1
|
Zayed N, Vertommen R, Simoens K, Bernaerts K, Boon N, Srivastava MG, Braem A, Van Holm W, Castro AB, Teughels W. How well do antimicrobial mouth rinses prevent dysbiosis in an in vitro periodontitis biofilm model? J Periodontol 2024; 95:880-891. [PMID: 38946115 DOI: 10.1002/jper.23-0674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Periodontal diseases are associated with dysbiosis in the oral microbial communities. Managing oral biofilms is therefore key for preventing these diseases. Management protocols often include over-the-counter antimicrobial mouth rinses, which lack data on their effects on the oral microbiome's ecology, bacterial composition, metabolic activity, and dysbiosis resilience. This study examined the efficacy of antimicrobial mouth rinses to halt dysbiosis in in vitro oral biofilms under periodontitis-simulating conditions. METHODS Multispecies oral biofilms were grown on hydroxyapatite discs (HADs) and rinsed daily with one of six mouth rinses. Positive and negative controls were included. After three rinses, biofilms were analyzed with viability quantitative polymerase chain reaction and visualized using scanning electron microscopy. Supernatants of rinsed biofilms were used for metabolic activity analysis. In addition, human oral keratinocytes were exposed to rinsed biofilms to assess their inflammatory response. All outputs were analyzed for correlation using Spearman coefficient. RESULTS Product-related changes were observed in the rinsed biofilms. Three of the six tested mouth rinses could significantly prevent dysbiosis with ≥30% reduction in pathobiont abundance relative to the control. These biofilms had lower metabolic activity, and the exposed human oral keratinocyte produced less interleukin-8. Interleukin-8 production correlated to both pathobiont quantity and the metabolic activity of the biofilms. CONCLUSION Some mouth rinses could support biofilm resilience and stop dysbiosis evolution in the biofilm model, with a clear product-related effect. Such mouth rinses can be considered for patients under maintenance/supportive periodontal therapy to prevent/delay disease recurrence. Others are more useful for different periodontal therapy stages.
Collapse
Affiliation(s)
- Naiera Zayed
- Department of Oral Health Sciences, Catholic University of Leuven (KU Leuven), Leuven, Belgium
- Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Rik Vertommen
- Department of Oral Health Sciences, Catholic University of Leuven (KU Leuven), Leuven, Belgium
| | - Kenneth Simoens
- Chemical and Biochemical Reactor Engineering and Safety, Department of Chemical Engineering, Catholic University of Leuven (KU Leuven), Leuven, Belgium
| | - Kristel Bernaerts
- Chemical and Biochemical Reactor Engineering and Safety, Department of Chemical Engineering, Catholic University of Leuven (KU Leuven), Leuven, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Mrinal Gaurav Srivastava
- Department of Materials Engineering (MTM), Biomaterials and Tissue Engineering Research Group, Catholic University of Leuven (KU Leuven), Leuven, Belgium
| | - Annabel Braem
- Department of Materials Engineering (MTM), Biomaterials and Tissue Engineering Research Group, Catholic University of Leuven (KU Leuven), Leuven, Belgium
| | - Wannes Van Holm
- Department of Oral Health Sciences, Catholic University of Leuven (KU Leuven), Leuven, Belgium
- Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Ana B Castro
- Department of Oral Health Sciences, Catholic University of Leuven (KU Leuven), Leuven, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, Catholic University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
2
|
Thorn CR, Howell PL, Wozniak DJ, Prestidge CA, Thomas N. Enhancing the therapeutic use of biofilm-dispersing enzymes with smart drug delivery systems. Adv Drug Deliv Rev 2021; 179:113916. [PMID: 34371086 DOI: 10.1016/j.addr.2021.113916] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022]
Abstract
Biofilm-dispersing enzymes degrade the extracellular polymeric matrix surrounding bacterial biofilms, disperse the microbial community and increase their susceptibility to antibiotics and immune cells. Challenges for the clinical translation of biofilm-dispersing enzymes involve their susceptibility to denaturation, degradation, and clearance upon administration in vivo. Drug delivery systems aim to overcome these limitations through encapsulation, stabilization and protection from the exterior environment, thereby maintaining the enzymatic activity. Smart drug delivery systems offer target specificity, releasing payloads at the site of infection while minimizing unnecessary systemic exposure. This review highlights critical advances of biofilm-dispersing enzymes as a novel therapeutic approach for biofilm-associated infections. We explore how smart, bio-responsive delivery systems overcome the limiting factors of biofilm-dispersing enzymes and summarize the key systems designed. This review will guide future developments, focusing on utilizing selective and specific therapies in a targeted fashion to meet the unmet therapeutic needs of biofilm infections.
