1
|
Caldas-Garcia GB, Lopes ÍS, Aguiar ERGR. Expanding the evidence for cross-species viral transmission from trophic interactions of parasitoid wasps and their hosts. Braz J Microbiol 2025:10.1007/s42770-024-01596-4. [PMID: 39792329 DOI: 10.1007/s42770-024-01596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Parasitoid wasps act as natural biological control agents for several harmful insect species. However, there is a lack of information regarding the exogenous RNA viruses that infect parasitoids and may contribute to the success of their parasitism strategies. This study aimed to investigate the presence, abundance, and replication of known exogenous viruses in two parasitoid wasp species and their corresponding preys. Utilizing publicly available RNA deep-sequencing data, two previously validated viruses from the parasitoid Tetrastichus brontispae were assessed in the target beetles Brontispa longissima and Octodonta nipae from the same geographic region. This study revealed the presence of the iflavirus TbRV-3 in both T. brontispae and O. nipae-derived samples, suggesting a potential exchange of the virus between the parasitoid and its host. In addition, there is substantial evidence that the Halyomorpha halys virus infects the parasitoid Telenomus podisi. Thus, this study proposes a close evolutionary relationship between the HhV strain identified in the parasitoid Telenomus podisi and the original strain detected in the prey H. halys. The viral association between trophically related species, such as parasitoids and their hosts, is demonstrated using features such as abundance and the presence of double-stranded RNA, which serves as a proxy for virus replication. Therefore, RNA viruses may coexist at both trophic levels, conferring an evolutionary advantage to the parasitism strategy.
Collapse
Affiliation(s)
- Gabriela B Caldas-Garcia
- Virus Bioinformatics Laboratory, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus, 45662-900, BA, Brazil
| | - Ícaro Santos Lopes
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Eric Roberto Guimarães Rocha Aguiar
- Virus Bioinformatics Laboratory, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus, 45662-900, BA, Brazil.
- Postgraduate Program in Computer Modelling in Science and Technology, Department of Engineering and Computing, Universidade Estadual de Santa Cruz, Ilhéus, 45662-900, BA, Brazil.
| |
Collapse
|
2
|
Hardy J, Demecheleer E, Schauvliege M, Staelens D, Mortier V, Verhofstede C. Reverse transcription of plasma-derived HIV-1 RNA generates multiple artifacts through tRNA(Lys-3)-priming. Microbiol Spectr 2024; 12:e0387223. [PMID: 38442427 PMCID: PMC10986323 DOI: 10.1128/spectrum.03872-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
In vitro reverse transcription of full-length HIV-1 RNA extracted from the blood plasma of people living with HIV-1 remains challenging. Here, we describe the initiation of reverse transcription of plasma-derived viral RNA in the absence of an exogenous primer. Real-time PCR and Sanger sequencing were applied to identify the source and to monitor the outcome of this reaction. Results demonstrated that during purification of viral RNA from plasma, tRNA(Lys-3) is co-extracted in a complex with the viral RNA. In the presence of a reverse transcription enzyme, this tRNA(Lys-3) can induce reverse transcription, a reaction that is not confined to transcription of the 5' end of the viral RNA. A range of cDNA products is generated, most of them indicative for the occurrence of in vitro strand transfer events that involve translocation of cDNA from the 5' end to random positions on the viral RNA. This process results in the formation of cDNAs with large internal deletions. However, near full-length cDNA and cDNA with sequence patterns resembling multiple spliced HIV-1 RNA were also detected. Despite its potential to introduce significant bias in the interpretation of results across various applications, tRNA(Lys-3)-driven reverse transcription has been overlooked thus far. A more in-depth study of this tRNA-driven in vitro reaction may provide new insight into the complex process of in vivo HIV-1 replication.IMPORTANCEThe use of silica-based extraction methods for purifying HIV-1 RNA from viral particles is a common practice, but it involves co-extraction of human tRNA(Lys-3) due to the strong interactions between these molecules. This co-extraction becomes particularly significant when the extracted RNA is used in reverse transcription reactions, as the tRNA(Lys-3) then serves as a primer. Reverse transcription from tRNA(Lys-3) is not confined to cDNA synthesis of the 5' end of the viral RNA but extends across various regions of the viral genome through in vitro strand transfer events. Co-extraction of tRNA(Lys-3) has been overlooked thus far, despite its potential to introduce bias in downstream, reverse transcription-related applications. The observed events in the tRNA(Lys-3)-induced in vitro reverse transcription resemble in vivo replication processes. Therefore, these reactions may offer a unique model to better understand the replication dynamics of HIV-1.
Collapse
Affiliation(s)
- Jarryt Hardy
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Els Demecheleer
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marlies Schauvliege
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Delfien Staelens
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Virginie Mortier
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Chris Verhofstede
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Atallah OO, Yassin SM, Verchot J. New Insights into Hop Latent Viroid Detection, Infectivity, Host Range, and Transmission. Viruses 2023; 16:30. [PMID: 38257731 PMCID: PMC10819085 DOI: 10.3390/v16010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Hop latent viroid (HLVd), a subviral pathogen from the family Pospiviroidae, is a major threat to the global cannabis industry and is the causative agent for "dudding disease". Infected plants can often be asymptomatic for a period of growth and then develop symptoms such as malformed and yellowing leaves, as well as stunted growth. During flowering, HLVd-infected plants show reduced levels of valuable metabolites. This study was undertaken to expand our basic knowledge of HLVd infectivity, transmission, and host range. HLVd-specific primers were used for RT-PCR detection in plant samples and were able to detect HLVd in as little as 5 picograms of total RNA. A survey of hemp samples obtained from a diseased production system proved sole infection of HLVd (72%) with no coexistence of hop stunt viroid. HLVd was infectious through successive passage assays using a crude sap or total RNA extract derived from infected hemp. HLVd was also highly transmissible through hemp seeds at rates of 58 to 80%. Host range assays revealed new hosts for HLVd: tomato, cucumber, chrysanthemum, Nicotiana benthamiana, and Arabidopsis thaliana (Col-0). Sequence analysis of 77 isolates revealed only 3 parsimony-informative sites, while 10 sites were detected among all HLVd isolates available in the GenBank. The phylogenetic relationship among HLVd isolates allowed for inferring two major clades based on the genetic distance. Our findings facilitate further studies on host-viroid interaction and viroid management.
Collapse
Affiliation(s)
| | | | - Jeanmarie Verchot
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA; (O.O.A.); (S.M.Y.)
| |
Collapse
|
4
|
Dobson SJ, Ward JC, Herod MR, Rowlands DJ, Stonehouse NJ. A highly discriminatory RNA strand-specific assay to facilitate analysis of the role of cis-acting elements in foot-and-mouth disease virus replication. J Gen Virol 2023; 104. [PMID: 37436428 DOI: 10.1099/jgv.0.001871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
Foot-and-mouth-disease virus (FMDV), the aetiological agent responsible for foot-and-mouth disease (FMD), is a member of the genus Aphthovirus within the family Picornavirus. In common with all picornaviruses, replication of the single-stranded positive-sense RNA genome involves synthesis of a negative-sense complementary strand that serves as a template for the synthesis of multiple positive-sense progeny strands. We have previously employed FMDV replicons to examine viral RNA and protein elements essential to replication, but the factors affecting differential strand production remain unknown. Replicon-based systems require transfection of high levels of RNA, which can overload sensitive techniques such as quantitative PCR, preventing discrimination of specific strands. Here, we describe a method in which replicating RNA is labelled in vivo with 5-ethynyl uridine. The modified base is then linked to a biotin tag using click chemistry, facilitating purification of newly synthesised viral genomes or anti-genomes from input RNA. This selected RNA can then be amplified by strand-specific quantitative PCR, thus enabling investigation of the consequences of defined mutations on the relative synthesis of negative-sense intermediate and positive-strand progeny RNAs. We apply this new approach to investigate the consequence of mutation of viral cis-acting replication elements and provide direct evidence for their roles in negative-strand synthesis.
