1
|
Ramp P, Mack C, Wirtz A, Bott M. Alternative routes for production of the drug candidate d-chiro-inositol with Corynebacterium glutamicum using endogenous or promiscuous plant enzymes. Metab Eng 2023; 78:1-10. [PMID: 37146873 DOI: 10.1016/j.ymben.2023.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
d-chiro-Inositol (DCI) is a promising drug candidate for treating insulin resistance and associated diseases such as type 2 diabetes or polycystic ovary syndrome. In this study, we developed two production processes for DCI using Corynebacterium glutamicum as host. In the first process, myo-inositol (MI) is oxidized to 2-keto-myo-inositol (2KMI) by the inositol dehydrogenase (IDH) IolG and then isomerized to 1-keto-d-chiro-inositol (1KDCI) by the isomerases Cg0212 or Cg2312, both of which were identified in this work. 1KDCI is then reduced to DCI by IolG. Overproduction of IolG and Cg0212 in a chassis strain unable to degrade inositols allowed the production of 1.1 g/L DCI from 10 g/L MI. As both reactions involved are reversible, only a partial conversion of MI to DCI can be achieved. To enable higher conversion ratios, a novel route towards DCI was established by utilizing the promiscuous activity of two plant-derived enzymes, the NAD+-dependent d-ononitol dehydrogenase MtOEPa and the NADPH-dependent d-pinitol dehydrogenase MtOEPb from Medicago truncatula (barrelclover). Heterologous production of these enzymes in the chassis strain led to the production of 1.6 g/L DCI from 10 g/L MI. For replacing the substrate MI by glucose, the two plant genes were co-expressed with the endogenous myo-inositol-1-phosphate synthase gene ino1 either as a synthetic operon or using a novel, bicistronic T7-based expression vector. With the single operon construct, 0.75 g/L DCI was formed from 20 g/L glucose, whereas with the bicistronic construct 1.2 g/L DCI was obtained, disclosing C. glutamicum as an attractive host for of d-chiro-inositol production.
Collapse
Affiliation(s)
- Paul Ramp
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Christina Mack
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Wirtz
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
2
|
Physiological, Biochemical, and Structural Bioinformatic Analysis of the Multiple Inositol Dehydrogenases from Corynebacterium glutamicum. Microbiol Spectr 2022; 10:e0195022. [PMID: 36094194 PMCID: PMC9603128 DOI: 10.1128/spectrum.01950-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inositols (cyclohexanehexols) comprise nine isomeric cyclic sugar alcohols, several of which occur in all domains of life with various functions. Many bacteria can utilize inositols as carbon and energy sources via a specific pathway involving inositol dehydrogenases (IDHs) as the first step of catabolism. The microbial cell factory Corynebacterium glutamicum can grow with myo-inositol as a sole carbon source. Interestingly, this species encodes seven potential IDHs, raising the question of the reason for this multiplicity. We therefore investigated the seven IDHs to determine their function, activity, and selectivity toward the biologically most important isomers myo-, scyllo-, and d-chiro-inositol. We created an ΔIDH strain lacking all seven IDH genes, which could not grow on the three inositols. scyllo- and d-chiro-inositol were identified as novel growth substrates of C. glutamicum. Complementation experiments showed that only four of the seven IDHs (IolG, OxiB, OxiD, and OxiE) enabled growth of the ΔIDH strain on two of the three inositols. The kinetics of the four purified enzymes agreed with the complementation results. IolG and OxiD are NAD+-dependent IDHs accepting myo- and d-chiro-inositol but not scyllo-inositol. OxiB is an NAD+-dependent myo-IDH with a weak activity also for scyllo-inositol but not for d-chiro-inositol. OxiE on the other hand is an NAD+-dependent scyllo-IDH showing also good activity for myo-inositol and a very weak activity for d-chiro-inositol. Structural models, molecular docking experiments, and sequence alignments enabled the identification of the substrate binding sites of the active IDHs and of residues allowing predictions on the substrate specificity. IMPORTANCE myo-, scyllo-, and d-chiro-inositol are C6 cyclic sugar alcohols with various biological functions, which also serve as carbon sources for microbes. Inositol catabolism starts with an oxidation to keto-inositols catalyzed by inositol dehydrogenases (IDHs). The soil bacterium C. glutamicum encodes seven potential IDHs. Using a combination of microbiological, biochemical, and modeling approaches, we analyzed the function of these enzymes and identified four IDHs involved in the catabolism of inositols. They possess distinct substrate preferences for the three isomers, and modeling and sequence alignments allowed the identification of residues important for substrate specificity. Our results expand the knowledge of bacterial inositol metabolism and provide an important basis for the rational development of producer strains for these valuable inositols, which show pharmacological activities against, e.g., Alzheimer's disease, polycystic ovarian syndrome, or type II diabetes.
Collapse
|
3
|
Davis RW, Muse CG, Eggleston H, Hill M, Panizzi P. Sugar Shock: Probing Streptococcus pyogenes Metabolism Through Bioluminescence Imaging. Front Microbiol 2022; 13:864014. [PMID: 35722335 PMCID: PMC9203041 DOI: 10.3389/fmicb.2022.864014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pyogenes (S. pyogenes) can thrive in its host during an infection, and, as a result, it must be able to respond to external stimuli and available carbon sources. The preclinical use of engineered pathogens capable of constitutive light production may provide real-time information on microbial-specific metabolic processes. In this study, we mapped the central metabolism of a luxABCDE-modified S. pyogenes Xen20 (Strep. Xen20) to its de novo synthesis of luciferase substrates as assessed by the rate of light production in response to different environmental triggers. Previous characterization predicted that the lux operon was under the myo-inositol iolE promotor. In this study, we revealed that supplementation with myo-inositol generated increased Strep. Xen20 luminescence. Surprisingly, when supplemented with infection-relevant carbon sources, such as glucose or glycine, light production was diminished. This was presumably due to the scavenging of pyruvate by L-lactate dehydrogenase (LDH). Inhibition of LDH by its inhibitor, oxamate, partially restored luminescent signal in the presence of glucose, presumably by allowing the resulting pyruvate to proceed to acetyl-coenzyme A (CoA). This phenomenon appeared specific to the lactic acid bacterial metabolism as glucose or glycine did not reduce signal in an analogous luxABCDE-modified Gram-positive pathogen, Staph. Xen29. The Strep. Xen20 cells produced light in a concentration-dependent manner, inversely related to the amount of glucose present. Taken together, our measures of microbial response could provide new information regarding the responsiveness of S. pyogenes metabolism to acute changes in its local environments and cellular health.
