1
|
Ren C, Zhang Z, Dou Y, Sun Y, Fu Z, Wang L, Wang K, Gao C, Fan Y, Sun S, Yue X, Li C, Gao L, Liang X, Ma C, Wu Z. DNA Sensor ABCF1 Phase Separates With cccDNA to Inhibit Hepatitis B Virus Replication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409485. [PMID: 39498874 DOI: 10.1002/advs.202409485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/25/2024] [Indexed: 11/07/2024]
Abstract
Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) contributes to viral persistence and recurrence, however, how the host innate immune system responds to cccDNA is still less known. Here, based on cccDNA-hepatic proteins interaction profiling, DNA sensor ATP-binding cassette subfamily F member 1 (ABCF1) is identified as a novel cccDNA-binding protein and host restriction factor for HBV replication. Mechanistically, ABCF1 recognizes cccDNA by KKx4 motif and forms phase-separated condensates by the poly-glutamine (PolyQ) region of the N-terminal intrinsically disordered low-complexity domain (LCD). Subsequently, ABCF1-cccDNA phase separation not only activates the type I/III interferon (IFN-I/III) pathway but also prevents Pol II accumulation on cccDNA to inhibit HBV transcription. In turn, to sustain viral replication, HBV reduces ABCF1 expression by HBx-mediated ubiquitination and degradation of SRY-box transcription factor 4(SOX4), leading to defects in SOX4-mediated upregulation of ABCF1 transcription. Taken together, the study shows that ABCF1 interacts with cccDNA to form phase separation that dually drives innate immune signaling and HBV transcriptional inhibition. These findings shed new light on the understanding of host defense against cccDNA and provide a novel promising therapeutic strategy for HBV infection.
Collapse
Affiliation(s)
- Caiyue Ren
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Zhaoying Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Yutong Dou
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Yang Sun
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Zhendong Fu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Kai Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Chengjiang Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xuetian Yue
- Department of Cellular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
2
|
Pondé RADA, Amorim GDSP. Elimination of the hepatitis B virus: A goal, a challenge. Med Res Rev 2024; 44:2015-2034. [PMID: 38528684 DOI: 10.1002/med.22030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 03/27/2024]
Abstract
The hepatitis B elimination is a goal proposed by the WHO to be achieved by 2030 through the adoption of synergistic measures for the prevention and chronic HBV infection treatment. Complete cure is characterized by the HBV elimination from the body and is the goal of the chronic hepatitis B treatment, which once achieved, will enable the hepatitis B elimination. This, today, has been a scientific challenge. The difficulty in achieving a complete cure is due to the indefinite maintenance of a covalently closed episomal circular DNA (cccDNA) reservoir and the maintenance and persistence of an insufficient and dysfunctional immune response in chronically infected patients. Among the measures adopted to eliminate hepatitis B, two have the potential to directly interfere with the virus cycle, but with limited effect on HBV control. These are conventional vaccines-blocking transmission and antiviral therapy-inhibiting replication. Vaccines, despite their effectiveness in protecting against horizontal transmission and preventing mother-to-child vertical transmission, have no effect on chronic infection or potential to eliminate the virus. Treatment with antivirals suppresses viral replication, but has no curative effect, as it has no action against cccDNA. Therapeutic vaccines comprise an additional approach in the chronic infection treatment, however, they have only a modest effect on the immune system, enhancing it temporarily. This manuscript aims to address (1) the cccDNA persistence in the hepatocyte nucleus and the immune response dysfunction in chronically infected individuals as two primary factors that have hampered the treatment and HBV elimination from the human body; (2) the limitations of antiviral therapy and therapeutic vaccines, as strategies to control hepatitis B; and (3) the possibly promising therapeutic approaches for the complete cure and elimination of hepatitis B.
Collapse
Affiliation(s)
- Robério Amorim de Almeida Pondé
- Secretaria de Estado da Saúde-SES, Superintendência de Vigilância em Saúde-SUVISA/GO, Gerência de Vigilância Epidemiológica de Doenças Transmissíveis-GVEDT/Coordenação de Análises e Pesquisas-CAP, Goiânia, Goiás, Brazil
- Department of Microbiology, Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | |
Collapse
|
3
|
Yuan Y, Bodke VV, Lin C, Gao S, Rehman J, Li J, Khetani SR. Long-term HBV infection of engineered cultures of induced pluripotent stem cell-derived hepatocytes. Hepatol Commun 2024; 8:e0506. [PMID: 39082962 DOI: 10.1097/hc9.0000000000000506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/08/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND HBV infects ~257 million people and can cause hepatocellular carcinoma. Since current drugs are not curative, novel therapies are needed. HBV infects chimpanzee and human livers. However, chimpanzee studies are severely restricted and cost-prohibitive, while transgenic/chimeric mouse models that circumvent the species barrier lack natural HBV infection and disease progression. Thus, in vitro human models of HBV infection are useful in addressing the above limitations. Induced pluripotent stem cell-derived hepatocyte-like cells mitigate the supply limitations of primary human hepatocytes and the abnormal proliferation/functions of hepatoma cell lines. However, variable infection across donors, deficient drug metabolism capacity, and/or low throughput limit iHep utility for drug development. METHODS We developed an optimal pipeline using combinations of small molecules, Janus kinase inhibitor, and 3',5'-cAMP to infect iHep-containing micropatterned co-cultures (iMPCC) with stromal fibroblasts within 96-well plates with serum-derived HBV and cell culture-derived HBV (cHBV). Polyethylene glycol was necessary for cell-derived HBV but not for serum-derived HBV infection. RESULTS Unlike iHep monocultures, iMPCCs created from 3 iHep donors could sustain HBV infection for 2+ weeks. Infected iMPCCs maintained high levels of differentiated functions, including drug metabolism capacity. HBV antigen secretion and gene expression patterns in infected iMPCCs in pathways such as fatty acid metabolism and cholesterol biosynthesis were comparable to primary human hepatocyte-MPCCs. Furthermore, iMPCCs could help elucidate the effects of interferons and direct-acting antiviral drugs on the HBV lifecycle and any hepatotoxicity; iMPCC response to compounds was similar to primary human hepatocyte-MPCCs. CONCLUSIONS The iMPCC platform can enable the development of safe and efficacious drugs against HBV and ultimately help elucidate genotype-phenotype relationships in HBV pathogenesis.
Collapse
Affiliation(s)
- Yang Yuan
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Vedant V Bodke
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Christine Lin
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shang Gao
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Salman R Khetani
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Yu X, Gao Y, Zhang X, Ji L, Fang M, Li M, Gao Y. Hepatitis B: Model Systems and Therapeutic Approaches. J Immunol Res 2024; 2024:4722047. [PMID: 38745751 PMCID: PMC11093688 DOI: 10.1155/2024/4722047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Hepatitis B virus (HBV) infection is a major global health issue and ranks among the top causes of liver cirrhosis and hepatocellular carcinoma. Although current antiviral medications, including nucleot(s)ide analogs and interferons, could inhibit the replication of HBV and alleviate the disease, HBV cannot be fully eradicated. The development of cellular and animal models for HBV infection plays an important role in exploring effective anti-HBV medicine. During the past decades, advancements in several cell culture systems, such as HepG2.2.15, HepAD38, HepaRG, hepatocyte-like cells, and primary human hepatocytes, have propelled the research in inhibiting HBV replication and expression and thus enriched our comprehension of the viral life cycle and enhancing antiviral drug evaluation efficacy. Mouse models, in particular, have emerged as the most extensively studied HBV animal models. Additionally, the present landscape of HBV therapeutics research now encompasses a comprehensive assessment of the virus's life cycle, targeting numerous facets and employing a variety of immunomodulatory approaches, including entry inhibitors, strategies aimed at cccDNA, RNA interference technologies, toll-like receptor agonists, and, notably, traditional Chinese medicine (TCM). This review describes the attributes and limitations of existing HBV model systems and surveys novel advancements in HBV treatment modalities, which will offer deeper insights toward discovering potentially efficacious pharmaceutical interventions.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yating Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Longshan Ji
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Fang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Li
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| |
Collapse
|
5
|
Carpentier A. Cell Culture Models for Hepatitis B and D Viruses Infection: Old Challenges, New Developments and Future Strategies. Viruses 2024; 16:716. [PMID: 38793598 PMCID: PMC11125795 DOI: 10.3390/v16050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic Hepatitis B and D Virus (HBV and HDV) co-infection is responsible for the most severe form of viral Hepatitis, the Hepatitis Delta. Despite an efficient vaccine against HBV, the HBV/HDV infection remains a global health burden. Notably, no efficient curative treatment exists against any of these viruses. While physiologically distinct, HBV and HDV life cycles are closely linked. HDV is a deficient virus that relies on HBV to fulfil is viral cycle. As a result, the cellular response to HDV also influences HBV replication. In vitro studying of HBV and HDV infection and co-infection rely on various cell culture models that differ greatly in terms of biological relevance and amenability to classical virology experiments. Here, we review the various cell culture models available to scientists to decipher HBV and HDV virology and host-pathogen interactions. We discuss their relevance and how they may help address the remaining questions, with one objective in mind: the development of new therapeutic approaches allowing viral clearance in patients.
Collapse
Affiliation(s)
- Arnaud Carpentier
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture between Hannover Medical School (MHH) and Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Strasse 7, 30625 Hannover, Germany;
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
6
|
Xia Y, Park SB, Liang TJ. Stem Cell-Derived Hepatocyte-Like Cells for Hepatitis B Virus Infection. Methods Mol Biol 2024; 2837:1-9. [PMID: 39044070 DOI: 10.1007/978-1-0716-4027-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Hepatitis B, the leading cause of liver diseases worldwide, is a result of infection with hepatitis B virus (HBV). Due to its obligate intracellular life cycle, culture systems for efficient HBV replication are vital. Although basic and translational research on HBV has been performed for many years, conventional hepatocellular culture systems are not optimal. These studies have greatly benefited from recent improvements in cell culture models based on stem cell technology for HBV replication and infection studies. Here we describe a protocol for the differentiation of human stem cell-derived hepatocyte-like cells (HLCs) and subsequent HBV infection. HLCs are capable of expressing hepatocyte markers and host factors important for hepatic function maintenance. These cells fully support HBV infection and virus-host interactions. Stem cell-derived HLCs provide a new tool for antiviral drug screening and development.
Collapse
Affiliation(s)
| | | | - T Jake Liang
- National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Nayak S, Gowda J, Abbas SA, Kim H, Han SB. Recent Advances in the Development of Sulfamoyl-Based Hepatitis B Virus Nucleocapsid Assembly Modulators. Viruses 2023; 15:2367. [PMID: 38140607 PMCID: PMC10747759 DOI: 10.3390/v15122367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) is the primary contributor to severe liver ailments, encompassing conditions such as cirrhosis and hepatocellular carcinoma. Globally, 257 million people are affected by HBV annually and 887,000 deaths are attributed to it, representing a substantial health burden. Regrettably, none of the existing therapies for chronic hepatitis B (CHB) have achieved satisfactory clinical cure rates. This issue stems from the existence of covalently closed circular DNA (cccDNA), which is difficult to eliminate from the nucleus of infected hepatocytes. HBV genetic material is composed of partially double-stranded DNA that forms complexes with viral polymerase inside an icosahedral capsid composed of a dimeric core protein. The HBV core protein, consisting of 183 to 185 amino acids, plays integral roles in multiple essential functions within the HBV replication process. In this review, we describe the effects of sulfamoyl-based carboxamide capsid assembly modulators (CAMs) on capsid assembly, which can suppress HBV replication and disrupt the production of new cccDNA. We present research on classical, first-generation sulfamoyl benzocarboxamide CAMs, elucidating their structural composition and antiviral efficacy. Additionally, we explore newly identified sulfamoyl-based CAMs, including sulfamoyl bicyclic carboxamides, sulfamoyl aromatic heterocyclic carboxamides, sulfamoyl aliphatic heterocyclic carboxamides, cyclic sulfonamides, and non-carboxamide sulfomoyl-based CAMs. We believe that certain molecules derived from sulfamoyl groups have the potential to be developed into essential components of a well-suited combination therapy, ultimately yielding superior clinical efficacy outcomes in the future.
