1
|
Furusato IN, Figueiredo KB, de Carvalho ACSR, da Silva Ferreira CS, Takahashi JPF, Kimura LM, Aleixo CS, de Brito OP, Luchs A, Cunha MS, de Azevedo Fernandes NCC, de Araújo LJT, Catão-Dias JL, Guerra JM. Detection of herpesviruses in neotropical primates from São Paulo, Brazil. Braz J Microbiol 2023; 54:3201-3209. [PMID: 37688686 PMCID: PMC10689701 DOI: 10.1007/s42770-023-01105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023] Open
Abstract
Transmission of herpesvirus between humans and non-human primates represents a serious potential threat to human health and endangered species conservation. This study aimed to identify herpesvirus genomes in samples of neotropical primates (NTPs) in the state of São Paulo, Brazil. A total of 242 NTPs, including Callithrix sp., Alouatta sp., Sapajus sp., and Callicebus sp., were evaluated by pan-herpesvirus polymerase chain reaction (PCR) and sequencing. Sixty-two (25.6%) samples containing genome segments representative of members of the family Herpesviridae, including 16.1% for Callitrichine gammaherpesvirus 3, 6.1% for Human alphaherpesvirus 1, 2.1% for Alouatta macconnelli cytomegalovirus, and 0.83% for Cebus albifrons lymphocryptovirus 1. No co-infections were detected. The detection of herpesvirus genomes was significantly higher among adult animals (p = 0.033) and those kept under human care (p = 0.008671). These findings confirm the importance of monitoring the occurrence of herpesviruses in NTP populations in epizootic events.
Collapse
Affiliation(s)
- Isabella Naomi Furusato
- Centro de Patologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
| | | | | | | | - Juliana Possatto Fernandes Takahashi
- Centro de Patologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
- Programa de Pós-Graduação Em Doenças Infecciosas E Parasitárias - Faculdade de Medicina, Universidade Federal de Mato Grosso Do Sul, Bairro Universitário, Av. Costa E Silva, S/nº, Campo Grande, MS, 79070900, Brazil
| | - Lidia Midori Kimura
- Centro de Patologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
| | - Camila Siqueira Aleixo
- Centro de Patologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
| | - Odília Pereira de Brito
- Centro de Patologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
| | - Adriana Luchs
- Centro de Virologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
| | - Mariana Sequetin Cunha
- Centro de Virologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil
| | | | | | - José Luiz Catão-Dias
- Laboratório de Patologia Comparada (LAPCOM), Departamento de Patologia, Faculdade de Veterinária E Zootecnia, Universidade de São Paulo, Avenida Professor Orlando Marques de Paiva, 70, São Paulo, SP, 05508270, Brazil
| | - Juliana Mariotti Guerra
- Centro de Patologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, Pacaembú, São Paulo, SP, 01246000, Brazil.
- Laboratório de Patologia Comparada (LAPCOM), Departamento de Patologia, Faculdade de Veterinária E Zootecnia, Universidade de São Paulo, Avenida Professor Orlando Marques de Paiva, 70, São Paulo, SP, 05508270, Brazil.
| |
Collapse
|
2
|
Ruiz-Pablos M, Paiva B, Zabaleta A. Epstein-Barr virus-acquired immunodeficiency in myalgic encephalomyelitis-Is it present in long COVID? J Transl Med 2023; 21:633. [PMID: 37718435 PMCID: PMC10506247 DOI: 10.1186/s12967-023-04515-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
Both myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) and long COVID (LC) are characterized by similar immunological alterations, persistence of chronic viral infection, autoimmunity, chronic inflammatory state, viral reactivation, hypocortisolism, and microclot formation. They also present with similar symptoms such as asthenia, exercise intolerance, sleep disorders, cognitive dysfunction, and neurological and gastrointestinal complaints. In addition, both pathologies present Epstein-Barr virus (EBV) reactivation, indicating the possibility of this virus being the link between both pathologies. Therefore, we propose that latency and recurrent EBV reactivation could generate an acquired immunodeficiency syndrome in three steps: first, an acquired EBV immunodeficiency develops in individuals with "weak" EBV HLA-II haplotypes, which prevents the control of latency I cells. Second, ectopic lymphoid structures with EBV latency form in different tissues (including the CNS), promoting inflammatory responses and further impairment of cell-mediated immunity. Finally, immune exhaustion occurs due to chronic exposure to viral antigens, with consolidation of the disease. In the case of LC, prior to the first step, there is the possibility of previous SARS-CoV-2 infection in individuals with "weak" HLA-II haplotypes against this virus and/or EBV.
Collapse
Affiliation(s)
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain
| | - Aintzane Zabaleta
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain.
| |
Collapse
|
3
|
Barros MHM, Alves PDS. Contribution of the Epstein-Barr virus to the oncogenesis of mature T-cell lymphoproliferative neoplasms. Front Oncol 2023; 13:1240359. [PMID: 37781191 PMCID: PMC10538126 DOI: 10.3389/fonc.2023.1240359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
EBV is a lymphotropic virus, member of the Herpesviridae family that asymptomatically infects more than 90% of the human population, establishing a latent infection in memory B cells. EBV exhibits complex survival and persistence dynamics, replicating its genome through the proliferation of infected B cells or production of the lytic virions. Many studies have documented the infection of T/NK cells by EBV in healthy individuals during and after primary infection. This feature has been confirmed in humanized mouse models. Together these results have challenged the hypothesis that the infection of T/NK cells per se by EBV could be a triggering event for lymphomagenesis. Extranodal NK/T-cell lymphoma (ENKTCL) and Epstein-Barr virus (EBV)-positive nodal T- and NK-cell lymphoma (NKTCL) are two EBV-associated lymphomas of T/NK cells. These two lymphomas display different clinical, histological and molecular features. However, they share two intriguing characteristics: the association with EBV and a geographical prevalence in East Asia and Latin America. In this review we will discuss the genetic characteristics of EBV in order to understand the possible role of this virus in the oncogenesis of ENKTCL and NKTCL. In addition, the main immunohistological, molecular, cytogenetic and epigenetic differences between ENKTCL and NKTCL will be discussed, as well as EBV differences in latency patterns and other viral molecular characteristics.
Collapse
Affiliation(s)
| | - Paula Daniela S. Alves
- Oncovirology Laboratory, Bone Marrow Transplantation Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Ross AM, Leahy CI, Neylon F, Steigerova J, Flodr P, Navratilova M, Urbankova H, Vrzalikova K, Mundo L, Lazzi S, Leoncini L, Pugh M, Murray PG. Epstein-Barr Virus and the Pathogenesis of Diffuse Large B-Cell Lymphoma. Life (Basel) 2023; 13:521. [PMID: 36836878 PMCID: PMC9967091 DOI: 10.3390/life13020521] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Epstein-Barr virus (EBV), defined as a group I carcinogen by the World Health Organization (WHO), is present in the tumour cells of patients with different forms of B-cell lymphoma, including Burkitt lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders, and, most recently, diffuse large B-cell lymphoma (DLBCL). Understanding how EBV contributes to the development of these different types of B-cell lymphoma has not only provided fundamental insights into the underlying mechanisms of viral oncogenesis, but has also highlighted potential new therapeutic opportunities. In this review, we describe the effects of EBV infection in normal B-cells and we address the germinal centre model of infection and how this can lead to lymphoma in some instances. We then explore the recent reclassification of EBV+ DLBCL as an established entity in the WHO fifth edition and ICC 2022 classifications, emphasising the unique nature of this entity. To that end, we also explore the unique genetic background of this entity and briefly discuss the potential role of the tumour microenvironment in lymphomagenesis and disease progression. Despite the recent progress in elucidating the mechanisms of this malignancy, much work remains to be done to improve patient stratification, treatment strategies, and outcomes.
Collapse
Affiliation(s)
- Aisling M. Ross
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- BioScience and BioEngineering Research (BioSciBer), Bernal BioMaterials Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Ciara I. Leahy
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- BioScience and BioEngineering Research (BioSciBer), Bernal BioMaterials Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Fiona Neylon
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- BioScience and BioEngineering Research (BioSciBer), Bernal BioMaterials Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Jana Steigerova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
| | - Patrik Flodr
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Martina Navratilova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Helena Urbankova
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky Univesity and University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Katerina Vrzalikova
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Lucia Mundo
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, 53100 Siena, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, 53100 Siena, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, 53100 Siena, Italy
| | - Matthew Pugh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul G. Murray
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
| |
Collapse
|
5
|
Smiley Evans T, Lowenstine LJ, Ssebide B, Barry PA, Kinani JF, Nizeyimana F, Noheli JB, Okello R, Mudakikwa A, Cranfield MR, Mazet JAK, Johnson CK, Gilardi KV. Simian homologues of human herpesviruses and implications for novel viral introduction to free-living mountain gorillas. Am J Primatol 2023; 85:e23439. [PMID: 36263518 PMCID: PMC11017921 DOI: 10.1002/ajp.23439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023]
Abstract
The endangered mountain gorilla (Gorilla beringei beringei) in Rwanda, Uganda, and the Democratic Republic of Congo is frequently in contact with humans through tourism, research activities, and illegal entry of people into protected gorilla habitat. Herpesviruses, which are ubiquitous in primates, have the potential to be shared in any setting where humans and gorillas share habitat. Based on serological findings and clinical observations of orofacial ulcerated lesions resembling herpetic lesions, an alpha-herpesvirus resembling human herpes simplex virus type 1 (HSV-1) has long been suspected to be present in human-habituated mountain gorillas in the wild. While the etiology of orofacial lesions in the wild has not been confirmed, HSV-1 has been suspected in captively-housed mountain gorillas and confirmed in a co-housed confiscated Grauer's gorilla (Gorilla beringei graueri). To better characterize herpesviruses infecting mountain gorillas and to determine the presence/absence of HSV-1 in the free-living population, we conducted a population-wide survey to test for the presence of orally shed herpesviruses. DNA was extracted from discarded chewed plants collected from 294 individuals from 26 groups, and samples were screened by polymerase chain reaction using pan-herpesvirus and HSV-1-specific assays. We found no evidence that human herpesviruses had infected free-ranging mountain gorillas. However, we found gorilla-specific homologs to human herpesviruses, including cytomegaloviruses (GbbCMV-1 and 2), a lymphocryptovirus (GbbLCV-1), and a new rhadinovirus (GbbRHV-1) with similar characteristics (i.e., timing of primary infection, shedding in multiple age groups, and potential modes of transmission) to their human counterparts, human cytomegalovirus, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, respectively.