Collapse
|
4
|
Ramp P, Lehnert A, Matamouros S, Wirtz A, Baumgart M, Bott M. Metabolic engineering of Corynebacterium glutamicum for production of scyllo-inositol, a drug candidate against Alzheimer's disease. Metab Eng 2021; 67:173-185. [PMID: 34224896 DOI: 10.1016/j.ymben.2021.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Scyllo-inositol has been identified as a potential drug for the treatment of Alzheimer's disease. Therefore, cost-efficient processes for the production of this compound are desirable. In this study, we analyzed and engineered Corynebacterium glutamicum with the aim to develop competitive scyllo-inositol producer strains. Initial studies revealed that C. glutamicum naturally produces scyllo-inositol when cultured with myo-inositol as carbon source. The conversion involves NAD+-dependent oxidation of myo-inositol to 2-keto-myo-inositol followed by NADPH-dependent reduction to scyllo-inositol. Use of myo-inositol for biomass formation was prevented by deletion of a cluster of 16 genes involved in myo-inositol catabolism (strain MB001(DE3)Δiol1). Deletion of a second cluster of four genes (oxiC-cg3390-oxiD-oxiE) related to inositol metabolism prevented conversion of 2-keto-myo-inositol to undesired products causing brown coloration (strain MB001(DE3)Δiol1Δiol2). The two chassis strains were used for plasmid-based overproduction of myo-inositol dehydrogenase (IolG) and scyllo-inositol dehydrogenase (IolW). In BHI medium containing glucose and myo-inositol, a complete conversion of the consumed myo-inositol into scyllo-inositol was achieved with the Δiol1Δiol2 strain. To enable scyllo-inositol production from cheap carbon sources, myo-inositol 1-phosphate synthase (Ino1) and myo-inositol 1-phosphatase (ImpA), which convert glucose 6-phosphate into myo-inositol, were overproduced in addition to IolG and IolW using plasmid pSI. Strain MB001(DE3)Δiol1Δiol2 (pSI) produced 1.8 g/L scyllo-inositol from 20 g/L glucose and even 4.4 g/L scyllo-inositol from 20 g/L sucrose within 72 h. Our results demonstrate that C. glutamicum is an attractive host for the biotechnological production of scyllo-inositol and potentially further myo-inositol-derived products.
Collapse
Affiliation(s)
- Paul Ramp
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Alexander Lehnert
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Susana Matamouros
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Wirtz
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
5
|
Yoshida KI, Shirae Y, Nishimura R, Fukui K, Ishikawa S. Identification of a repressor for the two iol operons required for inositol catabolism in Geobacillus kaustophilus. MICROBIOLOGY-SGM 2020; 167. [PMID: 33320079 DOI: 10.1099/mic.0.001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Geobacillus kaustophilus HTA426, a thermophilic Gram-positive bacterium, feeds on inositol as its sole carbon source, and an iol gene cluster required for inositol catabolism has been postulated with reference to the iol genes in Bacillus subtilis. The iol gene cluster of G. kaustophilus comprises two tandem operons induced in the presence of inositol; however, the mechanism underlying this induction remains unclear. B. subtilis iolQ is known to be involved in the regulation of iolX encoding scyllo-inositol dehydrogenase, and its homologue in HTA426 was found two genes upstream of the first gene (gk1899) of the iol gene cluster and was termed iolQ in G. kaustophilus. When iolQ was inactivated in G. kaustophilus, not only cellular myo-inositol dehydrogenase activity due to gk1899 expression but also the transcription of the two iol operons became constitutive. IolQ was produced and purified as a C-terminal histidine (His)-tagged fusion protein in Escherichia coli and subjected to an in vitro gel electrophoresis mobility shift assay to examine its DNA-binding property. It was observed that IolQ bound to the DNA fragments containing each of the two iol promoter regions and that DNA binding was antagonized by myo-inositol. Moreover, DNase I footprinting analyses identified two tandem binding sites of IolQ within each of the iol promoter regions. By comparing the sequences of the binding sites, a consensus sequence for IolQ binding was deduced to form a palindrome of 5'-RGWAAGCGCTTSCY-3' (where R=A or G, W=A or T, S=G or C, and Y=C or T). IolQ functions as a transcriptional repressor regulating the induction of the two iol operons responding to myo-inositol.
Collapse
Affiliation(s)
- Ken-Ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Yusuke Shirae
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Ryo Nishimura
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Kaho Fukui
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Shu Ishikawa
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| |
Collapse
|
6
|
Illikoud N, Gohier R, Werner D, Barrachina C, Roche D, Jaffrès E, Zagorec M. Transcriptome and Volatilome Analysis During Growth of Brochothrix thermosphacta in Food: Role of Food Substrate and Strain Specificity for the Expression of Spoilage Functions. Front Microbiol 2019; 10:2527. [PMID: 31781057 PMCID: PMC6856214 DOI: 10.3389/fmicb.2019.02527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/21/2019] [Indexed: 11/13/2022] Open
Abstract
Brochothrix thermosphacta is one of the main spoilers in food, responsible for meat and seafood spoilage through the production of malodorous volatile organic compounds. The molecules produced by this bacterium depend on the substrate (meat or seafood) and the storage conditions such as gas mixtures used in the packaging. It seems also that the spoilage potential is strain dependent as production of diacetyl and acetoin, two molecules responsible for seafood spoilage, varies with strains. Therefore, this suggests the involvement of different metabolic functions depending on both food substrate and strain capacities. In this study, we selected two strains with different abilities to produce diacetyl and acetoin and compared their behavior after grown in beef or cooked peeled shrimp juices. We determined the genes upregulated by both strains depending on the growth substrate and those that were specifically upregulated in only one strain. The genes upregulated by both strains in meat or in shrimp juice revealed the importance of the substrate for inducing specific metabolic pathways. The examination of genes that were specifically upregulated in only one of the two strains revealed strain features associated to specific substrates and also strain-specific regulations of metabolic pathways putatively leading to different levels of spoilage molecule production. This shows that the spoilage potential of B. thermosphacta depends on nutrients provided by food substrate and on metabolic activity potential that each strain possesses.