Collapse
Affiliation(s)
- Sandesha Nayak
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jayaraj Gowda
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Syed Azeem Abbas
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyejin Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Soo Bong Han
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
8
|
Lee GS, Purdy MA, Choi Y. Cell Culture Systems for Studying Hepatitis B and Hepatitis D Virus Infections. Life (Basel) 2023; 13:1527. [PMID: 37511902 PMCID: PMC10381383 DOI: 10.3390/life13071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The hepatitis B virus (HBV) and hepatitis D virus (HDV) infections cause liver disease, including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HBV infection remains a major global health problem. In 2019, 296 million people were living with chronic hepatitis B and about 5% of them were co-infected with HDV. In vitro cell culture systems are instrumental in the development of therapeutic targets. Cell culture systems contribute to identifying molecular mechanisms for HBV and HDV propagation, finding drug targets for antiviral therapies, and testing antiviral agents. Current HBV therapeutics, such as nucleoside analogs, effectively suppress viral replication but are not curative. Additionally, no effective treatment for HDV infection is currently available. Therefore, there is an urgent need to develop therapies to treat both viral infections. A robust in vitro cell culture system supporting HBV and HDV infections (HBV/HDV) is a critical prerequisite to studying HBV/HDV pathogenesis, the complete life cycle of HBV/HDV infections, and consequently identifying new therapeutics. However, the lack of an efficient cell culture system hampers the development of novel antiviral strategies for HBV/HDV infections. In vitro cell culture models have evolved with significant improvements over several decades. Recently, the development of the HepG2-NTCP sec+ cell line, expressing the sodium taurocholate co-transporting polypeptide receptor (NTCP) and self-assembling co-cultured primary human hepatocytes (SACC-PHHs) has opened new perspectives for a better understanding of HBV and HDV lifecycles and the development of specific antiviral drug targets against HBV/HDV infections. We address various cell culture systems along with different cell lines and how these cell culture systems can be used to provide better tools for HBV and HDV studies.
Collapse
Affiliation(s)
- Grace Sanghee Lee
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Michael A Purdy
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Youkyung Choi
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| |
Collapse
|
9
|
Sharma S, Rawal P, Kaur S, Puria R. Liver organoids as a primary human model to study HBV-mediated Hepatocellular carcinoma. A review. Exp Cell Res 2023; 428:113618. [PMID: 37142202 DOI: 10.1016/j.yexcr.2023.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Hepatitis B Virus (HBV) is the prevailing cause of chronic liver disease, which progresses to Hepatocellular carcinoma (HCC) in 75% of cases. It represents a serious health concern being the fourth leading cause of cancer-related mortality worldwide. Treatments available to date fail to provide a complete cure with high chances of recurrence and related side effects. The lack of reliable, reproducible, and scalable in vitro modeling systems that could recapitulate the viral life cycle and represent virus-host interactions has hindered the development of effective treatments so far. The present review provides insights into the current in-vivo and in-vitro models used for studying HBV and their major limitations. We highlight the use of three-dimensional liver organoids as a novel and suitable platform for modeling HBV infection and HBV-mediated HCC. HBV organoids can be expanded, genetically altered, patient-derived, tested for drug discovery, and biobanked. This review also provides the general guidelines for culturing HBV organoids and highlights their several prospects for HBV drug discovery and screening.
Collapse
Affiliation(s)
- Simran Sharma
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Preety Rawal
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Savneet Kaur
- Institute of Liver and Biliary Sciences, Delhi, India.
| | - Rekha Puria
- School of Biotechnology, Gautam Buddha University, Greater Noida, India.
| |
Collapse
|
10
|
Bhat S, Ahanger IA, Kazim SN. Forthcoming Developments in Models to Study the Hepatitis B Virus Replication Cycle, Pathogenesis, and Pharmacological Advancements. ACS OMEGA 2023; 8:14273-14289. [PMID: 37125123 PMCID: PMC10134252 DOI: 10.1021/acsomega.2c07154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/08/2023] [Indexed: 05/03/2023]
Abstract
Hepatitis, liver cirrhosis, and hepatocellular carcinoma are all manifestations of chronic hepatitis B. Its pathogenesis and molecular mechanism remain mysterious. As medical science progresses, different models are being used to study the disease from the physiological and molecular levels. Animal models have played an unprecedented role in achieving in-depth knowledge of the disease while posing no risk of harming humans throughout the study. The scarcity of acceptable animal models has slowed progress in hepatitis B virus (HBV) research and preclinical testing of antiviral medicines since HBV has a narrow species tropism and exclusively infects humans and higher primates. The development of human chimeric mice was supported by a better understanding of the obstacles to interspecies transmission, which has substantially opened the way for HBV research in vivo and the evaluation of possible chronic hepatitis B therapeutics. Animal models are cumbersome to handle, not accessible, and expensive. Hence, it is herculean to investigate the HBV replication cycle in animal models. Therefore, it becomes essential to build a splendid in vitro cell culture system to demonstrate the mechanisms attained by the HBV for its multiplication and sustenance. We also addressed the advantages and caveats associated with different models in examining HBV.
Collapse
Affiliation(s)
- Sajad
Ahmad Bhat
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ishfaq Ahmad Ahanger
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Clinical
Biochemistry University of Kashmir, Srinagar, India
| | - Syed Naqui Kazim
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Phone: +91 9953621758.
| |
Collapse
|
11
|
Guo H, Urban S, Wang W. In vitro cell culture models to study hepatitis B and D virus infection. Front Microbiol 2023; 14:1169770. [PMID: 37089540 PMCID: PMC10113554 DOI: 10.3389/fmicb.2023.1169770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) and hepatitis D virus (HDV) can cause a major global health burden. Current medication regimens can repress viral replication and help to control disease progression, but a complete cure is hardly achieved due to the difficulties to eradicate viral templates (cccDNA and integrates). To develop novel curative antiviral therapies for HBV/HDV infection, it is vital to precisely understand the details of the molecular biology of both viruses and the virus-host interactions. One important prerequisite for gaining this aim is the availability of suitable in vitro models that support HBV/HDV infection, replicate both viruses via their authentic template and allow to adequately study host cell responses. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) receptor as the most crucial host factor promoted HBV/HDV research to a new era. Recently, the structure of human NTCP was solved, gaining a deeper understanding of HBV recognition as the bona fide receptor. After decades of continuous efforts, new progress has been achieved in the development of cell culture models supporting HBV/HDV study. This review summarizes the cell culture models currently available, discusses the advantages and disadvantages of each model, and highlights their future applications in HBV and HDV research.
Collapse
Affiliation(s)
- Hongbo Guo
- Department of Pathogen Biology and Immunology; Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- *Correspondence: Wenshi Wang, ; Stephan Urban,
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology; Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wenshi Wang, ; Stephan Urban,
| |
Collapse
|
12
|
IFN-α inhibits HBV transcription and replication by promoting HDAC3-mediated de-2-hydroxyisobutyrylation of histone H4K8 on HBV cccDNA minichromosome in liver. Acta Pharmacol Sin 2022; 43:1484-1494. [PMID: 34497374 PMCID: PMC9160025 DOI: 10.1038/s41401-021-00765-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
The epigenetic modification of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) plays a crucial role in cccDNA transcription and viral persistence. Interferon-α (IFN-α) is a pivotal agent against HBV cccDNA. However, the mechanism by which IFN-α modulates the epigenetic regulation of cccDNA remains poorly understood. In this study, we report that IFN-α2b enhances the histone deacetylase 3 (HDAC3)-mediated de-2-hydroxyisobutyrylation of histone H4 lysine 8 (H4K8) on HBV cccDNA minichromosome to restrict the cccDNA transcription in liver. By screening acetyltransferases and deacetylases, we identified that HDAC3 was an effective restrictor of HBV transcription and replication. Moreover, we found that HDAC3 was able to mediate the de-2-hydroxyisobutyrylation of H4K8 in HBV-expressing hepatoma cells. Then, the 2-hydroxyisobutyrylation of histone H4K8 (H4K8hib) was identified on the HBV cccDNA minichromosome, promoting the HBV transcription and replication. The H4K8hib was regulated by HDAC3 depending on its deacetylase domain in the system. The low level of HDAC3 and high level of H4K8hib were observed in the liver tissues from HBV-infected human liver-chimeric mice. The levels of H4K8hib on HBV cccDNA minichromosome were significantly elevated in the liver biopsy specimens from clinical hepatitis B patients, which was consistent with the high transcriptional activity of cccDNA. Strikingly, IFN-α2b effectively facilitated the histone H4K8 de-2-hydroxyisobutyrylation mediated by HDAC3 on the HBV cccDNA minichromosome in primary human hepatocytes and hepatoma cells, leading to the inhibition of HBV transcription and replication. Our finding provides new insights into the mechanism by which IFN-α modulates the epigenetic regulation of HBV cccDNA minichromosome.
Collapse
|
13
|
Entry Inhibitors of Hepatitis B and D Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:199-205. [DOI: 10.1007/978-981-16-8702-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Zhao F, Xie X, Tan X, Yu H, Tian M, Lv H, Qin C, Qi J, Zhu Q. The Functions of Hepatitis B Virus Encoding Proteins: Viral Persistence and Liver Pathogenesis. Front Immunol 2021; 12:691766. [PMID: 34456908 PMCID: PMC8387624 DOI: 10.3389/fimmu.2021.691766] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
About 250 million people worldwide are chronically infected with Hepatitis B virus (HBV), contributing to a large burden on public health. Despite the existence of vaccines and antiviral drugs to prevent infection and suppress viral replication respectively, chronic hepatitis B (CHB) cure remains a remote treatment goal. The viral persistence caused by HBV is account for the chronic infection which increases the risk for developing liver cirrhosis and hepatocellular carcinoma (HCC). HBV virion utilizes various strategies to escape surveillance of host immune system therefore enhancing its replication, while the precise mechanisms involved remain elusive. Accumulating evidence suggests that the proteins encoded by HBV (hepatitis B surface antigen, hepatitis B core antigen, hepatitis B envelope antigen, HBx and polymerase) play an important role in viral persistence and liver pathogenesis. This review summarizes the major findings in functions of HBV encoding proteins, illustrating how these proteins affect hepatocytes and the immune system, which may open new venues for CHB therapies.
Collapse
Affiliation(s)
- Fenglin Zhao
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Xiaoyu Xie
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xu Tan
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongli Yu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Miaomiao Tian
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huanran Lv
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chengyong Qin
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianni Qi
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Zhu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
15
|
Wei L, Ploss A. Mechanism of Hepatitis B Virus cccDNA Formation. Viruses 2021; 13:v13081463. [PMID: 34452329 PMCID: PMC8402782 DOI: 10.3390/v13081463] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) remains a major medical problem affecting at least 257 million chronically infected patients who are at risk of developing serious, frequently fatal liver diseases. HBV is a small, partially double-stranded DNA virus that goes through an intricate replication cycle in its native cellular environment: human hepatocytes. A critical step in the viral life-cycle is the conversion of relaxed circular DNA (rcDNA) into covalently closed circular DNA (cccDNA), the latter being the major template for HBV gene transcription. For this conversion, HBV relies on multiple host factors, as enzymes capable of catalyzing the relevant reactions are not encoded in the viral genome. Combinations of genetic and biochemical approaches have produced findings that provide a more holistic picture of the complex mechanism of HBV cccDNA formation. Here, we review some of these studies that have helped to provide a comprehensive picture of rcDNA to cccDNA conversion. Mechanistic insights into this critical step for HBV persistence hold the key for devising new therapies that will lead not only to viral suppression but to a cure.
Collapse
|
16
|
Khoshdel-Rad N, Zahmatkesh E, Bikmulina P, Peshkova M, Kosheleva N, Bezrukov EA, Sukhanov RB, Solovieva A, Shpichka A, Timashev P, Vosough M. Modeling Hepatotropic Viral Infections: Cells vs. Animals. Cells 2021; 10:1726. [PMID: 34359899 PMCID: PMC8305759 DOI: 10.3390/cells10071726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The lack of an appropriate platform for a better understanding of the molecular basis of hepatitis viruses and the absence of reliable models to identify novel therapeutic agents for a targeted treatment are the two major obstacles for launching efficient clinical protocols in different types of viral hepatitis. Viruses are obligate intracellular parasites, and the development of model systems for efficient viral replication is necessary for basic and applied studies. Viral hepatitis is a major health issue and a leading cause of morbidity and mortality. Despite the extensive efforts that have been made on fundamental and translational research, traditional models are not effective in representing this viral infection in a laboratory. In this review, we discuss in vitro cell-based models and in vivo animal models, with their strengths and weaknesses. In addition, the most important findings that have been retrieved from each model are described.
