1
|
Heard SC, Winter JM. Structural, biochemical and bioinformatic analyses of nonribosomal peptide synthetase adenylation domains. Nat Prod Rep 2024; 41:1180-1205. [PMID: 38488017 PMCID: PMC11253843 DOI: 10.1039/d3np00064h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 07/18/2024]
Abstract
Covering: 1997 to July 2023The adenylation reaction has been a subject of scientific intrigue since it was first recognized as essential to many biological processes, including the homeostasis and pathogenicity of some bacteria and the activation of amino acids for protein synthesis in mammals. Several foundational studies on adenylation (A) domains have facilitated an improved understanding of their molecular structures and biochemical properties, in particular work on nonribosomal peptide synthetases (NRPSs). In NRPS pathways, A domains activate their respective acyl substrates for incorporation into a growing peptidyl chain, and many nonribosomal peptides are bioactive. From a natural product drug discovery perspective, improving existing bioinformatics platforms to predict unique NRPS products more accurately from genomic data is desirable. Here, we summarize characterization efforts of A domains primarily from NRPS pathways from July 1997 up to July 2023, covering protein structure elucidation, in vitro assay development, and in silico tools for improved predictions.
Collapse
Affiliation(s)
- Stephanie C Heard
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Zhang K, Kries H. Biomimetic engineering of nonribosomal peptide synthesis. Biochem Soc Trans 2023; 51:1521-1532. [PMID: 37409512 DOI: 10.1042/bst20221264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Nonribosomal peptides (NRPs) have gained attention due to their diverse biological activities and potential applications in medicine and agriculture. The natural diversity of NRPs is a result of evolutionary processes that have occurred over millions of years. Recent studies have shed light on the mechanisms by which nonribosomal peptide synthetases (NRPSs) evolve, including gene duplication, recombination, and horizontal transfer. Mimicking natural evolution could be a useful strategy for engineering NRPSs to produce novel compounds with desired properties. Furthermore, the emergence of antibiotic-resistant bacteria has highlighted the urgent need for new drugs, and NRPs represent a promising avenue for drug discovery. This review discusses the engineering potential of NRPSs in light of their evolutionary history.
Collapse
Affiliation(s)
- Kexin Zhang
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI Jena), 07745 Jena, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI Jena), 07745 Jena, Germany
- Organic Chemistry I, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
3
|
Niu K, Qi YX, Cai HW, Ye YX, Zhou HY, Liu XT, Liu ZQ, Zheng YG. Investigation of the enhancement for Echinocandin B fermentation with methyl oleate from transcription level. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02883-4. [PMID: 37253987 DOI: 10.1007/s00449-023-02883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
Echinocandin B (ECB) is the key precursor compound of the antifungal drug Anidulafungin. The effects of the five precursor amino acids on ECB biosynthesis were firstly investigated. It showed that although L-threonine was a main compound of the hexapeptide scaffold of ECB, exogenous addition of L-threonine had no significant effect on the increase of ECB fermentation titer. Meanwhile, the ECB fermentation titer with methyl oleate showed two times higher than that of the other carbon sources. Transcription level analysis of the key genes for ECB biosynthesis indicated that the gene an655543 related to L-threonine biosynthesis showed higher value during the fermentation process, therefore, the exogenous addition of L-threonine had no obvious affection. Furthermore, it indicated that the transcription level of gene ecdA might be the main restriction factor for the ECB biosynthesis. The study provided the research foundation for the modification of the ECB producing strains in the following work.
Collapse
Affiliation(s)
- Kun Niu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yu-Xin Qi
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hong-Wei Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yi-Xin Ye
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hai-Yan Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Tian Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 200235, People's Republic of China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
4
|
Booth TJ, Bozhüyük KAJ, Liston JD, Batey SFD, Lacey E, Wilkinson B. Bifurcation drives the evolution of assembly-line biosynthesis. Nat Commun 2022; 13:3498. [PMID: 35715397 PMCID: PMC9205934 DOI: 10.1038/s41467-022-30950-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
Reprogramming biosynthetic assembly-lines is a topic of intense interest. This is unsurprising as the scaffolds of most antibiotics in current clinical use are produced by such pathways. The modular nature of assembly-lines provides a direct relationship between the sequence of enzymatic domains and the chemical structure of the product, but rational reprogramming efforts have been met with limited success. To gain greater insight into the design process, we wanted to examine how Nature creates assembly-lines and searched for biosynthetic pathways that might represent evolutionary transitions. By examining the biosynthesis of the anti-tubercular wollamides, we uncover how whole gene duplication and neofunctionalization can result in pathway bifurcation. We show that, in the case of the wollamide biosynthesis, neofunctionalization is initiated by intragenomic recombination. This pathway bifurcation leads to redundancy, providing the genetic robustness required to enable large structural changes during the evolution of antibiotic structures. Should the new product be non-functional, gene loss can restore the original genotype. However, if the new product confers an advantage, depreciation and eventual loss of the original gene creates a new linear pathway. This provides the blind watchmaker equivalent to the design, build, test cycle of synthetic biology.
Collapse
Affiliation(s)
- Thomas J Booth
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
- School of Molecular Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Kenan A J Bozhüyük
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany
| | - Jonathon D Liston
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Sibyl F D Batey
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ernest Lacey
- Microbial Screening Technologies, Smithfield, NSW, 2164, Australia
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK.
| |
Collapse
|
5
|
Leinberger J, Holste J, Bunk B, Freese HM, Spröer C, Dlugosch L, Kück AC, Schulz S, Brinkhoff T. High Potential for Secondary Metabolite Production of Paracoccus marcusii CP157, Isolated From the Crustacean Cancer pagurus. Front Microbiol 2021; 12:688754. [PMID: 34262548 PMCID: PMC8273931 DOI: 10.3389/fmicb.2021.688754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Secondary metabolites are key components in microbial ecology by mediating interactions between bacteria and their environment, neighboring species or host organisms. Bioactivities can be beneficial for both interaction partners or provide a competitive advantage only for the producer. Colonizers of confined habitats such as biofilms are known as prolific producers of a great number of bioactive secondary metabolites and are a potential source for novel compounds. We investigated the strain Paracoccus marcusii CP157, which originates from the biofilm on the carapace of a shell disease-affected Cancer pagurus specimen, for its potential to produce bioactive secondary metabolites. Its closed genome contains 22 extrachromosomal elements and several gene clusters potentially involved in biosynthesis of bioactive polyketides, bacteriocins, and non-ribosomal peptides. Culture extracts of CP157 showed antagonistic activities against bacteria from different phyla, but also against microalgae and crustacean larvae. Different HPLC-fractions of CP157 culture extracts had antibacterial properties, indicating that several bioactive compounds are produced by CP157. The bioactive extract contains several small, antibacterial compounds that partially withstand elevated temperatures, extreme pH values and exposure to proteolytic enzymes, providing high stability toward environmental conditions in the natural habitat of CP157. Further, screening of 17 Paracoccus spp. revealed that antimicrobial activity, hemolysis and production of N-acyl homoserine lactones are common features within the genus. Taking into account the large habitat diversity and phylogenetic distance of the tested strains, we hypothesize that bioactive secondary metabolites play a central role in the ecology of Paracoccus spp. in their natural environments.
Collapse
Affiliation(s)
- Janina Leinberger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Jonas Holste
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Heike M. Freese
- Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Leon Dlugosch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Anna-Carlotta Kück
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Long DH, Townsend CA. Acyl Donor Stringency and Dehydroaminoacyl Intermediates in β-Lactam Formation by a Non-ribosomal Peptide Synthetase. ACS Chem Biol 2021; 16:806-812. [PMID: 33847484 DOI: 10.1021/acschembio.1c00117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Condensation (C) domains in non-ribosomal peptide synthetases catalyze peptide elongation steps whereby activated amino acid or peptidyl acyl donors are coupled with specific amino acid acceptors. In the biosynthesis of the β-lactam antibiotic nocardicin A, an unusual C domain converts a seryl tetrapeptide into its pentapeptide product containing an integrated β-lactam ring. While indirect evidence for the intermediacy of a dehydroalanyl species has been reported, here we describe observation of the elusive enzyme-bound dehydroamino acyl intermediate generated from the corresponding allo-threonyl tetrapeptide and partitioned into pentapeptide products containing either a dehydrobutyrine residue or an embedded β-lactam. Contrary to trends in the literature where condensation domains have been deemed flexible as to acyl donor structure, this β-lactam synthesizing domain is highly discriminating. The observation of dehydrobutyrine formation links this C domain to related clades associated with natural products containing dehydroamino acid and d-configured residues, suggesting a common mechanistic link.