Collapse
Affiliation(s)
| | | | | | - Célia Barrachina
- MGX, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - David Roche
- Génomique Métabolique, Génoscope, Institut François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, Evry, France
| | | | | |
Collapse
|
7
|
Yuan C, Yang P, Wang J, Jiang L. Myo-inositol utilization by Citrobacter koseri promotes brain infection. Biochem Biophys Res Commun 2019; 517:427-432. [PMID: 31376937 DOI: 10.1016/j.bbrc.2019.07.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 07/28/2019] [Indexed: 10/26/2022]
Abstract
Citrobacter species are opportunistic bacterial pathogens that are implicated in both nosocomial and community-acquired infections. Among the Citrobacter species, Citrobacter koseri is often isolated from clinical material, and it can cause meningitis and brain abscesses in neonates and immunocompromised individuals, thus posing a great threat to human health. However, the virulence determinants of C. koseri remain largely unknown. Myo-inositol is an abundant carbohydrate in the environment and in certain organs of the human body, especially the brain. The C. koseri genome harbors a cluster of genes, QCQ70420.1 to QCQ70429.1 (named the Ino-cluster in this study), which encode IolBCDE, MmsA, and an ATP-binding cassette transporter. The gene cluster may be involved in the utilization of myo-inositol. To investigate the functions of the Ino-cluster in C. koseri, we constructed a mutant strain by deleting the Ino-cluster and found that the mutant could not use myo-inositol as the sole carbon source, confirming that this cluster is responsible for myo-inositol utilization. Moreover, we investigated the function of the Ino-cluster and myo-inositol utilization in C. koseri pathogenicity. Deletion of the Ino-cluster significantly impaired C. koseri colonization of the brain of infected Sprague-Dawley (SD) rats and BALB/c mice, and this increased the survival rate of the infected animals, indicating that the Ino-cluster and the ability to use myo-inositol are essential for C. koseri pathogenicity. Taken together, our findings suggest that using the Ino-cluster products, C. koseri can exploit the abundant myo-inositol in the brain as a carbon source for growth, thus promoting colonization and virulence.
Collapse
Affiliation(s)
- Chao Yuan
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, PR China; TEDA Institue of Biological Sciences and Biotechnology, Nankai University, Tianjin, PR China; Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, PR China; College of Life Sciences, Nankai University, Tianjin, PR China
| | - Pan Yang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, PR China; TEDA Institue of Biological Sciences and Biotechnology, Nankai University, Tianjin, PR China; Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, PR China; College of Life Sciences, Nankai University, Tianjin, PR China
| | - Junyue Wang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, PR China; TEDA Institue of Biological Sciences and Biotechnology, Nankai University, Tianjin, PR China; Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, PR China; College of Life Sciences, Nankai University, Tianjin, PR China
| | - Lingyan Jiang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, PR China; TEDA Institue of Biological Sciences and Biotechnology, Nankai University, Tianjin, PR China; Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, PR China.
| |
Collapse
|
8
|
Functional prediction, characterization, and categorization of operome from Acetoanaerobium sticklandii DSM 519. Anaerobe 2019; 61:102088. [PMID: 31425748 DOI: 10.1016/j.anaerobe.2019.102088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/05/2023]
Abstract
Acetoanaerobium sticklandii DSM 519 is a hyper-ammonia producing anaerobic bacterium that can be able utilizes amino acids as sole carbon and energy sources for its growth and energetic metabolism. A lack of knowledge on its molecular machinery and 30.5% conserved hypothetical proteins (HPs; operome) hinders the successful utility in biofuel applications. In this study, we have predicted, characterized and categorized its operome whose functions are still not determined accurately using a combined bioinformatics approach. The functions of 64 of the 359 predicted HPs are involved in diverse metabolic subsystems. A. sticklandii operome has consisted of 16% Rossmann fold and 46% miscellaneous folds. Subsystems-based technology has classified 51 HPs contributing to the small-molecular reactions, 26 in macromolecular reactions and 12 in the biosynthesis of cofactors, prosthetic groups and electron carriers. A generality of functions predicted from its operome contributed to the cell cycle, amino acid metabolism, membrane transport, and regulatory processes. Many of them have duplicated functions as paralogs in this genome. A. sticklandii has the ability to compete with invading microorganisms and tolerate abiotic stresses, which can be overwhelmed by the predicted functions of its operome. Results of this study revealed that it has specialized systems for amino acid catabolism-directed solventogenesis and acidogenesis but the level of gene expression may determine the metabolic function in amino acid fermenting niches in the rumina of cattle. As shown by our analysis, the predicted functions of its operome allow us for a better understanding of the growth and physiology at systems-scale.