Collapse
Affiliation(s)
- Niloofar Khoshdel-Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Ensieh Zahmatkesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Nastasia Kosheleva
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- FSBSI ‘Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Evgeny A. Bezrukov
- Department of Urology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.B.); (R.B.S.)
| | - Roman B. Sukhanov
- Department of Urology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.B.); (R.B.S.)
| | - Anna Solovieva
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| |
Collapse
|
17
|
Stadler D, Kächele M, Jones AN, Hess J, Urban C, Schneider J, Xia Y, Oswald A, Nebioglu F, Bester R, Lasitschka F, Ringelhan M, Ko C, Chou W, Geerlof A, van de Klundert MA, Wettengel JM, Schirmacher P, Heikenwälder M, Schreiner S, Bartenschlager R, Pichlmair A, Sattler M, Unger K, Protzer U. Interferon-induced degradation of the persistent hepatitis B virus cccDNA form depends on ISG20. EMBO Rep 2021; 22:e49568. [PMID: 33969602 PMCID: PMC8183418 DOI: 10.15252/embr.201949568] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) persists by depositing a covalently closed circular DNA (cccDNA) in the nucleus of infected cells that cannot be targeted by available antivirals. Interferons can diminish HBV cccDNA via APOBEC3-mediated deamination. Here, we show that overexpression of APOBEC3A alone is not sufficient to reduce HBV cccDNA that requires additional treatment of cells with interferon indicating involvement of an interferon-stimulated gene (ISG) in cccDNA degradation. Transcriptome analyses identify ISG20 as the only type I and II interferon-induced, nuclear protein with annotated nuclease activity. ISG20 localizes to nucleoli of interferon-stimulated hepatocytes and is enriched on deoxyuridine-containing single-stranded DNA that mimics transcriptionally active, APOBEC3A-deaminated HBV DNA. ISG20 expression is detected in human livers in acute, self-limiting but not in chronic hepatitis B. ISG20 depletion mitigates the interferon-induced loss of cccDNA, and co-expression with APOBEC3A is sufficient to diminish cccDNA. In conclusion, non-cytolytic HBV cccDNA decline requires the concerted action of a deaminase and a nuclease. Our findings highlight that ISGs may cooperate in their antiviral activity that may be explored for therapeutic targeting.
Collapse
|
18
|
Hehle V, Beretta M, Bourgine M, Ait-Goughoulte M, Planchais C, Morisse S, Vesin B, Lorin V, Hieu T, Stauffer A, Fiquet O, Dimitrov JD, Michel ML, Ungeheuer MN, Sureau C, Pol S, Di Santo JP, Strick-Marchand H, Pelletier N, Mouquet H. Potent human broadly neutralizing antibodies to hepatitis B virus from natural controllers. J Exp Med 2021; 217:151888. [PMID: 32579155 PMCID: PMC7537403 DOI: 10.1084/jem.20200840] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
Rare individuals can naturally clear chronic hepatitis B virus (HBV) infection and acquire protection from reinfection as conferred by vaccination. To examine the protective humoral response against HBV, we cloned and characterized human antibodies specific to the viral surface glycoproteins (HBsAg) from memory B cells of HBV vaccinees and controllers. We found that human HBV antibodies are encoded by a diverse set of immunoglobulin genes and recognize various conformational HBsAg epitopes. Strikingly, HBsAg-specific memory B cells from natural controllers mainly produced neutralizing antibodies able to cross-react with several viral genotypes. Furthermore, monotherapy with the potent broadly neutralizing antibody Bc1.187 suppressed viremia in vivo in HBV mouse models and led to post-therapy control of the infection in a fraction of animals. Thus, human neutralizing HBsAg antibodies appear to play a key role in the spontaneous control of HBV and represent promising immunotherapeutic tools for achieving HBV functional cure in chronically infected humans.
Collapse
Affiliation(s)
- Verena Hehle
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1222, Paris, France
| | - Maxime Beretta
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1222, Paris, France
| | - Maryline Bourgine
- Molecular Virology and Vaccinology Unit, Institut Pasteur, Paris, France
| | | | - Cyril Planchais
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1222, Paris, France
| | - Solen Morisse
- Molecular Virology and Vaccinology Unit, Institut Pasteur, Paris, France
| | - Benjamin Vesin
- Molecular Virology and Vaccinology Unit, Institut Pasteur, Paris, France
| | - Valérie Lorin
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1222, Paris, France
| | - Thierry Hieu
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1222, Paris, France
| | | | - Oriane Fiquet
- Innate Immunity Unit, Department of Immunology, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1223, Institut Pasteur, Paris, France
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France
| | | | - Marie-Noëlle Ungeheuer
- Investigation Clinique et Accès aux Ressources Biologiques platform, Center for Translational Science, Institut Pasteur, Paris, France
| | - Camille Sureau
- Institut National de la Transfusion Sanguine, Centre National de la Recherche-Institut National de la Santé et de la Recherche Médicale U1134, Paris, France
| | - Stanislas Pol
- Institut National de la Santé et de la Recherche Médicale U1223, Institut Pasteur, Paris, France.,Hepatology Department, Cochin Hospital, Assistance publique - Hôpitaux de Paris, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Department of Immunology, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1223, Institut Pasteur, Paris, France
| | - Hélène Strick-Marchand
- Innate Immunity Unit, Department of Immunology, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1223, Institut Pasteur, Paris, France
| | | | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1222, Paris, France
| |
Collapse
|
19
|
Khetani SR. Pluripotent Stem Cell-Derived Human Liver Organoids Enter the Realm of High-Throughput Drug Screening. Gastroenterology 2021; 160:653-655. [PMID: 33307027 DOI: 10.1053/j.gastro.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 12/21/2022]
|
20
|
In Vitro Infection with Hepatitis B Virus Using Differentiated Human Serum Culture of Huh7.5-NTCP Cells without Requiring Dimethyl Sulfoxide. Viruses 2021; 13:v13010097. [PMID: 33445753 PMCID: PMC7828204 DOI: 10.3390/v13010097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
An estimated two billion people worldwide have been infected with hepatitis B virus (HBV). Despite the high infectivity of HBV in vivo, a lack of easily infectable in vitro culture systems hinders studies of HBV. Overexpression of the sodium taurocholate co-transporting polypeptide (NTCP) bile acid transporter in hepatoma cells improved infection efficiency. We report here a hepatoma cell culture system that does not require dimethyl sulfoxide (DMSO) for HBV infection. We overexpressed NTCP in Huh7.5 cells and allowed these cells to differentiate in a medium supplemented with human serum (HS) instead of fetal bovine serum (FBS). We show that human serum culture enhanced HBV infection in Huh7.5-NTCP cells, e.g., in HS cultures, HBV pgRNA levels were increased by as much as 200-fold in comparison with FBS cultures and 19-fold in comparison with FBS+DMSO cultures. Human serum culture increased levels of hepatocyte differentiation markers, such as albumin secretion, in Huh7.5-NTCP cells to similar levels found in primary human hepatocytes. N-glycosylation of NTCP induced by culture in human serum may contribute to viral entry. Our study demonstrates an in vitro HBV infection of Huh7.5-NTCP cells without the use of potentially toxic DMSO.
Collapse
|
21
|
Hepatitis B virus Core protein nuclear interactome identifies SRSF10 as a host RNA-binding protein restricting HBV RNA production. PLoS Pathog 2020; 16:e1008593. [PMID: 33180834 PMCID: PMC7707522 DOI: 10.1371/journal.ppat.1008593] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/01/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022] Open
Abstract
Despite the existence of a preventive vaccine, chronic infection with Hepatitis B virus (HBV) affects more than 250 million people and represents a major global cause of hepatocellular carcinoma (HCC) worldwide. Current clinical treatments, in most of cases, do not eliminate viral genome that persists as a DNA episome in the nucleus of hepatocytes and constitutes a stable template for the continuous expression of viral genes. Several studies suggest that, among viral factors, the HBV core protein (HBc), well-known for its structural role in the cytoplasm, could have critical regulatory functions in the nucleus of infected hepatocytes. To elucidate these functions, we performed a proteomic analysis of HBc-interacting host-factors in the nucleus of differentiated HepaRG, a surrogate model of human hepatocytes. The HBc interactome was found to consist primarily of RNA-binding proteins (RBPs), which are involved in various aspects of mRNA metabolism. Among them, we focused our studies on SRSF10, a RBP that was previously shown to regulate alternative splicing (AS) in a phosphorylation-dependent manner and to control stress and DNA damage responses, as well as viral replication. Functional studies combining SRSF10 knockdown and a pharmacological inhibitor of SRSF10 phosphorylation (1C8) showed that SRSF10 behaves as a restriction factor that regulates HBV RNAs levels and that its dephosphorylated form is likely responsible for the anti-viral effect. Surprisingly, neither SRSF10 knock-down nor 1C8 treatment modified the splicing of HBV RNAs but rather modulated the level of nascent HBV RNA. Altogether, our work suggests that in the nucleus of infected cells HBc interacts with multiple RBPs that regulate viral RNA metabolism. Our identification of SRSF10 as a new anti-HBV restriction factor offers new perspectives for the development of new host-targeted antiviral strategies. Chronic infection with Hepatitis B virus (HBV) affects more than 250 million of people world-wide and is a major global cause of liver cancer. Current treatments lead to a significant reduction of viremia in patients. However, viral clearance is rarely obtained and the persistence of the HBV genome in the hepatocyte’s nucleus generates a stable source of viral RNAs and subsequently proteins which play important roles in immune escape mechanisms and liver disease progression. Therapies aiming at efficiently and durably eliminating viral gene expression are still required. In this study, we identified the nuclear partners of the HBV Core protein (HBc) to understand how this structural protein, responsible for capsid assembly in the cytoplasm, could also regulate viral gene expression. The HBc interactome was found to consist primarily of RNA-binding proteins (RBPs). One of these RBPs, SRSF10, was demonstrated to restrict HBV RNA levels and a drug, able to alter its phosphorylation, behaved as an antiviral compound capable of reducing viral gene expression. Altogether, this study sheds new light on novel regulatory functions of HBc and provides information relevant for the development of antiviral strategies aiming at preventing viral gene expression.
Collapse
|
22
|
Lucifora J, Michelet M, Salvetti A, Durantel D. Fast Differentiation of HepaRG Cells Allowing Hepatitis B and Delta Virus Infections. Cells 2020; 9:cells9102288. [PMID: 33066405 PMCID: PMC7602217 DOI: 10.3390/cells9102288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
HepaRG cells are liver bipotent progenitors acquiring hepatocytes features when differentiated in the presence of dimethylsulfoxide (DMSO). Differentiated HepaRG (dHepaRG) are considered the best surrogate model to primary human hepatocytes (PHH) and are susceptible to several hepatotropic viruses, including Hepatitis B Virus (HBV) and Hepatitis Delta Virus (HDV) infection. Despite these advantages, HepaRG cells are not widely used for the study of these two viruses because of their long differentiation process and their rather low and variable infection rates. Here, we tested the use of a cocktail of five chemicals (5C) combined or not with DMSO to accelerate the cells’ differentiation process. We found that NTCP-mediated HDV entry and replication are similar in HepaRG cells cultivated for only 1 week with 5C and DMSO or differentiated with the regular 4-week protocol. However, even though the NTCP-mediated HBV entry process seemed similar, cccDNA and subsequent HBV replication markers were lower in HepaRG cells cultivated for 1 week with 5C and DMSO compared to the regular differentiation protocol. In conclusion, we set up a new procedure allowing fast differentiation and efficient HDV-infection of HepaRG cells and identified differential culture conditions that may allow to decipher the mechanism behind the establishment of the HBV minichromosome.