Collapse
Affiliation(s)
- Darcie H. Long
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Craig A. Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Baunach M, Chowdhury S, Stallforth P, Dittmann E. The Landscape of Recombination Events That Create Nonribosomal Peptide Diversity. Mol Biol Evol 2021; 38:2116-2130. [PMID: 33480992 PMCID: PMC8097286 DOI: 10.1093/molbev/msab015] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nonribosomal peptides (NRP) are crucial molecular mediators in microbial ecology and provide indispensable drugs. Nevertheless, the evolution of the flexible biosynthetic machineries that correlates with the stunning structural diversity of NRPs is poorly understood. Here, we show that recombination is a key driver in the evolution of bacterial NRP synthetase (NRPS) genes across distant bacterial phyla, which has guided structural diversification in a plethora of NRP families by extensive mixing and matching of biosynthesis genes. The systematic dissection of a large number of individual recombination events did not only unveil a striking plurality in the nature and origin of the exchange units but allowed the deduction of overarching principles that enable the efficient exchange of adenylation (A) domain substrates while keeping the functionality of the dynamic multienzyme complexes. In the majority of cases, recombination events have targeted variable portions of the Acore domains, yet domain interfaces and the flexible Asub domain remained untapped. Our results strongly contradict the widespread assumption that adenylation and condensation (C) domains coevolve and significantly challenge the attributed role of C domains as stringent selectivity filter during NRP synthesis. Moreover, they teach valuable lessons on the choice of natural exchange units in the evolution of NRPS diversity, which may guide future engineering approaches.
Collapse
Affiliation(s)
- Martin Baunach
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Somak Chowdhury
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
| | - Elke Dittmann
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| |
Collapse
|
8
|
Ashraf S, Dhusia K, Verma S. Siderophores Mediated Iron Acquisition and Virulence of Brown Rot Disease in Stone Fruits Caused by Monilinia fructicola in Jammu and Kashmir. Fungal Biol 2021. [DOI: 10.1007/978-3-030-53077-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
YAMAN G, YILMAZ M. Examination of Substrate Specificity of the First Adenylation Domain in mcyA Module Involved in Microcystin Biosynthesis. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2020. [DOI: 10.21448/ijsm.715530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Calcott MJ, Owen JG, Ackerley DF. Efficient rational modification of non-ribosomal peptides by adenylation domain substitution. Nat Commun 2020; 11:4554. [PMID: 32917865 PMCID: PMC7486941 DOI: 10.1038/s41467-020-18365-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
Non-ribosomal peptide synthetase (NRPS) enzymes form modular assembly-lines, wherein each module governs the incorporation of a specific monomer into a short peptide product. Modules are comprised of one or more key domains, including adenylation (A) domains, which recognise and activate the monomer substrate; condensation (C) domains, which catalyse amide bond formation; and thiolation (T) domains, which shuttle reaction intermediates between catalytic domains. This arrangement offers prospects for rational peptide modification via substitution of substrate-specifying domains. For over 20 years, it has been considered that C domains play key roles in proof-reading the substrate; a presumption that has greatly complicated rational NRPS redesign. Here we present evidence from both directed and natural evolution studies that any substrate-specifying role for C domains is likely to be the exception rather than the rule, and that novel non-ribosomal peptides can be generated by substitution of A domains alone. We identify permissive A domain recombination boundaries and show that these allow us to efficiently generate modified pyoverdine peptides at high yields. We further demonstrate the transferability of our approach in the PheATE-ProCAT model system originally used to infer C domain substrate specificity, generating modified dipeptide products at yields that are inconsistent with the prevailing dogma.
Collapse
Affiliation(s)
- Mark J Calcott
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery and Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery and Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
- Centre for Biodiscovery and Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
11
|
Zheng H, Jiang F, He R, Yang Y, Shi J, Hong W. Charge Transport through Peptides in Single‐Molecule Electrical Measurements. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Haining Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University Xiamen Fujian 361005 China
| | - Feng Jiang
- Joint Research Center for Peptide Drug R&D with Space Peptides, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Runze He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University Xiamen Fujian 361005 China
- Joint Research Center for Peptide Drug R&D with Space Peptides, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University Xiamen Fujian 361005 China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University Xiamen Fujian 361005 China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University Xiamen Fujian 361005 China
- Joint Research Center for Peptide Drug R&D with Space Peptides, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
12
|
Brown AS, Calcott MJ, Owen JG, Ackerley DF. Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. Nat Prod Rep 2019; 35:1210-1228. [PMID: 30069573 DOI: 10.1039/c8np00036k] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to May 2018 Non-ribosomal peptide synthetases (NRPSs) are mega-enzymes that form modular templates to assemble specific peptide products, independent of the ribosome. The autonomous nature of the modules in the template offers prospects for re-engineering NRPS enzymes to generate modified peptide products. Although this has clearly been a primary mechanism of natural product diversification throughout evolution, equivalent strategies have proven challenging to implement in the laboratory. In this review we examine key examples of successful and less-successful re-engineering of NRPS templates to generate novel peptides, with the aim of extracting practical guidelines to inform future efforts. We emphasise the importance of maintaining effective protein-protein interactions in recombinant NRPS templates, and identify strengths and limitations of diverse strategies for achieving different engineering outcomes.
Collapse
Affiliation(s)
- Alistair S Brown
- School of Biological Sciences, Victoria University of Wellington, New Zealand.
| | | | | | | |
Collapse
|
13
|
Ho YTC, Leng DJ, Ghiringhelli F, Wilkening I, Bushell DP, Kostner O, Riva E, Havemann J, Passarella D, Tosin M. Novel chemical probes for the investigation of nonribosomal peptide assembly. Chem Commun (Camb) 2018. [PMID: 28627528 DOI: 10.1039/c7cc02427d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chemical probes were devised and evaluated for the capture of biosynthetic intermediates involved in the bio-assembly of the nonribosomal peptide echinomycin. Putative intermediate peptide species were isolated and characterised, providing fresh insights into pathway substrate flexibility and paving the way for novel chemoenzymatic approaches towards unnatural peptides.
Collapse
Affiliation(s)
- Y T Candace Ho
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK.
| | - Daniel J Leng
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK.
| | - Francesca Ghiringhelli
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK. and Department of Chemistry, Universita' degli Studi di Milano, Via Golgi, 19 20133 Milano, Italy
| | - Ina Wilkening
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK.
| | - Dexter P Bushell
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK.
| | - Otto Kostner
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK. and Institut für Organische Chemie, Universität Wien, Währinger Str., 38 1090 Wien, Austria
| | - Elena Riva
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK.
| | - Judith Havemann
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK.
| | - Daniele Passarella
- Department of Chemistry, Universita' degli Studi di Milano, Via Golgi, 19 20133 Milano, Italy
| | - Manuela Tosin
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK.
| |
Collapse
|
14
|
Sharma R, Bhardwaj R, Gautam V, Kohli SK, Kaur P, Bali RS, Saini P, Thukral AK, Arora S, Vig AP. Microbial Siderophores in Metal Detoxification and Therapeutics: Recent Prospective and Applications. PLANT MICROBIOME: STRESS RESPONSE 2018. [DOI: 10.1007/978-981-10-5514-0_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
15
|
Gubbens J, Wu C, Zhu H, Filippov DV, Florea BI, Rigali S, Overkleeft HS, van Wezel GP. Intertwined Precursor Supply during Biosynthesis of the Catecholate-Hydroxamate Siderophores Qinichelins in Streptomyces sp. MBT76. ACS Chem Biol 2017; 12:2756-2766. [PMID: 28945067 PMCID: PMC5696649 DOI: 10.1021/acschembio.7b00597] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The explosive increase in genome sequencing and the advances in bioinformatic tools have revolutionized the rationale for natural product discovery from actinomycetes. In particular, this has revealed that actinomycete genomes contain numerous orphan gene clusters that have the potential to specify many yet unknown bioactive specialized metabolites, representing a huge unexploited pool of chemical diversity. Here, we describe the discovery of a novel group of catecholate-hydroxamate siderophores termed qinichelins (2-5) from Streptomyces sp. MBT76. Correlation between the metabolite levels and the protein expression profiles identified the biosynthetic gene cluster (named qch) most likely responsible for qinichelin biosynthesis. The structure of the molecules was elucidated by bioinformatics, mass spectrometry, and NMR. The genome of Streptomyces sp. MBT76 contains three gene clusters for the production of catecholate-peptide siderophores, including a separate cluster for the production of a shared catecholate precursor. In addition, an operon in the qch cluster was identified for the production of the ornithine precursor for qinichelins, independent of primary metabolism. This biosynthetic complexity provides new insights into the challenges scientists face when applying synthetic biology approaches for natural product discovery.