Collapse
|
9
|
Palmer M, Steenkamp ET, Coetzee MPA, Blom J, Venter SN. Genome-Based Characterization of Biological Processes That Differentiate Closely Related Bacteria. Front Microbiol 2018; 9:113. [PMID: 29467735 PMCID: PMC5808187 DOI: 10.3389/fmicb.2018.00113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/17/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteriologists have strived toward attaining a natural classification system based on evolutionary relationships for nearly 100 years. In the early twentieth century it was accepted that a phylogeny-based system would be the most appropriate, but in the absence of molecular data, this approach proved exceedingly difficult. Subsequent technical advances and the increasing availability of genome sequencing have allowed for the generation of robust phylogenies at all taxonomic levels. In this study, we explored the possibility of linking biological characters to higher-level taxonomic groups in bacteria by making use of whole genome sequence information. For this purpose, we specifically targeted the genus Pantoea and its four main lineages. The shared gene sets were determined for Pantoea, the four lineages within the genus, as well as its sister-genus Tatumella. This was followed by functional characterization of the gene sets using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In comparison to Tatumella, various traits involved in nutrient cycling were identified within Pantoea, providing evidence for increased efficacy in recycling of metabolites within the genus. Additionally, a number of traits associated with pathogenicity were identified within species often associated with opportunistic infections, with some support for adaptation toward overcoming host defenses. Some traits were also only conserved within specific lineages, potentially acquired in an ancestor to the lineage and subsequently maintained. It was also observed that the species isolated from the most diverse sources were generally the most versatile in their carbon metabolism. By investigating evolution, based on the more variable genomic regions, it may be possible to detect biologically relevant differences associated with the course of evolution and speciation.
Collapse
Affiliation(s)
- Marike Palmer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Emma T Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Martin P A Coetzee
- Department of Genetic, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Stephanus N Venter
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Heat Survival and Phenotype Microarray Profiling of Salmonella Typhimurium Mutants. Curr Microbiol 2016; 74:257-267. [PMID: 27999939 DOI: 10.1007/s00284-016-1170-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 11/25/2016] [Indexed: 01/08/2023]
Abstract
Contamination of food products by pathogenic microorganisms continues to be a major public health and food industry concern. Non-typhoidal Salmonella species have led to numerous outbreaks associated with various foods. A wide variety of methods have been applied and introduced for treatment of fresh foods to eliminate pathogenic as well as spoilage microorganisms. Salmonella can become exposed to elevated temperatures while associated with hosts such as poultry. In addition, heat treatment is also applied at various stages of processing to retain the shelf life of food products. Despite this, these microorganisms may overcome exposure to such treatments through the efficient expression of stress response mechanisms and result in illness following consumption. Thermal stress induces a range of destructive exposures to bacterial cells such as protein damage and DNA damage caused by reactive oxygen species. In this study, we chose three genes (∆recD, ∆STM14_5307, and ∆aroD) associated with conditionally essential genes required for different aspects of optimal growth at 42 °C and evaluated the responses of wild type and mutant Salmonella Typhimurium strains to uncover potential mechanisms that may enable survival and resistance under thermal stress. The RecBCD complex that initiates repair of double-stranded DNA breaks through homologous recombination. STM14_5307 is a transcriptional regulator involved in stationary phase growth and inositol metabolism. The gene aroD is involved in metabolism and stationary phase growth. These strains were characterized via high throughput phenotypic profiling in response to two different growth temperatures (37 °C (human host temperature) and 42 °C (poultry host temperature)). The ∆aroD strain exhibited the highest sensitivity to the various temperatures followed by the ∆recD and ∆STM14_5307 strains, respectively. Achieving more understanding of the molecular mechanisms of heat survival may lead to the development of more effective strategies to limit Salmonella in food products through thermal treatment by developing interventions that specifically target the pathways these genes are involved in.
Collapse
|
11
|
Tanaka K, Tajima S, Takenaka S, Yoshida KI. An improved Bacillus subtilis cell factory for producing scyllo-inositol, a promising therapeutic agent for Alzheimer's disease. Microb Cell Fact 2013; 12:124. [PMID: 24325193 PMCID: PMC3878828 DOI: 10.1186/1475-2859-12-124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/03/2013] [Indexed: 02/03/2023] Open
Abstract
Background Bacillus subtilis 168 possesses an efficient pathway to metabolize some of the stereoisomers of inositol, including myo-inositol (MI) and scyllo-inositol (SI). Previously we reported a prototype of a B. subtilis cell factory with modified inositol metabolism that converts MI into SI in the culture medium. However, it wasted half of initial 1.0% (w/v) MI, and the conversion was limited to produce only 0.4% (w/v) SI. To achieve a more efficient SI production, we attempted additional modifications. Results All “useless” genes involved in MI and SI metabolism were deleted. Although no elevation in SI production was observed in the deletion strain, it did result in no wastage of MI anymore. Thus additionally, overexpression of the key enzymes, IolG and IolW, was appended to demonstrate that simultaneous overexpression of them enabled complete conversion of all MI into SI. Conclusions The B. subtilis cell factory was improved to yield an SI production rate of 10 g/L/48 h at least. The improved conversion was achieved only in the presence of enriched nutrition in the form of 2% (w/v) Bacto soytone in the medium, which may be due to the increasing demand for regeneration of cofactors.
Collapse
Affiliation(s)
| | | | | | - Ken-ichi Yoshida
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan.
