | - R T D Duarte
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n Trindade, 88040-900, Florianópolis, SC, Brazil.
- Postgraduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
4
|
Orhan F, Demirci A, Efe D, Aydın R, Bozarı S. Usage of ectoine as a cryoprotectant for cryopreservation of lactic acid bacteria. Folia Microbiol (Praha) 2024; 69:133-144. [PMID: 37917277 DOI: 10.1007/s12223-023-01098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Streptococcus thermophilus, the only Streptococcus species considered "Generally Recognized Safe", has been used widely in the food industry. This bacterium is one of the most valuable industrial lactic acid bacterial species. Due to the importance of this bacterium in industrial applications, it should be stored for a long time without losing its metabolic properties. The present study aimed to investigate the cryoprotectant effect of three compatible solutes (ectoine, trehalose, and sucrose) on bacterial cells stored at different temperatures (frozen at -80 °C or freeze-dried and subsequently stored at +4, -20, and -80 °C) for three months. The bacterial cells were tested for cell viability, bile salt tolerance, and lactic acid production before and after processing. The highest cell viability, bile salt tolerance, and lactic acid production were obtained with ectoine and under frozen (storage at -80 °C) conditions. In freeze-dried and subsequently stored at various temperatures, the best preservation was obtained at -80 °C, followed by -20 °C and +4 °C. Moreover, when ectoine's preservation potential was compared to other cryoprotectants, ectoine showed the highest preservation, followed by trehalose and sucrose. Although ectoine has a variety of qualities that have been proven, in the current work, we have shown for the first time that ectoine has cryoprotectant potential in yogurt starter cultures (S. thermophilus).
Collapse
Affiliation(s)
- Furkan Orhan
- Art and Science Faculty, Department of Molecular Biology and Genetics, Agri Ibrahim Cecen University, Agri, 4100, Türkiye.
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, 4100, Türkiye.
| | - Abdullah Demirci
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, 4100, Türkiye
| | - Derya Efe
- Department of Medicinal and Aromatic Plants, Giresun University, Giresun, Türkiye
| | - Rukiye Aydın
- Engineering Faculty, Basic Sciences Department, Samsun University, Samsun, 55420, Türkiye
| | - Sedat Bozarı
- Department of Molecular Biology and Genetics, Mus Alparslan University, Mus, 49250, Türkiye
| |
Collapse
|
5
|
Brock MT, Morrison HG, Maignien L, Weinig C. Impacts of sample handling and storage conditions on archiving physiologically active soil microbial communities. FEMS Microbiol Lett 2024; 371:fnae044. [PMID: 38866716 DOI: 10.1093/femsle/fnae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Soil microbial communities are fundamental to ecosystem processes and plant growth, yet community composition is seasonally and successionally dynamic, which interferes with long-term iterative experimentation of plant-microbe interactions. We explore how soil sample handling (e.g. filtering) and sample storage conditions impact the ability to revive the original, physiologically active, soil microbial community. We obtained soil from agricultural fields in Montana and Oklahoma, USA and samples were sieved to 2 mm or filtered to 45 µm. Sieved and filtered soil samples were archived at -20°C or -80°C for 50 days and revived for 2 or 7 days. We extracted DNA and the more transient RNA pools from control and treatment samples and characterized microbial communities using 16S amplicon sequencing. Filtration and storage treatments significantly altered soil microbial communities, impacting both species richness and community composition. Storing sieved soil at -20°C did not alter species richness and resulted in the least disruption to the microbial community composition in comparison to nonarchived controls as characterized by RNA pools from soils of both sites. Filtration significantly altered composition but not species richness. Archiving sieved soil at -20°C could allow for long-term and repeated experimentation on preserved physiologically active microbial communities.
Collapse
Affiliation(s)
- Marcus T Brock
- Department of Botany, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, United States
| | - Hilary G Morrison
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, 7 MBL Street, Woods Hole, MA 02543, United States
| | - Loïs Maignien
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, 7 MBL Street, Woods Hole, MA 02543, United States
- Laboratory of Microbiology of Extreme Environments, UMR 6197 - CNRS-Ifremer-UBO, Institut Universitaire Européen de la Mer (IUEM), Université de Bretagne Occidentale (UBO), Technopole Brest-Iroise, 4 rue Dumont d'Urville, 29280 Plouzané, France
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, United States
- Program in Ecology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, United States
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, United States
| |
Collapse
|
6
|
Wang H, Zhou Q. Dominant factors analyses and challenges of anaerobic digestion under cold environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119378. [PMID: 37883833 DOI: 10.1016/j.jenvman.2023.119378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023]
Abstract
With the development of fermentation technology and the improvement of efficiency, anaerobic digestion (AD) has been playing an increasingly primary role in waste treatment and resource recovery. Temperature is undoubtedly the most important factor because it shapes microbial habitats, changes the composition of the microbial community structure, and even affects the expression of related functional genes. More than half of the biosphere is in a long-term or seasonal low-temperature environment (<20 °C), which makes psychrophilic AD have broad application prospects. Therefore, this review discusses the influencing factors and enhancement strategies of psychrophilic AD, which may provide a corresponding reference for future research on low-temperature fermentation. First, the occurrence of AD has been discussed. Then, the adaptation of microorganisms to the low-temperature environment was analyzed. Moreover, the challenges of psychrophilic AD have been reviewed. Meanwhile, the strategies for improving psychrophilic AD are presented. Further, from technology to application, the current situation of psychrophilic AD in pilot-scale tests is described. Finally, the economic and environmental feasibility of psychrophilic AD has been highlighted. In summary, psychrophilic AD is technically feasible, while economic analysis shows that the output benefits cannot fully cover the input costs, and the large-scale practical application of psychrophilic AD is still in its infancy. More research should focus on how to improve fermentation efficiency and reduce the investment cost of psychrophilic AD.
Collapse
Affiliation(s)
- Hui Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
7
|
Wei Y, Wang F, Guo Z. Bio-inspired and metal-derived superwetting surfaces: Function, stability and applications. Adv Colloid Interface Sci 2023; 314:102879. [PMID: 36934513 DOI: 10.1016/j.cis.2023.102879] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Due to their exceptional anti-icing, anti-corrosion, and anti-drag qualities, biomimetic metal-derived superwetting surfaces, which are widely employed in the aerospace, automotive, electronic, and biomedical industries, have raised significant concern. However, further applications in other domains have been hampered by the poor mechanical and chemical durability of superwetting metallic surfaces, which can result in metal fatigue and corrosion. The potential for anti-corrosion, anti-contamination, anti-icing, oil/water separation, and oil transportation on surfaces with superwettability has increased in recent years due to the advancement of research in biomimetic superwetting interface theory and practice. Recent developments in functionalized biomimetic metal-derived superwetting surfaces were summarized in this paper. Firstly, a detailed presentation of biomimetic metal-derived superwetting surfaces with unique capabilities was made. The problems with the long-term mechanical and chemical stability of biomimetic metal-derived superwetting surfaces were then examined, along with potential solutions. Finally, in an effort to generate fresh concepts for the study of biomimetic metal-derived superwetting surfaces, the applications of superwetting metallic surfaces in various domains were discussed in depth. The future direction of biomimetic metal-derived superwetting surfaces was also addressed.
Collapse
Affiliation(s)
- Yuren Wei
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Fengyi Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
8
|
Delesky EA, Garcia LF, Lobo AJ, Mikofsky RA, Dowdy ND, Wallat JD, Miyake GM, Srubar WV. Bioinspired Threonine-Based Polymers with Potent Ice Recrystallization Inhibition Activity. ACS APPLIED POLYMER MATERIALS 2022; 4:7934-7942. [PMID: 36714526 PMCID: PMC9881732 DOI: 10.1021/acsapm.2c01496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ice growth mitigation is a pervasive challenge for multiple industries. In nature, ice-binding proteins (IBPs) demonstrate potent ice growth prevention through ice recrystallization inhibition (IRI). However, IBPs are expensive, difficult to produce in large quantities, and exhibit minimal resilience to nonphysiological environmental stressors, such as pH. For these reasons, researchers have turned to bioinspired polymeric materials that mimic IBP behavior. To date, however, no synthetic polymer has rivaled the ability of native IBPs to display IRI activity at ultralow nanomolar concentrations. In this work, we study the IRI activity of peptides and polypeptides inspired by common ice-binding residues of IBPs to inform the synthesis and characterization of a potent bioinspired polymer that mimics IBP behavior. We show first that the threonine polypeptide (pThr) displays the best IRI activity in phosphate-buffered saline (PBS). Second, we use pThr as a molecular model to synthesize and test a bioinspired polymer, poly(2-hydroxypropyl methacrylamide) (pHPMA). We show that pHPMA exhibits potent IRI activity in neutral PBS at ultralow concentrations (0.01 mg/mL). pHPMA demonstrates potent IRI activity at low molecular weights (2.3 kDa), with improved activity at higher molecular weights (32.8 kDa). These results substantiate that pHPMA is a robust molecule that mitigates ice crystal growth at concentrations similar to native IBPs.