Collapse
Affiliation(s)
- Chelsea R Thorn
- University of South Australia, Clinical and Health Sciences, North Tce, Adelaide, SA 5000, Australia; The Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia; ARC Centre for Excellence in Bio-Nano Science and Technology, Adelaide, SA 5000, Australia; Biofilm Test Facility, Cancer Research Institute, University of South Australia, North Tce, Adelaide, SA 5000, Australia
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Daniel J Wozniak
- Departments of Microbial Infection and Immunity, Ohio State University, Columbus, OH 43210, USA
| | - Clive A Prestidge
- University of South Australia, Clinical and Health Sciences, North Tce, Adelaide, SA 5000, Australia; ARC Centre for Excellence in Bio-Nano Science and Technology, Adelaide, SA 5000, Australia
| | - Nicky Thomas
- University of South Australia, Clinical and Health Sciences, North Tce, Adelaide, SA 5000, Australia; The Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia; ARC Centre for Excellence in Bio-Nano Science and Technology, Adelaide, SA 5000, Australia; Biofilm Test Facility, Cancer Research Institute, University of South Australia, North Tce, Adelaide, SA 5000, Australia.
| |
Collapse
|
3
|
Bostanci N, Grant M, Bao K, Silbereisen A, Hetrodt F, Manoil D, Belibasakis GN. Metaproteome and metabolome of oral microbial communities. Periodontol 2000 2020; 85:46-81. [PMID: 33226703 DOI: 10.1111/prd.12351] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The emergence of high-throughput technologies for the comprehensive measurement of biomolecules, also referred to as "omics" technologies, has helped us gather "big data" and characterize microbial communities. In this article, we focus on metaproteomic and metabolomic approaches that support hypothesis-driven investigations on various oral biologic samples. Proteomics reveals the working units of the oral milieu and metabolomics unveils the reactions taking place; and so these complementary techniques can unravel the functionality and underlying regulatory processes within various oral microbial communities. Current knowledge of the proteomic interplay and metabolic interactions of microorganisms within oral biofilm and salivary microbiome communities is presented and discussed, from both clinical and basic research perspectives. Communities indicative of, or from, health, caries, periodontal diseases, and endodontic lesions are represented. Challenges, future prospects, and examples of best practice are given.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Melissa Grant
- Biological Sciences, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Silbereisen
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Franziska Hetrodt
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Seneviratne CJ, Suriyanarayanan T, Widyarman AS, Lee LS, Lau M, Ching J, Delaney C, Ramage G. Multi-omics tools for studying microbial biofilms: current perspectives and future directions. Crit Rev Microbiol 2020; 46:759-778. [PMID: 33030973 DOI: 10.1080/1040841x.2020.1828817] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of omics technologies has greatly improved our understanding of microbial biology, particularly in the last two decades. The field of microbial biofilms is, however, relatively new, consolidated in the 1980s. The morphogenic switching by microbes from planktonic to biofilm phenotype confers numerous survival advantages such as resistance to desiccation, antibiotics, biocides, ultraviolet radiation, and host immune responses, thereby complicating treatment strategies for pathogenic microorganisms. Hence, understanding the mechanisms governing the biofilm phenotype can result in efficient treatment strategies directed specifically against molecular markers mediating this process. The application of omics technologies for studying microbial biofilms is relatively less explored and holds great promise in furthering our understanding of biofilm biology. In this review, we provide an overview of the application of omics tools such as transcriptomics, proteomics, and metabolomics as well as multi-omics approaches for studying microbial biofilms in the current literature. We also highlight how the use of omics tools directed at various stages of the biological information flow, from genes to metabolites, can be integrated via multi-omics platforms to provide a holistic view of biofilm biology. Following this, we propose a future artificial intelligence-based multi-omics platform that can predict the pathways associated with different biofilm phenotypes.