| |
Collapse
|
12
|
Rodionova IA, Leyn SA, Burkart MD, Boucher N, Noll KM, Osterman AL, Rodionov DA. Novel inositol catabolic pathway inThermotoga maritima. Environ Microbiol 2013; 15:2254-66. [DOI: 10.1111/1462-2920.12096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/18/2013] [Accepted: 01/20/2013] [Indexed: 11/30/2022]
Affiliation(s)
| | - Semen A. Leyn
- A. A. Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow; 127994; Russia
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry; University of California San Diego; La Jolla; CA; 92093; USA
| | - Nathalie Boucher
- Department of Molecular and Cell Biology; University of Connecticut; Storrs; CT; 06269; USA
| | - Kenneth M. Noll
- Department of Molecular and Cell Biology; University of Connecticut; Storrs; CT; 06269; USA
| | | | | |
Collapse
|
13
|
Yoshida KI, Sanbongi A, Murakami A, Suzuki H, Takenaka S, Takami H. Three inositol dehydrogenases involved in utilization and interconversion of inositol stereoisomers in a thermophile, Geobacillus kaustophilus HTA426. Microbiology (Reading) 2012; 158:1942-1952. [DOI: 10.1099/mic.0.059980-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ken-ichi Yoshida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Azusa Sanbongi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Ayano Murakami
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hirokazu Suzuki
- Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan
| | - Shinji Takenaka
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hideto Takami
- Microbial Genome Research Group, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
14
|
|
15
|
Yamaoka M, Osawa S, Morinaga T, Takenaka S, Yoshida KI. A cell factory of Bacillus subtilis engineered for the simple bioconversion of myo-inositol to scyllo-inositol, a potential therapeutic agent for Alzheimer's disease. Microb Cell Fact 2011; 10:69. [PMID: 21896210 PMCID: PMC3176187 DOI: 10.1186/1475-2859-10-69] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/07/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A stereoisomer of inositol, scyllo-inositol, is known as a promising therapeutic agent for Alzheimer's disease, since it prevents the accumulation of beta-amyloid deposits, a hallmark of the disease. However, this compound is relatively rare in nature, whereas another stereoisomer of inositol, myo-inositol, is abundantly available. RESULTS Bacillus subtilis possesses a unique inositol metabolism involving both stereoisomers. We manipulated the inositol metabolism in B. subtilis to permit the possible bioconversion from myo-inositol to scyllo-inositol. Within 48 h of cultivation, the engineered strain was able to convert almost half of 10 g/L myo-inositol to scyllo-inositol that accumulated in the culture medium. CONCLUSIONS The engineered B. subtilis serves as a prototype of cell factory enabling a novel and inexpensive supply of scyllo-inositol.
Collapse
Affiliation(s)
- Masaru Yamaoka
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | | | | | | | | |
Collapse
|
16
|
Morita YS, Fukuda T, Sena CB, Yamaryo-Botte Y, McConville MJ, Kinoshita T. Inositol lipid metabolism in mycobacteria: Biosynthesis and regulatory mechanisms. Biochim Biophys Acta Gen Subj 2011; 1810:630-41. [DOI: 10.1016/j.bbagen.2011.03.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/22/2011] [Accepted: 03/24/2011] [Indexed: 11/26/2022]
|
17
|
Bistability in myo-inositol utilization by Salmonella enterica serovar Typhimurium. J Bacteriol 2011; 193:1427-35. [PMID: 21239589 DOI: 10.1128/jb.00043-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capability of Salmonella enterica serovar Typhimurium strain 14028 (S. Typhimurium 14028) to utilize myo-inositol (MI) is determined by the genomic island GEI4417/4436 carrying the iol genes that encode enzymes, transporters, and a repressor responsible for the MI catabolic pathway. In contrast to all bacteria investigated thus far, S. Typhimurium 14028 growing on MI as the sole carbon source is characterized by a remarkable long lag phase of 40 to 60 h. We report here that on solid medium with MI as the sole carbon source, this human pathogen exhibits a bistable phenotype characterized by a dissection into large colonies and a slow-growing bacterial background. This heterogeneity is reversible and therefore not caused by mutation, and it is not observed in the absence of the iol gene repressor IolR nor in the presence of at least 0.55% CO(2). Bistability is correlated with the activity of the iolE promoter (P(iolE)), but not of P(iolC) or P(iolD), as shown by promoter-gfp fusions. On the single-cell level, fluorescence microscopy and flow cytometry analysis revealed a gradual switch of P(iolE) from the "off" to the "on" status during the late lag phase and the transition to the log phase. Deletion of iolR or the addition of 0.1% NaHCO(3) induced an early growth start of S. Typhimurium 14028 in minimal medium with MI. The addition of ethoxyzolamide, an inhibitor of carboanhydrases, elongated the lag phase in the presence of bicarbonate. The positive-feedback loop via repressor release and positive induction by bicarbonate-CO(2) might allow S. Typhimurium 14028 to adapt to rapidly changing environments. The phenomenon described here is a novel example of bistability in substrate degradation, and, to our knowledge, is the first demonstration of gene regulation by bicarbonate-CO(2) in Salmonella.
Collapse
|
18
|
Structural investigation of myo-inositol dehydrogenase from Bacillus subtilis: implications for catalytic mechanism and inositol dehydrogenase subfamily classification. Biochem J 2010; 432:237-47. [PMID: 20809899 DOI: 10.1042/bj20101079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inositol dehydrogenase from Bacillus subtilis (BsIDH) is a NAD+-dependent enzyme that catalyses the oxidation of the axial hydroxy group of myo-inositol to form scyllo-inosose. We have determined the crystal structures of wild-type BsIDH and of the inactive K97V mutant in apo-, holo- and ternary complexes with inositol and inosose. BsIDH is a tetramer, with a novel arrangement consisting of two long continuous β-sheets, formed from all four monomers, in which the two central strands are crossed over to form the core of the tetramer. Each subunit in the tetramer consists of two domains: an N-terminal Rossmann fold domain containing the cofactor-binding site, and a C-terminal domain containing the inositol-binding site. Structural analysis allowed us to determine residues important in cofactor and substrate binding. Lys97, Asp172 and His176 are the catalytic triad involved in the catalytic mechanism of BsIDH, similar to what has been proposed for related enzymes and short-chain dehydrogenases. Furthermore, a conformational change in the nicotinamide ring was observed in some ternary complexes, suggesting hydride transfer to the si-face of NAD+. Finally, comparison of the structure and sequence of BsIDH with other putative inositol dehydrogenases allowed us to differentiate these enzymes into four subfamilies based on six consensus sequence motifs defining the cofactor- and substrate-binding sites.