Collapse
Affiliation(s)
- Elizabeth A Delesky
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309-0428, United States
| | - Luis F Garcia
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Aparna J Lobo
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0428, United States
| | - Rebecca A Mikofsky
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309-0428, United States
| | - Nicolas D Dowdy
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309-0428, United States
| | - Jaqueline D Wallat
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0428, United States
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Wil V Srubar
- Materials Science and Engineering Program and Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0428, United States
| |
Collapse
|
9
|
Suyal DC, Joshi D, Kumar S, Bhatt P, Narayan A, Giri K, Singh M, Soni R, Kumar R, Yadav A, Devi R, Kaur T, Kour D, Yadav AN. Himalayan Microbiomes for Agro-environmental Sustainability: Current Perspectives and Future Challenges. MICROBIAL ECOLOGY 2022; 84:643-675. [PMID: 34647148 DOI: 10.1007/s00248-021-01849-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The Himalayas are one of the most mystical, yet least studied terrains of the world. One of Earth's greatest multifaceted and diverse montane ecosystems is also one of the thirty-four global biodiversity hotspots of the world. These are supposed to have been uplifted about 60-70 million years ago and support, distinct environments, physiography, a variety of orogeny, and great biological diversity (plants, animals, and microbes). Microbes are the pioneer colonizer of the Himalayas that are involved in various bio-geological cycles and play various significant roles. The applications of Himalayan microbiomes inhabiting in lesser to greater Himalayas have been recognized. The researchers explored the applications of indigenous microbiomes in both agricultural and environmental sectors. In agriculture, microbiomes from Himalayan regions have been suggested as better biofertilizers and biopesticides for the crops growing at low temperature and mountainous areas as they help in the alleviation of cold stress and other biotic stresses. Along with alleviation of low temperature, Himalayan microbes also have the capability to enhance plant growth by availing the soluble form of nutrients like nitrogen, phosphorus, potassium, zinc, and iron. These microbes have been recognized for producing plant growth regulators (abscisic acid, auxin, cytokinin, ethylene, and gibberellins). These microbes have been reported for bioremediating the diverse pollutants (pesticides, heavy metals, and xenobiotics) for environmental sustainability. In the current perspectives, present review provides a detailed discussion on the ecology, biodiversity, and adaptive features of the native Himalayan microbiomes in view to achieve agro-environmental sustainability.
Collapse
Affiliation(s)
- Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Divya Joshi
- Uttarakhand Pollution Control Board, Regional Office, Kashipur, Uttarakhand, India
| | - Saurabh Kumar
- Division of Crop Research, Research Complex for Eastern Region, Patna, Bihar, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Arun Narayan
- Forest Research Institute, Dehradun, 2480 06, India
| | - Krishna Giri
- Rain Forest Research Institute, Jorhat, 785 010, India
| | - Manali Singh
- Department of Biotechnology, Invertis Institute of Engineering and Technology (IIET), Invertis University, Bareilly, 243123, Uttar Pradesh, India
| | - Ravindra Soni
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwa Vidyalaya, Raipur, Chhattisgarh, India
| | - Rakshak Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ashok Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rubee Devi
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Tanvir Kaur
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Divjot Kour
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|
10
|
Glaciers as microbial habitats: current knowledge and implication. J Microbiol 2022; 60:767-779. [DOI: 10.1007/s12275-022-2275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 10/16/2022]
|
11
|
Yu H, Zhang Q, Zhuang W. Comparative analysis of hydration layer reorientation dynamics of antifreeze protein and protein cytochrome P450. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2203038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Antifreeze proteins (AFPs) inhibit ice re-crystallization by a mechanism remaining largely elusive. Dynamics of AFPs’ hydration water and its involvement in the antifreeze activity have not been identified conclusively. We herein, by simulation and theory, examined the water reorientation dynamics in the first hydration layer of an AFP from the spruce budworm, Choristoneura fumiferana, compared with a protein cytochrome P450 (CYP). The increase of potential acceptor water molecules around donor water molecules leads to the acceleration of hydrogen bond exchange between water molecules. Therefore, the jump reorientation of water molecules around the AFP active region is accelerated. Due to the mutual coupling and excitation of hydrogen bond exchange, with the acceleration of hydrogen bond exchange, the rearrangement of the hydrogen bond network and the frame reorientation of water are accelerated. Therefore, the water reorientation dynamics of AFP is faster than that of CYP. The results of this study provide a new physical image of antifreeze protein and a new understanding of the antifreeze mechanism of antifreeze proteins.
Collapse
Affiliation(s)
- Hongfeng Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhang
- College of Chemistry and Material Sciences, Inner Mongolia Minzu University, Tongliao 028043, China
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
12
|
Delesky EA, Srubar WV. Ice-binding proteins and bioinspired synthetic mimics in non-physiological environments. iScience 2022; 25:104286. [PMID: 35573196 PMCID: PMC9097698 DOI: 10.1016/j.isci.2022.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Elizabeth A. Delesky
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Wil V. Srubar
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, ECOT 441 UCB 428, Boulder, CO 80309, USA
- Corresponding author
| |
Collapse
|
13
|
Adaptation Potential of Three Psychrotolerant Aquatic Bacteria in the Pan-Okhotsk Region. WATER 2022. [DOI: 10.3390/w14071107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Pan-Okhotsk region, which is part of the western North Pacific Ocean, is famous for its active volcanoes, which are part of the Pacific Ring of Fire and that enrich the surrounding waters with essential chemicals. Therefore, this region, including the Sea of Okhotsk and the Sea of Japan, is characterized by rich biota. Bacterioplankton plays a significant part in biological communities and is an indicator of ecosystem function. Analyzing the adaptability of three representatives of the microbiota of the Pan-Okhotsk region was the goal of our investigation. Marinomonas primoryensis KMM3633T (MP), Yersinia ruckeri KMM821 (YR), and Yersinia pseudotuberculosis 598 (YP) from the G.B. Elyakov Pacific Institute of Bioorganic Chemistry were studied by means of genomic and bioinformatic methods. The list of membrane translocator proteins, metabolism pathways, and cold shock and antifreeze proteins that were revealed in the genome of MP characterized this bacterium as being adaptable to free living in marine conditions, even at winter temperatures. The genomic potential of YR and YP makes not only survival in the environment of the Pan-Okhotsk region but also pathogenesis in eukaryotic organisms possible. The data obtained will serve as a basis for further ecosystem monitoring with the help of microbiota research.
Collapse
|
14
|
Life from a Snowflake: Diversity and Adaptation of Cold-Loving Bacteria among Ice Crystals. CRYSTALS 2022. [DOI: 10.3390/cryst12030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Incredible as it is, researchers have now the awareness that even the most extreme environment includes special habitats that host several forms of life. Cold environments cover different compartments of the cryosphere, as sea and freshwater ice, glaciers, snow, and permafrost. Although these are very particular environmental compartments in which various stressors coexist (i.e., freeze–thaw cycles, scarce water availability, irradiance conditions, and poorness of nutrients), diverse specialized microbial communities are harbored. This raises many intriguing questions, many of which are still unresolved. For instance, a challenging focus is to understand if microorganisms survive trapped frozen among ice crystals for long periods of time or if they indeed remain metabolically active. Likewise, a look at their site-specific diversity and at their putative geochemical activity is demanded, as well as at the equally interesting microbial activity at subzero temperatures. The production of special molecules such as strategy of adaptations, cryoprotectants, and ice crystal-controlling molecules is even more intriguing. This paper aims at reviewing all these aspects with the intent of providing a thorough overview of the main contributors in investigating the microbial life in the cryosphere, touching on the themes of diversity, adaptation, and metabolic potential.