Collapse
Affiliation(s)
- Jacob Gubbens
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Changsheng Wu
- Molecular
Biotechnology, Institute of Biology, Leiden University, Sylviusweg
72, 2333 BE, Leiden, The Netherlands
| | - Hua Zhu
- Molecular
Biotechnology, Institute of Biology, Leiden University, Sylviusweg
72, 2333 BE, Leiden, The Netherlands
| | - Dmitri V. Filippov
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Bogdan I. Florea
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sébastien Rigali
- InBioS,
Centre for Protein Engineering, University of Liège, Liège, B-4000, Belgium
| | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gilles P. van Wezel
- Molecular
Biotechnology, Institute of Biology, Leiden University, Sylviusweg
72, 2333 BE, Leiden, The Netherlands
| |
Collapse
|
16
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
17
|
Chemical Probes Allow Structural Insight into the Condensation Reaction of Nonribosomal Peptide Synthetases. Cell Chem Biol 2016; 23:331-9. [PMID: 26991102 DOI: 10.1016/j.chembiol.2016.02.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/03/2016] [Accepted: 02/19/2016] [Indexed: 01/24/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) synthesize a vast variety of small molecules, including antibiotics, antitumors, and immunosuppressants. The NRPS condensation (C) domain catalyzes amide bond formation, the central chemical step in nonribosomal peptide synthesis. The catalytic mechanism and substrate determinants of the reaction are under debate. We developed chemical probes to structurally study the NRPS condensation reaction. These substrate analogs become covalently tethered to a cysteine introduced near the active site, to mimic covalent substrate delivery by carrier domains. They are competent substrates in the condensation reaction and behave similarly to native substrates. Co-crystal structures show C domain-substrate interactions, and suggest that the catalytic histidine's principle role is to position the α-amino group for nucleophilic attack. Structural insight provided by these co-complexes also allowed us to alter the substrate specificity profile of the reaction with a single point mutation.
Collapse
|
18
|
Uytterhoeven B, Appermans K, Song L, Masschelein J, Lathouwers T, Michiels CW, Lavigne R. Systematic analysis of the kalimantacin assembly line NRPS module using an adapted targeted mutagenesis approach. Microbiologyopen 2015; 5:279-86. [PMID: 26666990 PMCID: PMC4831472 DOI: 10.1002/mbo3.326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 01/10/2023] Open
Abstract
Kalimantacin is an antimicrobial compound with strong antistaphylococcal activity that is produced by a hybrid trans‐acyltransferase polyketide synthase/nonribosomal peptide synthetase system in Pseudomonas fluorescens BCCM_ID9359. We here present a systematic analysis of the substrate specificity of the glycine‐incorporating adenylation domain from the kalimantacin biosynthetic assembly line by a targeted mutagenesis approach. The specificity‐conferring code was adapted for use in Pseudomonas and mutated adenylation domain active site sequences were introduced in the kalimantacin gene cluster, using a newly adapted ligation independent cloning method. Antimicrobial activity screens and LC‐MS analyses revealed that the production of the kalimantacin analogues in the mutated strains was abolished. These results support the idea that further insight in the specificity of downstream domains in nonribosomal peptide synthetases and polyketide synthases is required to efficiently engineer these strains in vivo.
Collapse
Affiliation(s)
- Birgit Uytterhoeven
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, Heverlee, B-3001, Belgium
| | - Kenny Appermans
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, Heverlee, B-3001, Belgium
| | - Lijiang Song
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Joleen Masschelein
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, Heverlee, B-3001, Belgium.,Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Thomas Lathouwers
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, Heverlee, B-3001, Belgium
| | - Chris W Michiels
- Centre for Food and Microbial Technology, KU Leuven, Kasteelpark Arenberg 23 box 2457, Heverlee, B-3001, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, Heverlee, B-3001, Belgium
| |
Collapse
|
19
|
de Bruijn I, Cheng X, de Jager V, Expósito RG, Watrous J, Patel N, Postma J, Dorrestein PC, Kobayashi D, Raaijmakers JM. Comparative genomics and metabolic profiling of the genus Lysobacter. BMC Genomics 2015; 16:991. [PMID: 26597042 PMCID: PMC4657364 DOI: 10.1186/s12864-015-2191-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/03/2015] [Indexed: 11/10/2022] Open
Abstract
Background Lysobacter species are Gram-negative bacteria widely distributed in soil, plant and freshwater habitats. Lysobacter owes its name to the lytic effects on other microorganisms. To better understand their ecology and interactions with other (micro)organisms, five Lysobacter strains representing the four species L. enzymogenes, L. capsici, L. gummosus and L. antibioticus were subjected to genomics and metabolomics analyses. Results Comparative genomics revealed a diverse genome content among the Lysobacter species with a core genome of 2,891 and a pangenome of 10,028 coding sequences. Genes encoding type I, II, III, IV, V secretion systems and type IV pili were highly conserved in all five genomes, whereas type VI secretion systems were only found in L. enzymogenes and L. gummosus. Genes encoding components of the flagellar apparatus were absent in the two sequenced L. antibioticus strains. The genomes contained a large number of genes encoding extracellular enzymes including chitinases, glucanases and peptidases. Various nonribosomal peptide synthase (NRPS) and polyketide synthase (PKS) gene clusters encoding putative bioactive metabolites were identified but only few of these clusters were shared between the different species. Metabolic profiling by imaging mass spectrometry complemented, in part, the in silico genome analyses and allowed visualisation of the spatial distribution patterns of several secondary metabolites produced by or induced in Lysobacter species during interactions with the soil-borne fungus Rhizoctonia solani. Conclusions Our work shows that mining the genomes of Lysobacter species in combination with metabolic profiling provides novel insights into the genomic and metabolic potential of this widely distributed but understudied and versatile bacterial genus. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2191-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology, P.O. Box 50, Wageningen, 6700 AB, The Netherlands. .,Wageningen University and Research Centre, Laboratory of Phytopathology, P.O. Box 8025, Wageningen, 6700 EE, The Netherlands.
| | - Xu Cheng
- Wageningen University and Research Centre, Laboratory of Phytopathology, P.O. Box 8025, Wageningen, 6700 EE, The Netherlands.
| | - Victor de Jager
- Department of Microbial Ecology, Netherlands Institute of Ecology, P.O. Box 50, Wageningen, 6700 AB, The Netherlands.
| | - Ruth Gómez Expósito
- Department of Microbial Ecology, Netherlands Institute of Ecology, P.O. Box 50, Wageningen, 6700 AB, The Netherlands. .,Wageningen University and Research Centre, Laboratory of Phytopathology, P.O. Box 8025, Wageningen, 6700 EE, The Netherlands.
| | - Jeramie Watrous
- Departments of Pharmacology, Chemistry and Biochemistry; Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, San Diego, USA.
| | - Nrupali Patel
- Department of Plant Biology & Pathology, Cook College, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901-8520, USA.
| | - Joeke Postma
- Wageningen University and Research Centre, Plant Research International, PO Box 16, Wageningen, 6700 AA, The Netherlands.
| | - Pieter C Dorrestein
- Departments of Pharmacology, Chemistry and Biochemistry; Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, San Diego, USA.
| | - Donald Kobayashi
- Department of Plant Biology & Pathology, Cook College, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901-8520, USA.