Collapse
Affiliation(s)
- Tierra Smiley Evans
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Linda J Lowenstine
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Benard Ssebide
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Peter A Barry
- Department of Pathology and Laboratory Medicine, Center for Immunology and Infectious Diseases, California National Primate Research Center, University of California Davis, Davis, California, USA
| | - Jean Felix Kinani
- One Health Approach for Conservation (OHAC), Gorilla Health, Kigali, Rwanda
| | - Fred Nizeyimana
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Jean Bosco Noheli
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Ricky Okello
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | | | - Michael R Cranfield
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Jonna A K Mazet
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Christine K Johnson
- Epicenter for Disease Dynamics, One Health Institute, University of California Davis, Davis, California, USA
| | - Kirsten V Gilardi
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
6
|
Zhang B, Choi IK, Panaampon J, Wang Z. Does delayed EBV infection contribute to rising childhood cancers? Trends Immunol 2022; 43:956-958. [PMID: 36216720 DOI: 10.1016/j.it.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Abstract
Childhood cancer is on the rise in high-income countries. Epidemiological studies suggest that reduced exposure to common infections in early life is to blame. However, no specific infection responsible for protection against cancer has been identified, and the underlying mechanisms remain a matter of speculation. Recent findings that Epstein-Barr virus (EBV) can induce antitumor immunity lead us to hypothesize that the delay in EBV infection in such countries might contribute to the increase in childhood cancers.
Collapse
Affiliation(s)
- Baochun Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Il-Kyu Choi
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea; New Biology Research Center (NBRC), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| | - Jutatip Panaampon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Zhe Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Zhang B, Choi IK. Facts and Hopes in the Relationship of EBV with Cancer Immunity and Immunotherapy. Clin Cancer Res 2022; 28:4363-4369. [PMID: 35686929 PMCID: PMC9714122 DOI: 10.1158/1078-0432.ccr-21-3408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV), the first identified human tumor virus, infects and takes up residency in almost every human. However, EBV genome-positive tumors arise in only a tiny minority of infected people, presumably when the virus-carrying tumor cells are able to evade immune surveillance. Traditional views regard viral antigens as the principal targets of host immune surveillance against virus-infected cells. However, recent findings indicate that EBV-infected/-transformed B cells elicit both cytotoxic CD8+ and CD4+ T-cell responses against a wide range of overexpressed cellular antigens known to function as tumor-associated antigens (TAA), in addition to various EBV-encoded antigens. This not only broadens the ways by which the immune system controls EBV infection and prevents it from causing cancers, but also potentially extends immune protection toward EBV-unrelated cancers by targeting shared TAAs. The goal of this review is to incorporate these new findings with literature data and discuss future directions for improved understanding of EBV-induced antitumor immunity, as well as the hopes for rational immune strategies for cancer prevention and therapy.
Collapse
Affiliation(s)
- Baochun Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Il-Kyu Choi
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- New Biology Research Center (NBRC), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
8
|
Palmer WH, Telford M, Navarro A, Santpere G, Norman PJ. Human herpesvirus diversity is altered in HLA class I binding peptides. Proc Natl Acad Sci U S A 2022; 119:e2123248119. [PMID: 35486690 PMCID: PMC9170163 DOI: 10.1073/pnas.2123248119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Herpesviruses are ubiquitous, genetically diverse DNA viruses, with long-term presence in humans associated with infrequent but significant pathology. Human leukocyte antigen (HLA) class I presents intracellularly derived peptide fragments from infected tissue cells to CD8+ T and natural killer cells, thereby directing antiviral immunity. Allotypes of highly polymorphic HLA class I are distinguished by their peptide binding repertoires. Because this HLA class I variation is a major determinant of herpesvirus disease, we examined if sequence diversity of virus proteins reflects evasion of HLA presentation. Using population genomic data from Epstein–Barr virus (EBV), human cytomegalovirus (HCMV), and Varicella–Zoster virus, we tested whether diversity differed between the regions of herpesvirus proteins that can be recognized, or not, by HLA class I. Herpesviruses exhibit lytic and latent infection stages, with the latter better enabling immune evasion. Whereas HLA binding peptides of lytic proteins are conserved, we found that EBV and HCMV proteins expressed during latency have increased peptide sequence diversity. Similarly, latent, but not lytic, herpesvirus proteins have greater population structure in HLA binding than nonbinding peptides. Finally, we found patterns consistent with EBV adaption to the local HLA environment, with less efficient recognition of EBV isolates by high-frequency HLA class I allotypes. Here, the frequency of CD8+ T cell epitopes inversely correlated with the frequency of HLA class I recognition. Previous analyses have shown that pathogen-mediated natural selection maintains exceptional polymorphism in HLA residues that determine peptide recognition. Here, we show that HLA class I peptide recognition impacts diversity of globally widespread pathogens.
Collapse
Affiliation(s)
- William H. Palmer
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| | - Marco Telford
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Arcadi Navarro
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra - Consejo Superior de Investigaciones Científicas), Department of Medicine and Life Sciences (MELIS), Barcelona Biomedical Research Park, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats and Universitat Pompeu Fabra, 08010 Barcelona, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Barcelona Beta Brain Research Center, Pasqual Maragall Foundation, 08005 Barcelona, Spain
| | - Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| |
Collapse
|
9
|
Chakravorty S, Afzali B, Kazemian M. EBV-associated diseases: Current therapeutics and emerging technologies. Front Immunol 2022; 13:1059133. [PMID: 36389670 PMCID: PMC9647127 DOI: 10.3389/fimmu.2022.1059133] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
EBV is a prevalent virus, infecting >90% of the world's population. This is an oncogenic virus that causes ~200,000 cancer-related deaths annually. It is, in addition, a significant contributor to the burden of autoimmune diseases. Thus, EBV represents a significant public health burden. Upon infection, EBV remains dormant in host cells for long periods of time. However, the presence or episodic reactivation of the virus increases the risk of transforming healthy cells to malignant cells that routinely escape host immune surveillance or of producing pathogenic autoantibodies. Cancers caused by EBV display distinct molecular behaviors compared to those of the same tissue type that are not caused by EBV, presenting opportunities for targeted treatments. Despite some encouraging results from exploration of vaccines, antiviral agents and immune- and cell-based treatments, the efficacy and safety of most therapeutics remain unclear. Here, we provide an up-to-date review focusing on underlying immune and environmental mechanisms, current therapeutics and vaccines, animal models and emerging technologies to study EBV-associated diseases that may help provide insights for the development of novel effective treatments.
Collapse
Affiliation(s)
- Srishti Chakravorty
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States.,Department of Computer Science, Purdue University, West Lafayette IN, United States
| |
Collapse
|
10
|
Ruiz-Pablos M, Paiva B, Montero-Mateo R, Garcia N, Zabaleta A. Epstein-Barr Virus and the Origin of Myalgic Encephalomyelitis or Chronic Fatigue Syndrome. Front Immunol 2021; 12:656797. [PMID: 34867935 PMCID: PMC8634673 DOI: 10.3389/fimmu.2021.656797] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) affects approximately 1% of the general population. It is a chronic, disabling, multi-system disease for which there is no effective treatment. This is probably related to the limited knowledge about its origin. Here, we summarized the current knowledge about the pathogenesis of ME/CFS and revisit the immunopathobiology of Epstein-Barr virus (EBV) infection. Given the similarities between EBV-associated autoimmune diseases and cancer in terms of poor T cell surveillance of cells with EBV latency, expanded EBV-infected cells in peripheral blood and increased antibodies against EBV, we hypothesize that there could be a common etiology generated by cells with EBV latency that escape immune surveillance. Albeit inconclusive, multiple studies in patients with ME/CFS have suggested an altered cellular immunity and augmented Th2 response that could result from mechanisms of evasion to some pathogens such as EBV, which has been identified as a risk factor in a subset of ME/CFS patients. Namely, cells with latency may evade the immune system in individuals with genetic predisposition to develop ME/CFS and in consequence, there could be poor CD4 T cell immunity to mitogens and other specific antigens, as it has been described in some individuals. Ultimately, we hypothesize that within ME/CFS there is a subgroup of patients with DRB1 and DQB1 alleles that could confer greater susceptibility to EBV, where immune evasion mechanisms generated by cells with latency induce immunodeficiency. Accordingly, we propose new endeavors to investigate if anti-EBV therapies could be effective in selected ME/CFS patients.
Collapse
Affiliation(s)
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigación Medica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | | | - Nicolas Garcia
- Clinica Universidad de Navarra, Centro de Investigación Medica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Aintzane Zabaleta
- Clinica Universidad de Navarra, Centro de Investigación Medica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
11
|
Abstract
Over the last two decades, the viromes of our closest relatives, the African great apes (AGA), have been intensively studied. Comparative approaches have unveiled diverse evolutionary patterns, highlighting both stable host-virus associations over extended evolutionary timescales and much more recent viral emergence events. In this chapter, we summarize these findings and outline how they have shed a new light on the origins and evolution of many human-infecting viruses. We also show how this knowledge can be used to better understand the evolution of human health in relation to viral infections.