Collapse
|
23
|
Hartman GD, Kuduk SD, Espiritu C, Lam AM. P450s under Restriction (PURE) Screen Using HepaRG and Primary Human Hepatocytes for Discovery of Novel HBV Antivirals. ACS Med Chem Lett 2020; 11:1919-1927. [PMID: 33062174 DOI: 10.1021/acsmedchemlett.9b00630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Herein is reported a novel screening paradigm PURE (P450s under restriction) for the identification and optimization of hits as part of a hepatitis B virus (HBV) antiviral discovery program. To closely represent in vivo hepatocytes, differentiated HepaRG cells (dHRGs) and primary human hepatocytes (PHHs) were used as the basis for an HBV infection system. However, a significant challenge arose during potency evaluation in using cultured dHRGs and PHHs as screening platforms because, as with hepatocytes in vivo, these cells express active cytochrome P450 enzymes and thus can metabolize test compounds. The observed antiviral effects may be the cumulative result of a dynamic pool of parent compound and metabolites thus confounding structure activity relationship (SAR) interpretation and subsequent optimization design initiatives. We show here that PURE methodology restricts metabolism of HBV-infected dHRGs and PHHs and thus provides highly informative potency data for decision-making on key representative antiviral compounds.
Collapse
Affiliation(s)
- George D. Hartman
- Novira Therapeutics, a Janssen Pharmaceutical Company, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Scott D. Kuduk
- Novira Therapeutics, a Janssen Pharmaceutical Company, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Christine Espiritu
- Novira Therapeutics, a Janssen Pharmaceutical Company, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Angela M. Lam
- Novira Therapeutics, a Janssen Pharmaceutical Company, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
24
|
Yuan Y, Yuan H, Yang G, Yun H, Zhao M, Liu Z, Zhao L, Geng Y, Liu L, Wang J, Zhang H, Wang Y, Zhang XD. IFN-α confers epigenetic regulation of HBV cccDNA minichromosome by modulating GCN5-mediated succinylation of histone H3K79 to clear HBV cccDNA. Clin Epigenetics 2020; 12:135. [PMID: 32894195 PMCID: PMC7487718 DOI: 10.1186/s13148-020-00928-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Background Hepatitis B virus covalently closed circular DNA (HBV cccDNA) is assembled by histones and non-histones into a chromatin-like cccDNA minichromosome in the nucleus. The cellular histone acetyltransferase GCN5, displaying succinyltransferase activity, is recruited onto cccDNA to modulate HBV transcription in cells. Clinically, IFN-α is able to repress cccDNA. However, the underlying mechanism of IFN-α in the depression of cccDNA mediated by GCN5 is poorly understood. Here, we explored the effect of IFN-α on GCN5-mediated succinylation in the epigenetic regulation of HBV cccDNA minichromosome. Results Succinylation modification of the cccDNA minichromosome has been observed in HBV-infected human liver-chimeric mice and HBV-expressing cell lines. Moreover, histone H3K79 succinylation by GCN5 was identified in the system. Interestingly, the mutant of histone H3K79 efficiently blocked the replication of HBV, and interference with GCN5 resulted in decreased levels of HBV DNA, HBsAg, and HBeAg in the supernatant from de novo HBV-infected HepaRG cells. Consistently, the levels of histone H3K79 succinylation were significantly elevated in the livers of HBV-infected human liver-chimeric mice. The knockdown or overexpression of GCN5 or the mutant of GCN5 could affect the binding of GCN5 to cccDNA or H3K79 succinylation, leading to a change in cccDNA transcription activity. In addition, Southern blot analysis validated that siGCN5 decreased the levels of cccDNA in the cells, suggesting that GCN5-mediated succinylation of histone H3K79 contributes to the epigenetic regulation of cccDNA minichromosome. Strikingly, IFN-α effectively depressed histone H3K79 succinylation in HBV cccDNA minichromosome in de novo HepG2-NTCP and HBV-infected HepaRG cells. Conclusions IFN-α epigenetically regulates the HBV cccDNA minichromosome by modulating GCN5-mediated succinylation of histone H3K79 to clear HBV cccDNA. Our findings provide new insights into the mechanism by which IFN-α modulate the epigenetic regulation of HBV cccDNA minichromosome.
Collapse
Affiliation(s)
- Ying Yuan
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Hongfeng Yuan
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Guang Yang
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Haolin Yun
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Man Zhao
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Zixian Liu
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Lina Zhao
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Yu Geng
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Lei Liu
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Jiapei Wang
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Huihui Zhang
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Yufei Wang
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Xiao-Dong Zhang
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
25
|
Xia Y, Guo H. Hepatitis B virus cccDNA: Formation, regulation and therapeutic potential. Antiviral Res 2020; 180:104824. [PMID: 32450266 PMCID: PMC7387223 DOI: 10.1016/j.antiviral.2020.104824] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/03/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) infection remains a major public health concern worldwide with about 257 million individuals chronically infected. Current therapies can effectively control HBV replication and slow down disease progress, but cannot cure HBV infection. Upon infection, HBV establishes a pool of covalently closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. The cccDNA exists as a minichromosome and resists to antivirals, thus a therapeutic eradication of cccDNA from the infected cells remains unattainable. In this review, we summarize the state of knowledge on the mechanisms underlying cccDNA formation and regulation, and discuss the possible strategies that may contribute to the eradication of HBV through targeting cccDNA.
Collapse
Affiliation(s)
- Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Haitao Guo
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Bockmann JH, Stadler D, Xia Y, Ko C, Wettengel JM, Schulze Zur Wiesch J, Dandri M, Protzer U. Comparative Analysis of the Antiviral Effects Mediated by Type I and III Interferons in Hepatitis B Virus-Infected Hepatocytes. J Infect Dis 2020; 220:567-577. [PMID: 30923817 DOI: 10.1093/infdis/jiz143] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Type III interferons (IFNs) (λ1-3) activate similar signaling cascades as type I IFNs (α and β) via different receptors. Since IFN-α and lymphotoxin-β activate cytosine deamination and subsequent purging of nuclear hepatitis B virus (HBV) DNA, we investigated whether IFN-β and -λ may also induce these antiviral effects in differentiated HBV-infected hepatocytes. METHODS After determining the biological activity of IFN-α2, -β1, -λ1, and -λ2 in differentiated hepatocytes, their antiviral effects were analyzed in HBV-infected primary human hepatocytes and HepaRG cells. RESULTS Type I and III IFNs reduced nuclear open-circle DNA and covalently closed circular DNA (cccDNA) levels in HBV-infected cells. IFN-β and -λ were at least as efficient as IFN-α. Differential DNA-denaturing polymerase chain reaction and sequencing analysis revealed G-to-A sequence alterations of HBV cccDNA in IFN-α, -β, and -λ-treated liver cells indicating deamination. All IFNs induced apolipoprotein B messenger RNA-editing enzyme-catalytic polypeptide-like (APOBEC) deaminases 3A and 3G within 24 hours of treatment, but IFN-β and -λ induced longer-lasting expression of APOBEC deaminases in comparison to IFN-α. CONCLUSIONS IFN-β, IFN-λ1, and IFN-λ2 induce cccDNA deamination and degradation at least as efficiently as IFN-α, indicating that these antiviral cytokines are interesting candidates for the design of new therapeutic strategies aiming at cccDNA reduction and HBV cure.
Collapse
Affiliation(s)
- Jan-Hendrik Bockmann
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich.,I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg.,German Center for Infection Research, Munich and Hamburg partner sites, Germany
| | - Daniela Stadler
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich
| | - Yuchen Xia
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich.,State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, China
| | - Chunkyu Ko
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich
| | - Jochen M Wettengel
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich
| | - Julian Schulze Zur Wiesch
- I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg.,German Center for Infection Research, Munich and Hamburg partner sites, Germany
| | - Maura Dandri
- I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg.,German Center for Infection Research, Munich and Hamburg partner sites, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich.,German Center for Infection Research, Munich and Hamburg partner sites, Germany
| |
Collapse
|
27
|
In Vitro Systems for Studying Different Genotypes/Sub-Genotypes of Hepatitis B Virus: Strengths and Limitations. Viruses 2020; 12:v12030353. [PMID: 32210021 PMCID: PMC7150782 DOI: 10.3390/v12030353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infects the liver resulting in end stage liver disease, cirrhosis, and hepatocellular carcinoma. Despite an effective vaccine, HBV poses a serious health problem globally, accounting for 257 million chronic carriers. Unique features of HBV, including its narrow virus-host range and its hepatocyte tropism, have led to major challenges in the development of suitable in vivo and in vitro model systems to recapitulate the HBV replication cycle and to test various antiviral strategies. Moreover, HBV is classified into at least nine genotypes and 35 sub-genotypes with distinct geographical distributions and prevalence, which have different natural histories of infection, clinical manifestation, and response to current antiviral agents. Here, we review various in vitro systems used to study the molecular biology of the different (sub)genotypes of HBV and their response to antiviral agents, and we discuss their strengths and limitations. Despite the advances made, no system is ideal for pan-genotypic HBV research or drug development and therefore further improvement is required. It is necessary to establish a centralized repository of HBV-related generated materials, which are readily accessible to HBV researchers, with international collaboration toward advancement and development of in vitro model systems for testing new HBV antivirals to ensure their pan-genotypic and/or customized activity.
Collapse
|
28
|
Foca A, Dhillon A, Lahlali T, Lucifora J, Salvetti A, Rivoire M, Lee A, Durantel D. Antiviral activity of PLK1-targeting siRNA delivered by lipid nanoparticles in HBV-infected hepatocytes. Antivir Ther 2020; 25:151-162. [PMID: 32496211 DOI: 10.3851/imp3361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND A link between HBV and PLK1 was clearly evidenced in HBV-driven carcinogenesis, and we have also recently shown that PLK1 is a proviral factor in the early phases of HBV infection. Moreover, we have shown that BI-2536, a small molecule PLK1 inhibitor, was very efficient at inhibiting HBV DNA neosynthesis, notably by affecting nucleocapsid assembly as a result of the modulation of HBc phosphorylation. Yet, as small molecule kinase inhibitors often feature poor selectivity, a more specific and safer strategy to target PLK1 would be needed for a potential development against chronic HBV infections. METHODS Here, we analysed using both freshly isolated primary human hepatocytes and differentiated HepaRG, the anti-HBV properties of an LNP-encapsulated PLK1-targeting siRNA. Standard assays were used to monitor the effect of LNP siPLK1, or controls (LNP siHBV and LNP siNon-targeting), on HBV replication and cell viability. RESULTS A dose as low as 100 ng/ml of LNP-siPLK1 resulted in a >75% decrease in secreted HBV DNA (viral particles), which was comparable to that obtained with LNP siHBV or 10 µM of tenofovir (TFV), without affecting cell viability. Interestingly, and in contrast to that obtained with TFV, a strong inhibition of viral RNA and HBe/HBsAg secretions was also observed under LNP siPLK1 treatment. This correlated with a significant intracellular decrease of vRNA accumulation, which was independent of any change in cccDNA levels, thus suggesting a transcriptional or post-transcriptional modulation. Such an effect was not obtained with a biochemical approach of PLK1 inhibition, suggesting an enzymatic-independent role of PLK1. CONCLUSIONS This study emphasizes that a specific PLK1 inhibition could help in achieving an improved HBsAg loss in CHB patients, likely in combination with other HBsAg-targeting strategies.