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, P.O. Box 50, Wageningen, 6700 AB, The Netherlands.
| |
Collapse
|
20
|
Library construction, selection and modification strategies to generate therapeutic peptide-based modulators of protein-protein interactions. Future Med Chem 2015; 6:2073-92. [PMID: 25531969 DOI: 10.4155/fmc.14.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the modern age of proteomics, vast numbers of protein-protein interactions (PPIs) are being identified as causative agents in pathogenesis, and are thus attractive therapeutic targets for intervention. Although traditionally regarded unfavorably as druggable agents relative to small molecules, peptides in recent years have gained considerable attention. Their previous dismissal had been largely due to the susceptibility of unmodified peptides to the barriers and pressures exerted by the circulation, immune system, proteases, membranes and other stresses. However, recent advances in high-throughput peptide isolation techniques, as well as a huge variety of direct modification options and approaches to allow targeted delivery, mean that peptides and their mimetics can now be designed to circumvent many of these traditional barriers. As a result, an increasing number of peptide-based drugs are reaching clinical trials and patients beyond.
Collapse
|
21
|
Metabolic profiling as a tool for prioritizing antimicrobial compounds. J Ind Microbiol Biotechnol 2015; 43:299-312. [PMID: 26335567 PMCID: PMC4752588 DOI: 10.1007/s10295-015-1666-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/25/2015] [Indexed: 11/29/2022]
Abstract
Metabolomics is an analytical technique that allows scientists to globally profile low molecular weight metabolites between samples in a medium- or high-throughput environment. Different biological samples are statistically analyzed and correlated to a bioactivity of interest, highlighting differentially produced compounds as potential biomarkers. Here, we review NMR- and MS-based metabolomics as technologies to facilitate the identification of novel antimicrobial natural products from microbial sources. Approaches to elicit the production of poorly expressed (cryptic) molecules are thereby a key to allow statistical analysis of samples to identify bioactive markers, while connection of compounds to their biosynthetic gene cluster is a determining step in elucidating the biosynthetic pathway and allows downstream process optimization and upscaling. The review focuses on approaches built around NMR-based metabolomics, which enables efficient dereplication and guided fractionation of (antimicrobial) compounds.
Collapse
|
22
|
Unusual Biosynthesis and Structure of Locillomycins from Bacillus subtilis 916. Appl Environ Microbiol 2015; 81:6601-9. [PMID: 26162886 DOI: 10.1128/aem.01639-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
Three families of Bacillus cyclic lipopeptides--surfactins, iturins, and fengycins--have well-recognized potential uses in biotechnology and biopharmaceutical applications. This study outlines the isolation and characterization of locillomycins, a novel family of cyclic lipopeptides produced by Bacillus subtilis 916. Elucidation of the locillomycin structure revealed several molecular features not observed in other Bacillus lipopeptides, including a unique nonapeptide sequence and macrocyclization. Locillomycins are active against bacteria and viruses. Biochemical analysis and gene deletion studies have supported the assignment of a 38-kb gene cluster as the locillomycin biosynthetic gene cluster. Interestingly, this gene cluster encodes 4 proteins (LocA, LocB, LocC, and LocD) that form a hexamodular nonribosomal peptide synthetase to biosynthesize cyclic nonapeptides. Genome analysis and the chemical structures of the end products indicated that the biosynthetic pathway exhibits two distinct features: (i) a nonlinear hexamodular assembly line, with three modules in the middle utilized twice and the first and last two modules used only once and (ii) several domains that are skipped or optionally selected.
Collapse
|
23
|
Biosynthesis and Molecular Genetics of Peptaibiotics—Fungal Peptides Containing Alpha, Alpha-Dialkyl Amino Acids. Fungal Biol 2015. [DOI: 10.1007/978-1-4939-2531-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Mannige RV. Origination of the Protein Fold Repertoire from Oily Pluripotent Peptides. Proteomes 2014; 2:154-168. [PMID: 28250375 PMCID: PMC5302733 DOI: 10.3390/proteomes2020154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/27/2014] [Accepted: 03/20/2014] [Indexed: 11/16/2022] Open
Abstract
While the repertoire of protein folds that exists today underlies most of life’s capabilities, our mechanistic picture of protein fold origination is incomplete. This paper discusses a hypothetical mechanism for the emergence of the protein fold repertoire from highly dynamic and collapsed peptides, exemplified by peptides with high oil content or hydrophobicity. These peptides are called pluripotent to emphasize their capacity to evolve into numerous folds transiently available to them. As evidence, the paper will discuss previous simulation work on the superior fold evolvability of oily peptides, trace (“fossil”) evidence within proteomes seen today, and a general relationship between protein dynamism and evolvability. Aside from implications on the origination of protein folds, the hypothesis implies that the vanishing utility of a random peptide in protein origination may be relatively exaggerated, as some random peptides with a certain composition (e.g., oily) may fare better than others. In later sections, the hypothesis is discussed in the context of existing discussions regarding the spontaneous origination of biomolecules.
Collapse
Affiliation(s)
- Ranjan V Mannige
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720,USA.
| |
Collapse
|
25
|
Muchiri R, Walker KD. Taxol biosynthesis: tyrocidine synthetase A catalyzes the production of phenylisoserinyl CoA and other amino phenylpropanoyl thioesters. ACTA ACUST UNITED AC 2014; 19:679-85. [PMID: 22726682 DOI: 10.1016/j.chembiol.2012.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/25/2012] [Accepted: 05/04/2012] [Indexed: 11/18/2022]
Abstract
In Taxus plants the biosynthesis of the pharmaceutical paclitaxel includes the transfer of β-amino phenylpropanoyls from coenzyme A to the diterpenoid baccatin III by an acyl CoA-dependent acyltransferase. Several enzymes on the pathway are known, yet a few remain unidentified, including the putative ligase that biosynthesizes key β-amino phenylpropanoyl CoAs. The multienzyme, nonribosomal peptide synthetase that produces tyrocidines contains a tridomain starter module tyrocidine synthetase A that normally activates (S)-α-Phe to an adenylate anhydride in the adenylation domain. The Phe moiety is then thioesterified by the pendent pantetheine of the adjacent thiolation domain. Herein, the adenylation domain was found to function as a CoA ligase, making α-, β-phenylalanyl, and phenylisoserinyl CoA. The latter two are substrates of a phenylpropanoyltransferase on the biosynthetic pathway of the antimitotic paclitaxel.
Collapse
Affiliation(s)
- Ruth Muchiri
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
26
|
Kadlčík S, Kučera T, Chalupská D, Gažák R, Koběrská M, Ulanová D, Kopecký J, Kutejová E, Najmanová L, Janata J. Adaptation of an L-proline adenylation domain to use 4-propyl-L-proline in the evolution of lincosamide biosynthesis. PLoS One 2013; 8:e84902. [PMID: 24386435 PMCID: PMC3874040 DOI: 10.1371/journal.pone.0084902] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022] Open
Abstract
Clinically used lincosamide antibiotic lincomycin incorporates in its structure 4-propyl-L-proline (PPL), an unusual amino acid, while celesticetin, a less efficient related compound, makes use of proteinogenic L-proline. Biochemical characterization, as well as phylogenetic analysis and homology modelling combined with the molecular dynamics simulation were employed for complex comparative analysis of the orthologous protein pair LmbC and CcbC from the biosynthesis of lincomycin and celesticetin, respectively. The analysis proved the compared proteins to be the stand-alone adenylation domains strictly preferring their own natural substrate, PPL or L-proline. The LmbC substrate binding pocket is adapted to accomodate a rare PPL precursor. When compared with L-proline specific ones, several large amino acid residues were replaced by smaller ones opening a channel which allowed the alkyl side chain of PPL to be accommodated. One of the most important differences, that of the residue corresponding to V306 in CcbC changing to G308 in LmbC, was investigated in vitro and in silico. Moreover, the substrate binding pocket rearrangement also allowed LmbC to effectively adenylate 4-butyl-L-proline and 4-pentyl-L-proline, substrates with even longer alkyl side chains, producing more potent lincosamides. A shift of LmbC substrate specificity appears to be an integral part of biosynthetic pathway adaptation to the PPL acquisition. A set of genes presumably coding for the PPL biosynthesis is present in the lincomycin - but not in the celesticetin cluster; their homologs are found in biosynthetic clusters of some pyrrolobenzodiazepines (PBD) and hormaomycin. Whereas in the PBD and hormaomycin pathways the arising precursors are condensed to another amino acid moiety, the LmbC protein is the first functionally proved part of a unique condensation enzyme connecting PPL to the specialized amino sugar building unit.