Collapse
|
12
|
Münz C. The Role of Lytic Infection for Lymphomagenesis of Human γ-Herpesviruses. Front Cell Infect Microbiol 2021; 11:605258. [PMID: 33842383 PMCID: PMC8034291 DOI: 10.3389/fcimb.2021.605258] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/09/2021] [Indexed: 01/02/2023] Open
Abstract
Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV) are two oncogenic human γ-herpesviruses that are each associated with 1-2% of human tumors. They encode bona fide oncogenes that they express during latent infection to amplify their host cells and themselves within these. In contrast, lytic virus particle producing infection has been considered to destroy host cells and might be even induced to therapeutically eliminate EBV and KSHV associated tumors. However, it has become apparent in recent years that early lytic replication supports tumorigenesis by these two human oncogenic viruses. This review will discuss the evidence for this paradigm change and how lytic gene products might condition the microenvironment to facilitate EBV and KSHV associated tumorigenesis.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
13
|
Schuhmachers P, Münz C. Modification of EBV Associated Lymphomagenesis and Its Immune Control by Co-Infections and Genetics in Humanized Mice. Front Immunol 2021; 12:640918. [PMID: 33833760 PMCID: PMC8021763 DOI: 10.3389/fimmu.2021.640918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Epstein Barr virus (EBV) is one of the most successful pathogens in humans with more than 95% of the human adult population persistently infected. EBV infects only humans and threatens these with its potent growth transforming ability that readily allows for immortalization of human B cells in culture. Accordingly, it is also found in around 1-2% of human tumors, primarily lymphomas and epithelial cell carcinomas. Fortunately, however, our immune system has learned to control this most transforming human tumor virus in most EBV carriers, and it requires modification of EBV associated lymphomagenesis and its immune control by either co-infections, such as malaria, Kaposi sarcoma associated herpesvirus (KSHV) and human immunodeficiency virus (HIV), or genetic predispositions for EBV positive tumors to emerge. Some of these can be modelled in humanized mice that, therefore, provide a valuable platform to test curative immunotherapies and prophylactic vaccines against these EBV associated pathologies.
Collapse
Affiliation(s)
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
14
|
Calvignac-Spencer S, Kouadio L, Couacy-Hymann E, Sogoba N, Rosenke K, Davison AJ, Leendertz F, Jarvis MA, Feldmann H, Ehlers B. Multiple DNA viruses identified in multimammate mouse (Mastomys natalensis) populations from across regions of sub-Saharan Africa. Arch Virol 2020; 165:2291-2299. [PMID: 32754877 PMCID: PMC7497350 DOI: 10.1007/s00705-020-04738-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022]
Abstract
The multimammate mouse (Mastomys natalensis; M. natalensis) serves as the main reservoir for the zoonotic arenavirus Lassa virus (LASV), and this has led to considerable investigation into the distribution of LASV and other related arenaviruses in this host species. In contrast to the situation with arenaviruses, the presence of other viruses in M. natalensis remains largely unexplored. In this study, herpesviruses and polyomaviruses were identified and partially characterized by PCR methods, sequencing, and phylogenetic analysis. In tissues sampled from M. natalensis populations in Côte d'Ivoire and Mali, six new DNA viruses (four betaherpesviruses, one gammaherpesvirus and one polyomavirus) were identified. Phylogenetic analysis based on glycoprotein B amino acid sequences showed that the herpesviruses clustered with cytomegaloviruses and rhadinoviruses of multiple rodent species. The complete circular genome of the newly identified polyomavirus was amplified by PCR. Amino acid sequence analysis of the large T antigen or VP1 showed that this virus clustered with a known polyomavirus from a house mouse (species Mus musculus polyomavirus 1). These two polyomaviruses form a clade with other rodent polyomaviruses, and the newly identified virus represents the third known polyomavirus of M. natalensis. This study represents the first identification of herpesviruses and the discovery of a novel polyomavirus in M. natalensis. In contrast to arenaviruses, we anticipate that these newly identified viruses represent a low zoonotic risk due to the normally highly restricted specificity of members of these two DNA virus families to their individual mammalian host species.
Collapse
Affiliation(s)
| | - Léonce Kouadio
- LANADA/Central Laboratory for Animal Diseases, Bingerville, Côte d'Ivoire.,P3 "Epidemiology of Highly Pathogenic Microorganisms", Robert Koch-Institute, Berlin, Germany
| | | | - Nafomon Sogoba
- Faculty of Medicine and Odontostomatology, Malaria Research and Training Center, International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Fabian Leendertz
- P3 "Epidemiology of Highly Pathogenic Microorganisms", Robert Koch-Institute, Berlin, Germany
| | - Michael A Jarvis
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK.,The Vaccine Group Ltd, Plymouth, UK
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Bernhard Ehlers
- Division 12 "Measles, Mumps, Rubella, and Viruses Affecting Immunocompromised Patients", Robert Koch Institut, Berlin, Germany.
| |
Collapse
|
15
|
Tarlinton RE, Martynova E, Rizvanov AA, Khaiboullina S, Verma S. Role of Viruses in the Pathogenesis of Multiple Sclerosis. Viruses 2020; 12:E643. [PMID: 32545816 PMCID: PMC7354629 DOI: 10.3390/v12060643] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an immune inflammatory disease, where the underlying etiological cause remains elusive. Multiple triggering factors have been suggested, including environmental, genetic and gender components. However, underlying infectious triggers to the disease are also suspected. There is an increasing abundance of evidence supporting a viral etiology to MS, including the efficacy of interferon therapy and over-detection of viral antibodies and nucleic acids when compared with healthy patients. Several viruses have been proposed as potential triggering agents, including Epstein-Barr virus, human herpesvirus 6, varicella-zoster virus, cytomegalovirus, John Cunningham virus and human endogenous retroviruses. These viruses are all near ubiquitous and have a high prevalence in adult populations (or in the case of the retroviruses are actually part of the genome). They can establish lifelong infections with periods of reactivation, which may be linked to the relapsing nature of MS. In this review, the evidence for a role for viral infection in MS will be discussed with an emphasis on immune system activation related to MS disease pathogenesis.
Collapse
Affiliation(s)
- Rachael E. Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough LE12 5RD, UK;
| | - Ekaterina Martynova
- Insititute of Fundamental Medicine and Biology Kazan Federal University, 420008 Kazan, Russia; (E.M.); (A.A.R.)
| | - Albert A. Rizvanov
- Insititute of Fundamental Medicine and Biology Kazan Federal University, 420008 Kazan, Russia; (E.M.); (A.A.R.)
| | | | - Subhash Verma
- School of Medicine, University of Nevada, Reno, NV 89557, USA;
| |
Collapse
|
16
|
Smirnova KV, Senyuta NB, Lubenskaya AK, Dushenkina TE, Gurtsevich VE. [Ancient variants of the Epstein-Barr virus (Herpesviridae, Lymphocryptovirus, HHV-4): hypotheses and facts.]. Vopr Virusol 2020; 65:77-86. [PMID: 32515563 DOI: 10.36233/0507-4088-2020-65-2-77-86] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Molecular studies have shown that viruses appeared in the early stages of the evolution of life. For millions of years, viruses have evolved by changing old and acquiring new sequences in their RNA or DNA. It is assumed that most viruses have common ancestors. Such an ancestor, an ancient strain, probably existed for Epstein-Barr virus (EBV) as well. AIM To find out whether ancient strains of EBV persist in modern Russian ethnic groups today. MATERIAL AND METHODS The object of the study was the EBV LMP1oncogene, which is most suitable for molecular genetic analysis. LMP1 was amplified from the oral cavity washings obtained from representatives of two ancient ethnic groups of Russia - Tatars and Slavs. The LMP1 amplicons were sequenced in both directions; their nucleotide sequences translated into amino acid (LMP1) were evaluated using the classification suggested by Edwards et al. 1999. To establish genetic relationships between LMP1 variants, a phylogenetic tree was constructed by the neighbor-joining method using the MEGA software package. RESULTS AND DISCUSSION Analysis of LMP1 sequences from washings of the Slavs oral cavity demonstrated the presence of LMP1 variants with varying degrees of transforming potential: B98.5/A, China1, Med-, and NC. The analysis of LMP1 sequences from washings of Tatar oral cavity also made it possible to identify oncoprotein variants such as B95.8/A, China1, Med-, as well as a group of variants out of classifications (LMP1-OK). An important finding was the identification of 7 variants of LMP1 from Tatars, designated as LMP1-TatK, that contained two unique deletions of 5 aa in codons 312-316 and 382-386, which were absent in the LMP1 variants from Slavs and from previously examined cancer patients and healthy individuals, as well as in sequences from open computer databases. The uniqueness of the LMP1-TatK variant is confirmed both by phylogenetic analysis of LMP1 sequences of Tatar origin and by the analysis of 11 aa repeats and 5 aa insertions in the C-terminal region of the oncoprotein. The morbidity and mortality rates from neoplasms, including EBV-associated pathologies, did not differ significantly between two studied ethnic groups infected with different EBV strains. CONCLUSION The data obtained allowed us to suggest that: 1) LMP1-TatK could be refered to an evolutionarily ancient EBV strain that persists among Tatars and; 2) LMP1-TatK belongs to the so-called "Volga" EBV virus strain, the common strain among the population of the Volga region. Extended studies of EBV isolates from residents of this region may probably shed the light on the origin of LMP1-TatK.