Collapse
Affiliation(s)
- Chaminda J Seneviratne
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| | - Tanujaa Suriyanarayanan
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| | - Armelia Sari Widyarman
- Department of Microbiology, Faculty of Dentistry, Trisakti University, Grogol, West Jakarta, Indonesia
| | - Lye Siang Lee
- Duke-NUS Medical School, Metabolomics Lab, Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Matthew Lau
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore
| | - Jianhong Ching
- Duke-NUS Medical School, Metabolomics Lab, Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Christopher Delaney
- School of Medicine, Dentistry & Nursing, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| | - Gordon Ramage
- School of Medicine, Dentistry & Nursing, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Llama‐Palacios A, Potupa O, Sánchez MC, Figuero E, Herrera D, Sanz M. Proteomic analysis ofFusobacterium nucleatumgrowth in biofilm versus planktonic state. Mol Oral Microbiol 2020; 35:168-180. [DOI: 10.1111/omi.12303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Arancha Llama‐Palacios
- Oral Microbiology Laboratory at the Faculty of Odontology University Complutense Madrid Spain
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group University Complutense Madrid Spain
| | - Oksana Potupa
- Oral Microbiology Laboratory at the Faculty of Odontology University Complutense Madrid Spain
| | - María C. Sánchez
- Oral Microbiology Laboratory at the Faculty of Odontology University Complutense Madrid Spain
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group University Complutense Madrid Spain
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group University Complutense Madrid Spain
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group University Complutense Madrid Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group University Complutense Madrid Spain
| |
Collapse
|
6
|
Obregon-Miano F, Fathi A, Rathsam C, Sandoval I, Deheghani F, Spahr A. Injectable porcine bone demineralized and digested extracellular matrix-PEGDA hydrogel blend for bone regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:21. [PMID: 31989310 DOI: 10.1007/s10856-019-6354-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Extracellular matrix (ECM) has a major role in the structural support and cellular processes of organs and tissues. Proteins extracted from the ECM have been used to fabricate different scaffolds for tissue engineering applications. The aims of the present study were to extract, characterize and fabricate a new class of hydrogel with proteins isolated from pig bone ECM and combine them with a synthetic polymer so it could be used to promote bone regeneration. Porcine bone demineralized and digested extracellular matrix (pddECM) containing collagen type I was produced, optimized and sterilized with high pressurized CO2 method. The pddECM was further blended with 20% w/v polyethylene glycol diacrylate (PEGDA) to create an injectable semi interpenetrating polymer network (SIPN) scaffold with enhanced physicochemical properties. The blend tackled the shortfall of natural polymers, such as lack of structural stability and fast degradation, preserving its structure in more than 90% after 30 days of incubation; thus, increasing the material endurance in a simulated physiological environment. The manufactured injectable hydrogel showed high cytocompatibility with hOb and SaOs-2 cells, promoting osteogenic proliferation within 21 days of culture. The hydrogel had a high compression modulus of 520 kPa, low swelling (5.3 mg/mg) and millimetric volume expansion (19.5%), all of which are favorable characteristics for bone regeneration applications.
Collapse
Affiliation(s)
- Fabian Obregon-Miano
- Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2010, Australia.
- Dental School, Faculty of Medicine and Health, Bioengineering Unit, Westmead Hospital, Centre for Oral Health, Westmead, The University of Sydney, Sydney, NSW, 2145, Australia.
| | - Ali Fathi
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Catherine Rathsam
- Institute for Dental Research IDR, Westmead Hospital, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Isbel Sandoval
- Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2010, Australia
| | - Fariba Deheghani
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Axel Spahr
- Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2010, Australia
| |
Collapse
|
7
|
Belibasakis GN, Maula T, Bao K, Lindholm M, Bostanci N, Oscarsson J, Ihalin R, Johansson A. Virulence and Pathogenicity Properties of Aggregatibacter actinomycetemcomitans. Pathogens 2019; 8:E222. [PMID: 31698835 PMCID: PMC6963787 DOI: 10.3390/pathogens8040222] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is a periodontal pathogen colonizing the oral cavity of a large proportion of the human population. It is equipped with several potent virulence factors that can cause cell death and induce or evade inflammation. Because of the large genetic diversity within the species, both harmless and highly virulent genotypes of the bacterium have emerged. The oral condition and age, as well as the geographic origin of the individual, influence the risk to be colonized by a virulent genotype of the bacterium. In the present review, the virulence and pathogenicity properties of A. actinomycetemcomitans will be addressed.
Collapse
Affiliation(s)
- Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Terhi Maula
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (T.M.); (R.I.)
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Mark Lindholm
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| | - Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Jan Oscarsson
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| | - Riikka Ihalin
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (T.M.); (R.I.)
| | - Anders Johansson
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| |
Collapse
|
8
|
Llama-Palacios A, Potupa O, Sánchez MC, Figuero E, Herrera D, Sanz M. Aggregatibacter actinomycetemcomitans Growth in Biofilm versus Planktonic State: Differential Expression of Proteins. J Proteome Res 2017; 16:3158-3167. [PMID: 28707473 DOI: 10.1021/acs.jproteome.7b00127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aggregatibacter actinomycetemcomitans (Aa) is a pathogenic bacterium residing in the subgingival plaque biofilm strongly associated with the pathogenesis of periodontitis. The aim of this investigation was to study the protein differential expression of Aa when growing on biofilm compared with planktonic state using proteomic analysis by the 2D-DIGE system. Eighty-seven proteins were differentially expressed during biofilm growth (1.5-fold, p < 0.05), with 13 overexpressed and 37 down-expressed. Those repressed were mainly proteins involved in metabolism, biosynthesis, and transport. The overexpressed proteins were outer membrane proteins (OMPs) and highly immunogenic proteins such as YaeT (OMP), FtsZ, OMP39, OMP18/16, the chaperone GroEL, OMPA, adenylate kinase (Adk), and dihydrolipoamide acetyltransferase. The enrichment fractions of the OMPs from biofilm and planktonic states were obtained, and these proteins were analyzed by Western blotting with human serum from a periodontitis patient and one healthy control. These immunogenic proteins overexpressed in the biofilm may represent candidate virulence factors.