Collapse
Affiliation(s)
- Stanislav Kadlčík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Tomáš Kučera
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Dominika Chalupská
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Radek Gažák
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Markéta Koběrská
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Dana Ulanová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kopecký
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Eva Kutejová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovac Academy of Sciences, Bratislava, Slovakia
| | - Lucie Najmanová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Janata
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
27
|
Cheng Y, Liu X, An S, Chang C, Zou Y, Huang L, Zhong J, Liu Q, Jiang Z, Zhou J, Zhang LH. A nonribosomal peptide synthase containing a stand-alone condensation domain is essential for phytotoxin zeamine biosynthesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1294-1301. [PMID: 23883359 DOI: 10.1094/mpmi-04-13-0098-r] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Dickeya zeae is the causal agent of rice foot rot and maize stalk rot diseases, which could cause severe economic losses. The pathogen is known to produce two phytotoxins known as zeamine and zeamine II which are also potent antibiotics against both gram-positive and gram-negative bacteria pathogens. Zeamine II is a long-chain aminated polyketide and zeamine shares the same polyketide structure as zeamine II, with an extra valine derivative moiety conjugated to the primary amino group of zeamine II. In this study, we have identified a gene designated as zmsK encoding a putative nonribosomal peptide synthase (NRPS) by screening of the transposon mutants defective in zeamine production. Different from most known NRPS enzymes, which are commonly multidomain proteins, ZmsK contains only a condensation domain. High-performance liquid chromatography and mass spectrometry analyses showed that the ZmsK deletion mutant produced only zeamine II but not zeamine, suggesting that ZmsK catalyzes the amide bond formation by using zeamine II as a substrate to generate zeamine. We also present evidence that a partially conserved catalytic motif within the condensation domain is critical for zeamine production. Furthermore, we show that deletion of zmsK substantially decreased the total antimicrobial activity and virulence of D. zeae. Our findings provide a new insight into the biosynthesis pathway of zeamines and the virulence mechanisms of the bacterial pathogen D. zeae.
Collapse
|
28
|
Sequence characterization and computational analysis of the non-ribosomal peptide synthetases controlling biosynthesis of lipopeptides, fengycins and bacillomycin D, from Bacillus amyloliquefaciens Q-426. Biotechnol Lett 2013; 35:2155-63. [PMID: 24068498 DOI: 10.1007/s10529-013-1320-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
Lipopeptides secreted by bacteria attract interest because of their uses in biomedicine, biotechnology and food technology; however, harnessing their megasynthases (non-ribosomal peptide synthetases, NRPSs) has met with some difficulties in heterologous expression and crystallization. Here, we used similarity and phylogenetic analysis of NRPS sequences, including the fengycin and iturin family synthetases from Bacillus spp., and have developed a novel approach for delineating the length and boundaries of NRPS domains from Bacillus amyloliquefaciens strain Q-426. The sequences were further characterized (including specific residues and conserved motifs) that gave insight into the basis of the substrate specificity. Data from the prediction of the NRPS domains, obtained by the self-optimized prediction method with Alignment program, showed they are all structurally unstable, making it difficult to determine their crystal structures.
Collapse
|
29
|
Zhu H, Sandiford SK, van Wezel GP. Triggers and cues that activate antibiotic production by actinomycetes. J Ind Microbiol Biotechnol 2013; 41:371-86. [PMID: 23907251 DOI: 10.1007/s10295-013-1309-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/30/2013] [Indexed: 12/24/2022]
Abstract
Actinomycetes are a rich source of natural products, and these mycelial bacteria produce the majority of the known antibiotics. The increasing difficulty to find new drugs via high-throughput screening has led to a decline in antibiotic research, while infectious diseases associated with multidrug resistance are spreading rapidly. Here we review new approaches and ideas that are currently being developed to increase our chances of finding novel antimicrobials, with focus on genetic, chemical, and ecological methods to elicit the expression of biosynthetic gene clusters. The genome sequencing revolution identified numerous gene clusters for natural products in actinomycetes, associated with a potentially huge reservoir of unknown molecules, and prioritizing them is a major challenge for in silico screening-based approaches. Some antibiotics are likely only expressed under very specific conditions, such as interaction with other microbes, which explains the renewed interest in soil and marine ecology. The identification of new gene clusters, as well as chemical elicitors and culturing conditions that activate their expression, should allow scientists to reinforce their efforts to find the necessary novel antimicrobial drugs.
Collapse
Affiliation(s)
- Hua Zhu
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | | | | |
Collapse
|
30
|
Classification of the adenylation and acyl-transferase activity of NRPS and PKS systems using ensembles of substrate specific hidden Markov models. PLoS One 2013; 8:e62136. [PMID: 23637983 PMCID: PMC3630128 DOI: 10.1371/journal.pone.0062136] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 03/19/2013] [Indexed: 01/24/2023] Open
Abstract
There is a growing interest in the Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) of microbes, fungi and plants because they can produce bioactive peptides such as antibiotics. The ability to identify the substrate specificity of the enzyme's adenylation (A) and acyl-transferase (AT) domains is essential to rationally deduce or engineer new products. We here report on a Hidden Markov Model (HMM)-based ensemble method to predict the substrate specificity at high quality. We collected a new reference set of experimentally validated sequences. An initial classification based on alignment and Neighbor Joining was performed in line with most of the previously published prediction methods. We then created and tested single substrate specific HMMs and found that their use improved the correct identification significantly for A as well as for AT domains. A major advantage of the use of HMMs is that it abolishes the dependency on multiple sequence alignment and residue selection that is hampering the alignment-based clustering methods. Using our models we obtained a high prediction quality for the substrate specificity of the A domains similar to two recently published tools that make use of HMMs or Support Vector Machines (NRPSsp and NRPS predictor2, respectively). Moreover, replacement of the single substrate specific HMMs by ensembles of models caused a clear increase in prediction quality. We argue that the superiority of the ensemble over the single model is caused by the way substrate specificity evolves for the studied systems. It is likely that this also holds true for other protein domains. The ensemble predictor has been implemented in a simple web-based tool that is available at http://www.cmbi.ru.nl/NRPS-PKS-substrate-predictor/.
Collapse
|
31
|
Galm U, Shen B. Expression of biosynthetic gene clusters in heterologous hosts for natural product production and combinatorial biosynthesis. Expert Opin Drug Discov 2013; 1:409-37. [PMID: 23495943 DOI: 10.1517/17460441.1.5.409] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Expression of biosynthetic gene clusters in heterologous hosts for natural product production and combinatorial biosynthesis is playing an increasingly important role in natural product-based drug discovery and development programmes. This review highlights the requirements and challenges associated with this conceptually simple strategy of using surrogate hosts for the production of natural products in good yields and for the generation of novel analogues by combinatorial biosynthesis methods, taking advantage of the recombinant DNA technologies and tools available in the model hosts. Specific topics addressed include: i) the mobilisation of biosynthetic gene clusters using different vector systems; ii) the selection of suitable model heterologous hosts; iii) the requirement of post-translational protein modifications and precursor supply within the model hosts; iv) the influence of promoters and pathway regulators; and v) the choice of suitable fermentation conditions. Lastly, the use of heterologous expression in combinatorial biosynthesis is addressed. Future directions for model heterologous host engineering and the optimisation of natural product biosynthetic gene cluster expression in heterologous hosts are also discussed.