Collapse
|
15
|
Kashyap P, Kumar S. Ice structuring protein extract of Hordeum vulgare var. dolma grain reduces drip loss and loss of soluble vitamin content in peas during frozen storage. Cryobiology 2022; 104:1-7. [PMID: 34826400 DOI: 10.1016/j.cryobiol.2021.11.178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 01/15/2023]
Abstract
The Himalayan plants face low temperature during their life cycle and are expected to possess antifreeze proteins. The present work describes screening of six plant species that grow in Himalayas, for their ice structuring properties with an aim to provide a vegetarian source of ice structuring proteins. The ice-structuring protein extract of barley [Hordeum vulgare; variety Dolma (HvISE)] and wheat [Triticum aestivum; variety Him Pratham DH 114 (TaISE) ]showed inhibition of growth of ice crystals during the process of recrystallization. This property was analyzed for its application in frozen peas by pretreatment with HvISE before freezing. The drip loss was measured in frozen peas after thawing. Further, the water-soluble vitamins; thiamine, pyridoxine, riboflavin, and ascorbic acid were quantified before and after freezing of green peas by UHPLC-PDA. The pretreatment with HvISE reduced the loss of ascorbic acid, riboflavin, and pyridoxine during their frozen storage. The present study identified barley as a remarkable source of ice structuring proteins and validated its potential for frozen peas. The work has enormous implications in frozen food industry, in general.
Collapse
Affiliation(s)
- Prakriti Kashyap
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.
| |
Collapse
|
16
|
Vega-Celedón P, Bravo G, Velásquez A, Cid FP, Valenzuela M, Ramírez I, Vasconez IN, Álvarez I, Jorquera MA, Seeger M. Microbial Diversity of Psychrotolerant Bacteria Isolated from Wild Flora of Andes Mountains and Patagonia of Chile towards the Selection of Plant Growth-Promoting Bacterial Consortia to Alleviate Cold Stress in Plants. Microorganisms 2021; 9:microorganisms9030538. [PMID: 33807836 PMCID: PMC7998784 DOI: 10.3390/microorganisms9030538] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 02/02/2023] Open
Abstract
Cold stress decreases the growth and productivity of agricultural crops. Psychrotolerant plant growth-promoting bacteria (PGPB) may protect and promote plant growth at low temperatures. The aims of this study were to isolate and characterize psychrotolerant PGPB from wild flora of Andes Mountains and Patagonia of Chile and to formulate PGPB consortia. Psychrotolerant strains were isolated from 11 wild plants (rhizosphere and phyllosphere) during winter of 2015. For the first time, bacteria associated with Calycera, Orites, and Chusquea plant genera were reported. More than 50% of the 130 isolates showed ≥33% bacterial cell survival at temperatures below zero. Seventy strains of Pseudomonas, Curtobacterium, Janthinobacterium, Stenotrophomonas, Serratia, Brevundimonas, Xanthomonas, Frondihabitans, Arthrobacter, Pseudarthrobacter, Paenarthrobacter, Brachybacterium, Clavibacter, Sporosarcina, Bacillus, Solibacillus, Flavobacterium, and Pedobacter genera were identified by 16S rRNA gene sequence analyses. Ten strains were selected based on psychrotolerance, auxin production, phosphate solubilization, presence of nifH (nitrogenase reductase) and acdS (1-aminocyclopropane-1-carboxylate (ACC) deaminase) genes, and anti-phytopathogenic activities. Two of the three bacterial consortia formulated promoted tomato plant growth under normal and cold stress conditions. The bacterial consortium composed of Pseudomonas sp. TmR5a & Curtobacterium sp. BmP22c that possesses ACC deaminase and ice recrystallization inhibition activities is a promising candidate for future cold stress studies.
Collapse
Affiliation(s)
- Paulina Vega-Celedón
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
- Correspondence: (P.V.-C.); (M.S.); Tel.: +56-322654685 (P.V.-C.)
| | - Guillermo Bravo
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Alexis Velásquez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Fernanda P. Cid
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile; (F.P.C.); (M.A.J.)
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile
| | - Miryam Valenzuela
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Ingrid Ramírez
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Ingrid-Nicole Vasconez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Inaudis Álvarez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Milko A. Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile; (F.P.C.); (M.A.J.)
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
- Correspondence: (P.V.-C.); (M.S.); Tel.: +56-322654685 (P.V.-C.)
| |
Collapse
|
17
|
Arai N, Fujiwara A, Wakuda M, Fujimoto T, Nambu Y, Ishii T, Matsumiya K, Matsumura Y, Kawahara H, Ogino K. Anti-freeze effect of Enoki mushroom extract on the quality preservation of frozen whipped cream. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Gruneberg AK, Graham LA, Eves R, Agrawal P, Oleschuk RD, Davies PL. Ice recrystallization inhibition activity varies with ice-binding protein type and does not correlate with thermal hysteresis. Cryobiology 2021; 99:28-39. [PMID: 33529683 DOI: 10.1016/j.cryobiol.2021.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/07/2021] [Accepted: 01/23/2021] [Indexed: 01/06/2023]
Abstract
Ice-binding proteins (IBPs) inhibit the growth of ice through surface adsorption. In some freeze-resistant fishes and insects, circulating IBPs serve as antifreeze proteins to stop ice growth by lowering the freezing point. Plants are less able to avoid freezing and some use IBPs to minimize the damage caused in the frozen state by ice recrystallization, which is the growth of large ice grains at the expense of small ones. Here we have accurately and reproducibly measured the ice recrystallization inhibition (IRI) activity of over a dozen naturally occurring IBPs from fishes, insects, plants, and microorganisms using a modified 'splat' method on serial dilutions of IBPs whose concentrations were determined by amino acid analysis. The endpoint of IRI, which was scored as the lowest protein concentration at which no recrystallization was observed, varied for the different IBPs over two orders of magnitude from 1000 nM to 5 nM. Moreover, there was no apparent correlation between their IRI levels and reported antifreeze activities. IBPs from insects and fishes had similar IRI activity, even though the insect IBPs are typically 10x more active in freezing point depression. Plant IBPs had weak antifreeze activity but were more effective at IRI. Bacterial IBPs involved in ice adhesion showed both strong freezing point depression and IRI. Two trends did emerge, including that basal plane binding IBPs correlated with stronger IRI activity and larger IBPs had higher IRI activity.
Collapse
Affiliation(s)
- Audrey K Gruneberg
- Department of Biomedical and Molecular Sciences, Queen's University. 18 Stuart Street, Kingston, Ontario, K7L3N6, Canada
| | - Laurie A Graham
- Department of Biomedical and Molecular Sciences, Queen's University. 18 Stuart Street, Kingston, Ontario, K7L3N6, Canada
| | - Robert Eves
- Department of Biomedical and Molecular Sciences, Queen's University. 18 Stuart Street, Kingston, Ontario, K7L3N6, Canada
| | - Prashant Agrawal
- Department of Chemistry, Queen's University. 90 Bader Lane, Kingston, Ontario, K7L2S8, Canada
| | - Richard D Oleschuk
- Department of Chemistry, Queen's University. 90 Bader Lane, Kingston, Ontario, K7L2S8, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University. 18 Stuart Street, Kingston, Ontario, K7L3N6, Canada.
| |
Collapse
|
19
|
Effect of pH on the activity of ice-binding protein from Marinomonas primoryensis. Extremophiles 2020; 25:1-13. [PMID: 33090301 DOI: 10.1007/s00792-020-01206-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
The ability of an ice-binding protein (IBP) from Marinomonas primoryensis (MpIBP) to influence ice crystal growth and structure in nonphysiological pH environments was investigated in this work. The ability for MpIBP to retain ice interactivity under stressed environmental conditions was determined via (1) a modified splat assay to determine ice recrystallization inhibition (IRI) of polycrystalline ice and (2) nanoliter osmometry to evaluate the ability of MpIBP to dynamically shape the morphology of a single ice crystal. Circular dichroism (CD) was used to relate the IRI and DIS activity of MpIBP to secondary structure. The results illustrate that MpIBP secondary structure was stable between pH 6 and pH 10. It was found that MpIBP did not interact with ice at pH ≤ 4 or pH ≥ 13. At 6 ≤ pH ≥ 12 MpIBP exhibited a reduction in grain size of ice crystals as compared to control solutions and demonstrated dynamic ice shaping at 6 ≤ pH ≥ 10. The results substantiate that MpIBP retains some secondary structure and function in non-neutral pH environments; thereby, enabling its potential utility in nonphysiological materials science and engineering applications.