Collapse
Affiliation(s)
- K V Smirnova
- Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.,Pirogov Russian National Research Medical University (RNRMU), Moscow, 117997, Russia
| | - N B Senyuta
- Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - A K Lubenskaya
- Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - T E Dushenkina
- Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - V E Gurtsevich
- Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| |
Collapse
|
17
|
Winter JR, Jackson C, Lewis JEA, Taylor GS, Thomas OG, Stagg HR. Predictors of Epstein-Barr virus serostatus and implications for vaccine policy: A systematic review of the literature. J Glob Health 2020; 10:010404. [PMID: 32257152 PMCID: PMC7125428 DOI: 10.7189/jogh.10.010404] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is an important human pathogen; it infects >90% people globally and is linked to infectious mononucleosis and several types of cancer. Vaccines against EBV are in development. In this study we present the first systematic review of the literature on risk factors for EBV infection, and discuss how they differ between settings, in order to improve our understanding of EBV epidemiology and aid the design of effective vaccination strategies. METHODS MEDLINE, Embase, and Web of Science were searched on 6th March 2017 for observational studies of risk factors for EBV infection. Studies were excluded if they were published before 2008 to ensure relevance to the modern day, given the importance of influencing future vaccination policies. There were no language restrictions. After title, abstract and full text screening, followed by checking the reference lists of included studies to identify further studies, data were extracted into standardised spreadsheets and quality assessed. A narrative synthesis was undertaken. RESULTS Seventy-seven papers met our inclusion criteria, including data from 31 countries. There was consistent evidence that EBV seroprevalence was associated with age, increasing throughout childhood and adolescence and remaining constant thereafter. EBV was generally acquired at younger ages in Asia than Europe/North America. There was also compelling evidence for an association between cytomegalovirus infection and EBV. Additional factors associated with EBV seroprevalence, albeit with less consistent evidence, included ethnicity, socioeconomic status, other chronic viral infections, and genetic variants of HLA and immune response genes. CONCLUSIONS Our study is the first systematic review to draw together the global literature on the risk factors for EBV infection and includes an evaluation of the quality of the published evidence. Across the literature, the factors examined are diverse. In Asia, early vaccination of infants would be required to prevent EBV infection. In contrast, in Western countries a vaccine could be deployed later, particularly if it has only a short duration of protection and the intention was to protect against infectious mononucleosis. There is a lack of high-quality data on the prevalence and age of EBV infection outside of Europe, North America and South-East Asia, which are essential for informing effective vaccination policies in these settings.
Collapse
Affiliation(s)
- Joanne R Winter
- Centre for Molecular Epidemiology and Translational Research, Institute for Global Health, University College London, London, UK
| | - Charlotte Jackson
- Centre for Molecular Epidemiology and Translational Research, Institute for Global Health, University College London, London, UK
- MRC Clinical Trials Unit, University College London, London, UK
| | - Joanna EA Lewis
- National Institute for Health Research (NIHR) Health Protection Research Unit in Modelling Methodology and Medical Research Council Centre for Outbreak Analysis and Public Health, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
- Contributed equally and listed alphabetically
| | - Graham S Taylor
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Contributed equally and listed alphabetically
| | - Olivia G Thomas
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Helen R Stagg
- Centre for Molecular Epidemiology and Translational Research, Institute for Global Health, University College London, London, UK
- Usher Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Abstract
The etiology and pathogenesis of MS is likely to involve multiple factors interacting with each other, and the role of infectious and viral agents is still under debate, however a consistent amount of studies suggests that some viruses are associated with the disease. The strongest documentation has come from the detection of viral nucleic acid or antigen or of an anti-viral antibody response in MS patients. A further step for the study of the mechanism viruses might be involved in can be made using in vitro and in vivo models. While in vitro models, based on glial and neural cell lines from various sources are widely used, in vivo animal models present challenges. Indeed neurotropic animal viruses are currently used to study demyelination in well-established models, but animal models of demyelination by human virus infection have only recently been developed, using animal gammaherpesviruses closely related to Epstein Barr virus (EBV), or using marmosets expressing the specific viral receptor for Human Herpesvirus 6 (HHV-6). The present review will illustrate the main potential mechanisms of MS pathogenesis possibly associated with viral infections and viruses currently used to study demyelination in animal models. Then the viruses most strongly linked with MS will be discussed, in the perspective that more than one virus might have a role, with varying degrees of interaction, contributing to MS heterogeneity.
Collapse
Affiliation(s)
- Donatella Donati
- Neurologia e Neurofisiologia Clinica, Azienda Ospedaliera Universitaria Senese I 53100 Siena, Italy
| |
Collapse
|
19
|
Immune Control and Vaccination against the Epstein-Barr Virus in Humanized Mice. Vaccines (Basel) 2019; 7:vaccines7040217. [PMID: 31861045 PMCID: PMC6963577 DOI: 10.3390/vaccines7040217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/12/2022] Open
Abstract
Mice with reconstituted human immune system components (humanized mice) offer the unique opportunity to test vaccines preclinically in the context of vaccine adjuvant sensing by human antigen presenting cells and priming of human cytotoxic lymphocyte populations. These features are particularly attractive for immune control of the Epstein–Barr virus (EBV), which represents the most potent growth-transforming pathogen in man and exclusively relies on cytotoxic lymphocytes for its asymptomatic persistence in the vast majority of healthy virus carriers. This immune control is particularly impressive because EBV infects more than 95% of the human adult population and persists without pathology for more than 50 years in most of them. This review will discuss the pathologies that EBV elicits in humanized mice, which immune responses control it in this model, as well as which passive and active vaccination schemes with adoptive T cell transfer and with virus-like particles or individual antigens, respectively, have been explored in this model so far. EBV-specific CD8+ T cell priming in humanized mice could provide crucial insights into how cytotoxic lymphocytes against other viruses and tumors might be elicited by vaccination in humans.
Collapse
|
20
|
't Hart BA. Experimental autoimmune encephalomyelitis in the common marmoset: a translationally relevant model for the cause and course of multiple sclerosis. Primate Biol 2019; 6:17-58. [PMID: 32110715 PMCID: PMC7041540 DOI: 10.5194/pb-6-17-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Aging Western societies are facing an increasing prevalence of chronic
autoimmune-mediated inflammatory disorders (AIMIDs) for which treatments that are safe and effective are scarce. One of the
main reasons for this situation is the lack of animal models, which accurately replicate
clinical and pathological aspects of the human diseases. One important AIMID is the
neuroinflammatory disease multiple sclerosis (MS), for which the mouse experimental
autoimmune encephalomyelitis (EAE) model has been frequently used in preclinical
research. Despite some successes, there is a long list of experimental treatments that
have failed to reproduce promising effects observed in murine EAE models when they were
tested in the clinic. This frustrating situation indicates a wide validity gap between
mouse EAE and MS. This monography describes the development of an EAE model in nonhuman
primates, which may help to bridge the gap.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands.,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, the Netherlands
| |
Collapse
|
21
|
Damania B, Münz C. Immunodeficiencies that predispose to pathologies by human oncogenic γ-herpesviruses. FEMS Microbiol Rev 2019; 43:181-192. [PMID: 30649299 PMCID: PMC6435449 DOI: 10.1093/femsre/fuy044] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022] Open
Abstract
Human γ-herpesviruses include the closely related tumor viruses Epstein Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV). EBV is the most growth-transforming pathogen known and is linked to at least seven human malignancies. KSHV is also associated with three human cancers. Most EBV- and KSHV-infected individuals fortunately remain disease-free despite persistent infection and this is likely due to the robustness of the immune control that they mount against these tumor viruses. However, upon immune suppression EBV- and KSHV-associated malignancies emerge at increased frequencies. Moreover, primary immunodeficiencies with individual mutations that predispose to EBV or KSHV disease allow us to gain insights into a catalog of molecules that are required for the immune control of these tumor viruses. Curiously, there is little overlap between the mutation targets that predispose individuals to EBV versus KSHV disease, even so both viruses can infect the same host cell, human B cells. These differences will be discussed in this review. A better understanding of the crucial components in the near-perfect life-long immune control of EBV and KSHV should allow us to target malignancies that are associated with these viruses, but also induce similar immune responses against other tumors.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Cancer Research Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
22
|
Abstract
Common marmosets are highly susceptible to several viral pathogens that exist as latent or subclinical infections in their natural reservoir hosts but cause severe disease or death when interspecies transmission occurs. Examples of such viruses in marmosets are herpes simplex virus infections, parainfluenza virus 1 infections, and measles acquired from humans, Saimiriine herpesvirus 1 infection after transmission from squirrel monkeys, and infections with lymphocytic choriomeningitis virus originating from mice. Other relevant viral infections causing spontaneous disease in common marmoset colonies include cowpox virus infections and paramyxovirus saguinus infections. Callitrichine herpesvirus 3 is a newly recognized lymphocryptovirus that is associated with the development of intestinal lymphoproliferative disease in common marmosets. Most viral pathogens causing disease in common marmosets are potential zoonotic agents, and protective measures should be implemented when handling these small New World monkeys.
Collapse
|
23
|
DNA Polymerase Sequences of New World Monkey Cytomegaloviruses: Another Molecular Marker with Which To Infer Platyrrhini Systematics. J Virol 2018; 92:JVI.00980-18. [PMID: 29976674 DOI: 10.1128/jvi.00980-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/27/2018] [Indexed: 01/22/2023] Open
Abstract
Over the past few decades, a large number of studies have identified herpesvirus sequences from many mammalian species around the world. Among the different nonhuman primate species tested so far for cytomegaloviruses (CMVs), only a few were from the New World. Seeking to identify CMV homologues in New World monkeys (NWMs), we carried out molecular screening of 244 blood DNA samples from 20 NWM species from Central and South America. Our aim was to reach a better understanding of their evolutionary processes within the Platyrrhini parvorder. Using PCR amplification with degenerate consensus primers targeting highly conserved amino acid motifs encoded by the herpesvirus DNA polymerase gene, we characterized novel viral sequences from 12 species belonging to seven genera representative of the three NWM families. BLAST searches, pairwise nucleotide and amino acid sequence comparisons, and phylogenetic analyses confirmed that they all belonged to the Cytomegalovirus genus. Previously determined host taxa allowed us to demonstrate a good correlation between the distinct monophyletic clades of viruses and those of the infected primates at the genus level. In addition, the evolutionary branching points that separate NWM CMVs were congruent with the divergence dates of their hosts at the genus level. These results significantly expand our knowledge of the host range of this viral genus and strongly support the occurrence of cospeciation between these viruses and their hosts. In this respect, we propose that NWM CMV DNA polymerase gene sequences may serve as reliable molecular markers with which to infer Platyrrhini phylogenetics.IMPORTANCE Investigating evolutionary processes between viruses and nonhuman primates has led to the discovery of a large number of herpesviruses. No study published so far on primate cytomegaloviruses has extensively studied New World monkeys (NWMs) at the subspecies, species, genus, and family levels. The present study sought to identify cytomegalovirus homologues in NWMs and to decipher their evolutionary relationships. This led us to characterize novel viruses from 12 of the 20 primate species tested, which are representative of the three NWM families. The identification of distinct viruses in these primates not only significantly expands our knowledge of the host range of this viral genus but also sheds light on its evolutionary history. Phylogenetic analyses and molecular dating of the sequences obtained support a virus-host coevolution.