Collapse
Affiliation(s)
- Samuel J Dobson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Joseph C Ward
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Morgan R Herod
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - David J Rowlands
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
5
|
Verwilt J, Mestdagh P, Vandesompele J. Artifacts and biases of the reverse transcription reaction in RNA sequencing. RNA (NEW YORK, N.Y.) 2023; 29:889-897. [PMID: 36990512 DOI: 10.1261/rna.079623.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
RNA sequencing has spurred a significant number of research areas in recent years. Most protocols rely on synthesizing a more stable complementary DNA (cDNA) copy of the RNA molecule during the reverse transcription reaction. The resulting cDNA pool is often wrongfully assumed to be quantitatively and molecularly similar to the original RNA input. Sadly, biases and artifacts confound the resulting cDNA mixture. These issues are often overlooked or ignored in the literature by those that rely on the reverse transcription process. In this review, we confront the reader with intra- and intersample biases and artifacts caused by the reverse transcription reaction during RNA sequencing experiments. To fight the reader's despair, we also provide solutions to most issues and inform on good RNA sequencing practices. We hope the reader can use this review to their advantage, thereby contributing to scientifically sound RNA studies.
Collapse
Affiliation(s)
- Jasper Verwilt
- OncoRNALab, Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Dehghanzad R, Khalafiyan A, Khanahmad H. The Necessity of Using Strand-Specific cDNA for Achieving Accurate Transcriptome Analysis Result. Adv Biomed Res 2023; 12:108. [PMID: 37288031 PMCID: PMC10241614 DOI: 10.4103/abr.abr_102_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 06/09/2023] Open
Affiliation(s)
- Reyhaneh Dehghanzad
- Department of Medical Genetics, Faculty of Medical Science, Tehran University of Medical Science, Tehran, Iran
| | - Anis Khalafiyan
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Gallardo CM, Nguyen AVT, Routh AL, Torbett BE. Selective ablation of 3' RNA ends and processive RTs facilitate direct cDNA sequencing of full-length host cell and viral transcripts. Nucleic Acids Res 2022; 50:e98. [PMID: 35736235 PMCID: PMC9508845 DOI: 10.1093/nar/gkac516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS) is necessary for viral proliferation in host cells and a critical regulatory component of viral gene expression. Conventional RNA-seq approaches provide incomplete coverage of AS due to their short read lengths and are susceptible to biases and artifacts introduced in prevailing library preparation methodologies. Moreover, viral splicing studies are often conducted separately from host cell transcriptome analysis, precluding an assessment of the viral manipulation of host splicing machinery. To address current limitations, we developed a quantitative full-length direct cDNA sequencing strategy to simultaneously profile viral and host cell transcripts. This nanopore-based approach couples processive reverse transcriptases with a novel one-step chemical ablation of 3' RNA ends (termed CASPR), which decreases ribosomal RNA reads and enriches polyadenylated coding sequences. We extensively validate our approach using synthetic reference transcripts and show that CASPR doubles the breadth of coverage per transcript and increases detection of long transcripts (>4 kb), while being functionally equivalent to PolyA+ selection for transcript quantification. We used our approach to interrogate host cell and HIV-1 transcript dynamics during viral reactivation and identified novel putative HIV-1 host factors containing exon skipping or novel intron retentions and delineated the HIV-1 transcriptional state associated with these differentially regulated host factors.
Collapse
Affiliation(s)
- Christian M Gallardo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Anh-Viet T Nguyen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bruce E Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98101, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
| |
Collapse
|
8
|
Barnard TR, Wang AB, Sagan SM. A highly sensitive strand-specific multiplex RT-qPCR assay for quantitation of Zika virus replication. J Virol Methods 2022; 307:114556. [PMID: 35654259 DOI: 10.1016/j.jviromet.2022.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) is widely used to quantify viral RNA genomes for diagnostics and research, yet conventional RT-qPCR protocols are unable to accurately distinguish between the different viral RNA species that exist during infection. Here we show that false-priming and self-priming occur during reverse transcription with several published Zika virus (ZIKV) primer sets. We developed a RT-qPCR assay using tagged primers and thermostable reverse transcriptase, which greatly reduced the occurrence of nonspecific cDNA products. Furthermore, we optimized the assay for use in multiplex qPCR which allows for simultaneous quantitative detection of positive-strand and negative-strand ZIKV RNA along with an internal control from both human and mosquito cells. Importantly, this assay is sensitive enough to study early stages of virus infection in vitro. Strikingly, using this assay, we detected ZIKV negative-strand RNA as early as 3 h post-infection in mammalian cell culture, at a time point prior to the onset of positive-strand RNA synthesis. Overall, the strand-specific RT-qPCR assay developed herein is a valuable tool to quantify ZIKV RNA and to study viral replication dynamics during infection. The application of these findings has the potential to increase accuracy of RNA detection methods for a variety of viral pathogens.
Collapse
Affiliation(s)
- Trisha R Barnard
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Alex B Wang
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Urrutia CD, Romay G, Shaw BD, Verchot J. Advancing the Rose Rosette Virus Minireplicon and Encapsidation System by Incorporating GFP, Mutations, and the CMV 2b Silencing Suppressor. Viruses 2022; 14:836. [PMID: 35458566 PMCID: PMC9031449 DOI: 10.3390/v14040836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022] Open
Abstract
Plant infecting emaraviruses have segmented negative strand RNA genomes and little is known about their infection cycles due to the lack of molecular tools for reverse genetic studies. Therefore, we innovated a rose rosette virus (RRV) minireplicon containing the green fluorescent protein (GFP) gene to study the molecular requirements for virus replication and encapsidation. Sequence comparisons among RRV isolates and structural modeling of the RNA dependent RNA polymerase (RdRp) and nucleocapsid (N) revealed three natural mutations of the type species isolate that we reverted to the common species sequences: (a) twenty-one amino acid truncations near the endonuclease domain (named delA), (b) five amino acid substitutions near the putative viral RNA binding loop (subT), and (c) four amino acid substitutions in N (NISE). The delA and subT in the RdRp influenced the levels of GFP, gRNA, and agRNA at 3 but not 5 days post inoculation (dpi), suggesting these sequences are essential for initiating RNA synthesis and replication. The NISE mutation led to sustained GFP, gRNA, and agRNA at 3 and 5 dpi indicating that the N supports continuous replication and GFP expression. Next, we showed that the cucumber mosaic virus (CMV strain FNY) 2b singularly enhanced GFP expression and RRV replication. Including agRNA2 with the RRV replicon produced observable virions. In this study we developed a robust reverse genetic system for investigations into RRV replication and virion assembly that could be a model for other emaravirus species.
Collapse
Affiliation(s)
| | | | | | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77845, USA; (C.D.U.); (G.R.); (B.D.S.)
| |
Collapse
|
10
|
Grünberger F, Ferreira-Cerca S, Grohmann D. Nanopore sequencing of RNA and cDNA molecules in Escherichia coli. RNA (NEW YORK, N.Y.) 2022; 28:400-417. [PMID: 34906997 PMCID: PMC8848933 DOI: 10.1261/rna.078937.121] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/29/2021] [Indexed: 05/09/2023]
Abstract
High-throughput sequencing dramatically changed our view of transcriptome architectures and allowed for ground-breaking discoveries in RNA biology. Recently, sequencing of full-length transcripts based on the single-molecule sequencing platform from Oxford Nanopore Technologies (ONT) was introduced and is widely used to sequence eukaryotic and viral RNAs. However, experimental approaches implementing this technique for prokaryotic transcriptomes remain scarce. Here, we present an experimental and bioinformatic workflow for ONT RNA-seq in the bacterial model organism Escherichia coli, which can be applied to any microorganism. Our study highlights critical steps of library preparation and computational analysis and compares the results to gold standards in the field. Furthermore, we comprehensively evaluate the applicability and advantages of different ONT-based RNA sequencing protocols, including direct RNA, direct cDNA, and PCR-cDNA. We find that (PCR)-cDNA-seq offers improved yield and accuracy compared to direct RNA sequencing. Notably, (PCR)-cDNA-seq is suitable for quantitative measurements and can be readily used for simultaneous and accurate detection of transcript 5' and 3' boundaries, analysis of transcriptional units, and transcriptional heterogeneity. In summary, based on our comprehensive study, we show nanopore RNA-seq to be a ready-to-use tool allowing rapid, cost-effective, and accurate annotation of multiple transcriptomic features. Thereby nanopore RNA-seq holds the potential to become a valuable alternative method for RNA analysis in prokaryotes.