Collapse
|
20
|
Núñez-Montero K, Quezada-Solís D, Khalil ZG, Capon RJ, Andreote FD, Barrientos L. Genomic and Metabolomic Analysis of Antarctic Bacteria Revealed Culture and Elicitation Conditions for the Production of Antimicrobial Compounds. Biomolecules 2020; 10:E673. [PMID: 32349314 PMCID: PMC7277857 DOI: 10.3390/biom10050673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023] Open
Abstract
Concern about finding new antibiotics against drug-resistant pathogens is increasing every year. Antarctic bacteria have been proposed as an unexplored source of bioactive metabolites; however, most biosynthetic gene clusters (BGCs) producing secondary metabolites remain silent under common culture conditions. Our work aimed to characterize elicitation conditions for the production of antibacterial secondary metabolites from 34 Antarctic bacterial strains based on MS/MS metabolomics and genome mining approaches. Bacterial strains were cultivated under different nutrient and elicitation conditions, including the addition of lipopolysaccharide (LPS), sodium nitroprusside (SNP), and coculture. Metabolomes were obtained by HPLC-QTOF-MS/MS and analyzed through molecular networking. Antibacterial activity was determined, and seven strains were selected for genome sequencing and analysis. Biosynthesis pathways were activated by all the elicitation treatments, which varies among strains and dependents of culture media. Increased antibacterial activity was observed for a few strains and addition of LPS was related with inhibition of Gram-negative pathogens. Antibiotic BGCs were found for all selected strains and the expressions of putative actinomycin, carotenoids, and bacillibactin were characterized by comparison of genomic and metabolomic data. This work established the use of promising new elicitors for bioprospection of Antarctic bacteria and highlights the importance of new "-omics" comparative approaches for drug discovery.
Collapse
Affiliation(s)
- Kattia Núñez-Montero
- Laboratory of Molecular Applied Biology, Center of Excellence in Translational Medicine, Universidad de La Frontera, Avenida Alemania 0458, Temuco 4810296, Chile; (K.N.-M.); (D.Q.-S.)
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Biotechnology Investigation Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Damián Quezada-Solís
- Laboratory of Molecular Applied Biology, Center of Excellence in Translational Medicine, Universidad de La Frontera, Avenida Alemania 0458, Temuco 4810296, Chile; (K.N.-M.); (D.Q.-S.)
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Fernando D. Andreote
- Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil;
| | - Leticia Barrientos
- Laboratory of Molecular Applied Biology, Center of Excellence in Translational Medicine, Universidad de La Frontera, Avenida Alemania 0458, Temuco 4810296, Chile; (K.N.-M.); (D.Q.-S.)
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
21
|
Xiang H, Yang X, Ke L, Hu Y. The properties, biotechnologies, and applications of antifreeze proteins. Int J Biol Macromol 2020; 153:661-675. [PMID: 32156540 DOI: 10.1016/j.ijbiomac.2020.03.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/30/2023]
Abstract
By natural selection, organisms evolve different solutions to cope with extremely cold weather. The emergence of an antifreeze protein gene is one of the most momentous solutions. Antifreeze proteins possess an importantly functional ability for organisms to survive in cold environments and are widely found in various cold-tolerant species. In this review, we summarize the origin of antifreeze proteins, describe the diversity of their species-specific properties and functions, and highlight the related biotechnology on the basis of both laboratory tests and bioinformatics analysis. The most recent advances in the applications of antifreeze proteins are also discussed. We expect that this systematic review will contribute to the comprehensive knowledge of antifreeze proteins to readers.
Collapse
Affiliation(s)
- Hong Xiang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology
| | - Xiaohu Yang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology
| | - Lei Ke
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology
| | - Yong Hu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology.
| |
Collapse
|
22
|
Ice Binding Proteins: Diverse Biological Roles and Applications in Different Types of Industry. Biomolecules 2020; 10:biom10020274. [PMID: 32053888 PMCID: PMC7072191 DOI: 10.3390/biom10020274] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
More than 80% of Earth’s surface is exposed periodically or continuously to temperatures below 5 °C. Organisms that can live in these areas are called psychrophilic or psychrotolerant. They have evolved many adaptations that allow them to survive low temperatures. One of the most interesting modifications is production of specific substances that prevent living organisms from freezing. Psychrophiles can synthesize special peptides and proteins that modulate the growth of ice crystals and are generally called ice binding proteins (IBPs). Among them, antifreeze proteins (AFPs) inhibit the formation of large ice grains inside the cells that may damage cellular organelles or cause cell death. AFPs, with their unique properties of thermal hysteresis (TH) and ice recrystallization inhibition (IRI), have become one of the promising tools in industrial applications like cryobiology, food storage, and others. Attention of the industry was also caught by another group of IBPs exhibiting a different activity—ice-nucleating proteins (INPs). This review summarizes the current state of art and possible utilizations of the large group of IBPs.
Collapse
|
23
|
Ali P, Shah AA, Hasan F, Hertkorn N, Gonsior M, Sajjad W, Chen F. A Glacier Bacterium Produces High Yield of Cryoprotective Exopolysaccharide. Front Microbiol 2020; 10:3096. [PMID: 32117080 PMCID: PMC7026135 DOI: 10.3389/fmicb.2019.03096] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas sp. BGI-2 is a psychrotrophic bacterium isolated from the ice sample collected from Batura glacier, Pakistan. This strain produces highly viscous colonies on agar media supplemented with glucose. In this study, we have optimized growth and production of exopolysaccharide (EPS) by the cold-adapted Pseudomonas sp. BGI-2 using different nutritional and environmental conditions. Pseudomonas sp. BGI-2 is able to grow in a wide range of temperatures (4-35°C), pH (5-11), and salt concentrations (1-5%). Carbon utilization for growth and EPS production was extensively studied and we found that glucose, galactose, mannose, mannitol, and glycerol are the preferable carbon sources. The strain is also able to use sugar waste molasses as a growth substrate, an alternative for the relatively expensive sugars for large scale EPS production. Maximum EPS production was observed at 15°C, pH 6, NaCl (10 g L-1), glucose as carbon source (100 g L-1), yeast extract as nitrogen source (10 g L-1), and glucose/yeast extract ratio (10/1). Under optimized conditions, EPS production was 2.01 g L-1, which is relatively high for a Pseudomonas species compared to previous studies using the same method for quantification. High-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) analysis of EPS revealed glucose, galactose, and glucosamine as the main sugar monomers. Membrane protection assay using human RBCs revealed significant reduction in cell lysis (∼50%) in the presence of EPS, suggesting its role in membrane protection. The EPS (5%) also conferred significant cryoprotection for a mesophilic Escherichia coli k12 which was comparable to glycerol (20%). Also, improvement in lipid peroxidation inhibition (in vitro) resulted when lipids from the E. coli was pretreated with EPS. Increased EPS production at low temperatures, freeze thaw tolerance of the EPS producing strain, and increased survivability of E. coli in the presence of EPS as cryoprotective agent supports the hypothesis that EPS production is a strategy for survival in extremely cold environments such as the glacier ice.
Collapse
Affiliation(s)
- Pervaiz Ali
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Ali Shah
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fariha Hasan
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Norbert Hertkorn
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München, Munich, Germany
| | - Michael Gonsior
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| |
Collapse
|
24
|
Das KR, Tiwari AK, Kerkar S. Psychrotolerant Antarctic bacteria biosynthesize gold nanoparticles active against sulphate reducing bacteria. Prep Biochem Biotechnol 2019; 50:438-444. [PMID: 31876438 DOI: 10.1080/10826068.2019.1706559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study evaluates the biosynthesis of gold nanoparticle (GNP) using Antarctic bacteria and assesses its potential antibacterial activity on sulfate-reducing bacteria (SRB). The GNPs were biosynthesized at distinct temperatures (4°, 10°, 25°, 30° and 37° C) using bacterial isolate GL1.3, obtained from Antarctic lake water. Biochemical and phylogenetic analysis concluded that the isolate GL1.3 belongs to Bacillus sp. The GNP biosynthesis was achieved at all the incubation temperatures (4°, 10°, 25°, 30° and 37° C) only during the log phase of growth. These formed nanoparticles were identified by UV-Visible spectroscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray diffraction (XRD) to be of size 30-50 nm. These GNPs exhibited antibacterial activity against SRB (Desulfovibrio sp.) evaluated by broth micro-dilution method. At 200 µg mL-1 GNP concentrations, being the minimal inhibitory concentration (MIC), the growth rate and sulfate reducing activity of Desulfovibrio sp. were reduced by 12% and 7% respectively. Comet assay revealed that the genotoxic effect of GNP on SRB is responsible for the inhibition of its growth and sulfide production. This showed that the Antarctic microbes could be useful for GNP synthesis even under psychrophilic conditions for various biomedical applications.