Collapse
|
24
|
The Role of aDNA in Understanding the Coevolutionary Patterns of Human Sexually Transmitted Infections. Genes (Basel) 2018; 9:genes9070317. [PMID: 29941858 PMCID: PMC6070984 DOI: 10.3390/genes9070317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022] Open
Abstract
Analysis of pathogen genome data sequenced from clinical and historical samples has made it possible to perform phylogenetic analyses of sexually transmitted infections on a global scale, and to estimate the diversity, distribution, and coevolutionary host relationships of these pathogens, providing insights into pathogen emergence and disease prevention. Deep-sequenced pathogen genomes from clinical studies and ancient samples yield estimates of within-host and between-host evolutionary rates and provide data on changes in pathogen genomic stability and evolutionary responses. Here we examine three groups of pathogens transmitted mainly through sexual contact between modern humans to provide insight into ancient human behavior and history with their pathogens. Exploring ancient pathogen genomic divergence and the ancient viral-host parallel evolutionary histories will help us to reconstruct the origin of present-day geographical distribution and diversity of clinical pathogen infections, and will hopefully allow us to foresee possible environmentally induced pathogen evolutionary responses. Lastly, we emphasize that ancient pathogen DNA research should be combined with modern clinical pathogen data, and be equitable and provide advantages for all researchers worldwide, e.g., through shared data.
Collapse
|
25
|
Ewald PW. Ancient cancers and infection-induced oncogenesis. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2018; 21:178-185. [PMID: 29778408 DOI: 10.1016/j.ijpp.2017.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/05/2017] [Accepted: 08/11/2017] [Indexed: 06/08/2023]
Abstract
Cancers have been reported in bone and soft tissue of ancient agricultural populations. Fossilized bones from prehistoric periods provide evidence of tumors but only one example of cancer. Difficulties in diagnosing the causes of lesions in mummified tissue and fossilized bone, and in interpreting the prevalence of cancers from remains, draw attention to the need for complementary approaches to assess the occurrence of cancer in ancient populations. This paper integrates current knowledge about pathogen induction of cancer with phylogenetic analyses of oncogenic pathogens, and concludes that pathogen-induced cancers were probably generally present in ancient historic and prehistoric human populations. Consideration of cancers in extant human populations and wildlife lends credence to this conclusion, with the caveat that the presence of cancers may depend on population-specific exposures to oncogenic parasites and carcinogens.
Collapse
Affiliation(s)
- Paul W Ewald
- Department of Biology, University of Louisville, Louisville, KY 40292, United States.
| |
Collapse
|
26
|
Chen T, Zou X, Xu Z, Wang Y, Wang P, Peng H, Liu D, Lin J, Luo R, Wang Y, Chen Q, Chen D, Cai M, Li M. Molecular Characterization of the Epstein-Barr Virus BGLF2 Gene, its Expression, and Subcellular Localization. IRANIAN JOURNAL OF BIOTECHNOLOGY 2018; 16:e1610. [PMID: 30805386 PMCID: PMC6371634 DOI: 10.21859/ijb.1610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 03/07/2018] [Accepted: 04/17/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a universal herpes virus which can cause a life-long and largely asymptomatic infection in the human population. However, the exact pathogenesis of the EBV infection is not well known. OBJECTIVE A comprehensive bioinformatics prediction was carried out for investigating the molecular properties of the BGLF2 and to afford a foundation for future research of the role and instrument of BGLF2 in the course of EBV infection. MATERIALS AND METHODS A 1011-base-pair sequence of BGLF2 gene from the Epstein-Barr virus (EBV) Akata strain genome was amplified using polymerase chain reaction and was further characterized by cloning, sequencing, and subcellular localization in the COS-7 cells. RESULTS The bioinformatics analysis demonstrated that EBV BGLF2 gene encodes a putative BGLF2 polypeptide which contains a conservative Herpes_UL16 domain. It was established that the polypeptide shows a close relationship with the Herpes UL16 tegument protein family and is extremely conserved among its homologues proteins encoded by UL16 genes. Multiple sequence alignments of the nucleic acid and amino acid sequence showed that the gene product of EBV BGLF2 contains a comparatively higher homology with the BGLF2-like proteins of the subfamily Gammaherpesvirinae than that of other subfamilies of the herpes virus. Moreover, the phylogenetic analyses suggested that EBV BGLF2 has a close genetic relationship with the member of Gammaherpesvirinae; in particular with the members of Cercopithecine herpesvirus 15 and Callitrichine herpesvirus 3. An antigen epitope analysis indicated that BGLF2 contains several potential B-cell epitopes. In addition, the secondary structure, as well as the three dimensional structure prediction suggests that BGLF2 consists of the both α-helix and β-strand. Besides, the subcellular localization prediction revealed that BGLF2 localizes in both nucleus and cytoplasm. CONCLUSIONS Illustrating the relevance of the molecular properties and genetic evolution of EBV, BGLF2 will offer the perspectives for further study on the role and mechanism of the BGLF2 in course of EBV infection. These works will also conduct our understanding of the EBV at the molecular level as well as enriching the herpesvirus database.
Collapse
Affiliation(s)
- Tao Chen
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Xinzao Town, Panyu, Guangzhou 511436, Guangdong, China
| | - Xingmei Zou
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Xinzao Town, Panyu, Guangzhou 511436, Guangdong, China
| | - Zuo Xu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Xinzao Town, Panyu, Guangzhou 511436, Guangdong, China
| | - Yuanfang Wang
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Xinzao Town, Panyu, Guangzhou 511436, Guangdong, China
| | - Ping Wang
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Xinzao Town, Panyu, Guangzhou 511436, Guangdong, China
| | - Hao Peng
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Xinzao Town, Panyu, Guangzhou 511436, Guangdong, China
| | - Delong Liu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Xinzao Town, Panyu, Guangzhou 511436, Guangdong, China
| | - Jinyu Lin
- The Third Clinical School of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou 510150, Guangdong, China
| | - Ruiyi Luo
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Xinzao Town, Panyu, Guangzhou 511436, Guangdong, China
| | - Yao Wang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Xinzao Town, Panyu, Guangzhou 511436, Guangdong, China
| | - Qiusan Chen
- The Third Clinical School of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou 510150, Guangdong, China
| | - Daixiong Chen
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Xinzao Town, Panyu, Guangzhou 511436, Guangdong, China
| | - Mingsheng Cai
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Xinzao Town, Panyu, Guangzhou 511436, Guangdong, China
| | - Meili Li
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Xinzao Town, Panyu, Guangzhou 511436, Guangdong, China
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang Dong Road, Haizhu District, Guangzhou 510260, Guangdong, China
| |
Collapse
|
27
|
Lowenstine LJ, McManamon R, Terio KA. Apes. PATHOLOGY OF WILDLIFE AND ZOO ANIMALS 2018. [PMCID: PMC7173580 DOI: 10.1016/b978-0-12-805306-5.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Smiley Evans T, Lowenstine LJ, Gilardi KV, Barry PA, Ssebide BJ, Kinani JF, Nizeyimana F, Noheri JB, Cranfield MR, Mudakikwa A, Goldstein T, Mazet JAK, Johnson CK. Mountain gorilla lymphocryptovirus has Epstein-Barr virus-like epidemiology and pathology in infants. Sci Rep 2017; 7:5352. [PMID: 28706209 PMCID: PMC5509654 DOI: 10.1038/s41598-017-04877-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/22/2017] [Indexed: 01/10/2023] Open
Abstract
Epstein-Barr virus (EBV) infects greater than 90% of humans, is recognized as a significant comorbidity with HIV/AIDS, and is an etiologic agent for some human cancers. The critically endangered mountain gorilla population was suspected of infection with an EBV-like virus based on serology and infant histopathology similar to pulmonary reactive lymphoid hyperplasia (PRLH), a condition associated with EBV in HIV-infected children. To further examine the presence of EBV or an EBV-like virus in mountain gorillas, we conducted the first population-wide survey of oral samples for an EBV-like virus in a nonhuman great ape. We discovered that mountain gorillas are widely infected (n = 143/332) with a specific strain of lymphocryptovirus 1 (GbbLCV-1). Fifty-two percent of infant mountain gorillas were orally shedding GbbLCV-1, suggesting primary infection during this stage of life, similar to what is seen in humans in less developed countries. We then identified GbbLCV-1 in post-mortem infant lung tissues demonstrating histopathological lesions consistent with PRLH, suggesting primary infection with GbbLCV-1 is associated with PRLH in infants. Together, our findings demonstrate that mountain gorilla's infection with GbbLCV-1 could provide valuable information for human disease in a natural great ape setting and have potential conservation implications in this critically endangered species.