Collapse
Affiliation(s)
- Arancha Llama-Palacios
- Oral Microbiology Laboratory at the Faculty of Odontology, University Complutense , Madrid 28040, Spain
| | - Oksana Potupa
- Oral Microbiology Laboratory at the Faculty of Odontology, University Complutense , Madrid 28040, Spain
| | - María C Sánchez
- Oral Microbiology Laboratory at the Faculty of Odontology, University Complutense , Madrid 28040, Spain
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense , Madrid 28040, Spain
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense , Madrid 28040, Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense , Madrid 28040, Spain
| |
Collapse
|
9
|
Global Analysis and Comparison of the Transcriptomes and Proteomes of Group A Streptococcus Biofilms. mSystems 2016; 1:mSystems00149-16. [PMID: 27933318 PMCID: PMC5141267 DOI: 10.1128/msystems.00149-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022] Open
Abstract
Prokaryotes are thought to regulate their proteomes largely at the level of transcription. However, the results from this first set of global transcriptomic and proteomic analyses of paired microbial samples presented here show that this assumption is false for the majority of genes and their products in S. pyogenes. In addition, the tenuousness of the link between transcription and translation becomes even more pronounced when microbes exist in a biofilm or a stationary planktonic state. Since the transcriptome level does not usually equal the proteome level, the validity attributed to gene expression studies as well as proteomic studies in microbial analyses must be brought into question. Therefore, the results attained by either approach, whether RNA-seq or shotgun proteomics, must be taken in context and evaluated with particular care since they are by no means interchangeable. To gain a better understanding of the genes and proteins involved in group A Streptococcus (GAS; Streptococcus pyogenes) biofilm growth, we analyzed the transcriptome, cellular proteome, and cell wall proteome from biofilms at different stages and compared them to those of plankton-stage GAS. Using high-throughput RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) shotgun proteomics, we found distinct expression profiles in the transcriptome and proteome. A total of 46 genes and 41 proteins showed expression across the majority of biofilm time points that was consistently higher or consistently lower than that seen across the majority of planktonic time points. However, there was little overlap between the genes and proteins on these two lists. In line with other studies comparing transcriptomic and proteomic data, the overall correlation between the two data sets was modest. Furthermore, correlation was poorest for biofilm samples. This suggests a high degree of regulation of protein expression by nontranscriptional mechanisms. This report illustrates the benefits and weaknesses of two different approaches to global expression profiling, and it also demonstrates the advantage of using proteomics in conjunction with transcriptomics to gain a more complete picture of global expression within biofilms. In addition, this report provides the fullest characterization of expression patterns in GAS biofilms currently available. IMPORTANCE Prokaryotes are thought to regulate their proteomes largely at the level of transcription. However, the results from this first set of global transcriptomic and proteomic analyses of paired microbial samples presented here show that this assumption is false for the majority of genes and their products in S. pyogenes. In addition, the tenuousness of the link between transcription and translation becomes even more pronounced when microbes exist in a biofilm or a stationary planktonic state. Since the transcriptome level does not usually equal the proteome level, the validity attributed to gene expression studies as well as proteomic studies in microbial analyses must be brought into question. Therefore, the results attained by either approach, whether RNA-seq or shotgun proteomics, must be taken in context and evaluated with particular care since they are by no means interchangeable.
Collapse
|
10
|
Abstract
Worldwide, infectious diseases are one of the leading causes of death among children. At least 65% of all infections are caused by the biofilm mode of bacterial growth. Bacteria colonise surfaces and grow as multicellular biofilm communities surrounded by a polymeric matrix as a common survival strategy. These sessile communities endow bacteria with high tolerance to antimicrobial agents and hence cause persistent and chronic bacterial infections, such as dental caries, periodontitis, otitis media, cystic fibrosis and pneumonia. The highly complex nature and the rapid adaptability of the biofilm population impede our understanding of the process of biofilm formation, but an important role for oxygen-binding proteins herein is clear. Much research on this bacterial lifestyle is already performed, from genome/proteome analysis to in vivo antibiotic susceptibility testing, but without significant progress in biofilm treatment or eradication. This review will present the multiple challenges of biofilm research and discuss possibilities to cross these barriers in future experimental studies.
Collapse
Affiliation(s)
- Joke Donné
- Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sylvia Dewilde
- Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
11
|
Morphological and proteomic analyses of the biofilms generated by Streptococcus mutans isolated from caries-active and caries-free adults. J Dent Sci 2015. [DOI: 10.1016/j.jds.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
12
|
Santi L, Beys-da-Silva WO, Berger M, Calzolari D, Guimarães JA, Moresco JJ, Yates JR. Proteomic profile of Cryptococcus neoformans biofilm reveals changes in metabolic processes. J Proteome Res 2014; 13:1545-59. [PMID: 24467693 PMCID: PMC3993910 DOI: 10.1021/pr401075f] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Cryptococcus neoformans, a pathogenic yeast, causes
meningoencephalitis, especially in immunocompromised patients, leading
in some cases to death. Microbes in biofilms can cause persistent
infections, which are harder to treat. Cryptococcal biofilms are becoming
common due to the growing use of brain valves and other medical devices.