Collapse
Affiliation(s)
- Kirti Ranjan Das
- Polar Environment Division, National Centre for Polar and Ocean Research, Vasco da Gama, India.,Department of Biotechnology, Goa University, Taleigao Plateau, India
| | - Anoop Kumar Tiwari
- Polar Environment Division, National Centre for Polar and Ocean Research, Vasco da Gama, India
| | - Savita Kerkar
- Department of Biotechnology, Goa University, Taleigao Plateau, India
| |
Collapse
|
25
|
Xia JM, Hu XM, Huang CH, Yu LB, Xu RF, Tang XX, Lin DH. Metabolic profiling of cold adaptation of a deep-sea psychrotolerant Microbacterium sediminis to prolonged low temperature under high hydrostatic pressure. Appl Microbiol Biotechnol 2019; 104:277-289. [PMID: 31728583 DOI: 10.1007/s00253-019-10134-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 09/08/2019] [Indexed: 12/01/2022]
Abstract
The most wide-spread "hostile" environmental factor for marine microorganisms is low temperature, which is usually accompanied by high hydrostatic pressure (HHP). Metabolic mechanisms of marine microorganisms adapting to prolonged low temperature under HHP remain to be clarified. To reveal the underlying metabolic mechanisms, we performed NMR-based metabolomic analysis of aqueous extracts derived from a psychrotolerant Microbacterium sediminis YLB-01, which was isolated from deep-sea sediment and possess great biotechnology potentials. The YLB-01 cells were firstly cultivated at the optimal condition (28 °C, 0.1 MPa) for either 18 h (logarithmic phase) or 24 h (stationary phase), then continually cultivated at either 28 °C or 4 °C under HHP (30 MPa) for 7 days. The cells cultivated at low temperature, which experienced cold stress, were distinctly distinguished from those at normal temperature. Cold stress primarily induced metabolic changes in amino acid metabolism and carbohydrate metabolism. Furthermore, the logarithmic and stationary phase cells cultivated at low temperature exhibited distinct metabolic discrimination, which was mostly reflected in the significantly disturbed carbohydrate metabolism. The logarithmic phase cells displayed suppressed TCA cycle, while the stationary phase cells showed decreased pyruvate and increased lactate. In addition, we performed transcriptome analysis for the stationary phase cells to support the metabolomic analysis. Our results suggest that the cold adaptation of the psychrotroph YLB-01 is closely associated with profoundly altered amino acid metabolism and carbohydrate metabolism. Our work provides a mechanistic understanding of the metabolic adaptation of marine psychrotrophs to prolonged low temperature under HHP.
Collapse
Affiliation(s)
- Jin-Mei Xia
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Xiao-Min Hu
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Cai-Hua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, 361024, China
| | - Li-Bo Yu
- China Ocean Sample Respository (Biology), 184 Daxue Road, Xiamen, 361005, China
| | - Ru-Fang Xu
- China Ocean Sample Respository (Biology), 184 Daxue Road, Xiamen, 361005, China
| | - Xi-Xiang Tang
- China Ocean Sample Respository (Biology), 184 Daxue Road, Xiamen, 361005, China.
| | - Dong-Hai Lin
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
26
|
Kim EJ, Kim JE, Hwang JS, Kim IC, Lee SG, Kim S, Lee JH, Han SJ. Increased Productivity and Antifreeze Activity of Ice-binding Protein from Flavobacterium frigoris PS1 Produced using Escherichia coli as Bioreactor. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819050077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Valdespino-Castillo PM, Cerqueda-García D, Espinosa AC, Batista S, Merino-Ibarra M, Taş N, Alcántara-Hernández RJ, Falcón LI. Microbial distribution and turnover in Antarctic microbial mats highlight the relevance of heterotrophic bacteria in low-nutrient environments. FEMS Microbiol Ecol 2019; 94:5047302. [PMID: 29982398 DOI: 10.1093/femsec/fiy129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/04/2018] [Indexed: 11/14/2022] Open
Abstract
Maritime Antarctica has shown the highest increase in temperature in the Southern Hemisphere. Under this scenario, biogeochemical cycles may be altered, resulting in rapid environmental change for Antarctic biota. Microbes that drive biogeochemical cycles often form biofilms or microbial mats in continental meltwater environments. Limnetic microbial mats from the Fildes Peninsula were studied using high-throughput 16S rRNA gene sequencing. Mat samples were collected from 15 meltwater stream sites, comprising a natural gradient from ultraoligotrophic glacier flows to meltwater streams exposed to anthropogenic activities. Our analyses show that microbial community structure differences between mats are explained by environmental NH4+, NO3-, DIN, soluble reactive silicon and conductivity. Microbial mats living under ultraoligotrophic meltwater conditions did not exhibit a dominance of cyanobacterial photoautotrophs, as has been documented for other Antarctic limnetic microbial mats. Instead, ultraoligotrophic mat communities were characterized by the presence of microbes recognized as heterotrophs and photoheterotrophs. This suggests that microbial capabilities for recycling organic matter may be a key factor to dwell in ultra-low nutrient conditions. Our analyses show that phylotype level assemblages exhibit coupled distribution patterns in environmental oligotrophic inland waters. The evaluation of these microbes suggests the relevance of reproductive and structural strategies to pioneer these psychrophilic ultraoligotrophic environments.
Collapse
Affiliation(s)
| | - Daniel Cerqueda-García
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Ana Cecilia Espinosa
- LANCIS, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Silvia Batista
- Unidad de Microbiología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, 11600, Uruguay
| | - Martín Merino-Ibarra
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Neslihan Taş
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | | | - Luisa I Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| |
Collapse
|
28
|
|
29
|
Tissue Transparency In Vivo. Molecules 2019; 24:molecules24132388. [PMID: 31261621 PMCID: PMC6651221 DOI: 10.3390/molecules24132388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
In vivo tissue transparency in the visible light spectrum is beneficial for many research applications that use optical methods, whether it involves in vivo optical imaging of cells or their activity, or optical intervention to affect cells or their activity deep inside tissues, such as brain tissue. The classical view is that a tissue is transparent if it neither absorbs nor scatters light, and thus absorption and scattering are the key elements to be controlled to reach the necessary transparency. This review focuses on the latest genetic and chemical approaches for the decoloration of tissue pigments to reduce visible light absorption and the methods to reduce scattering in live tissues. We also discuss the possible molecules involved in transparency.
Collapse
|
30
|
Chakraborty S, Jana B. Calcium ion implicitly modulates the adsorption ability of ion-dependent type II antifreeze proteins on an ice/water interface: a structural insight. Metallomics 2019; 11:1387-1400. [DOI: 10.1039/c9mt00100j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ca2+modulates the dynamics of ion-dependent type II AFP to efficiently adsorb on ice surface with high degree of specificity.
Collapse
Affiliation(s)
- Sandipan Chakraborty
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Jadavpur
- Kolkata-700032
- India
| | - Biman Jana
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Jadavpur
- Kolkata-700032
- India
| |
Collapse
|
31
|
Malard LA, Pearce DA. Microbial diversity and biogeography in Arctic soils. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:611-625. [PMID: 30028082 DOI: 10.1111/1758-2229.12680] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Microorganisms dominate terrestrial environments in the polar regions and Arctic soils are known to harbour significant microbial diversity, far more diverse and numerous in the region than was once thought. Furthermore, the geographic distribution and structure of Arctic microbial communities remains elusive, despite their important roles in both biogeochemical cycling and in the generation and decomposition of climate active gases. Critically, Arctic soils are estimated to store over 1500 Pg of carbon and, thus, have the potential to generate positive feedback within the climate system. As the Arctic region is currently undergoing rapid change, the likelihood of faster release of greenhouse gases such as CO2 , CH4 and N2 O is increasing. Understanding the microbial communities in the region, in terms of their diversity, abundance and functional activity, is key to producing accurate models of greenhouse gas release. This review brings together existing data to determine what we know about microbial diversity and biogeography in Arctic soils.