Collapse
Affiliation(s)
- Tierra Smiley Evans
- Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| | - Linda J Lowenstine
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Kirsten V Gilardi
- Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Peter A Barry
- Center for Comparative Medicine, Department of Pathology and Laboratory Medicine, California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Benard J Ssebide
- Gorilla Doctors, Mountain Gorilla Veterinary Project, Inc., Kampala, Uganda
| | - Jean Felix Kinani
- One Health Approach for Conservation, Gorilla Health, Kigali, Rwanda
| | - Fred Nizeyimana
- Gorilla Doctors, Mountain Gorilla Veterinary Project, Inc., Kampala, Uganda
| | - Jean Bosco Noheri
- Gorilla Doctors, Mountain Gorilla Veterinary Project, Inc., Musanze, Rwanda
| | - Michael R Cranfield
- Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | | | - Tracey Goldstein
- Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Jonna A K Mazet
- Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Christine Kreuder Johnson
- Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| |
Collapse
|
29
|
't Hart BA, Dunham J, Faber BW, Laman JD, van Horssen J, Bauer J, Kap YS. A B Cell-Driven Autoimmune Pathway Leading to Pathological Hallmarks of Progressive Multiple Sclerosis in the Marmoset Experimental Autoimmune Encephalomyelitis Model. Front Immunol 2017; 8:804. [PMID: 28744286 PMCID: PMC5504154 DOI: 10.3389/fimmu.2017.00804] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
The absence of pathological hallmarks of progressive multiple sclerosis (MS) in commonly used rodent models of experimental autoimmune encephalomyelitis (EAE) hinders the development of adequate treatments for progressive disease. Work reviewed here shows that such hallmarks are present in the EAE model in marmoset monkeys (Callithrix jacchus). The minimal requirement for induction of progressive MS pathology is immunization with a synthetic peptide representing residues 34–56 from human myelin oligodendrocyte glycoprotein (MOG) formulated with a mineral oil [incomplete Freund’s adjuvant (IFA)]. Pathological aspects include demyelination of cortical gray matter with microglia activation, oxidative stress, and redistribution of iron. When the peptide is formulated in complete Freund’s adjuvant, which contains mycobacteria that relay strong activation signals to myeloid cells, oxidative damage pathways are strongly boosted leading to more intensive pathology. The proven absence of immune potentiating danger signals in the MOG34–56/IFA formulation implies that a narrow population of antigen-experienced T cells present in the monkey’s immune repertoire is activated. This novel pathway involves the interplay of lymphocryptovirus-infected B cells with MHC class Ib/Caja-E restricted CD8+ CD56+ cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands.,Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands
| | - Jordon Dunham
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands.,Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands
| | - Bart W Faber
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Jon D Laman
- Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands.,MS Center Noord-Nederland, Groningen, Netherlands
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Jan Bauer
- Department of Neuroimmunology, Brain Research Institute, Medical University Vienna, Vienna, Austria
| | - Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands
| |
Collapse
|
30
|
Schönrich G, Abdelaziz MO, Raftery MJ. Herpesviral capture of immunomodulatory host genes. Virus Genes 2017; 53:762-773. [PMID: 28451945 DOI: 10.1007/s11262-017-1460-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/18/2017] [Indexed: 12/27/2022]
Abstract
Herpesviruses have acquired numerous genes from their hosts. Although these homologs are not essential for viral replication, they often have important immunomodulatory functions that ensure viral persistence in the host. Some of these viral molecules are called virokines as they mimic cellular cytokines of their host such as interleukin-10 (cIL-10). In recent years, many viral homologs of IL-10 (vIL-10s) have been discovered in the genome of members of the order Herpesvirales. For some, gene and protein structure as well as biological activity and potential use in the clinical context have been explored. Besides virokines, herpesviruses have also captured genes encoding membrane-bound host immunomodulatory proteins such as major histocompatibility complex (MHC) molecules. These viral MHC mimics also retain many of the functions of the cellular genes, in particular directly or indirectly modulating the activity of natural killer cells. The mechanisms underlying capture of cellular genes by large DNA viruses are still enigmatic. In this review, we provide an update of the advances in the field of herpesviral gene piracy and discuss possible scenarios that could explain how the gene transfer from host to viral genome was achieved.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Mohammed O Abdelaziz
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin J Raftery
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
31
|
Abstract
The Epstein-Barr virus (EBV) is a B-lymphotropic gamma herpes virus associated with a number of malignancies. Most EBV-related cancers present complex medical management challenges; thus it has been essential to develop preclinical in vivo models allowing for the study of pathogenesis, prevention, and treatment of these diseases. Early in vivo models used nonhuman primates; however, such models were limited by the inability of EBV to achieve viral latency, availability, and cost. Immunodeficient mouse strains emerged as efficient models that allow for engraftment of human mononuclear cells and controlled evaluation of EBV-driven lymphoproliferative disease (EBV-LPD). By using highly immunodeficient strains of mice such as severe combined immune deficiency (SCID) and NOD/LtSz-scid ILrg(-/-)(NOG) mice, investigators have developed efficient platforms for evaluating pathogenesis of benign (HLH) and malignant (EBV-LPD) diseases associated with EBV. Humanized murine chimeric models have been essential tools for evaluating preventive strategies with vaccine and adoptive cellular approaches, as well as development of experimental therapeutic strategies. Manipulation of the human immune cells before engraftment or mutation of viral lytic and latent genes has enhanced our understanding of the oncogenic nature of EBV and the complexity of human immune responses to EBV. In this review, we discuss how the EBV murine models have evolved to become essential tools for studying the virology of EBV as it relates to human EBV-LPD pathogenesis, the immunobiology of innate and adaptive responses, and limitations of these models.
Collapse
Affiliation(s)
- Elshafa Hassan Ahmed
- Elshafa Hassan Ahmed, DVM, MPH, is a postdoctoral fellow at the Comprehensive Cancer Center and graduate fellow in the Comparative and Veterinary Medicine Program at The Ohio State University in Columbus, Ohio. Robert A. Baiocchi, MD, PhD, is an associate professor in the Division of Hematology, Department of Internal Medicine at The Ohio State University in Columbus, Ohio
| | - Robert A Baiocchi
- Elshafa Hassan Ahmed, DVM, MPH, is a postdoctoral fellow at the Comprehensive Cancer Center and graduate fellow in the Comparative and Veterinary Medicine Program at The Ohio State University in Columbus, Ohio. Robert A. Baiocchi, MD, PhD, is an associate professor in the Division of Hematology, Department of Internal Medicine at The Ohio State University in Columbus, Ohio
| |
Collapse
|
32
|
't Hart BA, Kap YS. An essential role of virus-infected B cells in the marmoset experimental autoimmune encephalomyelitis model. Mult Scler J Exp Transl Clin 2017; 3:2055217317690184. [PMID: 28607749 PMCID: PMC5466146 DOI: 10.1177/2055217317690184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022] Open
Abstract
Infection with Epstein–Barr virus (EBV) has been associated with an enhanced risk of genetically susceptible individuals to develop multiple sclerosis (MS). However, an explanation for the contrast between the high EBV infection prevalence (60–90%) and the low MS prevalence (0.1%) eludes us. Here we propose a new concept for the EBV–MS association developed in the experimental autoimmune encephalomyelitis model in marmoset monkeys, which are naturally infected with the EBV-related γ1-herpesvirus CalHV3. The data indicate that the infection of B cells with a γ1-herpesvirus endows them with the capacity to activate auto-aggressive CD8+ T cells specific for myelin oligodendrocyte glycoprotein.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|
33
|
Tschochner M, Leary S, Cooper D, Strautins K, Chopra A, Clark H, Choo L, Dunn D, James I, Carroll WM, Kermode AG, Nolan D. Identifying Patient-Specific Epstein-Barr Nuclear Antigen-1 Genetic Variation and Potential Autoreactive Targets Relevant to Multiple Sclerosis Pathogenesis. PLoS One 2016; 11:e0147567. [PMID: 26849221 PMCID: PMC4744032 DOI: 10.1371/journal.pone.0147567] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/05/2016] [Indexed: 12/15/2022] Open
Abstract
Background Epstein-Barr virus (EBV) infection represents a major environmental risk factor for multiple sclerosis (MS), with evidence of selective expansion of Epstein-Barr Nuclear Antigen-1 (EBNA1)-specific CD4+ T cells that cross-recognize MS-associated myelin antigens in MS patients. HLA-DRB1*15-restricted antigen presentation also appears to determine susceptibility given its role as a dominant risk allele. In this study, we have utilised standard and next-generation sequencing techniques to investigate EBNA-1 sequence variation and its relationship to HLA-DR15 binding affinity, as well as examining potential cross-reactive immune targets within the central nervous system proteome. Methods Sanger sequencing was performed on DNA isolated from peripheral blood samples from 73 Western Australian MS cases, without requirement for primary culture, with additional FLX 454 Roche sequencing in 23 samples to identify low-frequency variants. Patient-derived viral sequences were used to predict HLA-DRB1*1501 epitopes (NetMHCII, NetMHCIIpan) and candidates were evaluated for cross recognition with human brain proteins. Results EBNA-1 sequence variation was limited, with no evidence of multiple viral strains and only low levels of variation identified by FLX technology (8.3% nucleotide positions at a 1% cut-off). In silico epitope mapping revealed two known HLA-DRB1*1501-restricted epitopes (‘AEG’: aa 481–496 and ‘MVF’: aa 562–577), and two putative epitopes between positions 502–543. We identified potential cross-reactive targets involving a number of major myelin antigens including experimentally confirmed HLA-DRB1*15-restricted epitopes as well as novel candidate antigens within myelin and paranodal assembly proteins that may be relevant to MS pathogenesis. Conclusions This study demonstrates the feasibility of obtaining autologous EBNA-1 sequences directly from buffy coat samples, and confirms divergence of these sequences from standard laboratory strains. This approach has identified a number of immunogenic regions of EBNA-1 as well as known and novel targets for autoreactive HLA-DRB1*15-restricted T cells within the central nervous system that could arise as a result of cross-reactivity with EBNA-1-specific immune responses.