Using shotgun proteomics we determine the differences in protein abundance
between biofilm and planktonic cells. Applying bioinformatic tools,
we also evaluated the metabolic pathways involved in biofilm maintenance
and protein interactions. Our proteomic data suggest general changes
in metabolism, protein turnover, and global stress responses. Biofilm
cells show an increase in proteins related to oxidation–reduction,
proteolysis, and response to stress and a reduction in proteins related
to metabolic process, transport, and translation. An increase in pyruvate-utilizing
enzymes was detected, suggesting a shift from the TCA cycle to fermentation-derived
energy acquisition. Additionally, we assign putative roles to 33 proteins
previously categorized as hypothetical. Many changes in metabolic
enzymes were identified in studies of bacterial biofilm, potentially
revealing a conserved strategy in biofilm lifestyle.
Collapse
Affiliation(s)
- Lucélia Santi
- Department of Chemical Physiology, The Scripps Research Institute , North Torrey Pines Road, Suite 11, La Jolla, California 92037, United States
| | | | | | | | | | | | | |
Collapse
|
13
|
Li J, Wang W, Wang Y, Zeng AP. Two-dimensional gel-based proteomic of the caries causative bacterium Streptococcus mutans
UA159 and insight into the inhibitory effect of carolacton. Proteomics 2013; 13:3470-7. [DOI: 10.1002/pmic.201300077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/10/2013] [Accepted: 09/30/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Jinshan Li
- Institute for Bioprocess and Biosystems Engineering; Hamburg University of Technology (IBB/TUHH); Hamburg Germany
- Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| | - Wei Wang
- Institute for Bioprocess and Biosystems Engineering; Hamburg University of Technology (IBB/TUHH); Hamburg Germany
| | - Yi Wang
- Institute for Bioprocess and Biosystems Engineering; Hamburg University of Technology (IBB/TUHH); Hamburg Germany
| | - An-Ping Zeng
- Institute for Bioprocess and Biosystems Engineering; Hamburg University of Technology (IBB/TUHH); Hamburg Germany
| |
Collapse
|
14
|
Effect of periodontal pathogens on the metatranscriptome of a healthy multispecies biofilm model. J Bacteriol 2012; 194:2082-95. [PMID: 22328675 DOI: 10.1128/jb.06328-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oral bacterial biofilms are highly complex microbial communities with up to 700 different bacterial taxa. We report here the use of metatranscriptomic analysis to study patterns of community gene expression in a multispecies biofilm model composed of species found in healthy oral biofilms (Actinomyces naeslundii, Lactobacillus casei, Streptococcus mitis, Veillonella parvula, and Fusobacterium nucleatum) and the same biofilm plus the periodontopathogens Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. The presence of the periodontopathogens altered patterns in gene expression, and data indicate that transcription of protein-encoding genes and small noncoding RNAs is stimulated. In the healthy biofilm hypothetical proteins, transporters and transcriptional regulators were upregulated while chaperones and cell division proteins were downregulated. However, when the pathogens were present, chaperones were highly upregulated, probably due to increased levels of stress. We also observed a significant upregulation of ABC transport systems and putative transposases. Changes in Clusters of Orthologous Groups functional categories as well as gene set enrichment analysis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed that in the absence of pathogens, only sets of proteins related to transport and secondary metabolism were upregulated, while in the presence of pathogens, proteins related to growth and division as well as a large portion of transcription factors were upregulated. Finally, we identified several small noncoding RNAs whose predicted targets were genes differentially expressed in the open reading frame libraries. These results show the importance of pathogens controlling gene expression of a healthy oral community and the usefulness of metatranscriptomic techniques to study gene expression profiles in complex microbial community models.
Collapse
|
15
|
Seneviratne CJ, Wang Y, Jin L, Wong SSW, Herath TDK, Samaranayake LP. Unraveling the resistance of microbial biofilms: Has proteomics been helpful? Proteomics 2012; 12:651-65. [DOI: 10.1002/pmic.201100356] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/07/2011] [Accepted: 10/11/2011] [Indexed: 01/03/2023]
|
16
|
Abstract
AIM This review intends to provide a brief overview regarding quorum sensing among bacteria in biofilms and also attempts to throw light on the new research focusing on interference with the quorum sensing. BACKGROUND Dental plaque is an example of microbial biofilm leading to periodontal disease and dental caries. Quorum sensing is widely employed by a variety of gram-positive and gram-negative bacterial species to coordinate various activities in biofilms. Quorum-sensing-interfering compounds have either a positive or a negative effect on the expression of bacterial phenotypes regulated by quorum sensing. These studies of bacterial quorum sensing have also suggested several ideal targets for drug design which can be promising in preventive and therapeutic aspects of periodontal diseases and dental caries. RESULTS Studies have shown that periodontal disease and dental caries is caused by plaque biofilm bacteria. Quorum sensing is the means of communication between these bacteria to regulate a wide range of behavior patterns among them. The in vitro studies reviewed here have a vital role in opening up this field, because they reveal the basic machinery of cell--cell signaling in microbial communities. The signal machinery bacteria use to coordinate a variety of their activities is identified by these studies. Further, this review aims to discuss several natural and synthetic methods which were used for manipulating bacterial quorum sensing. CONCLUSION The future challenge lies in the ability of the dental research to develop additional mechanisms for interfering with bacterial quorum sensing which can be used as preventive and therapeutic tools for combating oral polymicrobial diseases. CLINICAL SIGNIFICANCE This article aims at reviewing the literature and helping us to understand the ways of communication among bacteria in biofilms, which further open up the prospects in the treatment of diseases caused by biofilms.