Collapse
Affiliation(s)
- Lucie A Malard
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK
| | - David A Pearce
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK
| |
Collapse
|
32
|
Kramshøj M, Albers CN, Holst T, Holzinger R, Elberling B, Rinnan R. Biogenic volatile release from permafrost thaw is determined by the soil microbial sink. Nat Commun 2018; 9:3412. [PMID: 30143640 PMCID: PMC6109083 DOI: 10.1038/s41467-018-05824-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/26/2018] [Indexed: 11/09/2022] Open
Abstract
Warming in the Arctic accelerates thawing of permafrost-affected soils, which leads to a release of greenhouse gases to the atmosphere. We do not know whether permafrost thaw also releases non-methane volatile organic compounds that can contribute to both negative and positive radiative forcing on climate. Here we show using proton transfer reaction-time of flight-mass spectrometry that substantial amounts of ethanol and methanol and in total 316 organic ions were released from Greenlandic permafrost soils upon thaw in laboratory incubations. We demonstrate that the majority of this release is taken up in the active layer above. In an experiment using 14C-labeled ethanol and methanol, we demonstrate that these compounds are consumed by microorganisms. Our findings highlight that the thawing permafrost soils are not only a considerable source of volatile organic compounds but also that the active layer regulates their release into the atmosphere.
Collapse
Affiliation(s)
- Magnus Kramshøj
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.,Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| | - Christian N Albers
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark.,Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| | - Thomas Holst
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.,Department of Physical Geography & Ecosystem Science, Lund University, Sölvegatan 12, S-22362, Lund, Sweden
| | - Rupert Holzinger
- Institute for Marine and Atmospheric Research (IMAU), Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Bo Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark. .,Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark.
| |
Collapse
|
33
|
Falling water ice affinity purification of ice-binding proteins. Sci Rep 2018; 8:11046. [PMID: 30038212 PMCID: PMC6056459 DOI: 10.1038/s41598-018-29312-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/10/2018] [Indexed: 12/04/2022] Open
Abstract
Ice-binding proteins (IBPs) permit their hosts to thrive in the presence of ice. The ability of IBPs to control ice growth makes them potential additives in industries ranging from food storage and cryopreservation to anti-icing systems. For IBPs to be used in commercial applications, however, methods are needed to produce sufficient quantities of high-quality proteins. Here, we describe a new method for IBP purification, termed falling water ice affinity purification (FWIP). The method is based on the affinity of IBPs for ice and does not require molecular tags. A crude IBP solution is allowed to flow over a chilled vertical surface of a commercial ice machine. The temperature of the surface is lowered gradually until ice crystals are produced, to which the IBPs bind but other solutes do not. We found that a maximum of 35 mg of IBP was incorporated in 1 kg of ice. Two rounds of FWIP resulted in >95% purity. An ice machine that produces 60 kg of ice per day can be used to purify one gram of IBP per day. In combination with efficient concentration of the protein solution by tangential flow filtration the FWIP method is suitable for the purification of grams of IBPs for research purposes and applications.
Collapse
|
34
|
Villarreal P, Carrasco M, Barahona S, Alcaíno J, Cifuentes V, Baeza M. Antarctic yeasts: analysis of their freeze-thaw tolerance and production of antifreeze proteins, fatty acids and ergosterol. BMC Microbiol 2018; 18:66. [PMID: 29976143 PMCID: PMC6034288 DOI: 10.1186/s12866-018-1214-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microorganisms have evolved a number of mechanisms to thrive in cold environments, including the production of antifreeze proteins, high levels of polyunsaturated fatty acids, and ergosterol. In this work, several yeast species isolated from Antarctica were analyzed with respect to their freeze-thaw tolerance and production of the three abovementioned compounds, which may also have economic importance. RESULTS The freeze-thaw tolerance of yeasts was widely variable among species, and a clear correlation with the production of any of the abovementioned compounds was not observed. Antifreeze proteins that were partially purified from Goffeauzyma gastrica maintained their antifreeze activities after several freeze-thaw cycles. A relatively high volumetric production of ergosterol was observed in the yeasts Vishniacozyma victoriae, G. gastrica and Leucosporidium creatinivorum, i.e., 19, 19 and 16 mg l- 1, respectively. In addition, a high percentage of linoleic acid with respect to total fatty acids was observed in V. victoriae (10%), Wickerhamomyces anomalus (12%) and G. gastrica (13%), and a high percentage of alpha linoleic acid was observed in L. creatinivorum (3.3%). CONCLUSIONS Given these results, the abovementioned yeasts are good candidates to be evaluated for use in the production of antifreeze proteins, fatty acids, and ergosterol at the industrial scale.
Collapse
Affiliation(s)
- Pablo Villarreal
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mario Carrasco
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
35
|
Bredow M, Tomalty HE, Smith L, Walker VK. Ice and anti-nucleating activities of an ice-binding protein from the annual grass, Brachypodium distachyon. PLANT, CELL & ENVIRONMENT 2018; 41:983-992. [PMID: 28035668 DOI: 10.1111/pce.12889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 05/15/2023]
Abstract
Plants exposed to sub-zero temperatures face unique challenges that threaten their survival. The growth of ice crystals in the extracellular space can cause cellular dehydration, plasma membrane rupture and eventual cell death. Additionally, some pathogenic bacteria cause tissue damage by initiating ice crystal growth at high sub-zero temperatures through the use of ice-nucleating proteins (INPs), presumably to access nutrients from lysed cells. An annual species of brome grass, Brachypodium distachyon (Bd), produces an ice-binding protein (IBP) that shapes ice with a modest depression of the freezing point (~0.1 °C at 1 mg/mL), but high ice-recrystallization inhibition (IRI) activity, allowing ice crystals to remain small at near melting temperatures. This IBP, known as BdIRI, is unlike other characterized IBPs with a single ice-binding face, as mutational analysis indicates that BdIRI adsorbs to ice on two faces. BdIRI also dramatically attenuates the nucleation of ice by bacterial INPs (up to -2.26 °C). This 'anti-nucleating' activity is significantly higher than previously documented for any IBP.
Collapse
Affiliation(s)
- Melissa Bredow
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Heather E Tomalty
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Lindsay Smith
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Virginia K Walker
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, and School of Environmental Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
36
|
Graham LA, Agrawal P, Oleschuk RD, Davies PL. High-capacity ice-recrystallization endpoint assay employing superhydrophobic coatings that is equivalent to the ‘splat’ assay. Cryobiology 2018; 81:138-144. [DOI: 10.1016/j.cryobiol.2018.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 02/06/2023]
|
37
|
Midya US, Bandyopadhyay S. Operation of Kelvin Effect in the Activities of an Antifreeze Protein: A Molecular Dynamics Simulation Study. J Phys Chem B 2018; 122:3079-3087. [PMID: 29488381 DOI: 10.1021/acs.jpcb.8b00846] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ice growth and melting inhibition activities of antifreeze proteins (AFPs) are better explained by the adsorption-inhibition mechanism. Inhibition occurs as a result of the Kelvin effect induced by adsorbed protein molecules onto the surface of seed ice crystal. However, the Kelvin effect has not been explored by the state-of-the-art experimental techniques. In this work, atomistic molecular dynamics simulations have been carried out with Tenebrio molitor antifreeze protein ( TmAFP) placed at ice-water interface to probe the Kelvin effect in the mechanism of AFPs. Simulations show that, below equilibrium melting temperature, ice growth is inhibited through the convex ice-water interface formation toward the water phase and, above equilibrium melting temperature, ice melting is inhibited through the concave ice-water interface formation inward to ice phase. Simulations further reveal that the radius of curvature of the interface formed to stop the ice growth increases with decrease in the degree of supercooling. Our results are in qualitative agreement with the theoretical prediction of the Kelvin effect and thus reveal its operation in the activities of AFPs.
Collapse
Affiliation(s)
- Uday Sankar Midya
- Molecular Modeling Laboratory, Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , India
| |
Collapse
|
38
|
Tu TH, Chen YT, Shen JY, Lin TC, Chou PT. Excited-State Proton Transfer in 3-Cyano-7-azaindole: From Aqueous Solution to Ice. J Phys Chem A 2018; 122:2479-2484. [DOI: 10.1021/acs.jpca.8b00379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ting-Husn Tu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Ting Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jiun-Yi Shen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ta-Chun Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
39
|
Zhang Y, Liu K, Li K, Gutowski V, Yin Y, Wang J. Fabrication of Anti-Icing Surfaces by Short α-Helical Peptides. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1957-1962. [PMID: 29276886 DOI: 10.1021/acsami.7b13130] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We designed 12-amino acid peptides as antifreeze protein (AFP) mimetics and tuned the antifreeze activity of the peptides by their structures. Moreover, these short peptides were first immobilized to surfaces as an anti-icing coating. We discovered that the peptides with higher antifreeze activity exhibited better anti-icing performance. It is the first time that short peptides were successfully applied to fabricate anti-icing surfaces, which is certainly advantageous in comparison to the AFP anti-icing coatings previously reported.