Collapse
Affiliation(s)
- Felix Grünberger
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Biochemistry Centre Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Sébastien Ferreira-Cerca
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053 Regensburg, Germany
- Institute for Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, Biochemistry III, University of Regensburg, 93053 Regensburg, Germany
| | - Dina Grohmann
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Biochemistry Centre Regensburg, University of Regensburg, 93053 Regensburg, Germany
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
11
|
Ravn Warncke S, Rohde Knudsen C. Detection methods targeting the positive- and negative-sense RNA transcripts from plus-stranded RNA viruses. APMIS 2021; 130:284-292. [PMID: 34939239 PMCID: PMC9306919 DOI: 10.1111/apm.13202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022]
Abstract
The largest group of viruses in the Baltimore classification system comprises viruses with a positive-sense, single-stranded RNA genome. Once the viral genome is released into the cytoplasm of a specific host cell following virus entry, it functions directly as a mRNA and the virus-encoded proteins that are essential for genome replication, are produced by the translation apparatus of the host cell. The positive-sense genome is replicated in two stages, initially the positive strand is copied to make a negative-sense RNA, which then functions as the template for transcription of many new positive-sense genomes. Virus infections can be detected at different stages throughout the infection cycle for diagnostic and scientific purposes. Here, the advantages and disadvantages of some of the relevant methods for genome detection will be briefly reviewed with special emphasis on techniques allowing strand-specific RNA detection. Furthermore, tools of the future are considered.
Collapse
Affiliation(s)
- Signe Ravn Warncke
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000, Aarhus C, Denmark
| | - Charlotte Rohde Knudsen
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000, Aarhus C, Denmark
| |
Collapse
|
12
|
Krappinger JC, Bonstingl L, Pansy K, Sallinger K, Wreglesworth NI, Grinninger L, Deutsch A, El-Heliebi A, Kroneis T, Mcfarlane RJ, Sensen CW, Feichtinger J. Non-coding Natural Antisense Transcripts: Analysis and Application. J Biotechnol 2021; 340:75-101. [PMID: 34371054 DOI: 10.1016/j.jbiotec.2021.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/30/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Non-coding natural antisense transcripts (ncNATs) are regulatory RNA sequences that are transcribed in the opposite direction to protein-coding or non-coding transcripts. These transcripts are implicated in a broad variety of biological and pathological processes, including tumorigenesis and oncogenic progression. With this complex field still in its infancy, annotations, expression profiling and functional characterisations of ncNATs are far less comprehensive than those for protein-coding genes, pointing out substantial gaps in the analysis and characterisation of these regulatory transcripts. In this review, we discuss ncNATs from an analysis perspective, in particular regarding the use of high-throughput sequencing strategies, such as RNA-sequencing, and summarize the unique challenges of investigating the antisense transcriptome. Finally, we elaborate on their potential as biomarkers and future targets for treatment, focusing on cancer.
Collapse
Affiliation(s)
- Julian C Krappinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Christian Doppler Laboratory for innovative Pichia pastoris host and vector systems, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria
| | - Lilli Bonstingl
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010 Graz, Austria
| | - Katrin Pansy
- Division of Haematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Katja Sallinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010 Graz, Austria
| | - Nick I Wreglesworth
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, LL57 2UW Bangor, United Kingdom
| | - Lukas Grinninger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Austrian Biotech University of Applied Sciences, Konrad Lorenz-Straße 10, 3430 Tulln an der Donau, Austria
| | - Alexander Deutsch
- Division of Haematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010 Graz, Austria
| | - Thomas Kroneis
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010 Graz, Austria
| | - Ramsay J Mcfarlane
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, LL57 2UW Bangor, United Kingdom
| | - Christoph W Sensen
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria; Institute of Computational Biotechnology, Graz University of Technology, Petersgasse 14/V, 8010 Graz, Austria; HCEMM Kft., Római blvd. 21, 6723 Szeged, Hungary
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Christian Doppler Laboratory for innovative Pichia pastoris host and vector systems, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
13
|
Specific Assay of Negative Strand Template to Quantify Intracellular Levels of Rhinovirus Double-Stranded RNA. Methods Protoc 2021; 4:mps4010013. [PMID: 33670292 PMCID: PMC8006032 DOI: 10.3390/mps4010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Human rhinovirus infections are a major trigger for acute exacerbations of lower airway diseases, including asthma and chronic obstructive pulmonary disease. Disease exacerbation is thought to be regulated via double-stranded RNA (dsRNA)-mediated signaling of proinflammatory and host defense responses in airway epithelial cells. Despite the central role of dsRNA in regulating host cell responses, no method for the quantitative assessment of dsRNA levels during HRV infections has been developed. Conventional RT-PCR for the negative strand template is not effective as self-priming results in apparent signals, even in the absence of primer during reverse transcription. To avoid these issues, we developed a selective assay for the negative strand template that uses a chimeric primer containing a 5′ non-viral sequence for reverse transcription and a primer using the non-viral sequence during subsequent PCR. We established that this assay avoided issues of self-priming and is strand specific, as it is unaffected even in the presence of a 1000-fold excess of positive strand. Assays in primary human airway epithelial cells showed that negative strand was detectable within 6 h of virus exposure and peaked at 18 h after virus exposure. The temporal pattern of negative strand induction mirrored that of genomic RNA but was always 1000-fold lower than positive strand, indicating that the negative strand levels regulate levels of dsRNA formation. This assay will permit relative quantification of dsRNA during studies of HRV regulation of epithelial cell function.
Collapse
|
14
|
Metagenomic Approach with the NetoVIR Enrichment Protocol Reveals Virus Diversity within Ethiopian Honey Bees ( Apis mellifera simensis). Viruses 2020; 12:v12111218. [PMID: 33121140 PMCID: PMC7692050 DOI: 10.3390/v12111218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Metagenomics studies have accelerated the discovery of novel or divergent viruses of the honey bee. However, most of these studies predominantly focused on RNA viruses, and many suffer from the relatively low abundance of viral nucleic acids in the samples (i.e., compared to that of the host). Here, we explored the virome of the Ethiopian honey bee, Apis mellifera simensis, using an unbiased metagenomic approach in which the next-generation sequencing step was preceded by an enrichment protocol for viral particles. Our study revealed five well-known bee viruses and 25 atypical virus species, most of which have never been found in A. mellifera before. The viruses belong to Iflaviridae, Dicistroviridae, Secoviridae, Partitiviridae, Parvoviridae, Potyviridae, and taxonomically unclassified families. Fifteen of these atypical viruses were most likely plant-specific, and the remaining ten were presumed to be insect-specific. Apis mellifera filamentous virus (AmFV) was found in one sampling site out of 10. Two samples contained high read counts of a virus similar to Diatraea saccharales densovirus (DsDNV), which is a virus that causes high mortality in the sugarcane borer. AmFV and the DsDNV-like virus were the only DNA viruses found. Three viruses that primarily infect Drosophila spp. were also discovered: La Jolla virus (LJV), Kilifi virus (KiV), and Thika virus. Our study suggests that phoretic varroa mites are involved in the transmission of LJV and KiV and that both viruses replicate in mites and adult bees. We also found an overwhelming dominance of the deformed wing virus type B variant, which fits well with the apparently harmless infestation by Varroa destructor. It was suggested that Ethiopian bees have developed tolerance against virus infections as the result of natural selection.