Collapse
Affiliation(s)
- Monika Tschochner
- Institute for Immunology & Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- * E-mail:
| | - Shay Leary
- Institute for Immunology & Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Don Cooper
- Institute for Immunology & Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Kaija Strautins
- Institute for Immunology & Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Abha Chopra
- Institute for Immunology & Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Hayley Clark
- Institute for Immunology & Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Linda Choo
- Institute for Immunology & Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - David Dunn
- Institute for Immunology & Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Ian James
- Institute for Immunology & Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - William M. Carroll
- Department of Neurology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, Australian Neuromuscular Research Institute, Nedlands, Western Australia, Australia
| | - Allan G. Kermode
- Institute for Immunology & Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Department of Neurology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, Australian Neuromuscular Research Institute, Nedlands, Western Australia, Australia
| | - David Nolan
- Institute for Immunology & Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
34
|
Abstract
Epstein-Barr virus (EBV) orthologues from non-human primates (NHPs) have been studied for nearly as long as EBV itself. Cross-reactive sera and DNA hybridization studies provided the first glimpses of the closely related herpesviruses that belonged to the same gamma-1 herpesvirus, or lymphocryptovirus, genus, as EBV. Over the years, detailed molecular and sequence analyses of LCVs that infect humans and other NHPs revealed similar colinear genome structures and homologous viral proteins expressed during latent and lytic infection. Despite these similarities, experimental infection of NHPs with EBV did not result in acute symptoms or persistent infection as observed in humans, suggesting some degree of host species restriction. Genome sequencing and a molecular clone of an LCV isolate from naturally infected rhesus macaques combined with domestic colonies of LCV-naïve rhesus macaques have opened the door to a unique experimental animal model that accurately reproduces the normal transmission, acute viremia, lifelong persistence, and immune responses found in EBV-infected humans. This chapter will summarize the advances made over the last 50 years in our understanding of LCVs that naturally infect both Old and New World NHPs, the recent, groundbreaking developments in the use of rhesus macaques as an animal model for EBV infection, and how NHP LCVs and the rhLCV animal model can advance future EBV research and the development of an EBV vaccine.
Collapse
Affiliation(s)
- Janine Mühe
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115
- Department of Molecular Biology and Immunobiology, Harvard Medical School, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115
| | - Fred Wang
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115.
- Department of Molecular Biology and Immunobiology, Harvard Medical School, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115.
- Infectious Diseases Division, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, USA.
| |
Collapse
|
35
|
Kamperschroer C, Gosink MM, Kumpf SW, O'Donnell LM, Tartaro KR. The genomic sequence of lymphocryptovirus from cynomolgus macaque. Virology 2015; 488:28-36. [PMID: 26590795 DOI: 10.1016/j.virol.2015.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/27/2014] [Accepted: 10/27/2015] [Indexed: 12/12/2022]
Abstract
Lymphocryptoviruses such as Epstein-Barr virus (EBV) cause persistent infections in human and non-human primates, and suppression of the immune system can increase the risk of lymphocryptovirus (LCV)-associated tumor development in both human and non-human primates. To enable LCV infection as a non-clinical model to study effects of therapeutics on EBV immunity, we determined the genomic DNA sequence of the LCV from cynomolgus macaque, a species commonly used for non-clinical testing. Comparison to rhesus macaque LCV and human EBV sequences indicates that LCV from the cynomolgus macaque has the same genomic arrangement and a high degree of similarity in most genes, especially with rhesus macaque LCV. Genes showing lower similarity were those encoding proteins involved in latency and/or tumor promotion or immune evasion. The genomic sequence of LCV from cynomolgus macaque should aid the development of non-clinical tools for identifying therapeutics that impact LCV immunity and carry potential lymphoma risk.
Collapse
Affiliation(s)
- Cris Kamperschroer
- Drug Safety Research and Development, Pfizer Global Research and Development, Pfizer, Inc., Groton, CT, USA.
| | - Mark M Gosink
- Drug Safety Research and Development, Pfizer Global Research and Development, Pfizer, Inc., Groton, CT, USA
| | - Steven W Kumpf
- Drug Safety Research and Development, Pfizer Global Research and Development, Pfizer, Inc., Groton, CT, USA
| | - Lynn M O'Donnell
- Drug Safety Research and Development, Pfizer Global Research and Development, Pfizer, Inc., Groton, CT, USA
| | - Karrie R Tartaro
- Drug Safety Research and Development, Pfizer Global Research and Development, Pfizer, Inc., Groton, CT, USA
| |
Collapse
|
36
|
De Nys HM, Madinda NF, Merkel K, Robbins M, Boesch C, Leendertz FH, Calvignac-Spencer S. A cautionary note on fecal sampling and molecular epidemiology in predatory wild great apes. Am J Primatol 2015; 77:833-40. [PMID: 26031302 DOI: 10.1002/ajp.22418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/18/2015] [Accepted: 03/22/2015] [Indexed: 11/06/2022]
Abstract
Fecal samples are an important source of information on parasites (viruses, prokaryotes, or eukaryotes) infecting wild great apes. Molecular analysis of fecal samples has already been used for deciphering the origins of major human pathogens such as HIV-1 or Plasmodium falciparum. However, for apes that hunt (chimpanzees and bonobos), detection of parasite nucleic acids may reflect either true infection of the host of interest or ingestion of an infected prey, for example, another non-human primate. To determine the potential magnitude of this issue, we estimated the prevalence of prey DNA in fecal samples obtained from two wild chimpanzee communities. We observed values >15%, which are higher than or close to the fecal detection rates of many great ape parasites. Contamination of fecal samples with parasite DNA from dietary origin may therefore occasionally impact non-invasive epidemiological studies. This problem can be addressed (at least partially) by monitoring the presence of prey DNA.
Collapse
Affiliation(s)
- Hélène Marie De Nys
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Nordufer, Berlin, Germany.,Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz, Leipzig, Germany.,Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Nadège Freda Madinda
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Nordufer, Berlin, Germany.,Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz, Leipzig, Germany.,Institut de Recherches en Ecologie Tropicale, Libreville, Gabon
| | - Kevin Merkel
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Nordufer, Berlin, Germany
| | - Martha Robbins
- Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz, Leipzig, Germany
| | - Christophe Boesch
- Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz, Leipzig, Germany
| | | | | |
Collapse
|
37
|
Detection of a novel herpesvirus from bats in the Philippines. Virus Genes 2015; 51:136-9. [PMID: 25956292 DOI: 10.1007/s11262-015-1197-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/09/2015] [Indexed: 01/24/2023]
Abstract
Bats are natural hosts of many zoonotic viruses. Monitoring bat viruses is important to detect novel bat-borne infectious diseases. In this study, next generation sequencing techniques and conventional PCR were used to analyze intestine, lung, and blood clot samples collected from wild bats captured at three locations in Davao region, in the Philippines in 2012. Different viral genes belonging to the Retroviridae and Herpesviridae families were identified using next generation sequencing. The existence of herpesvirus in the samples was confirmed by PCR using herpesvirus consensus primers. The nucleotide sequences of the resulting PCR amplicons were 166-bp. Further phylogenetic analysis identified that the virus from which this nucleotide sequence was obtained belonged to the Gammaherpesvirinae subfamily. PCR using primers specific to the nucleotide sequence obtained revealed that the infection rate among the captured bats was 30 %. In this study, we present the partial genome of a novel gammaherpesvirus detected from wild bats. Our observations also indicate that this herpesvirus may be widely distributed in bat populations in Davao region.
Collapse
|
38
|
The EBNA3 Family: Two Oncoproteins and a Tumour Suppressor that Are Central to the Biology of EBV in B Cells. Curr Top Microbiol Immunol 2015; 391:61-117. [PMID: 26428372 DOI: 10.1007/978-3-319-22834-1_3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus nuclear antigens EBNA3A , EBNA3B and EBNA3C are a family of three large latency-associated proteins expressed in B cells induced to proliferate by the virus. Together with the other nuclear antigens (EBNA-LP, EBNA2 and EBNA1), they are expressed from a polycistronic transcription unit that is probably unique to B cells. However, compared with the other EBNAs, hitherto the EBNA3 proteins were relatively neglected and their roles in EBV biology rather poorly understood. In recent years, powerful new technologies have been used to show that these proteins are central to the latency of EBV in B cells, playing major roles in reprogramming the expression of host genes affecting cell proliferation, survival, differentiation and immune surveillance. This indicates that the EBNA3s are critical in EBV persistence in the B cell system and in modulating B cell lymphomagenesis. EBNA3A and EBNA3C are necessary for the efficient proliferation of EBV-infected B cells because they target important tumour suppressor pathways--so operationally they are considered oncoproteins. In contrast, it is emerging that EBNA3B restrains the oncogenic capacity of EBV, so it can be considered a tumour suppressor--to our knowledge the first to be described in a tumour virus. Here, we provide a general overview of the EBNA3 genes and proteins. In particular, we describe recent research that has highlighted the complexity of their functional interactions with each other, with specific sites on the human genome and with the molecular machinery that controls transcription and epigenetic states of diverse host genes.
Collapse
|
39
|
Identification and functional comparison of seven-transmembrane G-protein-coupled BILF1 receptors in recently discovered nonhuman primate lymphocryptoviruses. J Virol 2014; 89:2253-67. [PMID: 25505061 DOI: 10.1128/jvi.02716-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Coevolution of herpesviruses with their respective host has resulted in a delicate balance between virus-encoded immune evasion mechanisms and host antiviral immunity. BILF1 encoded by human Epstein-Barr virus (EBV) is a 7-transmembrane (7TM) G-protein-coupled receptor (GPCR) with multiple immunomodulatory functions, including attenuation of PKR phosphorylation, activation of G-protein signaling, and downregulation of major histocompatibility complex (MHC) class I surface expression. In this study, we explored the evolutionary and functional relationships between BILF1 receptor family members from EBV and 12 previously uncharacterized nonhuman primate (NHP) lymphocryptoviruses (LCVs). Phylogenetic analysis defined 3 BILF1 clades, corresponding to LCVs of New World monkeys (clade A) or Old World monkeys and great apes (clades B and C). Common functional properties were suggested by a high degree of sequence conservation in functionally important regions of the BILF1 molecules. A subset of BILF1 receptors from EBV and LCVs from NHPs (chimpanzee, orangutan, marmoset, and siamang) were selected for multifunctional analysis. All receptors exhibited constitutive signaling activity via G protein Gαi and induced activation of the NF-κB transcription factor. In contrast, only 3 of 5 were able to activate NFAT (nuclear factor of activated T cells); chimpanzee and orangutan BILF1 molecules were unable to activate NFAT. Similarly, although all receptors were internalized, BILF1 from the chimpanzee and orangutan displayed an altered cellular localization pattern with predominant cell surface expression. This study shows how biochemical characterization of functionally important orthologous viral proteins can be used to complement phylogenetic analysis to provide further insight into diverse microbial evolutionary relationships and immune evasion function. IMPORTANCE Epstein-Barr virus (EBV), known as an oncovirus, is the only human herpesvirus in the genus Lymphocryptovirus (LCV). EBV uses multiple strategies to hijack infected host cells, establish persistent infection in B cells, and evade antiviral immune responses. As part of EBV's immune evasion strategy, the virus encodes a multifunctional 7-transmembrane (7TM) G-protein-coupled receptor (GPCR), EBV BILF1. In addition to multiple immune evasion-associated functions, EBV BILF1 has transforming properties, which are linked to its high constitutive activity. We identified BILF1 receptor orthologues in 12 previously uncharacterized LCVs from nonhuman primates (NHPs) of Old and New World origin. As 7TM receptors are excellent drug targets, our unique insight into the molecular mechanism of action of the BILF1 family and into the evolution of primate LCVs may enable validation of EBV BILF1 as a drug target for EBV-mediated diseases, as well as facilitating the design of drugs targeting EBV BILF1.