Collapse
|
19
|
Differential substrate specificity of two inositol transporters of Bacillus subtilis. Biosci Biotechnol Biochem 2010; 74:1312-4. [PMID: 20530884 DOI: 10.1271/bbb.100125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bacillus subtilis IolT is the major myo-inositol transporter for growth, while IolF is a minor one unable to support growth. We found that either IolT or IolF was sufficient for moderate growth using D-chiro-inositol. Conversely to IolT, IolF transported D-chiro-inositol more preferentially than myo-inositol. These results indicate that IolT and IolF are different in substrate specificity.
Collapse
|
20
|
Morinaga T, Ashida H, Yoshida KI. Identification of two scyllo-inositol dehydrogenases in Bacillus subtilis. Microbiology (Reading) 2010; 156:1538-1546. [DOI: 10.1099/mic.0.037499-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
scyllo-Inositol (SI) is a stereoisomer of inositol whose catabolism has not been characterized in bacteria. We found that Bacillus subtilis 168 was able to grow using SI as its sole carbon source and that this growth was dependent on a functional iol operon for catabolism of myo-inositol (MI; another inositol isomer, which is abundant in nature). Previous studies elucidated the MI catabolic pathway in B. subtilis as comprising multiple stepwise reactions catalysed by a series of Iol enzymes. The first step of the pathway converts MI to scyllo-inosose (SIS) and involves the MI dehydrogenase IolG. Since IolG does not act on SI, we suspected that there could be another enzyme converting SI into SIS, namely an SI dehydrogenase. Within the whole genome, seven genes paralogous to iolG have been identified and two of these, iolX and iolW (formerly known as yisS and yvaA, respectively), were selected as candidate genes for the putative SI dehydrogenase since they were both prominently expressed when B. subtilis was grown on medium containing SI. iolX and iolW were cloned in Escherichia coli and both were shown to encode a functional enzyme, revealing the two distinct SI dehydrogenases in B. subtilis. Since inactivation of iolX impaired growth with SI as the carbon source, IolX was identified as a catabolic enzyme required for SI catabolism and it was shown to be NAD+ dependent. The physiological role of IolW remains unclear, but it may be capable of producing SI from SIS with NADPH oxidation.
Collapse
Affiliation(s)
- Tetsuro Morinaga
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ken-ichi Yoshida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
21
|
|
22
|
Kröger C, Stolz J, Fuchs TM. myo-Inositol transport by Salmonella enterica serovar Typhimurium. MICROBIOLOGY-SGM 2009; 156:128-138. [PMID: 19833776 DOI: 10.1099/mic.0.032250-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Salmonella enterica serovar Typhimurium, the genomic island GEI4417/4436 has recently been identified to be responsible for myo-inositol (MI) utilization. Here, two of the four island-encoded permeases are identified as the MI transporters of this pathogen. In-frame deletion of iolT1 (STM4418) led to a severe growth defect, and deletion of iolT1 (STM4419) to a slight growth defect in the presence of MI. These phenotypes could be complemented by providing the putative transporter genes in trans. Bioluminescence-based reporter assays demonstrated a strong induction of their promoters P(iolT1) and P(iolT2) in the presence of MI but not of glucose. Deletion of iolR, which encodes the negative regulator of most genes involved in MI degradation, resulted in upregulation of P(iolT1) and P(iolT2), indicating that the expression of IolT1 and IolT2 is repressed by IolR. This finding was supported by bandshift assays using purified IolR. Both transporters are located in the membrane when expressed in Escherichia coli. Heterologously expressed IolT1 had its optimal activity at pH 5.5. Together with the strongly reduced MI uptake in the presence of protonophores, this indicates that IolT1 operates as a proton symporter. Using myo-[1,2-[(3)H](N)]inositol, a saturable uptake activity of IolT1 with a K(m) value between 0.49 and 0.79 mM was determined in DH5alpha expressing IolT1, in S. enterica serovar Typhimurium strain 14028, and in mutant 14028 DeltaiolT2. Phylogenetic analysis of IolT1 identified putative MI transporters in Gram-negative bacteria also able to utilize MI.
Collapse
Affiliation(s)
- Carsten Kröger
- Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Abteilung Mikrobiologie, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany
| | - Jürgen Stolz
- Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Abteilung Biochemie, Technische Universität München, Gregor-Mendel-Str. 2, D-85350 Freising, Germany
| | - Thilo M Fuchs
- Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Abteilung Mikrobiologie, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany
| |
Collapse
|
23
|
Characterization of the myo-inositol utilization island of Salmonella enterica serovar Typhimurium. J Bacteriol 2008; 191:545-54. [PMID: 19011032 DOI: 10.1128/jb.01253-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Knockout mutation of STM4432 resulted in a growth-deficient phenotype of Salmonella enterica serovar Typhimurium in the presence of myo-inositol (MI) as the sole carbon source. STM4432 is part of a 22.6-kb genomic island which spans STM4417 to STM4436 (genomic island 4417/4436) and is responsible for MI degradation. Genome comparison revealed the presence of this island in only six Salmonella strains and a high variability of the iol gene organization in gram-negative bacteria. Upon nonpolar deletion of 11 island loci, the genes involved in six enzymatic steps of the MI pathway were identified. The generation time of S. enterica serovar Typhimurium in minimal medium with MI decreases with higher concentrations of this polyol. Reverse transcriptase PCR showed five separate transcriptional units encompassing the genes iolA-iolB, iolE-iolG1, iolC1-iolC2, iolD1-iolD2-iolG2, and iolI2-iolH. Luciferase reporter assays revealed a strong induction of their promoters in the presence of MI but not glucose. The main regulator, IolR, was identified due to a reduced lag phase of a strain mutated in STM4417 (iolR). Deletion of iolR resulted in stimulation of the iol operons, indicating its negative effect on the iol genes of S. enterica serovar Typhimurium in rich medium at a transcriptional level. Bandshift assays demonstrated the binding of this putative repressor to promoter sequences of iolA, iolC1, and iolD1. Binding of IolR to its own promoter and induced iolR expression in an IolR-negative background demonstrate that its transcription is autoregulated. This is the first characterization of MI degradation in a gram-negative bacterium, revealing a complex transcriptional organization and regulation of the S. enterica serovar Typhimurium iol genes.