Collapse
Affiliation(s)
- Ute Galm
- Divison of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA.
| | | |
Collapse
|
32
|
Ravichandran A, Gu G, Escano J, Lu SE, Smith L. The presence of two cyclase thioesterases expands the conformational freedom of the cyclic Peptide occidiofungin. JOURNAL OF NATURAL PRODUCTS 2013; 76:150-156. [PMID: 23394257 PMCID: PMC4142711 DOI: 10.1021/np3005503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Occidiofungin is a cyclic nonribosomally synthesized antifungal peptide with submicromolar activity produced by the Gram-negative bacterium Burkholderia contaminans. The biosynthetic gene cluster was confirmed to contain two cyclase thioesterases. NMR analysis revealed that the presence of both thioesterases is used to increase the conformational repertoire of the cyclic peptide. The loss of the OcfN cyclic thioesterase by mutagenesis results in a reduction of conformational variants and an appreciable decrease in bioactivity against Candida species. Presumably, the presence of both asparagine and β-hydroxyasparagine variants coordinates the enzymatic function of both of the cyclase thioesterases. OcfN has presumably evolved to be part of the biosynthetic gene cluster due to its ability to produce structural variants that enhance antifungal activity against some fungi. The enhancement of the antifungal activity from the incorporation of an additional cyclase thioesterase into the biosynthetic gene cluster of occidiofungin supports the need to explore new conformational variants of other therapeutic or potentially therapeutic cyclic peptides.
Collapse
Affiliation(s)
- Akshaya Ravichandran
- Department of Biological Sciences, Texas A&M University, College Station, TX 77843
| | - Ganyu Gu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 32 Creelman St., Mississippi State, MS 39762
| | - Jerome Escano
- Department of Biological Sciences, Texas A&M University, College Station, TX 77843
| | - Shi-En Lu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 32 Creelman St., Mississippi State, MS 39762
| | - Leif Smith
- Department of Biological Sciences, Texas A&M University, College Station, TX 77843
| |
Collapse
|
33
|
SHARMA AJEETK, CHOWDHURY DEBASHISH. TEMPLATE-DIRECTED BIOPOLYMERIZATION: TAPE-COPYING TURING MACHINES. ACTA ACUST UNITED AC 2013. [DOI: 10.1142/s1793048012300083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA, RNA and proteins are among the most important macromolecules in a living cell. These molecules are polymerized by molecular machines. These natural nano-machines polymerize such macromolecules, adding one monomer at a time, using another linear polymer as the corresponding template. The machine utilizes input chemical energy to move along the template which also serves as a track for the movements of the machine. In the Alan Turing year 2012, it is worth pointing out that these machines are "tape-copying Turing machines". We review the operational mechanisms of the polymerizer machines and their collective behavior from the perspective of statistical physics, emphasizing their common features in spite of the crucial differences in their biological functions. We also draw the attention of the physics community to another class of modular machines that carry out a different type of template-directed polymerization. We hope this review will inspire new kinetic models for these modular machines.
Collapse
Affiliation(s)
- AJEET K. SHARMA
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | |
Collapse
|
34
|
Boettger D, Bergmann H, Kuehn B, Shelest E, Hertweck C. Evolutionary Imprint of Catalytic Domains in Fungal PKS-NRPS Hybrids. Chembiochem 2012; 13:2363-73. [DOI: 10.1002/cbic.201200449] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Indexed: 12/13/2022]
|
35
|
Genome-based cryptic gene discovery and functional identification of NRPS siderophore peptide in Streptomyces peucetius. Appl Microbiol Biotechnol 2012; 97:1213-22. [DOI: 10.1007/s00253-012-4268-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
|
36
|
Hansen FT, Sørensen JL, Giese H, Sondergaard TE, Frandsen RJ. Quick guide to polyketide synthase and nonribosomal synthetase genes in Fusarium. Int J Food Microbiol 2012; 155:128-36. [DOI: 10.1016/j.ijfoodmicro.2012.01.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/16/2012] [Accepted: 01/23/2012] [Indexed: 11/25/2022]
|
37
|
The Natural Product Domain Seeker NaPDoS: A Phylogeny Based Bioinformatic Tool to Classify Secondary Metabolite Gene Diversity. PLoS One 2012; 7:e34064. [PMID: 22479523 PMCID: PMC3315503 DOI: 10.1371/journal.pone.0034064] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 02/26/2012] [Indexed: 11/19/2022] Open
Abstract
New bioinformatic tools are needed to analyze the growing volume of DNA sequence data. This is especially true in the case of secondary metabolite biosynthesis, where the highly repetitive nature of the associated genes creates major challenges for accurate sequence assembly and analysis. Here we introduce the web tool Natural Product Domain Seeker (NaPDoS), which provides an automated method to assess the secondary metabolite biosynthetic gene diversity and novelty of strains or environments. NaPDoS analyses are based on the phylogenetic relationships of sequence tags derived from polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes, respectively. The sequence tags correspond to PKS-derived ketosynthase domains and NRPS-derived condensation domains and are compared to an internal database of experimentally characterized biosynthetic genes. NaPDoS provides a rapid mechanism to extract and classify ketosynthase and condensation domains from PCR products, genomes, and metagenomic datasets. Close database matches provide a mechanism to infer the generalized structures of secondary metabolites while new phylogenetic lineages provide targets for the discovery of new enzyme architectures or mechanisms of secondary metabolite assembly. Here we outline the main features of NaPDoS and test it on four draft genome sequences and two metagenomic datasets. The results provide a rapid method to assess secondary metabolite biosynthetic gene diversity and richness in organisms or environments and a mechanism to identify genes that may be associated with uncharacterized biochemistry.
Collapse
|
38
|
A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. ACTA ACUST UNITED AC 2012; 18:1499-512. [PMID: 22118684 DOI: 10.1016/j.chembiol.2011.08.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 08/25/2011] [Accepted: 08/25/2011] [Indexed: 11/21/2022]
Abstract
A single gene cluster of Penicillium chrysogenum contains genes involved in the biosynthesis and secretion of the mycotoxins roquefortine C and meleagrin. Five of these genes have been silenced by RNAi. Pc21g15480 (rds) encodes a nonribosomal cyclodipeptide synthetase for the biosynthesis of both roquefortine C and meleagrin. Pc21g15430 (rpt) encodes a prenyltransferase also required for the biosynthesis of both mycotoxins. Silencing of Pc21g15460 or Pc21g15470 led to a decrease in roquefortine C and meleagrin, whereas silencing of the methyltransferase gene (Pc21g15440; gmt) resulted in accumulation of glandicolin B, indicating that this enzyme catalyzes the conversion of glandicolin B to meleagrin. All these genes are transcriptionally coregulated. Our results prove that roquefortine C and meleagrin derive from a single pathway.
Collapse
|
39
|
Belin P, Moutiez M, Lautru S, Seguin J, Pernodet JL, Gondry M. The nonribosomal synthesis of diketopiperazines in tRNA-dependent cyclodipeptide synthase pathways. Nat Prod Rep 2012; 29:961-79. [DOI: 10.1039/c2np20010d] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Boll B, Taubitz T, Heide L. Role of MbtH-like proteins in the adenylation of tyrosine during aminocoumarin and vancomycin biosynthesis. J Biol Chem 2011; 286:36281-90. [PMID: 21890635 PMCID: PMC3196098 DOI: 10.1074/jbc.m111.288092] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/01/2011] [Indexed: 11/06/2022] Open
Abstract
MbtH-like proteins consist of ∼70 amino acids and are encoded in the biosynthetic gene clusters of non-ribosomally formed peptides and other secondary metabolites derived from amino acids. Recently, several MbtH-like proteins have been shown to be required for the adenylation of amino acid in non-ribosomal peptide synthesis. We now investigated the role of MbtH-like proteins in the biosynthesis of the aminocoumarin antibiotics novobiocin, clorobiocin, and simocyclinone D8 and of the glycopeptide antibiotic vancomycin. The tyrosine-adenylating enzymes CloH, SimH, and Pcza361.18, involved in the biosynthesis of clorobiocin, simocyclinone D8, and vancomycin, respectively, required the presence of MbtH-like proteins in a 1:1 molar ratio, forming heterotetrameric complexes. In contrast, NovH, involved in novobiocin biosynthesis, showed activity in the absence of MbtH-like proteins. Comparison of the active centers of CloH and NovH showed only one amino acid to be different, i.e. Leu-383 versus Met-383. Mutation of this amino acid in CloH (L383M) indeed led to MbtH-independent adenylating activity. All investigated tyrosine-adenylating enzymes exhibited remarkable promiscuity for MbtH-like proteins from different pathways and organisms. YbdZ, the MbtH-like protein from the expression host Escherichia coli, was found to bind to adenylating enzymes during expression and to influence their biochemical properties markedly. Therefore, the use of ybdZ-deficient expression hosts is important in biochemical studies of adenylating enzymes.