Collapse
Affiliation(s)
- Baswaraj Biradar
- Department of Prosthodontics, Indira Gandhi Institute of Dental Sciences, Puducherry, India.
| | | |
Collapse
|
17
|
Eaton RE, Jacques NA. Deletion of competence-induced genes over-expressed in biofilms caused transformation deficiencies in Streptococcus mutans. Mol Oral Microbiol 2011; 25:406-17. [PMID: 21040514 DOI: 10.1111/j.2041-1014.2010.00589.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies identified nine genes with increased expression in Streptococcus mutans biofilms of which six possessed putative ComX promoter sequences and were homologous to competence-induced genes in Streptococcus pneumoniae, Streptococcus gordonii and Bacillus subtilis. As competence increases in biofilms, a study was undertaken into the roles that these biofilm-induced genes might play in transformation. Only five of the nine gene deletions had a significant effect on transformation efficiency. Deletion of the genes for recombinase A, recA, DNA processing protein, dprA and single-stranded DNA-binding protein, ssbA, produced results comparable with those from other bacteria, supporting the contention that these proteins have similar functions in S. mutans competence. The uncharacterized genes SMU.769 and SMU.836 produced results in variance to deletion mutants of putative homologues in S. pneumoniae. Deletion of SMU.769 reduced chromosomal transformation 2.3-fold. SMU.769 belongs to a family of conserved genes induced by the competence-stimulating peptide and which have no established function. In contrast, deletion of SMU.836 reduced transformation of both plasmid and chromosomal DNA to <3%. Homology searches suggested that Smu.836 belongs to a family of competence-induced peptidoglycan hydrolases with a conserved enzyme domain and a species-variable cell-binding domain for which the best characterized member is the choline-binding protein D, CbpD, of S. pneumoniae.
Collapse
Affiliation(s)
- R E Eaton
- Institute of Dental Research, Westmead Millennium Institute and Westmead Centre for Oral Health, Wentworthville, NSW, Australia
| | | |
Collapse
|
18
|
Lemos JA, Burne RA. A model of efficiency: stress tolerance by Streptococcus mutans. MICROBIOLOGY-SGM 2008; 154:3247-3255. [PMID: 18957579 DOI: 10.1099/mic.0.2008/023770-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The complete genome sequence of Streptococcus mutans, a bacterial pathogen commonly associated with human dental caries, was published in 2002. The streamlined genome (2.03 Mb) revealed an organism that is well adapted to its obligately host-associated existence in multispecies biofilms on tooth surfaces: a dynamic environment that undergoes rapid and substantial fluctuations. However, S. mutans lacks many of the sensing systems and alternative sigma factors that bacteria often use to coordinate gene expression in response to stress and changes in their environment. Over the past 7 years, functional genomics and proteomics have enhanced our understanding of how S. mutans has integrated the stress regulon and global transcriptional regulators to coordinate responses to environmental fluctuations with modulation of virulence in a way that ensures persistence in the oral cavity and capitalizes on conditions that are favourable for the development of dental caries. Here, we highlight advances in dissection of the stress regulon of S. mutans and its intimate interrelationship with pathogenesis.
Collapse
Affiliation(s)
- José A Lemos
- Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Robert A Burne
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| |
Collapse
|
19
|
Josic D, Kovač S. Application of proteomics in biotechnology – Microbial proteomics. Biotechnol J 2008; 3:496-509. [DOI: 10.1002/biot.200700234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Guo LH, Wang HL, Liu XD, Duan J. Identification of protein differences between two clinical isolates of Streptococcus mutans by proteomic analysis. ACTA ACUST UNITED AC 2008; 23:105-11. [DOI: 10.1111/j.1399-302x.2007.00394.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Siciliano RA, Cacace G, Mazzeo MF, Morelli L, Elli M, Rossi M, Malorni A. Proteomic investigation of the aggregation phenomenon in Lactobacillus crispatus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:335-42. [PMID: 18078834 DOI: 10.1016/j.bbapap.2007.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/29/2007] [Accepted: 11/05/2007] [Indexed: 11/18/2022]
Abstract
Aggregation process affects the ability of Lactobacillus crispatus, a probiotic, to survive into the gastro-intestinal environment and to adhere to the intestinal mucosa. To elucidate mechanisms underlying this process, a comparative proteomic study was carried out on a wild type strain M247 and its spontaneous isogenic mutant Mu5, which had lost the aggregative phenotype. Results highlighted an overall lower amount of enzymes involved in carbohydrate transport and metabolism in strain M247 compared to strain Mu5, suggesting a reduction in the general growth rate, probably caused by nutrient limitation in cell aggregates, coherently with the phenotypic traits of the strains. Moreover, the up-regulation of a putative elongation factor Tu in the wild type M247 strain could suggest a role of this particular protein in the adhesion mechanism of L. crispatus.