Collapse
|
15
|
Lu P, Sun Q, Fu P, Li K, Liang X, Xi Z. Wolbachia Inhibits Binding of Dengue and Zika Viruses to Mosquito Cells. Front Microbiol 2020; 11:1750. [PMID: 32849379 PMCID: PMC7417768 DOI: 10.3389/fmicb.2020.01750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/03/2020] [Indexed: 01/29/2023] Open
Abstract
As traditional approaches to the control of dengue and Zika are insufficient, significant efforts have been made to develop utilization of the endosymbiotic bacterium Wolbachia to reduce the ability of mosquitoes to transmit pathogens. Although Wolbachia is known to inhibit flaviviruses in mosquitoes, including dengue virus (DENV) and Zika virus (ZIKV), it remains unclear how the endosymbiont interferes with viral replication cycle. In this study, we have carried out viral binding assays to investigate the impact of the Wolbachia strain wAlbB on the attachment of DENV serotype 2 (DENV-2) and ZIKV to Aedes aegypti Aag-2 cells. RNA interference (RNAi) was used to silence a variety of putative mosquito receptors of DENV that were differentially regulated by wAlbB in Aag-2 cells, in order to identify host factors involved in the inhibition of viral binding. Our results showed that, in addition to suppression of viral replication, Wolbachia strongly inhibited binding of both DENV-2 and ZIKV to Aag-2 cells. Moreover, the expression of two putative mosquito DENV receptors - dystroglycan and tubulin - was downregulated by wAlbB, and their knock-down resulted in the inhibition of DENV-2 binding to Aag-2 cells. These results will aid in understanding the Wolbachia-DENV interactions in mosquito and the development of novel control strategies for mosquito-borne diseases.
Collapse
Affiliation(s)
- Peng Lu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Qiang Sun
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Ping Fu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Kuibiao Li
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Xiao Liang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
16
|
Strand-specific detection of overlapping transcripts via purification involving denaturation of biotinylated cDNA. Biotechniques 2020; 69:141-147. [PMID: 32372698 DOI: 10.2144/btn-2020-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Reverse transcription-PCR (RT-PCR) is the most widely employed technique for gene expression analysis owing to its high sensitivity, easy reproducibility and fast output. It has been conceived that priming RT reactions with gene-specific primers generates cDNA only from the specific RNA. However, several reports have revealed that cDNA is synthesized even without addition of exogenous primers in RT reactions. Owing to such self-priming activity, the signals from specific strands cannot be accurately detected and can confound the expression analysis, especially in context of overlapping bidirectional transcripts. Here, we demonstrate that purification of biotin-tagged cDNA in conjunction with alkaline denaturation can obviate the problem of background priming and enable accurate strand-specific detection of overlapping transcripts.
Collapse
|
17
|
A strand-specific real-time quantitative RT-PCR assay for distinguishing the genomic and antigenomic RNAs of Rift Valley fever phlebovirus. J Virol Methods 2019; 272:113701. [PMID: 31315022 DOI: 10.1016/j.jviromet.2019.113701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/13/2019] [Indexed: 11/21/2022]
Abstract
Rift Valley Fever phlebovirus (RVFV), genus Phlebovirus, family Phenuiviridae, order Bunyavirales, has a single-stranded, negative-sense RNA genome, consisting of L, M and S segments. Here, we report the establishment of a strand-specific, quantitative reverse transcription (RT)-PCR assay system that can selectively distinguish between the genomic and antigenomic RNAs of each of the three viral RNA segments produced in RVFV-infected cells. To circumvent the obstacle of primer-independent cDNA synthesis during RT, we used a tagged, strand-specific RT primer, carrying a non-viral 'tag' sequence at the 5' end, which ensured the strand-specificity through the selective amplification of only the tagged cDNA in the real-time PCR assay. We used this assay system to examine the kinetics of intracellular accumulation of genomic and antigenomic viral RNAs in mammalian cells infected with the MP-12 strain of RVFV. The genomic RNA copy numbers, for all three viral RNA segments, were higher than that of their corresponding antigenomic RNAs throughout the time-course of infection, with a notable exception, wherein the M segment genomic and antigenomic RNAs exhibited similar copy numbers at specific times post-infection. Overall, this assay system could be a useful tool to gain an insight into the mechanisms of RNA replication and packaging in RVFV.
Collapse
|
18
|
Warner SM, Wiehler S, Michi AN, Proud D. Rhinovirus replication and innate immunity in highly differentiated human airway epithelial cells. Respir Res 2019; 20:150. [PMID: 31299975 PMCID: PMC6626354 DOI: 10.1186/s12931-019-1120-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/01/2019] [Indexed: 12/23/2022] Open
Abstract
Background Human rhinovirus (HRV) infections are the primary cause of the common cold and are a major trigger for exacerbations of lower airway diseases, such as asthma and chronic obstructive pulmonary diseases. Although human bronchial epithelial cells (HBE) are the natural host for HRV infections, much of our understanding of how HRV replicates and induces host antiviral responses is based on studies using non-airway cell lines (e.g. HeLa cells). The current study examines the replication cycle of HRV, and host cell responses, in highly differentiated cultures of HBE. Methods Highly differentiated cultures of HBE were exposed to initial infectious doses ranging from 104 to 101 50% tissue culture-infective dose (TCID50) of purified HRV-16, and responses were monitored up to 144 h after infection. Viral genomic RNA and negative strand RNA template levels were monitored, along with levels of type I and II interferons and selected antivirals. Results Regardless of initial infectious dose, relatively constant levels of both genomic and negative strand RNA are generated during replication, with negative strand copy numbers being10,000-fold lower than those of genomic strands. Infections were limited to a small percentage of ciliated cells and did not result in any overt signs of epithelial death. Importantly, regardless of infectious dose, HRV-16 infections were cleared by HBE in the absence of immune cells. Levels of type I and type III interferons (IFNs) varied with initial infectious dose, implying that factors other than levels of double-stranded RNA regulate IFN induction, but the time-course of HRV-16 clearance HBE was the same regardless of levels of IFNs produced. Patterns of antiviral viperin and ISG15 expression suggest they may be generated in an IFN-independent manner during HRV-16 infections. Conclusions These data challenge a number of aspects of dogma generated from studies in HeLa cells and emphasize the importance of appropriate cell context when studying HRV infections.
Collapse
Affiliation(s)
- Stephanie M Warner
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Shahina Wiehler
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Aubrey N Michi
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - David Proud
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
19
|
He Y, Yuan C, Chen L, Lei M, Zellmer L, Huang H, Liao DJ. Transcriptional-Readthrough RNAs Reflect the Phenomenon of "A Gene Contains Gene(s)" or "Gene(s) within a Gene" in the Human Genome, and Thus Are Not Chimeric RNAs. Genes (Basel) 2018; 9:E40. [PMID: 29337901 PMCID: PMC5793191 DOI: 10.3390/genes9010040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/29/2017] [Accepted: 01/07/2018] [Indexed: 02/06/2023] Open
Abstract
Tens of thousands of chimeric RNAs, i.e., RNAs with sequences of two genes, have been identified in human cells. Most of them are formed by two neighboring genes on the same chromosome and are considered to be derived via transcriptional readthrough, but a true readthrough event still awaits more evidence and trans-splicing that joins two transcripts together remains as a possible mechanism. We regard those genomic loci that are transcriptionally read through as unannotated genes, because their transcriptional and posttranscriptional regulations are the same as those of already-annotated genes, including fusion genes formed due to genetic alterations. Therefore, readthrough RNAs and fusion-gene-derived RNAs are not chimeras. Only those two-gene RNAs formed at the RNA level, likely via trans-splicing, without corresponding genes as genomic parents, should be regarded as authentic chimeric RNAs. However, since in human cells, procedural and mechanistic details of trans-splicing have never been disclosed, we doubt the existence of trans-splicing. Therefore, there are probably no authentic chimeras in humans, after readthrough and fusion-gene derived RNAs are all put back into the group of ordinary RNAs. Therefore, it should be further determined whether in human cells all two-neighboring-gene RNAs are derived from transcriptional readthrough and whether trans-splicing truly exists.
Collapse
Affiliation(s)
- Yan He
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang City 443002, Hubei, China.
| | - Lichan Chen
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| | - Mingjuan Lei
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| | - Lucas Zellmer
- Masonic Cancer Center, University of Minnesota, 435 E. River Road, Minneapolis, MN 55455, USA.
| | - Hai Huang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Dezhong Joshua Liao
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou, China.
- Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, Guizhou, China.
| |
Collapse
|
20
|
Podlesniy P, Trullas R. Absolute measurement of gene transcripts with Selfie-digital PCR. Sci Rep 2017; 7:8328. [PMID: 28827685 PMCID: PMC5566441 DOI: 10.1038/s41598-017-08270-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/06/2017] [Indexed: 01/19/2023] Open
Abstract
Absolute measurement of the number of RNA transcripts per gene is necessary to compare gene transcription among different tissues or experimental conditions and to assess transcription of genes that have a variable copy number per cell such as mitochondrial DNA. Here, we present a method called Selfie-digital PCR that measures the absolute amount of an RNA transcript produced by its own coding DNA at a particular moment. Overcoming the limitations of previous approaches, Selfie-digital PCR allows for the quantification of nuclear and mitochondrial gene transcription in a strand-specific manner that is comparable among tissues and cell types that differ in gene copy number or metabolic state. Using Selfie-digital PCR, we found that, with the exception of the liver, different organs exhibit marked variations in mitochondrial DNA copy number but similar transcription of mitochondrial DNA heavy and light chains, thus suggesting a preferential role of mitochondrial DNA abundance over its transcription in organ function. Moreover, the strand-specific analysis of mitochondrial transcription afforded by Selfie-digital PCR showed that transcription of the heavy strand was significantly higher than that of the light strand in all the tissues studied.
Collapse
Affiliation(s)
- Petar Podlesniy
- Neurobiology Unit. Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08036, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, 08036, Spain
| | - Ramon Trullas
- Neurobiology Unit. Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08036, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, 08036, Spain. .,Neurobiology Unit, IIBB/CSIC, IDIBAPS, CIBERNED, Rosselló 161, sexta planta, 08036, Barcelona, Spain.
| |
Collapse
|
21
|
It Is Imperative to Establish a Pellucid Definition of Chimeric RNA and to Clear Up a Lot of Confusion in the Relevant Research. Int J Mol Sci 2017; 18:ijms18040714. [PMID: 28350330 PMCID: PMC5412300 DOI: 10.3390/ijms18040714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 12/27/2022] Open
Abstract
There have been tens of thousands of RNAs deposited in different databases that contain sequences of two genes and are coined chimeric RNAs, or chimeras. However, "chimeric RNA" has never been lucidly defined, partly because "gene" itself is still ill-defined and because the means of production for many RNAs is unclear. Since the number of putative chimeras is soaring, it is imperative to establish a pellucid definition for it, in order to differentiate chimeras from regular RNAs. Otherwise, not only will chimeric RNA studies be misled but also characterization of fusion genes and unannotated genes will be hindered. We propose that only those RNAs that are formed by joining two RNA transcripts together without a fusion gene as a genomic basis should be regarded as authentic chimeras, whereas those RNAs transcribed as, and cis-spliced from, single transcripts should not be deemed as chimeras. Many RNAs containing sequences of two neighboring genes may be transcribed via a readthrough mechanism, and thus are actually RNAs of unannotated genes or RNA variants of known genes, but not chimeras. In today's chimeric RNA research, there are still several key flaws, technical constraints and understudied tasks, which are also described in this perspective essay.
Collapse
|
22
|
Assays for precise quantification of total (including short) and elongated HIV-1 transcripts. J Virol Methods 2016; 242:1-8. [PMID: 28034670 DOI: 10.1016/j.jviromet.2016.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 11/24/2022]
Abstract
Despite intensive study, it is unclear which mechanisms are responsible for latent HIV infection in vivo. One potential mechanism is inhibition of HIV transcriptional elongation, which results in short abortive transcripts containing the trans-activation response (TAR) region. Because the relative levels of total (including short) and processive transcripts provide measures of HIV transcriptional initiation and elongation, there is a compelling need for techniques that accurately measure both. Nonetheless, prior assays for total transcripts have been semi-quantitative and have seen limited application to patient samples. This manuscript reports the validation of quantitative reverse transcription (RT) droplet digital PCR assays for measurement of total (TAR) and processive (R-U5/gag) HIV transcripts. Traditional RT priming strategies can efficiently detect the TAR region on long HIV transcripts but detect <4% of true short transcripts. The TAR assay presented here utilizes an initial polyadenylation step, which provides an accessible RT priming site and detects short and long transcripts with approximately equal efficiency (70%). By applying these assays to blood samples from 8 ART-treated HIV+ individuals, total HIV transcripts were detected at levels >10-fold higher than elongated transcripts, implying a substantial block to transcriptional elongation in vivo. This approach may be applied to other difficult-to-prime RNA targets.
Collapse
|
23
|
Zong X, Nakagawa S, Freier SM, Fei J, Ha T, Prasanth SG, Prasanth KV. Natural antisense RNA promotes 3' end processing and maturation of MALAT1 lncRNA. Nucleic Acids Res 2016; 44:2898-908. [PMID: 26826711 PMCID: PMC4824109 DOI: 10.1093/nar/gkw047] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/17/2016] [Indexed: 01/09/2023] Open
Abstract
The RNase P-mediated endonucleolytic cleavage plays a crucial role in the 3′ end processing and cellular accumulation of MALAT1, a nuclear-retained long noncoding RNA that promotes malignancy. The regulation of this cleavage event is largely undetermined. Here we characterize a broadly expressed natural antisense transcript at the MALAT1 locus, designated as TALAM1, that positively regulates MALAT1 levels by promoting the 3′ end cleavage and maturation of MALAT1 RNA. TALAM1 RNA preferentially localizes at the site of transcription, and also interacts with MALAT1 RNA. Depletion of TALAM1 leads to defects in the 3′ end cleavage reaction and compromises cellular accumulation of MALAT1. Conversely, overexpression of TALAM1 facilitates the cleavage reaction in trans. Interestingly, TALAM1 is also positively regulated by MALAT1 at the level of both transcription and RNA stability. Together, our data demonstrate a novel feed-forward positive regulatory loop that is established to maintain the high cellular levels of MALAT1, and also unravel the existence of sense-antisense mediated regulatory mechanism for cellular lncRNAs that display RNase P-mediated 3′ end processing.
Collapse
Affiliation(s)
- Xinying Zong
- Department of Cell and Developmental Biology, University of Illinois Urbana, IL 61801, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama 351-0198, Japan
| | | | - Jingyi Fei
- Center for Physics of living cells, Department of Physics, University of Illinois, Urbana, IL, USA
| | - Taekjip Ha
- Center for Physics of living cells, Department of Physics, University of Illinois, Urbana, IL, USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois Urbana, IL 61801, USA
| | | |
Collapse
|
24
|
Masters TL, Wachter S, Wachter J, Hill SA. H-NS suppresses pilE intragenic transcription and antigenic variation in Neisseria gonorrhoeae. MICROBIOLOGY-SGM 2015; 162:177-190. [PMID: 26475082 DOI: 10.1099/mic.0.000199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Initially, pilE transcription in Neisseria gonorrhoeae appeared to be complicated, yet it was eventually simplified into a model where integration host factor activates a single -35/ -10 promoter. However, with the advent of high-throughput RNA sequencing, numerous small pil-specific RNAs (sense as well as antisense) have been identified at the pilE locus as well as at various pilS loci. Using a combination of in vitro transcription, site-directed mutagenesis, Northern analysis and quantitative reverse transcriptase PCR (qRT-PCR) analysis, we have identified three additional non-canonical promoter elements within the pilE gene; two are located within the midgene region (one sense and one antisense), with the third, an antisense promoter, located immediately downstream of the pilE ORF. Using strand-specific qRT-PCR analysis, an inverse correlation exists between the level of antisense expression and the amount of sense message. By their nature, promoter sequences tend to be AT-rich. In Escherichia coli, the small DNA-binding protein H-NS binds to AT-rich sequences and inhibits intragenic transcription. In N. gonorrhoeae hns mutants, pilE antisense transcription was increased twofold, with a concomitant decrease in sense transcript levels. However, most noticeably in these mutants, the absence of H-NS protein caused pilE/pilS recombination to increase dramatically when compared with WT values. Consequently, H-NS protein suppresses pilE intragenic transcription as well as antigenic variation through the pilE/pilS recombination system.