Collapse
Affiliation(s)
- Björn Boll
- From the Pharmazeutisches Institut, Universität Tübingen, 72076 Tübingen, Germany
| | - Tatjana Taubitz
- From the Pharmazeutisches Institut, Universität Tübingen, 72076 Tübingen, Germany
| | - Lutz Heide
- From the Pharmazeutisches Institut, Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
41
|
Wang XJ, Zhang J, Liu CX, Gong DL, Zhang H, Wang JD, Yan YJ, Xiang WS. A novel macrocyclic lactone with insecticidal bioactivity from Streptomyces microflavus neau3. Bioorg Med Chem Lett 2011; 21:5145-8. [PMID: 21840717 DOI: 10.1016/j.bmcl.2011.07.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 07/05/2011] [Accepted: 07/20/2011] [Indexed: 11/27/2022]
Abstract
A novel macrocyclic lactone (1) was isolated from the fermentation broth of Streptomycesmicroflavus neau3, and the structure was elucidated by extensive spectroscopic analysis. Compound 1 showed high acaricidal activity against adult mites (IC(50)=11.1 μg mL(-1)), and nematocidal activity against Caenorhabditis elegans (IC(50)=17.4 μg mL(-1)), especially the acaricidal activity against mite eggs with an IC(50) of 37.1 μg mL(-1), which was relative higher than that of the commercial acaricide and nematocide milbemycins A(3)/A(4).
Collapse
Affiliation(s)
- Xiang-Jing Wang
- School of Life Science, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kraas FI, Helmetag V, Wittmann M, Strieker M, Marahiel MA. Functional dissection of surfactin synthetase initiation module reveals insights into the mechanism of lipoinitiation. ACTA ACUST UNITED AC 2011; 17:872-80. [PMID: 20797616 DOI: 10.1016/j.chembiol.2010.06.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/01/2010] [Accepted: 06/03/2010] [Indexed: 11/18/2022]
Abstract
Although the N-terminally attached fatty acids are key structural elements of nonribosomally assembled lipopeptide antibiotics, little is known about the mechanism of lipid transfer during the initial step of biosynthesis. In this study, we investigated the activity of the dissected initiation module (C-A(Glu)-PCP) of surfactin synthetase SrfAA in vitro to gain further insights into the lipoinitiation reaction. The dissected condensation (C) domain catalyzes the transfer of CoA-activated 3-hydroxy fatty acid with high substrate specificity at its donor site to the peptidyl carrier protein (PCP) bound amino acid glutamate (Glu(1)). Additionally, biochemical studies on four putative acyl CoA ligases in Bacillus subtilis revealed that two of them activate 3-hydroxy fatty acids for surfactin biosynthesis in vitro and that the disruption of corresponding genes has a significant influence on surfactin production.
Collapse
Affiliation(s)
- Femke I Kraas
- Department of Chemistry, Biochemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
43
|
Sirota-Madi A, Olender T, Helman Y, Ingham C, Brainis I, Roth D, Hagi E, Brodsky L, Leshkowitz D, Galatenko V, Nikolaev V, Mugasimangalam RC, Bransburg-Zabary S, Gutnick DL, Lancet D, Ben-Jacob E. Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments. BMC Genomics 2010; 11:710. [PMID: 21167037 PMCID: PMC3012674 DOI: 10.1186/1471-2164-11-710] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/17/2010] [Indexed: 12/05/2022] Open
Abstract
Background The pattern-forming bacterium Paenibacillus vortex is notable for its advanced social behavior, which is reflected in development of colonies with highly intricate architectures. Prior to this study, only two other Paenibacillus species (Paenibacillus sp. JDR-2 and Paenibacillus larvae) have been sequenced. However, no genomic data is available on the Paenibacillus species with pattern-forming and complex social motility. Here we report the de novo genome sequence of this Gram-positive, soil-dwelling, sporulating bacterium. Results The complete P. vortex genome was sequenced by a hybrid approach using 454 Life Sciences and Illumina, achieving a total of 289× coverage, with 99.8% sequence identity between the two methods. The sequencing results were validated using a custom designed Agilent microarray expression chip which represented the coding and the non-coding regions. Analysis of the P. vortex genome revealed 6,437 open reading frames (ORFs) and 73 non-coding RNA genes. Comparative genomic analysis with 500 complete bacterial genomes revealed exceptionally high number of two-component system (TCS) genes, transcription factors (TFs), transport and defense related genes. Additionally, we have identified genes involved in the production of antimicrobial compounds and extracellular degrading enzymes. Conclusions These findings suggest that P. vortex has advanced faculties to perceive and react to a wide range of signaling molecules and environmental conditions, which could be associated with its ability to reconfigure and replicate complex colony architectures. Additionally, P. vortex is likely to serve as a rich source of genes important for agricultural, medical and industrial applications and it has the potential to advance the study of social microbiology within Gram-positive bacteria.
Collapse
Affiliation(s)
- Alexandra Sirota-Madi
- The Sackler School of Physics and Astronomy, Tel Aviv University, PO Box 39040, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Koksharova OA. Application of molecular genetic and microbiological techniques in ecology and biotechnology of cyanobacteria. Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710060020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
45
|
Rouhiainen L, Jokela J, Fewer DP, Urmann M, Sivonen K. Two alternative starter modules for the non-ribosomal biosynthesis of specific anabaenopeptin variants in Anabaena (Cyanobacteria). ACTA ACUST UNITED AC 2010; 17:265-73. [PMID: 20338518 DOI: 10.1016/j.chembiol.2010.01.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 11/25/2022]
Abstract
Anabaenopeptins are a diverse family of cyclic hexapeptide protease inhibitors produced by cyanobacteria that contain a conserved ureido bond and D-Lys moiety. Here we demonstrate that anabaenopeptins are assembled on a nonribosomal peptide synthetase enzyme complex encoded by a 32 kb apt gene cluster in the cyanobacterium Anabaena sp. strain 90. Surprisingly, the gene cluster encoded two alternative starter modules organized in separate bimodular proteins. The starter modules display high substrate specificity for L-Arg/L-Lys and L-Tyr, respectively, and allow the specific biosynthesis of different anabaenopeptin variants. The two starter modules were found also in other Anabaena strains. However, just a single module was present in the anabaenopeptin gene clusters of Nostoc and Nodularia, respectively. The organization of the apt gene cluster in Anabaena represents an exception to the established colinearity rule of linear non-ribosomal peptide synthetases.
Collapse
Affiliation(s)
- Leo Rouhiainen
- Department of Food and Environmental Sciences, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FIN-00014, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
46
|
Sainis I, Fokas D, Vareli K, Tzakos AG, Kounnis V, Briasoulis E. Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs. Mar Drugs 2010; 8:629-57. [PMID: 20411119 PMCID: PMC2857373 DOI: 10.3390/md8030629] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/10/2010] [Accepted: 02/26/2010] [Indexed: 12/22/2022] Open
Abstract
Cyanobacterial cyclopeptides, including microcystins and nodularins, are considered a health hazard to humans due to the possible toxic effects of high consumption. From a pharmacological standpoint, microcystins are stable hydrophilic cyclic heptapeptides with a potential to cause cellular damage following uptake via organic anion-transporting polypeptides (OATP). Their intracellular biological effects involve inhibition of catalytic subunits of protein phosphatase 1 (PP1) and PP2, glutathione depletion and generation of reactive oxygen species (ROS). Interestingly, certain OATPs are prominently expressed in cancers as compared to normal tissues, qualifying MC as potential candidates for cancer drug development. In the era of targeted cancer therapy, cyanotoxins comprise a rich source of natural cytotoxic compounds with a potential to target cancers expressing specific uptake transporters. Moreover, their structure offers opportunities for combinatorial engineering to enhance the therapeutic index and resolve organ-specific toxicity issues. In this article, we revisit cyanobacterial cyclopeptides as potential novel targets for anticancer drugs by summarizing existing biomedical evidence, presenting structure-activity data and discussing developmental perspectives.