Collapse
Affiliation(s)
- Rosa A Siciliano
- Centro di Spettrometria di Massa Proteomica e Biomolecolare, Istituto di Scienze dell'Alimentazione del CNR, Avellino, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Sutrina SL, McGeary T, Bourne CA. The phosphoenolpyruvate:sugar phosphotransferase system and biofilms in gram-positive bacteria. J Mol Microbiol Biotechnol 2007; 12:269-72. [PMID: 17587875 DOI: 10.1159/000099648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This review will examine the connection between the bacterial phosphoenolpyruvate:sugar phosphotransferase system and biofilms. We will consider both the primary role of the phosphoenolpyruvate:sugar phosphotransferase system in sugar uptake by biofilm cells and its possible role in regulatory processes in cells growing as biofilms, and in establishment and maintenance of these biofilms.
Collapse
Affiliation(s)
- Sarah L Sutrina
- Department of Biological and Chemical Sciences, University of the West Indies, Cave Hill Campus, Bridgetown, Barbados.
| | | | | |
Collapse
|
23
|
Abstract
INTRODUCTION Numerous biofilm models have been described for the study of bacteria associated with the supragingival plaque. However, there are fewer models available for the study of subgingival plaque. The purpose of this study was to develop and validate a model that closely mimicked the composition of the subgingival flora. METHODS The model was developed as follows: calcium hydroxyapatite disks were coated overnight with 10% sterile saliva, placed in flat-bottomed tissue culture plates containing trypticase-soy broth, directly inoculated with a small aliquot of dispersed subgingival plaque, incubated anaerobically, and transferred to fresh medium at 48-h intervals until climax (steady-state) biofilms were formed ( approximately 10 days). RESULTS The model, based on samples from eight periodontitis patients and eight healthy subjects, yielded a multi-species, heterogeneous biofilm, consisting of both gram-positive and gram-negative species, and comprising 15-20 cultivable species associated with the subgingival flora. The species present and their proportions were reflective of the initial cultivable subgingival flora. Comparisons of the initial plaque samples from healthy subjects and the mature biofilms showed 81% similarity in species and 70% similarity in the proportions present. Biofilms formed from samples obtained from periodontally diseased subjects were 69% similar in species and 57% similar in the proportions present. CONCLUSIONS The biofilm model described here closely reproduces the composition of the cultivable subgingival plaque both in the species present and in their relative proportions. Differences existed between biofilms grown from diseased and non-diseased sites with the former being characterized by the presence of periodontal pathogens at microbially significant levels.
Collapse
Affiliation(s)
- C Walker
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA.
| | | |
Collapse
|
24
|
Vilain S, Brözel VS. Multivariate approach to comparing whole-cell proteomes of Bacillus cereus indicates a biofilm-specific proteome. J Proteome Res 2007; 5:1924-30. [PMID: 16889414 DOI: 10.1021/pr050402b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biofilm bacteria are widely held to exhibit a unique phenotype, typified by their increased resistance to antimicrobial agents. Numerous studies have been devoted to the identification of biofilm-specific genes, but surprisingly few have been reported to date. We compared the whole cell proteomes of 24 h old Bacillus cereus biofilms and the associated suspended population to exponential, transient and stationary phase planktonic cultures using the unbiased approach of principal component analysis, comparing the quantity variations of the 823 detected spots. The analyses support the hypothesis that biofilms of Gram positive bacteria have a unique pattern of gene expression. The data provides proteomic evidence for a new biofilm and surface influenced planktonic population which is distinct to both planktonic and biofilm cells.