Collapse
Affiliation(s)
- Adrien Foca
- Cancer Research Center of Lyon (CRCL), INSERM U1052, Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), UMR_S1052, UCBL, Lyon, France
| | | | - Thomas Lahlali
- Cancer Research Center of Lyon (CRCL), INSERM U1052, Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), UMR_S1052, UCBL, Lyon, France
| | - Julie Lucifora
- Cancer Research Center of Lyon (CRCL), INSERM U1052, Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), UMR_S1052, UCBL, Lyon, France
| | - Anna Salvetti
- Cancer Research Center of Lyon (CRCL), INSERM U1052, Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), UMR_S1052, UCBL, Lyon, France
| | | | - Amy Lee
- Arbutus Biopharma Corporation, Burnaby, BC, Canada
| | - David Durantel
- Cancer Research Center of Lyon (CRCL), INSERM U1052, Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), UMR_S1052, UCBL, Lyon, France
- Labex DEVweCAN, Lyon, France
| |
Collapse
|
29
|
Li F, Wang Z, Hu F, Su L. Cell Culture Models and Animal Models for HBV Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1179:109-135. [PMID: 31741335 DOI: 10.1007/978-981-13-9151-4_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Highly representative and relevant cell and mouse models are required for HBV study, including uncovering its lifecycle, investigation of the viral-host interaction, and development and evaluation of the novel antiviral therapy. During the past 40 years, both HBV cell culture models and animal models have evolved over several generations, each with significant improvement for specific purposes. In one aspect, HBV cell culture models experienced the original noninfection model including HBV plasmid DNA transfection and HBV genome integrated stable cells such as HepG2.2.15 which constitutively produces HBV virus and HepAD38 cells and its derivatives which drug-regulated HBV production. As for HBV infection models, HepaRG cells once dominated the HBV infection field for over a decade, but its complicated and labor-extensive cell differentiation procedures discouraged primary researchers from stepping in the field. The identification of human NTCP as HBV receptor evoked great enthusiasm of the whole HBV field, and its readily adaptive characteristic makes it popular in many HBV laboratories. Recombinant cccDNA (rc-cccDNA) emerged recently aiming to tackle the very basic question of how to eventually eradicate cccDNA without HBV real virus infection. In the other aspect, HBV transgenic mouse was firstly generated in the 1990s, which was helpful to decipher HBV production in vivo. However, the HBV transgenic mice were naturally immune tolerant to HBV viral products. Subsequently, a series of nonintegrated HBV mouse models were generated through plasmid hydrodynamic tail vein injection and viral vector-mediated delivery approaches, and HBV full life cycle was incomplete as cccDNA was not formed from HBV relaxed circular DNA (rcDNA). Human NTCP transgenic mouse still could not support productive HBV infection, and humanized mouse liver with human hepatocytes which supported whole HBV life cycle still dominates HBV infection in vivo, a value but expensive model until now. Other methods to empower mouse to carry HBV cccDNA were also exploited. In this chapter, we summarized the advantages and disadvantages of each model historically and provided protocols for HBV infection in HepG2-NTCP cells, HBV rc-cccDNA transfection in HepG2 cells, and HBV infection in NRG-Fah-/- liver humanized mouse.
Collapse
Affiliation(s)
- Feng Li
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Zhuo Wang
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
30
|
Wang J, Huang H, Liu Y, Chen R, Yan Y, Shi S, Xi J, Zou J, Yu G, Feng X, Lu F. HBV Genome and Life Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1179:17-37. [PMID: 31741332 DOI: 10.1007/978-981-13-9151-4_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic hepatitis B virus (HBV) infection remains to be a serious threat to public health and is associated with many liver diseases including chronic hepatitis B (CHB), liver cirrhosis, and hepatocellular carcinoma. Although nucleos(t)ide analogues (NA) and pegylated interferon-α (Peg-IFNα) have been confirmed to be efficient in inhibiting HBV replication, it is difficult to eradicate HBV and achieve the clinical cure of CHB. Therefore, long-term therapy has been recommended to CHB treatment under the current antiviral therapy. In this context, the new antiviral therapy targeting one or multiple critical steps of viral life cycle may be an alternative approach in future. In the last decade, the functional receptor [sodium-taurocholate cotransporting polypeptide (NTCP)] of HBV entry into hepatocytes has been discovered, and the immature nucleocapsids containing the non- or partially reverse-transcribed pregenomic RNA, the nucleocapsids containing double-strand linear DNA (dslDNA), and the empty particles devoid of any HBV nucleic acid have been found to be released into circulation, which have supplemented the life cycle of HBV. The understanding of HBV life cycle may offer a new instruction for searching the potential antiviral targets, and the new viral markers used to monitor the efficacy of antiviral therapy for CHB patients in the future.
Collapse
Affiliation(s)
- Jie Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Hongxin Huang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Yongzhen Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Ran Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Ying Yan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Shu Shi
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Jingyuan Xi
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Jun Zou
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Guangxin Yu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Xiaoyu Feng
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China.
| |
Collapse
|
31
|
Ruan J, Ping CY, Sun S, Cheng X, Han PY, Zhang YG, Sun DX. Construction of a replication-competent hepatitis B virus vector carrying secreted luciferase transgene and establishment of new hepatitis B virus replication and expression cell lines. World J Gastroenterol 2019; 25:5961-5972. [PMID: 31660033 PMCID: PMC6815792 DOI: 10.3748/wjg.v25.i39.5961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/08/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previously, we have successfully constructed replication-competent hepatitis B virus (HBV) vectors by uncoupling the P open reading frame (ORF) from the preC/C ORF to carefully design the transgene insertion site to overcome the compact organization of the HBV genome and maintain HBV replication competence. Consequently, the replication-competent HBV vectors carrying foreign genes, including pCH-BsdR, carrying blasticidin resistance gene (399 bp), and pCH-hrGFP, carrying humanized renilla green fluorescent protein gene (720 bp), were successfully obtained. However, the replication efficiency of the former is higher but it is tedious to use, while that of the latter is poor and cannot be quantified. Hence, we need to search for a new reporter gene that is convenient and quantifiable for further research.
AIM To establish a helpful tool for intracellular HBV replication and anti-viral drugs screening studies.
METHODS We utilized the replication-competent HBV viral vectors constructed by our laboratory, combined with the secreted luciferase reporter gene, to construct replication-competent HBV vectors expressing the reporter gene secretory Nanoluc Luciferase (SecNluc). HepG2.TA2-7 cells were transfected with this vector to obtain cell lines with stably secreted HBV particles carrying secNluc reporter gene.
RESULTS The replication-competent HBV vector carrying the SecNluc reporter gene pCH-sNLuc could produce all major viral RNAs and a full set of envelope proteins and achieve high-level secreted luciferase expression. HBV replication intermediates could be produced from this vector. Via transfection with pTRE-sNLuc and selection by hygromycin, we obtained isolated cell clones, named HBV-NLuc-35 cells, which could secrete secNLuc recombinant viruses, and were sensitive to existing anti-HBV drugs. Using differentiated HepaRG cells, it was verified that recombinant HBV possessed infectivity.
CONCLUSION Our research demonstrated that a replication-competent HBV vector carrying a secreted luciferase transgene possesses replication and expression ability, and the established HBV replication and expression cell lines could stably secrete viral particles carrying secNluc reporter gene. More importantly, the cell line and the secreted recombinant viral particles could be used to trace HBV replication or infection.
Collapse
Affiliation(s)
- Jie Ruan
- The Liver Disease Center of Chinese People’s Liberation Army, the 980th Hospital of Chinese People’s Liberation Army Joint Logistics Support Force, Shijiazhuang 050082, Hebei Province, China
- Department of Infection and Liver Disease, Shannxi University of Chinese Medicine Affiliated Hospital, Xianyang 712000, Shannxi Province, China
| | - Cai-Yan Ping
- The Liver Disease Center of Chinese People’s Liberation Army, the 980th Hospital of Chinese People’s Liberation Army Joint Logistics Support Force, Shijiazhuang 050082, Hebei Province, China
| | - Shuo Sun
- The Liver Disease Center of Chinese People’s Liberation Army, the 980th Hospital of Chinese People’s Liberation Army Joint Logistics Support Force, Shijiazhuang 050082, Hebei Province, China
| | - Xin Cheng
- The Liver Disease Center of Chinese People’s Liberation Army, the 980th Hospital of Chinese People’s Liberation Army Joint Logistics Support Force, Shijiazhuang 050082, Hebei Province, China
| | - Peng-Yu Han
- The Liver Disease Center of Chinese People’s Liberation Army, the 980th Hospital of Chinese People’s Liberation Army Joint Logistics Support Force, Shijiazhuang 050082, Hebei Province, China
| | - Yin-Ge Zhang
- The Liver Disease Center of Chinese People’s Liberation Army, the 980th Hospital of Chinese People’s Liberation Army Joint Logistics Support Force, Shijiazhuang 050082, Hebei Province, China
| | - Dian-Xing Sun
- The Liver Disease Center of Chinese People’s Liberation Army, the 980th Hospital of Chinese People’s Liberation Army Joint Logistics Support Force, Shijiazhuang 050082, Hebei Province, China
| |
Collapse
|
32
|
Sa-Ngiamsuntorn K, Thongsri P, Pewkliang Y, Wongkajornsilp A, Kongsomboonchoke P, Suthivanich P, Borwornpinyo S, Hongeng S. An Immortalized Hepatocyte-like Cell Line (imHC) Accommodated Complete Viral Lifecycle, Viral Persistence Form, cccDNA and Eventual Spreading of a Clinically-Isolated HBV. Viruses 2019; 11:E952. [PMID: 31623162 PMCID: PMC6832882 DOI: 10.3390/v11100952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
More than 350 million people worldwide have been persistently infected with the hepatitis B virus (HBV). Chronic HBV infection could advance toward liver cirrhosis and hepatocellular carcinoma. The intervention with prophylactic vaccine and conventional treatment could suppress HBV, but could not completely eradicate it. The major obstacle for investigating curative antiviral drugs are the incompetence of hepatocyte models that should have closely imitated natural human infection. Here, we demonstrated that an immortalized hepatocyte-like cell line (imHC) could accommodate for over 30 days the entire life cycle of HBV prepared from either established cultured cells or clinically-derived fresh isolates. Normally, imHCs had intact interferon signaling with anti-viral action. Infected imHCs responded to treatments with direct-acting antiviral drugs (DAAs) and interferons (IFNs) by diminishing HBV DNA, the covalently closed circular DNA (cccDNA) surface antigen of HBV (HBsAg, aka the Australia antigen) and the hepatitis B viral protein (HBeAg). Notably, we could observe and quantify HBV spreading from infected cells to naïve cells using an imHC co-culture model. In summary, this study constructed a convenient HBV culture model that allows the screening for novel anti-HBV agents with versatile targets, either HBV entry, replication or cccDNA formation. Combinations of agents aiming at different targets should achieve a complete HBV eradication.
Collapse
Affiliation(s)
- Khanit Sa-Ngiamsuntorn
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | - Piyanoot Thongsri
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | - Yongyut Pewkliang
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | | | - Phichaya Suthivanich
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
33
|
Abstract
With a yearly death toll of 880,000, hepatitis B virus (HBV) remains a major health problem worldwide, despite an effective prophylactic vaccine and well-tolerated, effective antivirals. HBV causes chronic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The viral genome persists in infected hepatocytes even after long-term antiviral therapy, and its integration, though no longer able to support viral replication, destabilizes the host genome. HBV is a DNA virus that utilizes a virus-encoded reverse transcriptase to convert an RNA intermediate, termed pregenomic RNA, into the relaxed circular DNA genome, which is subsequently converted into a covalently closed circular DNA (cccDNA) in the host cell nucleus. cccDNA is maintained in the nucleus of the infected hepatocyte as a stable minichromosome and functions as the viral transcriptional template for the production of all viral gene products, and thus, it is the molecular basis of HBV persistence. The nuclear cccDNA pool can be replenished through recycling of newly synthesized, DNA-containing HBV capsids. Licensed antivirals target the HBV reverse transcriptase activity but fail to eliminate cccDNA, which would be required to cure HBV infection. Elimination of HBV cccDNA is so far only achieved by antiviral immune responses. Thus, this review will focus on possible curative strategies aimed at eliminating or crippling the viral cccDNA. Newer insights into the HBV life cycle and host immune response provide novel, potentially curative therapeutic opportunities and targets.
Collapse
|
34
|
Yang G, Feng J, Liu Y, Zhao M, Yuan Y, Yuan H, Yun H, Sun M, Bu Y, Liu L, Liu Z, Niu JQ, Yin M, Song X, Miao Z, Lin Z, Zhang X. HAT1 signaling confers to assembly and epigenetic regulation of HBV cccDNA minichromosome. Theranostics 2019; 9:7345-7358. [PMID: 31695772 PMCID: PMC6831306 DOI: 10.7150/thno.37173] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
Rationale: Hepatitis B virus (HBV) is a leading cause of liver diseases. HBV covalently closed circular DNA (cccDNA) is a critical obstacle of complete elimination by anti-HBV therapy. HBV cccDNA accumulates in nucleus as a chromatin-like cccDNA minichromosome assembled by histones and non-histones. However, the underlying mechanism of modulation of cccDNA minichromosome in hepatocytes is poorly understood. Methods: A human liver-chimeric mouse model was established. The cccDNA-ChIP, Southern blot analysis, confocal assays, RIP assays and RNA pull-down assays, et al. were performed to assess the mechanism of assembly and epigenetic regulation of cccDNA minichromosome in human liver-chimeric mouse model, human primary hepatocytes (PHH), dHepaRG, HepG2-NTCP cell lines and clinical liver tissues. Results: Importantly, the expression levels of HAT1, CAF-1 and lncRNA HULC were significantly elevated in the liver from HBV-infected human liver-chimeric mice. Strikingly, the depletion of HAT1 reduced HBV replication and cccDNA accumulation, and impaired the assembly of histone H3/H4 and the deposition of HBx and p300 onto cccDNA to form cccDNA minichromosome in the cells. Mechanically, chromatin assembly factor-1 (CAF-1) was involved in the events. Interestingly, HAT1 modified the acetylation of histone H3K27/H4K5/H4K12 on cccDNA minichromosome. Moreover, lncRNA HULC-scaffold HAT1/HULC/HBc complex was responsible for the modification on cccDNA minichromosome. Additionally, HBV activated HAT1 through HBx-co-activated transcriptional factor Sp1 in a positive feedback manner. Conclusion: HAT1 signaling contributes to assembly and epigenetic regulation of HBV cccDNA minichromosome.