Collapse
Affiliation(s)
- Yifan Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Kai Liu
- Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Kaiyong Li
- Luoyang Institute of Science and Technology , Henan 471023, P. R. China
| | - Voytek Gutowski
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Yuan Yin
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Jianjun Wang
- Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
40
|
Introduction. Biomimetics (Basel) 2018. [DOI: 10.1007/978-3-319-71676-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
41
|
Bashenkhaeva MV, Zakharova YR. Cultivated bacteria from the sub-ice algae-bacterial communities of Lake Baikal. ACTA BIOLOGICA SIBIRICA 2017. [DOI: 10.14258/abs.v3i3.3619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
42
|
Balance between hydration enthalpy and entropy is important for ice binding surfaces in Antifreeze Proteins. Sci Rep 2017; 7:11901. [PMID: 28928396 PMCID: PMC5605524 DOI: 10.1038/s41598-017-11982-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/29/2017] [Indexed: 11/21/2022] Open
Abstract
Antifreeze Proteins (AFPs) inhibit the growth of an ice crystal by binding to it. The detailed binding mechanism is, however, still not fully understood. We investigated three AFPs using Molecular Dynamics simulations in combination with Grid Inhomogeneous Solvation Theory, exploring their hydration thermodynamics. The observed enthalpic and entropic differences between the ice-binding sites and the inactive surface reveal key properties essential for proteins in order to bind ice: While entropic contributions are similar for all sites, the enthalpic gain for all ice-binding sites is lower than for the rest of the protein surface. In contrast to most of the recently published studies, our analyses show that enthalpic interactions are as important as an ice-like pre-ordering. Based on these observations, we propose a new, thermodynamically more refined mechanism of the ice recognition process showing that the appropriate balance between entropy and enthalpy facilitates ice-binding of proteins. Especially, high enthalpic interactions between the protein surface and water can hinder the ice-binding activity.
Collapse
|
43
|
Muñoz PA, Márquez SL, González-Nilo FD, Márquez-Miranda V, Blamey JM. Structure and application of antifreeze proteins from Antarctic bacteria. Microb Cell Fact 2017; 16:138. [PMID: 28784139 PMCID: PMC5547475 DOI: 10.1186/s12934-017-0737-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/10/2017] [Indexed: 11/10/2022] Open
Abstract
Background Antifreeze proteins (AFPs) production is a survival strategy of psychrophiles in ice. These proteins have potential in frozen food industry avoiding the damage in the structure of animal or vegetal foods. Moreover, there is not much information regarding the interaction of Antarctic bacterial AFPs with ice, and new determinations are needed to understand the behaviour of these proteins at the water/ice interface. Results Different Antarctic places were screened for antifreeze activity and microorganisms were selected for the presence of thermal hysteresis in their crude extracts. Isolates GU1.7.1, GU3.1.1, and AFP5.1 showed higher thermal hysteresis and were characterized using a polyphasic approach. Studies using cucumber and zucchini samples showed cellular protection when samples were treated with partially purified AFPs or a commercial AFP as was determined using toluidine blue O and neutral red staining. Additionally, genome analysis of these isolates revealed the presence of genes that encode for putative AFPs. Deduced amino acids sequences from GU3.1.1 (gu3A and gu3B) and AFP5.1 (afp5A) showed high similarity to reported AFPs which crystal structures are solved, allowing then generating homology models. Modelled proteins showed a triangular prism form similar to β-helix AFPs with a linear distribution of threonine residues at one side of the prism that could correspond to the putative ice binding side. The statistically best models were used to build a protein-water system. Molecular dynamics simulations were then performed to compare the antifreezing behaviour of these AFPs at the ice/water interface. Docking and molecular dynamics simulations revealed that gu3B could have the most efficient antifreezing behavior, but gu3A could have a higher affinity for ice. Conclusions AFPs from Antarctic microorganisms GU1.7.1, GU3.1.1 and AFP5.1 protect cellular structures of frozen food showing a potential for frozen food industry. Modeled proteins possess a β-helix structure, and molecular docking analysis revealed the AFP gu3B could be the most efficient AFPs in order to avoid the formation of ice crystals, even when gu3A has a higher affinity for ice. By determining the interaction of AFPs at the ice/water interface, it will be possible to understand the process of adaptation of psychrophilic bacteria to Antarctic ice. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0737-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricio A Muñoz
- Fundación Científica y Cultural Biociencia, José Domingo Cañas, 2280, Ñuñoa, Santiago, Chile.
| | - Sebastián L Márquez
- Fundación Científica y Cultural Biociencia, José Domingo Cañas, 2280, Ñuñoa, Santiago, Chile.,Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago, Chile
| | - Fernando D González-Nilo
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias Biológicas, Universidad Andres Bello, Avenida Republica 239, Santiago, Chile
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias Biológicas, Universidad Andres Bello, Avenida Republica 239, Santiago, Chile
| | - Jenny M Blamey
- Fundación Científica y Cultural Biociencia, José Domingo Cañas, 2280, Ñuñoa, Santiago, Chile. .,Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago, Chile.
| |
Collapse
|
44
|
Pankowski JA. Use of essential gene, encoding prophobilinogen deaminase from extreme psychrophilic Colwellia sp. C1, to generate temperature-sensitive strain of Francisella novicida. Lett Appl Microbiol 2017; 63:124-30. [PMID: 27248501 DOI: 10.1111/lam.12598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 11/28/2022]
Abstract
UNLABELLED Previously, several essential genes from psychrophilic bacteria have been substituted for their homologues in mesophilic bacterial pathogens to make the latter temperature sensitive. It has been noted that an essential ligA gene from an extreme psychrophile, Colwellia sp. C1, yielded a gene product that is inactivated at 27°C, the lowest that has been observed for any psychrophilic enzyme, and hypothesized that other essential proteins of that strain would also have low inactivation temperatures. This work describes the partial sequencing of the genome of Colwellia sp. C1 strain and the identification of 24 open reading frames encoding homologues of highly conserved bacterial essential genes. The gene encoding porphobilinogen deaminase (hemC), which is involved in the pathway of haem synthesis, has been tested for its ability to convert Francisella novicida into a temperature-sensitive strain. The hybrid strain carrying the C1-derived hemC gene exhibited a temperature-sensitive phenotype with a restrictive temperature of 36°C. These results support the conclusion that Colwellia sp. C1 is a rich source of heat-labile enzymes. SIGNIFICANCE AND IMPACT OF THE STUDY The issue of biosafety is often raised when it comes to work with pathogenic organisms. The main concern is caused by the risk of researchers being exposed to infectious doses of dangerous microbes. This paper analyses essential genes identified in partial genomic sequence of the psychrophilic bacterium Collwelia sp. C1. These sequences can be used as a mean of generating temperature-sensitive strains of pathogenic bacteria. Such strains are incapable of surviving at the temperature of human body. This means they could be applied as vaccines or for safer work with dangerous organisms.
Collapse
Affiliation(s)
- J A Pankowski
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
45
|
Bredow M, Tomalty HE, Walker VK. Identification of Plant Ice-binding Proteins Through Assessment of Ice-recrystallization Inhibition and Isolation Using Ice-affinity Purification. J Vis Exp 2017. [PMID: 28518108 DOI: 10.3791/55302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Ice-binding proteins (IBPs) belong to a family of stress-induced proteins that are synthesized by certain organisms exposed to subzero temperatures. In plants, freeze damage occurs when extracellular ice crystals grow, resulting in the rupture of plasma membranes and possible cell death. Adsorption of IBPs to ice crystals restricts further growth by a process known as ice-recrystallization inhibition (IRI), thereby reducing cellular damage. IBPs also demonstrate the ability to depress the freezing point of a solution below the equilibrium melting point, a property known as thermal hysteresis (TH) activity. These protective properties have raised interest in the identification of novel IBPs due to their potential use in industrial, medical and agricultural applications. This paper describes the identification of plant IBPs through 1) the induction and extraction of IBPs in plant tissue, 2) the screening of extracts for IRI activity, and 3) the isolation and purification of IBPs. Following the induction of IBPs by low temperature exposure, extracts are tested for IRI activity using a 'splat assay', which allows the observation of ice crystal growth using a standard light microscope. This assay requires a low protein concentration and generates results that are quickly obtained and easily interpreted, providing an initial screen for ice binding activity. IBPs can then be isolated from contaminating proteins by utilizing the property of IBPs to adsorb to ice, through a technique called 'ice-affinity purification'. Using cell lysates collected from plant extracts, an ice hemisphere can be slowly grown on a brass probe. This incorporates IBPs into the crystalline structure of the polycrystalline ice. Requiring no a priori biochemical or structural knowledge of the IBP, this method allows for recovery of active protein. Ice-purified protein fractions can be used for downstream applications including the identification of peptide sequences by mass spectrometry and the biochemical analysis of native proteins.