Collapse
Affiliation(s)
- Sébastien Vilain
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007, USA
| | | |
Collapse
|
25
|
Affiliation(s)
- Mary E Davey
- Department of Molecular Genetics, The Forsyth Institute, Boston, Massachusetts, USA
| | | |
Collapse
|
26
|
Wang B, Kuramitsu HK. A pleiotropic regulator, Frp, affects exopolysaccharide synthesis, biofilm formation, and competence development in Streptococcus mutans. Infect Immun 2006; 74:4581-9. [PMID: 16861645 PMCID: PMC1539613 DOI: 10.1128/iai.00001-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exopolysaccharide synthesis, biofilm formation, and competence are important physiologic functions and virulence factors for Streptococcus mutans. In this study, we report the role of Frp, a transcriptional regulator, on the regulation of these traits crucial to pathogenesis. An Frp-deficient mutant showed decreased transcription of several genes important in virulence, including those encoding fructosyltransferase (Ftf), glucosyltransferase B (GtfB), and GtfC, by reverse transcription and quantitative real-time PCR. Expression of Ftf was decreased in the frp mutant, as assessed by Western blotting as well as by the activity assays. Frp deficiency also inhibited the production of GtfB in the presence of glucose and sucrose as well as the production of GtfC in the presence of glucose. As a consequence of the effects on GtfB and -C, sucrose-induced biofilm formation was decreased in the frp mutant. The expression of competence mediated by the competence-signaling peptide (CSP) system, as assessed by comC gene transcription, was attenuated in the frp mutant. As a result, the transformation efficiency was decreased in the frp mutant but was partially restored by adding synthetic CSP. Transcription of the frp gene was significantly increased in the frp mutant under all conditions tested, indicating that frp transcription is autoregulated. Furthermore, complementation of the frp gene in the frp mutant restored transcription of the affected genes to levels similar to those in the wild-type strain. These results suggest that Frp is a novel pleiotropic effector of multiple cellular functions and is involved in the modulation of exopolysaccharide synthesis, sucrose-dependent biofilm formation, and competence development.
Collapse
Affiliation(s)
- Bing Wang
- Department of Oral Biology, State University of New York at Buffalo, 3435 Main Street, Buffalo, New York 14214, USA
| | | |
Collapse
|
27
|
Abranches J, Candella MM, Wen ZT, Baker HV, Burne RA. Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans. J Bacteriol 2006; 188:3748-56. [PMID: 16707667 PMCID: PMC1482907 DOI: 10.1128/jb.00169-06] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 03/21/2006] [Indexed: 11/20/2022] Open
Abstract
The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is the major carbohydrate transport system in oral streptococci. The mannose-PTS of Streptococcus mutans, which transports mannose and glucose, is involved in carbon catabolite repression (CCR) and regulates the expression of known virulence genes. In this study, we investigated the role of EII(Glc) and EIIAB(Man) in sugar metabolism, gene regulation, biofilm formation, and competence. The results demonstrate that the inactivation of ptsG, encoding a putative EII(Glc), did not lead to major changes in sugar metabolism or affect the phenotypes of interest. However, the loss of EII(Glc) was shown to have a significant impact on the proteome and to affect the expression of a known virulence factor, fructan hydrolase (fruA). JAM1, a mutant strain lacking EIIAB(Man), had an impaired capacity to form biofilms in the presence of glucose and displayed a decreased ability to be transformed with exogenous DNA. Also, the lactose- and cellobiose-PTSs were positively and negatively regulated by EIIAB(Man), respectively. Microarrays were used to investigate the profound phenotypic changes displayed by JAM1, revealing that EIIAB(Man) of S. mutans has a key regulatory role in energy metabolism, possibly by sensing the energy levels of the cells or the carbohydrate availability and, in response, regulating the activity of transcription factors and carbohydrate transporters.
Collapse
Affiliation(s)
- Jacqueline Abranches
- Department of Oral Biology, University of Florida College of Dentistry, P.O. Box 100424, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
28
|
Rathsam C, Eaton RE, Simpson CL, Browne GV, Valova VA, Harty DWS, Jacques NA. Two-dimensional fluorescence difference gel electrophoretic analysis of Streptococcus mutans biofilms. J Proteome Res 2006; 4:2161-73. [PMID: 16335963 DOI: 10.1021/pr0502471] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Compared with traditional two-dimensional (2D) proteome analysis of Streptococcus mutans grown as a biofilm from a planktonic culture at steady state (Rathsam et al., Microbiol. 2005, 151, 1823-1837), the use of 2D fluorescence difference gel electrophoresis (DIGE) led to a 3-fold increase in the number of identified protein spots that were significantly altered in their level of expression (P < 0.050). Of the 73 identified proteins, only nine were up-regulated in biofilm grown cells. The results supported the previously surmised hypothesis that general metabolic functions were down-regulated in response to a reduction in growth rate in mature S. mutans biofilms. Up-regulation of competence proteins without any concomitant increase in stress-responsive proteins was confirmed, while the levels of glucosyltransferase C (GtfC), involved in glucan formation, O-acetylserine sulfhyrylase (cysteine synthetase A; CsyK), implicated in the formation of [Fe-S] clusters, and a hypothetical protein encoded by the open reading frame, SMu0188, were also up-regulated.
Collapse
Affiliation(s)
- Catherine Rathsam
- Institute of Dental Research, Westmead Millennium Institute and Westmead Centre for Oral Health, Westmead, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|