Collapse
|
24
|
Van Gijsegem F, Wlodarczyk A, Cornu A, Reverchon S, Hugouvieux-Cotte-Pattat N. Analysis of the LacI family regulators of Erwinia chrysanthemi 3937, involvement in the bacterial phytopathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1471-81. [PMID: 18842096 DOI: 10.1094/mpmi-21-11-1471] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Analysis of the regulators of the LacI family was performed in order to identify those potentially involved in pathogenicity of Erwinia chrysanthemi (Dickeya dadantii). Among the 18 members of the LacI family, the function of 11 members is either known or predicted and only 7 members have, as yet, no proposed function. Inactivation of these seven genes, called lfaR, lfbR, lfcR, lfdR, lfeR, lffR, and lfgR, demonstrated that four of them are important for plant infection. The lfaR and lfcR mutants showed a reduced virulence on chicory, Saintpaulia sp., and Arabidopsis. The lfeR mutant showed a reduced virulence on Arabidopsis. The lfdR mutant was more efficient than the wild-type strain in initiating maceration on Saintpaulia sp. The genetic environment of each regulator was examined to detect adjacent genes potentially involved in a common function. Construction of transcriptional fusions in these neighboring genes demonstrated that five regulators, LfaR, LfcR, LfeR, LffR, and LfgR, act as repressors of adjacent genes. Analysis of these fusions also indicated that the genes controlled by LfaR, LfcR, LfgR, and LffR are expressed during plant infection. Moreover, addition of crude plant extracts to culture medium demonstrated that the expression of the LfaR- and LfgR-controlled genes is specifically induced by plant components.
Collapse
Affiliation(s)
- Frédérique Van Gijsegem
- Laboratoire Interactions Plantes Pathogènes, UMR217 INRA/AgroParisTech/UPMC Univ Paris 6, 16 rue Claude Bernard, 75231 Paris, Cedex 05, France
| | | | | | | | | |
Collapse
|
25
|
Yoshida KI, Yamaguchi M, Morinaga T, Kinehara M, Ikeuchi M, Ashida H, Fujita Y. myo-Inositol Catabolism in Bacillus subtilis. J Biol Chem 2008; 283:10415-24. [DOI: 10.1074/jbc.m708043200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Monedero V, Mazé A, Boël G, Zúñiga M, Beaufils S, Hartke A, Deutscher J. The Phosphotransferase System of Lactobacillus casei: Regulation of Carbon Metabolism and Connection to Cold Shock Response. J Mol Microbiol Biotechnol 2006; 12:20-32. [PMID: 17183208 DOI: 10.1159/000096456] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genome sequencing of two different Lactobacillus casei strains (ATCC334 and BL23) is presently going on and preliminary data revealed that this lactic acid bacterium possesses numerous carbohydrate transport systems probably reflecting its capacity to proliferate under varying environmental conditions. Many carbohydrate transporters belong to the phosphoenolpyruvate:sugar phosphotransferase system (PTS), but all different kinds of non-PTS transporters are present as well and their substrates are known in a few cases. In L. casei regulation of carbohydrate transport and carbon metabolism is mainly achieved by PTS proteins. Carbon catabolite repression (CCR) is mediated via several mechanisms, including the major P-Ser-HPr/catabolite control protein A (CcpA)-dependent mechanism. Catabolite response elements, the target sites for the P-Ser-HPr/CcpA complex, precede numerous genes and operons. PTS regulation domain-containing antiterminators and transcription activators are also present in both L. casei strains. Their activity is usually controlled by two PTS-mediated phosphorylation reactions exerting antagonistic effects on the transcription regulators: P~EIIB-dependent phosphorylation regulates induction of the corresponding genes and P~His-HPr-mediated phosphorylation plays a role in CCR. Carbohydrate transport of L. casei is also regulated via inducer exclusion and inducer expulsion. The presence of glucose, fructose, etc. leads to inhibition of the transport or metabolism of less favorable carbon sources (inducer exclusion) or to the export of accumulated non-metabolizable carbon sources (inducer expulsion). While P-Ser-HPr is essential for inducer exclusion of maltose, it is not necessary for the expulsion of accumulated thio-methyl-beta-D-galactopyranoside. Surprisingly, recent evidence suggests that the PTS of L. casei also plays a role in cold shock response.
Collapse
Affiliation(s)
- Vicente Monedero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Burjassot, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Krings E, Krumbach K, Bathe B, Kelle R, Wendisch VF, Sahm H, Eggeling L. Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. J Bacteriol 2006; 188:8054-61. [PMID: 16997948 PMCID: PMC1698185 DOI: 10.1128/jb.00935-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although numerous bacteria possess genes annotated iol in their genomes, there have been very few studies on the possibly associated myo-inositol metabolism and its significance for the cell. We found that Corynebacterium glutamicum utilizes myo-inositol as a carbon and energy source, enabling proliferation with a high maximum rate of 0.35 h-1. Whole-genome DNA microarray analysis revealed that 31 genes respond to myo-inositol utilization, with 21 of them being localized in two clusters of >14 kb. A set of genomic mutations and functional studies yielded the result that some genes in the two clusters are redundant, and only cluster I is necessary for catabolizing the polyol. There are three genes which encode carriers belonging to the major facilitator superfamily and which exhibit a >12-fold increased mRNA level on myo-inositol. As revealed by mutant characterizations, one carrier is not involved in myo-inositol uptake whereas the other two are active and can completely replace each other with apparent Kms for myo-inositol as a substrate of 0.20 mM and 0.45 mM, respectively. Interestingly, upon utilization of myo-inositol, the L-lysine yield is 0.10 mol/mol, as opposed to 0.30 mol/mol, with glucose as the substrate. This is probably not only due to myo-inositol metabolism alone since a mixture of 187 mM glucose and 17 mM myo-inositol, where the polyol only contributes 8% of the total carbon, reduced the L-lysine yield by 29%. Moreover, genome comparisons with other bacteria highlight the core genes required for growth on myo-inositol, whose metabolism is still weakly defined.