Collapse
Affiliation(s)
| | | | - Virginia K Walker
- Department of Biology, Queen's University; Department of Biomedical and Molecular Sciences, Queen's University; School of Environmental Sciences, Queen's University
| |
Collapse
|
46
|
Kim HJ, Lee JH, Hur YB, Lee CW, Park SH, Koo BW. Marine Antifreeze Proteins: Structure, Function, and Application to Cryopreservation as a Potential Cryoprotectant. Mar Drugs 2017; 15:md15020027. [PMID: 28134801 PMCID: PMC5334608 DOI: 10.3390/md15020027] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/20/2017] [Indexed: 11/16/2022] Open
Abstract
Antifreeze proteins (AFPs) are biological antifreezes with unique properties, including thermal hysteresis(TH),ice recrystallization inhibition(IRI),and interaction with membranes and/or membrane proteins. These properties have been utilized in the preservation of biological samples at low temperatures. Here, we review the structure and function of marine-derived AFPs, including moderately active fish AFPs and hyperactive polar AFPs. We also survey previous and current reports of cryopreservation using AFPs. Cryopreserved biological samples are relatively diverse ranging from diatoms and reproductive cells to embryos and organs. Cryopreserved biological samples mainly originate from mammals. Most cryopreservation trials using marine-derived AFPs have demonstrated that addition of AFPs can improve post-thaw viability regardless of freezing method (slow-freezing or vitrification), storage temperature, and types of biological sample type.
Collapse
Affiliation(s)
- Hak Jun Kim
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
| | - Young Baek Hur
- Tidal Flat Research Institute, National Fisheries Research and Development Institute, Gunsan, Jeonbuk 54014, Korea.
| | - Chang Woo Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
| | - Sun-Ha Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
| | - Bon-Won Koo
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
47
|
Nguyen H, Le L. Investigation of changes in structure and thermodynamic of spruce budworm antifreeze protein under subfreezing temperature. Sci Rep 2017; 7:40032. [PMID: 28106056 PMCID: PMC5247755 DOI: 10.1038/srep40032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/30/2016] [Indexed: 11/29/2022] Open
Abstract
The aim of this theoretical work is to investigate of the changes in structure and thermodynamics of spruce budworm antifreeze protein (sbAFP) at low temperatures by using molecular dynamics simulation. The aqueous solution will form ice crystal network under the vaguely hexagonal shape at low temperature and fully represented the characteristics of hydrophobic interaction. Like ice crystal network, the cyclohexane region (including cyclohexane molecules) have enough of the characteristics of hydrophobic interaction. Therefore, in this research the cyclohexane region will be used as a representation of ice crystal network to investigate the interactions of sbAFP and ice crystal network at low temperature. The activity of sbAFP in subfreezing environment, therefore, can be clearly observed via the changes of the hydrophobic (cyclohexane region) and hydrophilic (water region) interactions. The obtained results from total energies, hydrogen bond lifetime correlation C(t), radial distribution function, mean square deviation and snapshots of sbAFP complexes indicated that sbAFP has some special changes in structure and interaction with water and cyclohexane regions at 278 K, as being transition temperature point of water molecules in sbAFP complex at low temperatures, which is more structured and support the experimental observation that the sbAFP complex becomes more rigid as the temperature is lowered.
Collapse
Affiliation(s)
- Hung Nguyen
- Open Lab, Institute for Computational Sciences and Technology at Ho Chi Minh City, Vietnam
| | - Ly Le
- Open Lab, Institute for Computational Sciences and Technology at Ho Chi Minh City, Vietnam.,School of Biotechnology, International University, Vietnam National University at Ho Chi Minh, Vietnam
| |
Collapse
|
48
|
Ando Y, Nei D, Kono S, Nabetani H. Current State and Future Issues of Technology Development Concerned with Freezing and Thawing of Foods. J JPN SOC FOOD SCI 2017. [DOI: 10.3136/nskkk.64.391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | - Shinji Kono
- Research and Development Center, Mayekawa Mfg. Co., Ltd
| | | |
Collapse
|
49
|
Bredow M, Vanderbeld B, Walker VK. Ice-binding proteins confer freezing tolerance in transgenic Arabidopsis thaliana. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:68-81. [PMID: 27317906 PMCID: PMC5253476 DOI: 10.1111/pbi.12592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 05/07/2023]
Abstract
Lolium perenne is a freeze-tolerant perennial ryegrass capable of withstanding temperatures below -13 °C. Ice-binding proteins (IBPs) presumably help prevent damage associated with freezing by restricting the growth of ice crystals in the apoplast. We have investigated the expression, localization and in planta freezing protection capabilities of two L. perenne IBP isoforms, LpIRI2 and LpIRI3, as well as a processed IBP (LpAFP). One of these isoforms, LpIRI2, lacks a conventional signal peptide and was assumed to be a pseudogene. Nevertheless, both LpIRI2 and LpIRI3 transcripts were up-regulated following cold acclimation. LpIRI2 also demonstrated ice-binding activity when produced recombinantly in Escherichia coli. Both the LpIRI3 and LpIRI2 isoforms appeared to accumulate in the apoplast of transgenic Arabidopsis thaliana plants. In contrast, the fully processed isoform, LpAFP, remained intracellular. Transgenic plants expressing either LpIRI2 or LpIRI3 showed reduced ion leakage (12%-39%) after low-temperature treatments, and significantly improved freezing survival, while transgenic LpAFP-expressing lines did not confer substantial subzero protection. Freeze protection was further enhanced by with the introduction of more than one IBP isoform; ion leakage was reduced 26%-35% and 10% of plants survived temperatures as low as -8 °C. Our results demonstrate that apoplastic expression of multiple L. perenne IBP isoforms shows promise for providing protection to crops susceptible to freeze-induced damage.
Collapse
Affiliation(s)
| | | | - Virginia K. Walker
- Department of BiologyQueen's UniversityKingstonONCanada
- Department of Biomedical and Molecular Sciences and School of Environmental StudiesQueen's UniversityKingstonONCanada
| |
Collapse
|
50
|
Bredow M, Walker VK. Ice-Binding Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:2153. [PMID: 29312400 PMCID: PMC5744647 DOI: 10.3389/fpls.2017.02153] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/05/2017] [Indexed: 05/04/2023]
Abstract
Sub-zero temperatures put plants at risk of damage associated with the formation of ice crystals in the apoplast. Some freeze-tolerant plants mitigate this risk by expressing ice-binding proteins (IBPs), that adsorb to ice crystals and modify their growth. IBPs are found across several biological kingdoms, with their ice-binding activity and function uniquely suited to the lifestyle they have evolved to protect, be it in fishes, insects or plants. While IBPs from freeze-avoidant species significantly depress the freezing point, plant IBPs typically have a reduced ability to lower the freezing temperature. Nevertheless, they have a superior ability to inhibit the recrystallization of formed ice. This latter activity prevents ice crystals from growing larger at temperatures close to melting. Attempts to engineer frost-hardy plants by the controlled transfer of IBPs from freeze-avoiding fish and insects have been largely unsuccessful. In contrast, the expression of recombinant IBP sequences from freeze-tolerant plants significantly reduced electrolyte leakage and enhanced freezing survival in freeze-sensitive plants. These promising results have spurred additional investigations into plant IBP localization and post-translational modifications, as well as a re-evaluation of IBPs as part of the anti-stress and anti-pathogen axis of freeze-tolerant plants. Here we present an overview of plant freezing stress and adaptation mechanisms and discuss the potential utility of IBPs for the generation of freeze-tolerant crops.
Collapse
Affiliation(s)
- Melissa Bredow
- Department of Biology, Queen’s University, Kingston, ON, Canada
- *Correspondence: Melissa Bredow,
| | - Virginia K. Walker
- Department of Biomedical and Molecular Sciences, and School of Environmental Studies, Queen’s University, Kingston, ON, Canada
| |
Collapse
|