Collapse
Affiliation(s)
- Thao L Masters
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Shaun Wachter
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Jenny Wachter
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Stuart A Hill
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
25
|
Stevanovic AL, Johnson KN. Infectivity of Drosophila C virus following oral delivery in Drosophila larvae. J Gen Virol 2015; 96:1490-1496. [DOI: 10.1099/vir.0.000068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/20/2015] [Indexed: 12/16/2022] Open
Affiliation(s)
- Aleksej L. Stevanovic
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Karyn N. Johnson
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
26
|
Hwang S, Alhatlani B, Arias A, Caddy SL, Christodoulou C, Cunha JB, Emmott E, Gonzalez-Hernandez M, Kolawole A, Lu J, Rippinger C, Sorgeloos F, Thorne L, Vashist S, Goodfellow I, Wobus CE. Murine norovirus: propagation, quantification, and genetic manipulation. ACTA ACUST UNITED AC 2014; 33:15K.2.1-61. [PMID: 24789596 DOI: 10.1002/9780471729259.mc15k02s33] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Murine norovirus (MNV) is a positive-sense, plus-stranded RNA virus in the Caliciviridae family. It is the most common pathogen in biomedical research colonies. MNV is also related to the human noroviruses, which cause the majority of nonbacterial gastroenteritis worldwide. Like the human noroviruses, MNV is an enteric virus that replicates in the intestine and is transmitted by the fecal-oral route. MNV replicates in murine macrophages and dendritic cells in cells in culture and in the murine host. This virus is often used to study mechanisms in norovirus biology, because human noroviruses are refractory to growth in cell culture. MNV combines the availability of a cell culture and reverse genetics system with the ability to study infection in the native host. Herein, we describe a panel of techniques that are commonly used to study MNV biology.
Collapse
Affiliation(s)
- Seungmin Hwang
- Department of Pathology, University of Chicago, Chicago, Illinois
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
LINE-1s (L1s), the only currently active autonomous mobile DNA in humans, occupy at least 17% of human DNA. Throughout evolution, the L1 has also been responsible for genomic insertion of thousands of processed pseudogenes and over one million nonautonomous retrotransposons called SINEs (mainly Alus and SVAs). The 6-kb human L1 has a 5′- untranslated region (UTR) that functions as an internal promoter, two open reading frames—ORF1, which encodes an RNA-binding protein, and ORF2, which expresses endonuclease and reverse transcriptase activities—and a 3′-UTR which ends in a poly(A) signal and tail. Most L1s are molecular fossils: truncated, rearranged or mutated. However, 80 to 100 remain potentially active in any human individual, and to date 101 de novo disease-causing germline retrotransposon insertions have been characterized. It is now clear that significant levels of retrotransposition occur not only in the human germline but also in some somatic cell types. Recent publications and new investigations under way suggest that this may especially be the case for cancers and neuronal cells. This commentary offers a few points to consider to aid in avoiding misinterpretation of data as these studies move forward.
Collapse
Affiliation(s)
- John L Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| |
Collapse
|
28
|
Lu Z, Matera AG. Vicinal: a method for the determination of ncRNA ends using chimeric reads from RNA-seq experiments. Nucleic Acids Res 2014; 42:e79. [PMID: 24623808 PMCID: PMC4027162 DOI: 10.1093/nar/gku207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Non-coding (nc)RNAs are important structural and regulatory molecules. Accurate determination of the primary sequence and secondary structure of ncRNAs is important for understanding their functions. During cDNA synthesis, RNA 3' end stem-loops can self-prime reverse transcription, creating RNA-cDNA chimeras. We found that chimeric RNA-cDNA fragments can also be detected at 5' end stem-loops, although at much lower frequency. Using the Gubler-Hoffman method, both types of chimeric fragments can be converted to cDNA during library construction, and they are readily detectable in high-throughput RNA sequencing (RNA-seq) experiments. Here, we show that these chimeric reads contain valuable information about the boundaries of ncRNAs. We developed a bioinformatic method, called Vicinal, to precisely map the ends of numerous fruitfly, mouse and human ncRNAs. Using this method, we analyzed chimeric reads from over 100 RNA-seq datasets, the results of which we make available for users to find RNAs of interest. In summary, we show that Vicinal is a useful tool for determination of the precise boundaries of uncharacterized ncRNAs, facilitating further structure/function studies.
Collapse
Affiliation(s)
- Zhipeng Lu
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - A Gregory Matera
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
29
|
Lim SM, Koraka P, Osterhaus ADME, Martina BEE. Development of a strand-specific real-time qRT-PCR for the accurate detection and quantitation of West Nile virus RNA. J Virol Methods 2013; 194:146-53. [PMID: 23965252 DOI: 10.1016/j.jviromet.2013.07.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 07/17/2013] [Accepted: 07/22/2013] [Indexed: 01/12/2023]
Abstract
Studying the tropism and replication kinetics of West Nile virus (WNV) in different cell types in vitro and in tissues in animal models is important for understanding its pathogenesis. As detection of the negative strand viral RNA is a more reliable indicator of active replication for single-stranded positive-sense RNA viruses, the specificity of qRT-PCR assays currently used for the detection of WNV positive and negative strand RNA was reassessed. It was shown that self- and falsely-primed cDNA was generated during the reverse transcription step in an assay employing unmodified primers and several reverse transcriptases. As a result, a qRT-PCR assay using the thermostable rTth in combination with tagged primers was developed, which greatly improved strand specificity by circumventing the events of self- and false-priming. The reliability of the assay was then addressed in vitro using BV-2 microglia cells as well as in C57/BL6 mice. It was possible to follow the kinetics of positive and negative-strand RNA synthesis both in vitro and in vivo; however, the sensitivity of the assay will need to be optimized in order to detect and quantify negative-strand RNA synthesis in the very early stages of infection. Overall, the strand-specific qRT-PCR assay developed in this study is an effective tool to quantify WNV RNA, reassess viral replication, and study tropism of WNV in the context of WNV pathogenesis.
Collapse
Affiliation(s)
- Stephanie M Lim
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
30
|
Feng L, Lintula S, Ho TH, Anastasina M, Paju A, Haglund C, Stenman UH, Hotakainen K, Orpana A, Kainov D, Stenman J. Technique for strand-specific gene-expression analysis and monitoring of primer-independent cDNA synthesis in reverse transcription. Biotechniques 2012; 52:263-70. [PMID: 22482442 DOI: 10.2144/0000113842] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 03/06/2012] [Indexed: 11/23/2022] Open
Abstract
Primer-independent cDNA synthesis during reverse transcription hinders quantitative analysis of bidirectional mRNA synthesis in eukaryotes as well as in cells infected with RNA viruses. We report a simple RT-PCR-based assay for strand-specific gene-expression analysis. By modifying the cDNA sequence during reverse transcription, the opposite strands of target sequences can be simultaneously detected by postamplification melting curve analysis and primer-initiated transcripts are readily distinguished from nonspecifically primed cDNA. We have utilized this technique to optimize the specificity of reverse transcription on a panel of 15 target genes. Primer-independent reverse transcription occurred for all target sequences when reverse transcription was performed at 42°C and accounted for 11%-57% of the final PCR amplification products. By raising the reaction temperature to 55°C, the specificity of reverse transcription could be increased without significant loss of sensitivity. We have also demonstrated the utility of this technique for analysis of (+) and (-) RNA synthesis of influenza A virus in infected cells. Thus, this technique represents a powerful tool for analysis of bidirectional RNA synthesis.