Collapse
|
35
|
Mohd-Ismail NK, Lim Z, Gunaratne J, Tan YJ. Mapping the Interactions of HBV cccDNA with Host Factors. Int J Mol Sci 2019; 20:ijms20174276. [PMID: 31480501 PMCID: PMC6747236 DOI: 10.3390/ijms20174276] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major health problem affecting about 300 million people globally. Although successful administration of a prophylactic vaccine has reduced new infections, a cure for chronic hepatitis B (CHB) is still unavailable. Current anti-HBV therapies slow down disease progression but are not curative as they cannot eliminate or permanently silence HBV covalently closed circular DNA (cccDNA). The cccDNA minichromosome persists in the nuclei of infected hepatocytes where it forms the template for all viral transcription. Interactions between host factors and cccDNA are crucial for its formation, stability, and transcriptional activity. Here, we summarize the reported interactions between HBV cccDNA and various host factors and their implications on HBV replication. While the virus hijacks certain cellular processes to complete its life cycle, there are also host factors that restrict HBV infection. Therefore, we review both positive and negative regulation of HBV cccDNA by host factors and the use of small molecule drugs or sequence-specific nucleases to target these interactions or cccDNA directly. We also discuss several reporter-based surrogate systems that mimic cccDNA biology which can be used for drug library screening of cccDNA-targeting compounds as well as identification of cccDNA-related targets.
Collapse
Affiliation(s)
- Nur K Mohd-Ismail
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore 117545, Singapore
| | - Zijie Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore 119228, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Yee-Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore 117545, Singapore.
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.
| |
Collapse
|
36
|
Abstract
Hepatitis B virus infection is the cause of liver diseases such as cirrhosis and liver cancer. Understanding the host-virus mechanisms that mediate virus pathogenesis can help design better preventive measures for disease control. Mathematical models have been used alongside experimental data to provide insight into the role of immune responses during the acute and chronic hepatitis B infections as well as virus dynamics following administration of combined drug therapy. In this paper, we review several modeling studies on virus-host interactions during acute infection, the virus-host characteristics responsible for transition to chronic disease, and the efficacy and optimal control measures of drug therapy. We conclude by presenting our opinion on the future directions of the field.
Collapse
Affiliation(s)
- Stanca M Ciupe
- Department of Mathematics, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
37
|
Wang J, Qu B, Zhang F, Zhang C, Deng W, Dao Thi VL, Xia Y. Stem Cell-Derived Hepatocyte-Like Cells as Model for Viral Hepatitis Research. Stem Cells Int 2019; 2019:9605252. [PMID: 31281392 PMCID: PMC6594266 DOI: 10.1155/2019/9605252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Viral hepatitis, the leading cause of liver diseases worldwide, is induced upon infection with hepatotropic viruses, including hepatitis A, B, C, D, and E virus. Due to their obligate intracellular lifestyles, culture systems for efficient viral replication are vital. Although basic and translational research on viral hepatitis has been performed for many years, conventional hepatocellular culture systems are not optimal. These studies have greatly benefited from recent efforts on improving cell culture models for virus replication and infection studies. Here we summarize the use of human stem cell-derived hepatocyte-like cells for hepatotropic virus infection studies, including the dissection of virus-host interactions and virus-induced pathogenesis as well as the identification and validation of novel antiviral agents.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Bingqian Qu
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Fang Zhang
- Department of Translational Medicine, Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Cindy Zhang
- Schaller Research Group at Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Wanyan Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Viet Loan Dao Thi
- Schaller Research Group at Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
| | - Yuchen Xia
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Hu J, Lin YY, Chen PJ, Watashi K, Wakita T. Cell and Animal Models for Studying Hepatitis B Virus Infection and Drug Development. Gastroenterology 2019; 156:338-354. [PMID: 30243619 PMCID: PMC6649672 DOI: 10.1053/j.gastro.2018.06.093] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
Many cell culture and animal models have been used to study hepatitis B virus (HBV) replication and its effects in the liver; these have facilitated development of strategies to control and clear chronic HBV infection. We discuss the advantages and limitations of systems for studying HBV and developing antiviral agents, along with recent advances. New and improved model systems are needed. Cell culture systems should be convenient, support efficient HBV infection, and reproduce responses of hepatocytes in the human body. We also need animals that are fully permissive to HBV infection, convenient for study, and recapitulate human immune responses to HBV and effects in the liver. High-throughput screening technologies could facilitate drug development based on findings from cell and animal models.
Collapse
Affiliation(s)
- Jianming Hu
- The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| | - You-Yu Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, National Taiwan University.
| | | | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
39
|
Mouzannar K, Fusil F, Lacombe B, Ollivier A, Ménard C, Lotteau V, Cosset FL, Ramière C, André P. Farnesoid X receptor-α is a proviral host factor for hepatitis B virus that is inhibited by ligands in vitro and in vivo. FASEB J 2018; 33:2472-2483. [PMID: 30307769 DOI: 10.1096/fj.201801181r] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hepatitis B virus (HBV) infection and bile acid (BA) metabolism are interdependent: infection modifies the expression of the BA nuclear receptor farnesoid X receptor (FXR)-α, and modulation of FXRα activity by ligands alters HBV replication. Mechanisms of HBV control by FXRα remain to be unveiled. FXRα silencing in HBV-infected HepaRG cells decreased the viral covalently closed circular (ccc)DNA pool size and transcriptional activity. Treatment with the FXRα agonist GW4064 inhibited FXRα proviral effect on cccDNA similarly for wild-type and hepatitis B viral X protein (HBx)-deficient virus, whereas agonist-induced inhibition of pregenomic and precore RNA transcription and viral DNA secretion was HBx dependent. These data indicated that FXRα acts as a proviral factor by 2 different mechanisms, which are abolished by FXRα stimulation. Finally, infection of C3H/HeN mice by a recombinant adeno-associated virus-2/8-HBV vector induced a sustained HBV replication in young mice in contrast with the transient decline in adult mice. Four-week GW4064 treatment of infected C3H/HeN mice decreased secretion of HBV DNA and HB surface antigen in adult mice only. These results suggest that the physiologic balance of FXRα expression and activation by bile acid is a key host metabolic pathway in the regulation of HBV infection and that FXRα can be envisioned as a target for HBV treatment.-Mouzannar, K., Fusil, F., Lacombe, B., Ollivier, A., Ménard, C., Lotteau, V., Cosset, F.-L., Ramière, C., André, P. Farnesoid X receptor α is a proviral host factor for hepatitis B virus that is inhibited by ligands in vitro and in vivo.
Collapse
Affiliation(s)
- Karim Mouzannar
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon, Université Claude Bernard Lyon 1, INSERM, Unité1111, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure (ENS) de Lyon, Lyon, France
| | - Floriane Fusil
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon, Université Claude Bernard Lyon 1, INSERM, Unité1111, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure (ENS) de Lyon, Lyon, France
| | - Benoît Lacombe
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon, Université Claude Bernard Lyon 1, INSERM, Unité1111, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure (ENS) de Lyon, Lyon, France
| | - Anaïs Ollivier
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon, Université Claude Bernard Lyon 1, INSERM, Unité1111, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure (ENS) de Lyon, Lyon, France
| | - Camille Ménard
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon, Université Claude Bernard Lyon 1, INSERM, Unité1111, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure (ENS) de Lyon, Lyon, France
| | - Vincent Lotteau
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon, Université Claude Bernard Lyon 1, INSERM, Unité1111, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure (ENS) de Lyon, Lyon, France
| | - François-Loïc Cosset
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon, Université Claude Bernard Lyon 1, INSERM, Unité1111, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure (ENS) de Lyon, Lyon, France
| | - Christophe Ramière
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon, Université Claude Bernard Lyon 1, INSERM, Unité1111, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure (ENS) de Lyon, Lyon, France.,Laboratoire de Virologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Patrice André
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon, Université Claude Bernard Lyon 1, INSERM, Unité1111, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5308, École Normale Supérieure (ENS) de Lyon, Lyon, France
| |
Collapse
|
40
|
Hepatitis B Virus Deregulates the Cell Cycle To Promote Viral Replication and a Premalignant Phenotype. J Virol 2018; 92:JVI.00722-18. [PMID: 30021897 DOI: 10.1128/jvi.00722-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major health problem worldwide, and chronically infected individuals are at high risk of developing cirrhosis and hepatocellular carcinoma (HCC). The molecular mechanisms whereby HBV causes HCC are largely unknown. Using a biologically relevant system of HBV infection of primary human hepatocytes (PHHs), we studied how HBV perturbs gene expression and signaling pathways of infected hepatocytes and whether these effects are relevant to productive HBV infection and HBV-associated HCC. Using a human growth factor antibody array, we first showed that HBV infection induced a distinct profile of growth factor production by PHHs, marked particularly by significantly lower levels of the transforming growth factor β (TGF-β) family of proteins in the supernatant. Transcriptome profiling next revealed multiple changes in cell proliferation and cell cycle control pathways in response to HBV infection. A human cell cycle PCR array validated deregulation of more than 20 genes associated with the cell cycle in HBV-infected PHHs. Cell cycle analysis demonstrated that HBV-infected PHHs are enriched in the G2/M phase compared to the predominantly G0/G1 phase of cultured PHHs. HBV proviral host factors, such as PPARA, RXRA, and CEBPB, were upregulated upon HBV infection and particularly enriched in cells in the G2/M phase. Together, these results support the notion that HBV deregulates cell cycle control to render a cellular environment that is favorable for productive HBV infection. By perturbing cell cycle regulation of infected cells, HBV may coincidently induce a premalignant phenotype that predisposes infected hepatocytes to subsequent malignant transformation.IMPORTANCE Hepatitis B virus (HBV) infection is a major health problem with high risk of developing hepatocellular carcinoma (HCC). By using a biologically relevant system of HBV infection of primary human hepatocytes (PHHs), we studied how HBV perturbs gene expression and whether these effects are relevant to HBV-associated HCC. HBV induced a distinct profile of growth factor production, marked particularly by significantly lower levels of the transforming growth factor β (TGF-β) family of proteins. Transcriptome profiling revealed multiple changes in cell proliferation and cell cycle control pathways. Cell cycle analysis demonstrated that HBV-infected PHHs are enriched in the G2/M phase. HBV proviral host factors were upregulated upon infection and particularly enriched in cells in the G2/M phase. Together, these results support the notion that HBV deregulates cell cycle control to render a cellular environment that is favorable for productive infection. This may coincidently induce a premalignant phenotype that predisposes infected hepatocytes to subsequent malignant transformation.