Collapse
Affiliation(s)
- Ioannis Sainis
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
| | - Demosthenes Fokas
- Department of Materials Science and Engineering, University of Ioannina, Greece; E-Mail:
(D.F.)
| | - Katerina Vareli
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
- Department of Biological Applications and Technologies, University of Ioannina, Greece
| | - Andreas G. Tzakos
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
- Department of Chemistry, University of Ioannina, Greece
| | | | - Evangelos Briasoulis
- Human Cancer Biobank Center, University of Ioannina, Greece; E-Mails:
(I.S.);
(K.V.);
(A.T.)
- School of Medicine, University of Ioannina, Greece; E-Mail:
(V.K.)
- * Author to whom correspondence should be addressed; E-Mail:
or
; Tel.: +30-265-100-7713; Fax: +30-265-100-8087
| |
Collapse
|
47
|
Bushley KE, Turgeon BG. Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol 2010; 10:26. [PMID: 20100353 PMCID: PMC2823734 DOI: 10.1186/1471-2148-10-26] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 01/26/2010] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Nonribosomal peptide synthetases (NRPSs) are multimodular enzymes, found in fungi and bacteria, which biosynthesize peptides without the aid of ribosomes. Although their metabolite products have been the subject of intense investigation due to their life-saving roles as medicinals and injurious roles as mycotoxins and virulence factors, little is known of the phylogenetic relationships of the corresponding NRPSs or whether they can be ranked into subgroups of common function. We identified genes (NPS) encoding NRPS and NRPS-like proteins in 38 fungal genomes and undertook phylogenomic analyses in order to identify fungal NRPS subfamilies, assess taxonomic distribution, evaluate levels of conservation across subfamilies, and address mechanisms of evolution of multimodular NRPSs. We also characterized relationships of fungal NRPSs, a representative sampling of bacterial NRPSs, and related adenylating enzymes, including alpha-aminoadipate reductases (AARs) involved in lysine biosynthesis in fungi. RESULTS Phylogenomic analysis identified nine major subfamilies of fungal NRPSs which fell into two main groups: one corresponds to NPS genes encoding primarily mono/bi-modular enzymes which grouped with bacterial NRPSs and the other includes genes encoding primarily multimodular and exclusively fungal NRPSs. AARs shared a closer phylogenetic relationship to NRPSs than to other acyl-adenylating enzymes. Phylogenetic analyses and taxonomic distribution suggest that several mono/bi-modular subfamilies arose either prior to, or early in, the evolution of fungi, while two multimodular groups appear restricted to and expanded in fungi. The older mono/bi-modular subfamilies show conserved domain architectures suggestive of functional conservation, while multimodular NRPSs, particularly those unique to euascomycetes, show a diversity of architectures and of genetic mechanisms generating this diversity. CONCLUSIONS This work is the first to characterize subfamilies of fungal NRPSs. Our analyses suggest that mono/bi-modular NRPSs have more ancient origins and more conserved domain architectures than most multimodular NRPSs. It also demonstrates that the alpha-aminoadipate reductases involved in lysine biosynthesis in fungi are closely related to mono/bi-modular NRPSs. Several groups of mono/bi-modular NRPS metabolites are predicted to play more pivotal roles in cellular metabolism than products of multimodular NRPSs. In contrast, multimodular subfamilies of NRPSs are of more recent origin, are restricted to fungi, show less stable domain architectures, and biosynthesize metabolites which perform more niche-specific functions than mono/bi-modular NRPS products. The euascomycete-only NRPS subfamily, in particular, shows evidence for extensive gain and loss of domains suggestive of the contribution of domain duplication and loss in responding to niche-specific pressures.
Collapse
Affiliation(s)
- Kathryn E Bushley
- Department of Plant Pathology & Plant-Microbe Biology, 334 Plant Science Bldg. Cornell University, Ithaca, NY, 14853, USA
| | - B Gillian Turgeon
- Department of Plant Pathology & Plant-Microbe Biology, 334 Plant Science Bldg. Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
48
|
Juguet M, Lautru S, Francou FX, Nezbedová S, Leblond P, Gondry M, Pernodet JL. An iterative nonribosomal peptide synthetase assembles the pyrrole-amide antibiotic congocidine in Streptomyces ambofaciens. ACTA ACUST UNITED AC 2009; 16:421-31. [PMID: 19389628 DOI: 10.1016/j.chembiol.2009.03.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/16/2009] [Accepted: 03/06/2009] [Indexed: 11/30/2022]
Abstract
Congocidine (netropsin) is a pyrrole-amide (oligopyrrole, oligopeptide) antibiotic produced by Streptomyces ambofaciens. We have identified, in the right terminal region of the S. ambofaciens chromosome, the gene cluster that directs congocidine biosynthesis. Heterologous expression of the cluster and in-frame deletions of 8 of the 22 genes confirm the involvement of this cluster in congocidine biosynthesis. Nine genes can be assigned specific functions in regulation, resistance, or congocidine assembly. In contrast, the biosynthetic origin of the precursors cannot be easily inferred from in silico analyses. Congocidine is assembled by a nonribosomal peptide synthetase (NRPS) constituted of a free-standing module and several single-domain proteins encoded by four genes. The iterative use of its unique adenylation domain, the utilization of guanidinoacetyl-CoA as a substrate by a condensation domain, and the control of 4-aminopyrrole-2-carboxylate polymerization constitute the most original features of this NRPS.
Collapse
Affiliation(s)
- Maud Juguet
- Institut de Génétique et Microbiologie, University Paris Sud 11, CNRS, UMR 8621, 91405 Orsay, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
BACKGROUND Discovery of new medicinal agents from natural sources has largely been an adventitious process based on screening of plant and microbial extracts combined with bioassay-guided identification and natural product structure elucidation. Increasingly rapid and more cost-effective genome sequencing technologies coupled with advanced computational power have converged to transform this trend toward a more rational and predictive pursuit. RESULTS We have developed a rapid method of scanning genome sequences for multiple polyketide, nonribosomal peptide, and mixed combination natural products with output in a text format that can be readily converted to two and three dimensional structures using conventional software. Our open-source and web-based program can assemble various small molecules composed of twenty standard amino acids and twenty two other chain-elongation intermediates used in nonribosomal peptide systems, and four acyl-CoA extender units incorporated into polyketides by reading a hidden Markov model of DNA. This process evaluates and selects the substrate specificities along the assembly line of nonribosomal synthetases and modular polyketide synthases. CONCLUSION Using this approach we have predicted the structures of natural products from a diverse range of bacteria based on a limited number of signature sequences. In accelerating direct DNA to metabolomic analysis, this method bridges the interface between chemists and biologists and enables rapid scanning for compounds with potential therapeutic value.
Collapse
|
50
|
Villiers BRM, Hollfelder F. Mapping the limits of substrate specificity of the adenylation domain of TycA. Chembiochem 2009; 10:671-82. [PMID: 19189362 DOI: 10.1002/cbic.200800553] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The catalytic potential of tyrocidine synthetase 1 (TycA) was probed by the kinetic characterization of its adenylation activity. We observed reactions with 30 substrates, thus suggesting some substrate promiscuity. However, although the TycA adenylation (A) domain was able to accommodate alternative substrates, their k(cat)/K(M) values ranged over six orders of magnitude. A comparison of the activities allowed the systematic mapping of the substrate specificity determinants of the TycA A-domain. Hydrophobicity plays a major role in the recognition of substrate analogues but can be combined with shape complementarity, conferring higher activity, and/or steric exclusion, leading to substantial discrimination against larger substrates. A comparison of the k(cat)/K(M) values of the TycA A-domain and phenylalanyl-tRNA synthetase showed that the level of discrimination was comparable in the two enzymes for the adenylation reaction and suggested that TycA was also subjected to high selective pressure. The specificity patterns observed and the quantification of alternative activities provide a basis for exploring possible paths for the future directed evolution of A-domain specificity.
Collapse
Affiliation(s)
- Benoit R M Villiers
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, UK
| | | |
Collapse
|