Collapse
Affiliation(s)
- Eva Krings
- Institute of Biotechnology, Research Centre Juelich, D-52425 Juelich, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Yoshida KI, Yamaguchi M, Morinaga T, Ikeuchi M, Kinehara M, Ashida H. Genetic modification of Bacillus subtilis for production of D-chiro-inositol, an investigational drug candidate for treatment of type 2 diabetes and polycystic ovary syndrome. Appl Environ Microbiol 2006; 72:1310-5. [PMID: 16461681 PMCID: PMC1392952 DOI: 10.1128/aem.72.2.1310-1315.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
D-chiro-inositol (DCI) is a drug candidate for the treatment of type 2 diabetes and polycystic ovary syndrome, since it improves the efficiency with which the body uses insulin and also promotes ovulation. Here, we report genetic modification of Bacillus subtilis for production of DCI from myo-inositol (MI). The B. subtilis iolABCDEFGHIJ operon encodes enzymes for the multiple steps of the MI catabolic pathway. In the first and second steps, MI is converted to 2-keto-MI (2KMI) by IolG and then to 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione by IolE. In this study, we identified iolI encoding inosose isomerase, which converts 2KMI to 1-keto-D-chiro-inositol (1KDCI), and found that IolG reduces 1KDCI to DCI. Inactivation of iolE in a mutant constitutively expressing the iol operon blocked the MI catabolic pathway to accumulate 2KMI, which was converted to DCI via the activity of IolI and IolG. The mutant was able to convert at least 6% of input MI in the culture medium to DCI.
Collapse
Affiliation(s)
- Ken-ichi Yoshida
- Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, 1-1 Rokkodai, Kobe, Hyogo 657-8501, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Samland AK, Sprenger GA. Microbial aldolases as C-C bonding enzymes--unknown treasures and new developments. Appl Microbiol Biotechnol 2006; 71:253-64. [PMID: 16614860 DOI: 10.1007/s00253-006-0422-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 03/10/2006] [Accepted: 03/10/2006] [Indexed: 11/26/2022]
Abstract
Aldolases are a specific group of lyases that catalyze the reversible stereoselective addition of a donor compound (nucleophile) onto an acceptor compound (electrophile). Whereas most aldolases are specific for their donor compound in the aldolization reaction, they often tolerate a wide range of aldehydes as acceptor compounds. C-C bonding by aldolases creates stereocenters in the resulting aldol products. This makes aldolases interesting tools for asymmetric syntheses of rare sugars or sugar-derived compounds as iminocyclitols, statins, epothilones, and sialic acids. Besides the well-known fructose 1,6-bisphosphate aldolase, other aldolases of microbial origin have attracted the interest of synthetic bio-organic chemists in recent years. These are either other dihydroxyacetone phosphate aldolases or aldolases depending on pyruvate/phosphoenolpyruvate, glycine, or acetaldehyde as donor substrate. Recently, an aldolase that accepts dihydroxyacetone or hydroxyacetone as a donor was described. A further enlargement of the arsenal of available chemoenzymatic tools can be achieved through screening for novel aldolase activities and directed evolution of existing aldolases to alter their substrate- or stereospecifities. We give an update of work on aldolases, with an emphasis on microbial aldolases.
Collapse
Affiliation(s)
- Anne K Samland
- Institut für Mikrobiologie, Universität Stuttgart, Germany
| | | |
Collapse
|
30
|
Hansmeier N, Chao TC, Pühler A, Tauch A, Kalinowski J. The cytosolic, cell surface and extracellular proteomes of the biotechnologically important soil bacteriumCorynebacterium efficiens YS-314 in comparison to those ofCorynebacterium glutamicum ATCC 13032. Proteomics 2006; 6:233-50. [PMID: 16302278 DOI: 10.1002/pmic.200500144] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reference maps of the cytosolic, cell surface and extracellular proteome fractions of the amino acid-producing soil bacterium Corynebacterium efficiens YS-314 were established. The analysis window covers a pI range from 3 to 7 along with a molecular mass range from 10 to 130 kDa. After second-dimensional separation on SDS-PAGE and Coomassie staining, computational analysis detected 635 protein spots in the cytosolic proteome fraction, whereas 76 and 102 spots were detected in the cell surface and extracellular proteomes, respectively. By means of MALDI-TOF-MS and tryptic peptide mass fingerprinting, 164 cytosolic proteins, 49 proteins of the cell surface and 89 extracellular protein spots were identified, representing in total 177 different proteins. Additionally, reference maps of the three cellular proteome fractions of the close phylogenetic relative Corynebacterium glutamicum ATCC 13032 were generated and used for comparative proteomics. Classification according to the Clusters of Orthologous Groups of proteins scheme and abundance analysis of the identified proteins revealed species-specific differences. The high abundance of molecular chaperones and amino acid biosynthesis enzymes in C. efficiens points to environmental adaptations of this recently discovered amino acid-producing bacterium.
Collapse
Affiliation(s)
- Nicole Hansmeier
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | | | | | | | | |
Collapse
|
31
|
Uotsu-Tomita R, Kaneko S, Tsuge K, Itaya M. Insertion of unmarked DNA sequences in multiple loci of the Bacillus subtilis 168 genome: an efficient selection method. Biosci Biotechnol Biochem 2005; 69:1036-9. [PMID: 15914929 DOI: 10.1271/bbb.69.1036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The construction process of Bacillus subtilis strain with multiple mutations is accelerated by simultaneous use of a positive selection method. All the strains selected by neomycin acquired two simultaneous mutations at different genomic loci. The extremely low rate of false positives was accounted for by employing the improved method.
Collapse
|