Collapse
|
41
|
Yuan L, Liu X, Zhang L, Zhang Y, Chen Y, Li X, Wu K, Cao J, Hou W, Que Y, Zhang J, Zhu H, Yuan Q, Tang Q, Cheng T, Xia N. Optimized HepaRG is a suitable cell source to generate the human liver chimeric mouse model for the chronic hepatitis B virus infection. Emerg Microbes Infect 2018; 7:144. [PMID: 30097574 PMCID: PMC6086841 DOI: 10.1038/s41426-018-0143-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/30/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022]
Abstract
The human liver chimeric mouse with primary human hepatocytes (PHHs) engraftment has been demonstrated to be a useful animal model to study hepatitis B virus (HBV) pathogenesis and evaluate anti-HBV drugs. However, the disadvantages of using PHHs include the inability for cellular expansion in vitro, limited donor availability, individual differences, and ethical issues, necessitating the development of alternatives. To obtain in vitro expandable hepatocytes, we optimized the hepatic differentiation procedure of the human liver progenitor cell line, HepaRG, using four functional small molecules (4SM) and enriched the precursor hepatocyte-like cells (HLCs). HepaRG cells of different hepatic differentiation states were engrafted to immunodeficient mice (FRGS) with weekly 4SM treatment. The HepaRG-engrafted mice were challenged with HBV and/or treated with several antivirals to evaluate their effects. We demonstrated that the 4SM treatment enhanced hepatic differentiation and promoted cell proliferation capacity both in vitro and in vivo. Mice engrafted with enriched HepaRG of prehepatic differentiation and treated with 4SM displayed approximately 10% liver chimerism at week 8 after engraftment and were maintained at this level for another 16 weeks. Therefore, we developed a HepaRG-based human liver chimeric mouse model: HepaRG-FRGS. Our experimental results showed that the liver chimerism of the mice was adequate to support chronic HBV infection for 24 weeks and to evaluate antivirals. We also demonstrated that HBV infection in HepaRG cells was dependent on their hepatic differentiation state and liver chimerism in vivo. Overall, HepaRG-FRGS mice provide a novel human liver chimeric mouse model to study chronic HBV infection and evaluate anti-HBV drugs.
Collapse
Affiliation(s)
- Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Xuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Liang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Yali Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Yao Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Xiaoling Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Kun Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Jiali Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Wangheng Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Hua Zhu
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 070101, USA
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China.
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, 20059, USA.
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| |
Collapse
|
42
|
Developments in Cell-Penetrating Peptides as Antiviral Agents and as Vehicles for Delivery of Peptide Nucleic Acid Targeting Hepadnaviral Replication Pathway. Biomolecules 2018; 8:biom8030055. [PMID: 30013006 PMCID: PMC6165058 DOI: 10.3390/biom8030055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022] Open
Abstract
Alternative therapeutic approaches against chronic hepatitis B virus (HBV) infection need to be urgently developed because current therapies are only virostatic. In this context, cell penetration peptides (CPPs) and their Peptide Nucleic Acids (PNAs) cargoes appear as a promising novel class of biologically active compounds. In this review we summarize different in vitro and in vivo studies, exploring the potential of CPPs as vehicles for intracellular delivery of PNAs targeting hepadnaviral replication. Thus, studies conducted in the duck HBV (DHBV) infection model showed that conjugation of (D-Arg)8 CPP to PNA targeting viral epsilon (ε) were able to efficiently inhibit viral replication in vivo following intravenous administration to ducklings. Unexpectedly, some CPPs, (D-Arg)8 and Decanoyl-(D-Arg)8, alone displayed potent antiviral effect, altering late stages of DHBV and HBV morphogenesis. Such antiviral effects of CPPs may affect the sequence-specificity of CPP-PNA conjugates. By contrast, PNA conjugated to (D-Lys)4 inhibited hepadnaviral replication without compromising sequence specificity. Interestingly, Lactose-modified CPP mediated the delivery of anti-HBV PNA to human hepatoma cells HepaRG, thus improving its antiviral activity. In light of these promising data, we believe that future studies will open new perspectives for translation of CPPs and CPP-PNA based technology to therapy of chronic hepatitis B.
Collapse
|
43
|
Faure-Dupuy S, Vegna S, Aillot L, Dimier L, Esser K, Broxtermann M, Bonnin M, Bendriss-Vermare N, Rivoire M, Passot G, Lesurtel M, Mabrut JY, Ducerf C, Salvetti A, Protzer U, Zoulim F, Durantel D, Lucifora J. Characterization of Pattern Recognition Receptor Expression and Functionality in Liver Primary Cells and Derived Cell Lines. J Innate Immun 2018; 10:339-348. [PMID: 29975940 DOI: 10.1159/000489966] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
Different liver cell types are endowed with immunological properties, including cell-intrinsic innate immune functions that are important to initially control pathogen infections. However, a full landscape of expression and functionality of the innate immune signaling pathways in the major human liver cells is still missing. In order to comparatively characterize these pathways, we purified primary human hepatocytes, hepatic stellate cells, liver sinusoidal endothelial cells (LSEC), and Kupffer cells (KC) from human liver resections. We assessed mRNA and protein expression level of the major innate immune sensors, as well as checkpoint-inhibitor ligands in the purified cells, and found Toll-like receptors (TLR), RIG-I-like receptors, as well as several DNA cytosolic sensors to be expressed in the liver microenvironment. Amongst the cells tested, KC were shown to be most broadly active upon stimulation with PRR ligands emphasizing their predominant role in innate immune sensing the liver microenvironment. By KC immortalization, we generated a cell line that retained higher innate immune functionality as compared to THP1 cells, which are routinely used to study monocyte/macrophages functions. Our findings and the establishment of the KC line will help to understand immune mechanisms behind antiviral effects of TLR agonists or checkpoint inhibitors, which are in current preclinical or clinical development.
Collapse
Affiliation(s)
- Suzanne Faure-Dupuy
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | - Serena Vegna
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | - Ludovic Aillot
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | - Laura Dimier
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | - Knud Esser
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Mathias Broxtermann
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Marc Bonnin
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | - Nathalie Bendriss-Vermare
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | | | - Guillaume Passot
- Service de chirurgie viscérale et endocrinienne, Hospices Civils de Lyon (HCL), centre hospitalier Lyon-Sud, Lyon, France
| | - Mickaël Lesurtel
- Hopital de la Croix-Rousse, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Jean-Yves Mabrut
- Hopital de la Croix-Rousse, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Christian Ducerf
- Hopital de la Croix-Rousse, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Anna Salvetti
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany.,German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Fabien Zoulim
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France.,Hopital de la Croix-Rousse, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France.,DEVweCAN Laboratory of Excellence, Lyon, France
| | - David Durantel
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France.,DEVweCAN Laboratory of Excellence, Lyon, France
| | - Julie Lucifora
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| |
Collapse
|
44
|
Hensel KO, Cantner F, Bangert F, Wirth S, Postberg J. Episomal HBV persistence within transcribed host nuclear chromatin compartments involves HBx. Epigenetics Chromatin 2018; 11:34. [PMID: 29933745 PMCID: PMC6015472 DOI: 10.1186/s13072-018-0204-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023] Open
Abstract
Background In hepatocyte nuclei, hepatitis B virus (HBV) genomes occur episomally as covalently closed circular DNA (cccDNA). The HBV X protein (HBx) is required to initiate and maintain HBV replication. The functional nuclear localization of cccDNA and HBx remains unexplored. Results To identify virus–host genome interactions and the underlying nuclear landscape for the first time, we combined circular chromosome conformation capture (4C) with RNA-seq and ChIP-seq. Moreover, we studied HBx-binding to HBV episomes. In HBV-positive HepaRG hepatocytes, we observed preferential association of HBV episomes and HBx with actively transcribed nuclear domains on the host genome correlating in size with constrained topological units of chromatin. Interestingly, HBx alone occupied transcribed chromatin domains. Silencing of native HBx caused reduced episomal HBV stability. Conclusions As part of the HBV episome, HBx might stabilize HBV episomal nuclear localization. Our observations may contribute to the understanding of long-term episomal stability and the facilitation of viral persistence. The exact mechanism by which HBx contributes to HBV nuclear persistence warrants further investigations. Electronic supplementary material The online version of this article (10.1186/s13072-018-0204-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kai O Hensel
- Department of Pediatrics, HELIOS University Hospital Wuppertal, Centre for Clinical and Translational Research (CCTR), Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Heusnerstr. 40, 42283, Wuppertal, Germany.,Department of Paediatric Gastroenterology, Hepatology and Nutrition, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge,, CB2 0QQ, UK
| | - Franziska Cantner
- Department of Pediatrics, HELIOS University Hospital Wuppertal, Centre for Clinical and Translational Research (CCTR), Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Heusnerstr. 40, 42283, Wuppertal, Germany
| | - Felix Bangert
- Department of Pediatrics, HELIOS University Hospital Wuppertal, Centre for Clinical and Translational Research (CCTR), Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Heusnerstr. 40, 42283, Wuppertal, Germany
| | - Stefan Wirth
- Department of Pediatrics, HELIOS University Hospital Wuppertal, Centre for Clinical and Translational Research (CCTR), Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Heusnerstr. 40, 42283, Wuppertal, Germany
| | - Jan Postberg
- Department of Pediatrics, HELIOS University Hospital Wuppertal, Centre for Clinical and Translational Research (CCTR), Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Heusnerstr. 40, 42283, Wuppertal, Germany. .,Clinical Molecular Genetics and Epigenetics, Faculty of Health, School of Medicine, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany.
| |
Collapse
|
45
|
Hepatitis B Virus DNA Integration Occurs Early in the Viral Life Cycle in an In Vitro Infection Model via Sodium Taurocholate Cotransporting Polypeptide-Dependent Uptake of Enveloped Virus Particles. J Virol 2018; 92:JVI.02007-17. [PMID: 29437961 DOI: 10.1128/jvi.02007-17] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/30/2018] [Indexed: 02/08/2023] Open
Abstract
Chronic infection by hepatitis B virus (HBV) is the major contributor to liver disease worldwide. Though HBV replicates via a nuclear episomal DNA (covalently closed circular DNA [cccDNA]), integration of HBV DNA into the host cell genome is regularly observed in the liver in infected patients. While reported as a prooncogenic alteration, the mechanism(s) and timing of HBV DNA integration are not well understood, chiefly due to the lack of in vitro infection models that have detectable integration events. In this study, we have established an in vitro system in which integration can be reliably detected following HBV infection. We measured HBV DNA integration using inverse nested PCR in primary human hepatocytes, HepaRG-NTCP, HepG2-NTCP, and Huh7-NTCP cells after HBV infection. Integration was detected in all cell types at a rate of >1 per 10,000 cells, with the most consistent detection in Huh7-NTCP cells. The integration rate remained stable between 3 and 9 days postinfection. HBV DNA integration was efficiently blocked by treatment with a 200 nM concentration of the HBV entry inhibitor Myrcludex B, but not with 10 μM tenofovir, 100 U of interferon alpha, or a 1 μM concentration of the capsid assembly inhibitor GLS4. This suggests that integration of HBV DNA occurs immediately after infection of hepatocytes and is likely independent of de novo HBV genome replication in this model. Site analysis revealed that HBV DNA integrations were distributed over the entire human genome. Further, integrated HBV DNA sequences were consistent with double-stranded linear HBV DNA being the major precursor. Thus, we have established an in vitro system to interrogate the mechanisms of HBV DNA integration.IMPORTANCE Hepatitis B virus (HBV) is a common blood-borne pathogen and, following a chronic infection, can cause liver cancer and liver cirrhosis. Integration of HBV DNA into the host genome occurs in all known members of the Hepadnaviridae family, despite this form not being necessary for viral replication. HBV DNA integration has been reported to drive liver cancer formation and persistence of virus infection. However, when and the mechanism(s) by which HBV DNA integration occurs are not clear. In this study, we have developed and characterized an in vitro system to reliably detect HBV DNA integrations that result from a true HBV infection event and that closely resemble those found in patient tissues. Using this model, we showed that integration occurs when the infection is first established. Importantly, we provide here a system to analyze molecular factors involved in HBV integration, which can be used to develop strategies to halt its formation.