Collapse
Affiliation(s)
- Lin Feng
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Development of a strand specific real-time RT-qPCR assay for the detection and quantitation of murine norovirus RNA. J Virol Methods 2012; 184:69-76. [PMID: 22626565 DOI: 10.1016/j.jviromet.2012.05.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/11/2012] [Accepted: 05/15/2012] [Indexed: 11/22/2022]
Abstract
Murine norovirus (MNV), currently the only norovirus that efficiently replicates in cell culture, is often used as a model system to understand the molecular mechanisms of norovirus replication. MNV is a single stranded positive sense RNA virus of the Caliciviridae family. Replication of MNV involves the synthesis of both full length genomic and sub-genomic RNAs. The replication of these RNAs involves the synthesis of negative strand intermediates. To understand the molecular mechanism of RNA replication and the role of viral and host factors in virus replication, it is necessary to quantify accurately both positive and negative sense RNA molecules of the viral RNA during replication. Increasingly, strand specific reverse transcription-quantitative PCR (RT-qPCR) is becoming the method of choice for this kind of quantitation. Many strategies have been developed to avoid the false priming property of reverse transcriptase and to amplify specifically one strand in the presence of excess opposite strand. In this report, a SYBR based, real time RT-qPCR assay was developed to detect and quantify specifically the negative and the positive sense RNAs of MNV genomic RNA. This assay is based on using a tagged RT primer containing a non-viral sequence at the 5' end of the viral strand specific sequence. This non-viral sequence is then used to amplify selectively the strand specific cDNA at the PCR stage. This assay can be used for a range of MNV strains including MNV-1 and 3, as these are now widely accepted for use in molecular studies. The specificity of this assay was determined by its ability to quantify one strand in the presence of up to 10(6) copies of competitor opposite sense RNA. Using this assay, the production of both strands of MNV-1 RNA was monitored during viral single step growth curve.
Collapse
|
32
|
Llera-Herrera R, García-Gasca A, Huvet A, Ibarra AM. Identification of a tubulin-α gene specifically expressed in testis and adductor muscle during stable reference gene selection in the hermaphrodite gonad of the lion's paw scallop Nodipecten subnodosus. Mar Genomics 2012; 6:33-44. [PMID: 22578657 DOI: 10.1016/j.margen.2012.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 01/03/2023]
Abstract
For non-model species, as many used for aquaculture, with minimal or no genomic information, relative quantification of gene expression studies requires preliminary research including the isolation of potential reference genes and the identification of those stably expressed under the biological conditions of interest. Here we report on the isolation of five partial gene sequences from gonad tissue cDNA in the functional hermaphrodite scallop Nodipecten subnodosus to be evaluated as reference genes: 18S-rRNA, riboprotein l8 (rp-l8), actin-β (act-β), elongation factor 1α (ef-1α) and alpha-tubulin-α (tub-α). We found that 18S-rRNA was stably expressed independently of the priming method used to reverse transcribe RNA to cDNA, oligo-dT or random hexamer. Stability analysis for the five putative reference genes with geNorm and NormFinder indicated that 18S together with rp-l8 were the most stable genes for normalization of gene expression during gonad development in both, male and female sexual regions of the hermaphrodite N. subnodosus. The least stable gene was tub-α, showing a biased expression profile between sexual regions of the gonad, therefore this gene was analyzed thereafter as a target gene together with vitellogenin (vit) and a DEAD-box RNA helicase (dbx) gene. Relative expression, estimated by normalization with the combination of 18S and rp-l8 as reference genes, indicated that as gonad development advanced two of the target genes were up-regulated, tub-α in the male region and vit in the female region. Whereas an increased expression was expected during development for vit for its known role in vitellogenesis, the increased expression of tub-α in the male sexual region was unexpected, and pointed toward this gene being a testis-specific α-tubulin isotype. Further analyses of gene expression among tissues indicated that tub-α is specifically and highly expressed in the male gonad, although expression in adductor muscle was also observed at significantly lower levels. The existence of testis specific α- and β-tubulins has been previously reported in other taxa, relating their function to sperm axoneme formation. Tissue-specific tubulin genes, particularly their promoters, have recently found an application as native promoters for transgene tissue-specific expression in research and reproductive control of insect plagues. The third target gene, a putative member of the DEAD-box RNA helicase family (dbx), showed no changes in expression during gonad development or between sexual regions, therefore it was chosen to discuss the different statistical inferences resulting from the arbitrary use of 'randomly chosen' reference genes when normalizing gene expression.
Collapse
Affiliation(s)
- Raúl Llera-Herrera
- Centro de Investigaciones Biológicas del Noroeste, S.C. Mar Bermejo 195, Col. Playa Palo de Sta. Rita, La Paz B.C.S. 23090, Mexico
| | | | | | | |
Collapse
|
33
|
Andersson C, Henriksson S, Magnusson KE, Nilsson M, Mirazimi A. In situ rolling circle amplification detection of Crimean Congo hemorrhagic fever virus (CCHFV) complementary and viral RNA. Virology 2012; 426:87-92. [PMID: 22341783 DOI: 10.1016/j.virol.2012.01.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 11/30/2011] [Accepted: 01/26/2012] [Indexed: 11/18/2022]
Abstract
Crimean Congo hemorrhagic fever virus (CCHFV) is a human pathogen that causes a severe disease with high fatality rate for which there is currently no specific treatment. Knowledge regarding its replication cycle is also highly limited. In this study we developed an in situ technique for studying the different stages during the replication of CCHFV. By integrating reverse transcription, padlock probes, and rolling circle amplification, we were able to detect and differentiate between viral RNA (vRNA) and complementary RNA (cRNA) molecules, and to detect viral protein within the same cell. These data demonstrate that CCHFV nucleocapsid protein (NP) is detectable already at 6 hours post infection in vRNA- and cRNA-positive cells. Confocal microscopy showed that cRNA is enriched and co-localized to a large extent with NP in the perinuclear area, while vRNA has a more random distribution in the cytoplasm with only some co-localize with NP. However, vRNA and cRNA did not appear to co-localize directly.
Collapse
Affiliation(s)
- Cecilia Andersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
34
|
McGavin WJ, Mitchell C, Cock PJA, Wright KM, MacFarlane SA. Raspberry leaf blotch virus, a putative new member of the genus Emaravirus, encodes a novel genomic RNA. J Gen Virol 2012; 93:430-437. [DOI: 10.1099/vir.0.037937-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new, segmented, negative-strand RNA virus with morphological and sequence similarities to other viruses in the genus Emaravirus was discovered in raspberry plants exhibiting symptoms of leaf blotch disorder, a disease previously attributed to the eriophyid raspberry leaf and bud mite (Phyllocoptes gracilis). The virus, tentatively named raspberry leaf blotch virus (RLBV), has five RNAs that each potentially encode a single protein on the complementary strand. RNAs 1, 2 and 3 encode, respectively, a putative RNA-dependent RNA polymerase, a glycoprotein precursor and the nucleocapsid. RNA4 encodes a protein with sequence similarity to proteins of unknown function that are encoded by the genomes of other emaraviruses. When expressed transiently in plants fused to green or red fluorescent protein, the RLBV P4 protein localized to the peripheral cell membrane and to punctate spots in the cell wall. These spots co-localized with GFP-tagged tobacco mosaic virus 30K cell-to-cell movement protein, which is itself known to associate with plasmodesmata. These results suggest that the P4 protein may be a movement protein for RLBV. The fifth RLBV RNA, encoding the P5 protein, is unique among the sequenced emaraviruses. The amino acid sequence of the P5 protein does not suggest any potential function; however, when expressed as a GFP fusion, it localized as small aggregates in the cytoplasm near to the periphery of the cell.
Collapse
Affiliation(s)
- Wendy J. McGavin
- Cell and Molecular Sciences Group, The James Hutton Institute (JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Carolyn Mitchell
- Cell and Molecular Sciences Group, The James Hutton Institute (JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Peter J. A. Cock
- Information and Computational Sciences Group, JHI, Invergowrie, Dundee DD2 5DA, UK
| | - Kathryn M. Wright
- Cell and Molecular Sciences Group, The James Hutton Institute (JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Stuart A. MacFarlane
- Cell and Molecular Sciences Group, The James Hutton Institute (JHI), Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
35
|
Pilousova L, Rychlik I. Retron Se72 utilizes a unique strategy of the self-priming initiation of reverse transcription. Cell Mol Life Sci 2011; 68:3607-17. [PMID: 21452087 PMCID: PMC11114809 DOI: 10.1007/s00018-011-0671-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/11/2011] [Accepted: 02/24/2011] [Indexed: 11/26/2022]
Abstract
Unlike all of the other retrons, the bacterial retron reverse transcriptase RrtE is capable of synthesizing small double-stranded DNA (sdsDNA) from template RNA. In this study, we analyzed the biosynthesis of the sdsDNA by RrtE in detail. We found out that the initiation of reverse transcription was dependent on a novel self-priming mechanism utilizing a free 3'OH of RNA that is reverse-transcribed into sdsDNA. The priming of the sdsDNA synthesis was not dependent on any particular nucleotide being used as a donor of 3'OH (unlike all of the other retrons, which prime from 2'OH of a particular guanosine) or any particular nucleotide being introduced into the sdsDNA first. Due to the relaxed demands for the initiation of reverse transcription, RrtE has the potential to generate dsDNA from different RNA transcripts in vivo.
Collapse
Affiliation(s)
- Lenka Pilousova
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic.
| | | |
Collapse
|
36
|
Martínez F, Sardanyés J, Elena SF, Daròs JA. Dynamics of a plant RNA virus intracellular accumulation: stamping machine vs. geometric replication. Genetics 2011; 188:637-46. [PMID: 21515574 PMCID: PMC3176528 DOI: 10.1534/genetics.111.129114] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/16/2011] [Indexed: 01/26/2023] Open
Abstract
The tremendous evolutionary potential of RNA viruses allows them to thrive despite host defense mechanisms and endows them with properties such as emergence, host switching, and virulence. The frequency of mutant viruses after an infectious process results from the interplay between the error rate of the viral replicase, from purifying mechanisms acting after transcription on aberrant RNAs, and from the amplification dynamics of virus RNA positive (+) and negative (-) strands. Two extreme scenarios describing viral RNA amplification are the geometric growth, in which each RNA strand serves as template for the synthesis of complementary strands with the same efficiency, and the stamping machine, where a strand is reiteratively used as template to synthesize multiple copies of the complementary. The resulting mutation frequencies are completely different, being geometric growth largely more mutagenic than stamping machine. In this work we evaluate the contribution of geometric growth and stamping machine to the overall genome amplification of the plant (+)-strand RNA virus turnip mosaic virus (TuMV). By means of transfection experiments of Nicotiana benthamiana protoplasts with a TuMV cDNA infectious clone and by using strand-specific quantitative real-time PCR, we determined the amplification dynamics of viral (+) and (-) RNA during a single-cell infectious process. A mathematical model describing the amplification of each viral strand was fitted to the data. Analyses of the model parameters showed that TuMV (+) and (-) RNA amplification occurs through a mixed strategy with ∼93% of genomes produced via stamping machine and only ∼7% resulting from geometric growth.
Collapse
Affiliation(s)
- Fernando Martínez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia), Valencia, Spain
| | - Josep Sardanyés
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia), Valencia, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia), Valencia, Spain
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas – Universidad Politécnica de Valencia), Valencia, Spain
| |
Collapse
|
37
|
Moison C, Arimondo PB, Guieysse-Peugeot AL. Commercial reverse transcriptase as source of false-positive strand-specific RNA detection in human cells. Biochimie 2011; 93:1731-7. [PMID: 21689721 DOI: 10.1016/j.biochi.2011.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
Recently, an increasing number of studies describe the existence of non-coding RNAs (ncRNAs) involved in gene expression modulation. Since the observation that antisense ncRNAs are implicated in human disorders, there is more and more interest in ncRNAs. A commonly used technique to investigate the expression of an antisense ncRNAs is strand-specific reverse transcription coupled with polymerase chain reaction (RT-PCR). The advantage of this accurate technique is that it does not require any special equipment or expertise. The disadvantage is that it can lead easily to false-positive results. We applied strand-specific RT-PCR to investigate the presence of antisense ncRNA associated to Retinoic Acid Receptor Beta 2 (RARβ2) in different human tumoral cell lines. By performing this technique, we observed false-positive detection of ncRNA. For accurate interpretation of the results in RT-PCR experiments, we introduced a «No primer» control that reveals non-specific cDNA synthesis. Moreover, we report the presence of non-specific cDNA amplification with five of the most frequently used reverse transcriptase in absence of added primers. We found that the choice of the reverse transcriptase as well as the conditions of the reaction (RT temperature and PCR cycle number) are important parameters to choose as the different reverse transcriptases do not display the same cDNA synthesis background. This previously observed phenomenon was reported to originate from the «self-priming» of RNA template. Here, we report rather the presence of RNA contaminants associated with one of the reverse transcriptase studied that might contribute to non-specific cDNA synthesis.
Collapse
Affiliation(s)
- Celine Moison
- MNHN CNRS UMR7196 43 rue Cuvier, 75005 Paris, France
| | | | | |
Collapse
|
38
|
Li D, Lott WB, Lowry K, Jones A, Thu HM, Aaskov J. Defective interfering viral particles in acute dengue infections. PLoS One 2011; 6:e19447. [PMID: 21559384 PMCID: PMC3084866 DOI: 10.1371/journal.pone.0019447] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/29/2011] [Indexed: 01/18/2023] Open
Abstract
While much of the genetic variation in RNA viruses arises because of the error-prone nature of their RNA-dependent RNA polymerases, much larger changes may occur as a result of recombination. An extreme example of genetic change is found in defective interfering (DI) viral particles, where large sections of the genome of a parental virus have been deleted and the residual sub-genome fragment is replicated by complementation by co-infecting functional viruses. While most reports of DI particles have referred to studies in vitro, there is some evidence for the presence of DI particles in chronic viral infections in vivo. In this study, short fragments of dengue virus (DENV) RNA containing only key regulatory elements at the 3′ and 5′ ends of the genome were recovered from the sera of patients infected with any of the four DENV serotypes. Identical RNA fragments were detected in the supernatant from cultures of Aedes mosquito cells that were infected by the addition of sera from dengue patients, suggesting that the sub-genomic RNA might be transmitted between human and mosquito hosts in defective interfering (DI) viral particles. In vitro transcribed sub-genomic RNA corresponding to that detected in vivo could be packaged in virus like particles in the presence of wild type virus and transmitted for at least three passages in cell culture. DENV preparations enriched for these putative DI particles reduced the yield of wild type dengue virus following co-infections of C6–36 cells. This is the first report of DI particles in an acute arboviral infection in nature. The internal genomic deletions described here are the most extensive defects observed in DENV and may be part of a much broader disease attenuating process that is mediated by defective viruses.
Collapse
Affiliation(s)
- Dongsheng Li
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - William B. Lott
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kym Lowry
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anita Jones
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Hlaing Myat Thu
- Virology Research Division, Department of Medical Research, Yangon, Myanmar
| | - John Aaskov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
39
|
Development and validation of four Real-Time quantitative RT-PCRs specific for the positive or negative strands of a bisegmented dsRNA viral genome. J Virol Methods 2010; 170:1-8. [PMID: 20638414 DOI: 10.1016/j.jviromet.2010.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 02/07/2023]
Abstract
Four tagged quantitative Real-Time RT-PCRs (qRT-PCRs) were developed to quantify the positive and negative strands of segments A and B of the bisegmented double-stranded RNA (dsRNA) genome of infectious bursal disease virus (IBDV, family Birnaviridae, genus Avibirnavirus). The qRT-PCRs were validated using single-stranded RNAs corresponding to each genomic strand (A+, B+, A-, B-). Specific quantitation proved possible from 5×10(7) to 5×10(2) copies of the template per reaction, with excellent reproducibility and linearity. The methods detected similar amounts of A+ and A- and of B+ and B- in a purified dsRNA viral genome preparation, thus corroborating the accuracy of quantitation. The qRT-PCRs were used to quantify the four strands in CsCl purified virus fractions and in samples collected during propagation of IBDV in cell culture. Purified virus fractions contained similar amounts of A- and B- strands, but also a large and unexplained excess of A+ and even more B+ strands. Results of the in vitro kinetic study showed an early accumulation of positive strands and a more delayed and lower accumulation of the A- and B- strands, both in similar amounts. These results suggest that minus strand synthesis occurs in IBDV after the equimolar packaging of A+ and B+ strands.
Collapse
|