Collapse
|
46
|
Yuan L, Liu X, Zhang L, Li X, Zhang Y, Wu K, Chen Y, Cao J, Hou W, Zhang J, Zhu H, Yuan Q, Tang Q, Cheng T, Xia N. A Chimeric Humanized Mouse Model by Engrafting the Human Induced Pluripotent Stem Cell-Derived Hepatocyte-Like Cell for the Chronic Hepatitis B Virus Infection. Front Microbiol 2018; 9:908. [PMID: 29867819 PMCID: PMC5952038 DOI: 10.3389/fmicb.2018.00908] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022] Open
Abstract
Humanized mouse model generated by grafting primary human hepatocytes (PHHs) to immunodeficient mouse has contributed invaluably to understanding the pathogenesis of hepatitis B virus (HBV). However, the source of PHHs is limited, which necessitates the search for alternatives. Recently, hepatocyte-like cells (HLCs) generated from human induced pluripotent stem cells (hiPSCs) have been used for in vitro HBV infection. Herein, we developed a robust human liver chimeric animal model to study in vivo HBV infection by engrafting the hiPSC-HLCs to Fah-/-Rag2-/-IL-2Rγc-/-SCID (FRGS) mice. After being optimized by a small molecule, XMU-MP-1, the hiPSC-HLCs engrafted FRGS (hHLC-FRGS) mice displayed approximately 40% liver chimerism at week 6 after engraftment and maintained at this level for at least 14 weeks. Viremia and HBV infection markers include antigens, RNA, DNA, and covalently closed circular DNA were detectable in HBV infected hHLC-FRGS mice. Furthermore, hiPSC-HLCs and hHLC-FRGS mice were successfully used to evaluate different antivirals. Therefore, we established a humanized mouse model for not only investigating HBV pathogenesis but also testing the effects of the anti-HBV drugs. Highlights: (1) The implanted hiPSC-HLCs established a long-term chimerism in FRGS mice liver. (2) hHLC-FRGS mice are adequate to support chronic HBV infection with a full viral life cycle. (3) hiPSC-HLCs and hHLC-FRGS mice are useful tools for evaluation of antivirals against HBV infection in vitro and in vivo. Research in Context To overcome the disadvantages of using primary human hepatocytes, we induced human pluripotent stem cells to hepatocyte-like cells (hiPSC-HLCs) that developed the capability to express important liver functional markers and critical host factors for HBV infection. The hiPSC-HLCs were permissive for the HBV infection and supported a full HBV replication. The hiPSC-HLCs were then engrafted to immunodeficient mouse to establish a chimeric liver mouse model, which was capable of supporting HBV infection in vivo and evaluating the effects of antiviral drugs. Our results shed light into improving the cellular and animal models for studying HBV and other hepatotropic viruses.
Collapse
Affiliation(s)
- Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Xuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Liang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaoling Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yali Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Kun Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yao Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiali Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Wangheng Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, United States
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
47
|
Allweiss L, Volz T, Giersch K, Kah J, Raffa G, Petersen J, Lohse AW, Beninati C, Pollicino T, Urban S, Lütgehetmann M, Dandri M. Proliferation of primary human hepatocytes and prevention of hepatitis B virus reinfection efficiently deplete nuclear cccDNA in vivo. Gut 2018; 67:542-552. [PMID: 28428345 DOI: 10.1136/gutjnl-2016-312162] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The stability of the covalently closed circular DNA (cccDNA) in nuclei of non-dividing hepatocytes represents a key determinant of HBV persistence. Contrarily, studies with animal hepadnaviruses indicated that hepatocyte turnover can reduce cccDNA loads but knowledge on the proliferative capacity of HBV-infected primary human hepatocytes (PHHs) in vivo and the fate of cccDNA in dividing PHHs is still lacking. This study aimed to determine the impact of human hepatocyte division on cccDNA stability in vivo. METHODS PHH proliferation was triggered by serially transplanting hepatocytes from HBV-infected humanised mice into naïve recipients. Cell proliferation and virological changes were assessed by quantitative PCR, immunofluorescence and RNA in situ hybridisation. Viral integrations were analysed by gel separation and deep sequencing. RESULTS PHH proliferation strongly reduced all infection markers, including cccDNA (median 2.4 log/PHH). Remarkably, cell division appeared to cause cccDNA dilution among daughter cells and intrahepatic cccDNA loss. Nevertheless, HBV survived in sporadic non-proliferating human hepatocytes, so that virological markers rebounded as hepatocyte expansion relented. This was due to reinfection of quiescent PHHs since treatment with the entry inhibitor myrcludex-B or nucleoside analogues blocked viral spread and intrahepatic cccDNA accumulation. Viral integrations were detected both in donors and recipient mice but did not appear to contribute to antigen production. CONCLUSIONS We demonstrate that human hepatocyte division even without involvement of cytolytic mechanisms triggers substantial cccDNA loss. This process may be fundamental to resolve self-limiting acute infection and should be considered in future therapeutic interventions along with entry inhibition strategies.
Collapse
Affiliation(s)
- Lena Allweiss
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Giersch
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janine Kah
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giuseppina Raffa
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Joerg Petersen
- IFI Institute for Interdisciplinary Medicine at Asklepios Clinic St. Georg, Hamburg, Germany
| | - Ansgar W Lohse
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner Sites, Hamburg, Germany
| | - Concetta Beninati
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Teresa Pollicino
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Stephan Urban
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner Sites, Hamburg, Germany.,Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marc Lütgehetmann
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maura Dandri
- Department of Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner Sites, Hamburg, Germany
| |
Collapse
|
48
|
Luo X, Gupta K, Ananthanarayanan A, Wang Z, Xia L, Li A, Sakban RB, Liu S, Yu H. Directed Differentiation of Adult Liver Derived Mesenchymal Like Stem Cells into Functional Hepatocytes. Sci Rep 2018; 8:2818. [PMID: 29434311 PMCID: PMC5809507 DOI: 10.1038/s41598-018-20304-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023] Open
Abstract
Shortage of functional hepatocytes hampers drug safety testing and therapeutic applications because mature hepatocytes cannot be expanded and maintain functions in vitro. Recent studies have reported that liver progenitor cells can originate from mature hepatocytes in vivo. Derivation of proliferating progenitor cells from mature hepatocytes, and re-differentiation into functional hepatocytes in vitro has not been successful. Here we report the derivation of novel mesenchymal-like stem cells (arHMSCs) from adult rat hepatocytes. Immunofluorescence and flow cytometry characterization of arHMSCs found expression of mesenchymal markers CD29, CD44, CD90, vimentin and alpha smooth muscle actin. These arHMSCs proliferated in vitro for 4 passages yielding 104 fold increase in cell number in 28 days, and differentiated into hepatocyte-like cells (arHMSC-H). The arHMSC-H expressed significantly higher level of hepatocyte-specific markers (200 fold for albumin and 6 fold for Cyp450 enzymes) than arHMSCs. The arHMSC-H also demonstrated dose response curves similar to primary hepatocytes for 3 of the 6 paradigm hepatotoxicants tested, demonstrating utility in drug safety testing applications.
Collapse
Affiliation(s)
- Xiaobei Luo
- Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, China
| | - Kapish Gupta
- Mechanobiology Institute, National University of, Singapore, Singapore
| | - Abhishek Ananthanarayanan
- Invitrocue Pte Ltd, Singapore, Singapore.,Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), Singapore, Singapore
| | - Zenan Wang
- Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lei Xia
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aimin Li
- Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, China
| | - Rashidah Binte Sakban
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Side Liu
- Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, China.
| | - Hanry Yu
- Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, China. .,Mechanobiology Institute, National University of, Singapore, Singapore. .,Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), Singapore, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,BioSyM, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
| |
Collapse
|
49
|
Wu M, Li J, Yue L, Bai L, Li Y, Chen J, Zhang X, Yuan Z. Establishment of Cre-mediated HBV recombinant cccDNA (rcccDNA) cell line for cccDNA biology and antiviral screening assays. Antiviral Res 2018; 152:45-52. [PMID: 29432776 DOI: 10.1016/j.antiviral.2018.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA), existing in hepatocyte nuclei as a stable minichromosome, plays a central role in the life cycle of the virus and permits the persistence of infection. Despite being essential for HBV infection, little is known about the molecular mechanisms of cccDNA formation, regulation and degradation, and there is no therapeutic agents directly targeting cccDNA, fore mostly due to the lack of robust, reliable and quantifiable HBV cccDNA models. In this study, combined the Cre/loxP and sleeping beauty transposons system, we established HepG2-derived cell lines integrated with 2-60 copies of monomeric HBV genome flanked by loxP sites (HepG2-HBV/loxP). After Cre expression via adenoviral transduction, 3.3-kb recombinant cccDNA (rcccDNA) bearing a chimeric intron can be produced in the nuclei of these HepG2-HBV/loxP cells. The rcccDNA could be accurately quantified by quantitative PCR using specific primers and cccDNA pool generated in this model could be easily detected by Southern blotting using the digoxigenin probe system. We demonstrated that the rcccDNA was epigenetically organized as the natural minichromosome and served as the template supporting pgRNA transcription and viral replication. As the expression of HBV S antigen (HBsAg) is dependent on the newly generated cccDNA, HBsAg is the surrogate marker of cccDNA. Additionally, the efficacies of 3 classes of anti-HBV agents were evaluated in HepG2-HBV/loxP cells and antiviral activities with different mechanisms were confirmed. These data collectively suggested that HepG2-HBV/loxP cell system will be powerful platform for studying cccDNA related biological mechanisms and developing novel cccDNA targeting drugs.
Collapse
Affiliation(s)
- Min Wu
- Research Unit, Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Li
- Research Unit, Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Yue
- Research Unit, Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Bai
- Research Unit, Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - Yaming Li
- Research Unit, Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - Jieliang Chen
- Research Unit, Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaonan Zhang
- Research Unit, Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences of Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhenghong Yuan
- Research Unit, Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences of Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
50
|
Diab A, Foca A, Fusil F, Lahlali T, Jalaguier P, Amirache F, N'Guyen L, Isorce N, Cosset FL, Zoulim F, Andrisani O, Durantel D. Polo-like-kinase 1 is a proviral host factor for hepatitis B virus replication. Hepatology 2017; 66:1750-1765. [PMID: 28445592 PMCID: PMC5658273 DOI: 10.1002/hep.29236] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/17/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC) and current treatments for chronic hepatitis B and HCC are suboptimal. Herein, we identified cellular serine/threonine Polo-like-kinase 1 (PLK1) as a positive effector of HBV replication. The aim of this study was to demonstrate the proviral role of PLK1 in HBV biosynthesis and validate PLK1 inhibition a potential antiviral strategy. To this end, we employed physiologically relevant HBV infection models of primary human hepatocytes (PHHs) and differentiated HepaRG cells in conjunction with pharmacologic PLK1 inhibitors, small interfering RNA (siRNA)-mediated knockdown, and overexpression of constitutively active PLK1 (PLK1CA ). In addition, a humanized liver Fah-/- /Rag2-/- /Il2rg-/- (FRG) mouse model was used to determine the antiviral effect of PLK1 inhibitor BI-2536 on HBV infection in vivo. Finally, in vitro PLK1 kinase assays and site-directed mutagenesis were employed to demonstrate that HBV core protein (HBc) is a PLK1 substrate. We demonstrated that HBV infection activated cellular PLK1 in PHHs and differentiated HepaRG cells. PLK1 inhibition by BI-2536 or siRNA-mediated knockdown suppressed HBV DNA biosynthesis, whereas overexpression of PLK1CA increased it, suggesting that the PLK1 effects on viral biosynthesis are specific and that PLK1 is a proviral cellular factor. Significantly, BI-2536 administration to HBV-infected humanized liver FRG mice strongly inhibited HBV infection, validating PLK1 as an antiviral target in vivo. The proviral action of PLK1 is associated with the biogenesis of the nucleocapsid, as BI-2536 leads to its decreased intracellular formation/accumulation. In this respect, our studies identified HBc as a PLK1 substrate in vitro, and mapped PLK1 phosphorylation sites on this protein. CONCLUSION PLK1 is a proviral host factor that could be envisaged as a target for combined antiviral and antitumoral strategies against HBV infection and HBV-mediated carcinogenesis. (Hepatology 2017;66:1750-1765).
Collapse
Affiliation(s)
- Ahmed Diab
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN
| | - Adrien Foca
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
| | - Floriane Fusil
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
- CIRI-International Center for Infectiology Research, Team EVIR, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univirsity of Lyon, Lyon, France
| | - Thomas Lahlali
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
| | - Pascal Jalaguier
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
| | - Fouzia Amirache
- CIRI-International Center for Infectiology Research, Team EVIR, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univirsity of Lyon, Lyon, France
| | - Lia N'Guyen
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
| | - Nathalie Isorce
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
| | - François-Loïc Cosset
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
- CIRI-International Center for Infectiology Research, Team EVIR, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univirsity of Lyon, Lyon, France
| | - Fabien Zoulim
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
- Hepato-Gastroenterogy Unit, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
- Labex DEVweCAN, Lyon, France
| | - Ourania Andrisani
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN
| | - David Durantel
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, Université Claude-Bernard, UMR_S1052, UCBL, Lyon, France
- Labex DEVweCAN, Lyon, France
| |
Collapse
|