Collapse
|
40
|
Comparative genome analysis of four elephant endotheliotropic herpesviruses, EEHV3, EEHV4, EEHV5, and EEHV6, from cases of hemorrhagic disease or viremia. J Virol 2014; 88:13547-69. [PMID: 25231309 DOI: 10.1128/jvi.01675-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The genomes of three types of novel endotheliotropic herpesviruses (elephant endotheliotropic herpesvirus 1A [EEHV1A], EEHV1B, and EEHV2) associated with lethal hemorrhagic disease in Asian elephants have been previously well characterized and assigned to a new Proboscivirus genus. Here we have generated 112 kb of DNA sequence data from segments of four more types of EEHV by direct targeted PCR from blood samples or necropsy tissue samples from six viremic elephants. Comparative phylogenetic analysis of nearly 30 protein-encoding genes of EEHV5 and EEHV6 show that they diverge uniformly by nearly 20% from their closest relatives, EEHV2 and EEHV1A, respectively, and are likely to have similar overall gene content and genome organization. In contrast, seven EEHV3 and EEHV4 genes analyzed differ from those of all other EEHVs by 37% and have a G+C content of 63% compared to just 42% for the others. Three strains of EEHV5 analyzed clustered into two partially chimeric subgroups EEHV5A and EEHV5B that diverge by 19% within three small noncontiguous segments totaling 6.2 kb. We conclude that all six EEHV types should be designated as independent species within a proposed new fourth Deltaherpesvirinae subfamily of mammalian herpesviruses. These virus types likely initially diverged close to 100 million years ago when the ancestors of modern elephants split from all other placental mammals and then evolved into two major branches with high- or low-G+C content about 35 million years ago. Later additional branching events subsequently generated three paired sister taxon lineages of which EEHV1 plus EEHV6, EEHV5 plus EEHV2, and EEHV4 plus EEHV3 may represent Asian and African elephant versions, respectively. IMPORTANCE One of the factors threatening the long-term survival of endangered Asian elephants in both wild range countries and in captive breeding populations in zoos is a highly lethal hemorrhagic herpesvirus disease that has killed at least 70 young Asian elephants worldwide. The genomes of the first three types of EEHVs (or probosciviruses) identified have been partially characterized in the preceding accompanying paper (L. K. Richman, J.-C. Zong, E. M. Latimer, J. Lock, R. C. Fleischer, S. Y. Heaggans, and G. S. Hayward, J. Virol. 88:13523-13546, 2014, http://dx.doi.org/10.1128/JVI.01673-14). Here we have used PCR DNA sequence analysis from multiple segments of DNA amplified directly from blood or necropsy tissue samples of six more selected cases of hemorrhagic disease to partially characterize four other types of EEHVs from either Asian or African elephants. We propose that all six types and two chimeric subtypes of EEHV belong to multiple lineages of both AT-rich and GC-rich branches within a new subfamily to be named the Deltaherpesvirinae, which evolved separately from all other mammalian herpesviruses about100 million years ago.
Collapse
|
41
|
Keita MB, Hamad I, Bittar F. Looking in apes as a source of human pathogens. Microb Pathog 2014; 77:149-54. [PMID: 25220240 DOI: 10.1016/j.micpath.2014.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/05/2014] [Indexed: 12/27/2022]
Abstract
Because of the close genetic relatedness between apes and humans, apes are susceptible to many human infectious agents and can serve as carriers of these pathogens. Consequently, they present a serious health hazard to humans. Moreover, many emerging infectious diseases originate in wildlife and continue to threaten human populations, especially vector-borne diseases described in great apes, such as malaria and rickettsiosis. These wild primates may be permanent reservoirs and important sources of human pathogens. In this special issue, we report that apes, including chimpanzees (Pan troglodytes), bonobos (Pan paniscus), gorillas (Gorilla gorilla and Gorilla beringei), orangutans (Pongo pygmaeus and Pongo abelii), gibbons (Hylobates spp., Hoolock spp. and Nomascus spp) and siamangs (Symphalangus syndactylus syndactylus and Symphalangus continentis), have many bacterial, viral, fungal and parasitic species that are capable of infecting humans. Serious measures should be adopted in tropical forests and sub-tropical areas where habitat overlaps are frequent to survey and prevent infectious diseases from spreading from apes to people.
Collapse
Affiliation(s)
- Mamadou B Keita
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France
| | - Ibrahim Hamad
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France
| | - Fadi Bittar
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France.
| |
Collapse
|
42
|
African great apes are naturally infected with roseoloviruses closely related to human herpesvirus 7. J Virol 2014; 88:13212-20. [PMID: 25187544 DOI: 10.1128/jvi.01490-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Primates are naturally infected with herpesviruses. During the last 15 years, the search for homologues of human herpesviruses in nonhuman primates allowed the identification of numerous viruses belonging to the different herpesvirus subfamilies and genera. No simian homologue of human herpesvirus 7 (HHV7) has been reported to date. To investigate the putative existence of HHV7-like viruses in African great apes, we applied the consensus-degenerate hybrid oligonucleotide primers (CODEHOP) program-mediated PCR strategy to blood DNA samples from the four common chimpanzee subspecies (Pan troglodytes verus, P. t. ellioti, P. t. troglodytes, and P. t. schweinfurthii), pygmy chimpanzees (Pan paniscus), as well as lowland gorillas (Gorilla gorilla gorilla). This study led to the discovery of a novel roseolovirus close to HHV7 in each of these nonhuman primate species and subspecies. Generation of the partial glycoprotein B (1,111-bp) and full-length DNA polymerase (3,036/3,042-bp) gene sequences allowed the deciphering of their evolutionary relationships. Phylogenetic analyses revealed that HHV7 and its African great ape homologues formed well-supported monophyletic lineages whose topological resemblance to the host phylogeny is suggestive of virus-host codivergence. Notably, the evolutionary branching points that separate HHV7 from African great ape herpesvirus 7 are remarkably congruent with the dates of divergence of their hosts. Our study shows that African great apes are hosts of human herpesvirus homologues, including HHV7 homologues, and that the latter, like other DNA viruses that establish persistent infections, have cospeciated with their hosts. IMPORTANCE Human herpesviruses are known to possess simian homologues. However, surprisingly, none has been identified to date for human herpesvirus 7 (HHV7). This study is the first to describe simian homologues of HHV7. The extensive search performed on almost all African great ape species and subspecies, i.e., common chimpanzees of the four subspecies, bonobos, and lowland gorillas, has allowed characterization of a specific virus in each. Genetic characterization of the partial glycoprotein B and full-length DNA polymerase gene sequences, followed by their phylogenetic analysis and estimation of divergence times, has shed light on the evolutionary relationships of these viruses. In this respect, we conclusively demonstrate the cospeciation between these new viruses and their hosts and report cases of cross-species transmission between two common chimpanzee subspecies in both directions.
Collapse
|
43
|
Münz C. Viral infections in mice with reconstituted human immune system components. Immunol Lett 2014; 161:118-24. [PMID: 24953718 DOI: 10.1016/j.imlet.2014.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/14/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Pathogenic viruses are often difficult to study due to their exclusive tropism for humans. The development of mice with human immune system components opens the possibility to study those human pathogens with a tropism for the human hematopoietic lineage in vivo. These include HCMV, EBV, KSHV, HIV, HTLV-1, dengue virus and JC virus. Furthermore, some human pathogens, like HSV-2, adenovirus, HCV, HBV and influenza A virus, with an additional tropism for somatic mouse tissues or for additional transplanted human tissues, mainly liver, have been explored in these models. The cellular tropism of these viruses, their associated diseases and primarily cell-mediated immune responses to these viral infections will be discussed in this review. Already some exciting information has been gained from these novel chimeric in vivo models and future avenues to gain more insights into the pathology, but also potential therapies, will be outlined. Although the respective in vivo models of human immune responses can still be significantly improved, they already provide preclinical systems for in vivo studies of important viral pathogens of humans.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Switzerland.
| |
Collapse
|
44
|
Chatterjee B, Leung CS, Münz C. Animal models of Epstein Barr virus infection. J Immunol Methods 2014; 410:80-7. [PMID: 24815603 DOI: 10.1016/j.jim.2014.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/01/2014] [Accepted: 04/21/2014] [Indexed: 11/25/2022]
Abstract
Epstein Barr virus (EBV) was the first human tumor virus to be identified. Despite 50years of research on this oncogenic virus, no therapeutic or prophylactic vaccine is available against this pathogen. In part, the development of such a vaccine is hampered by the lack of in vivo models for EBV infection and immune control. However, with the advent of mice with reconstituted human immune system components (HIS mice), certain aspects of EBV associated diseases and immune responses can be modeled in vivo. In this review, we will discuss the insights that can be gained from these experiments, and how immune system components can be manipulated to interrogate their function during EBV infection. Finally, we will compare EBV immunobiology in HIS mice to infection by EBV-related viruses in monkeys, and we will outline the strengths and weaknesses of these two in vivo models of EBV infection. Both of these models show great promise as a platform for preclinical EBV vaccine testing.
Collapse
Affiliation(s)
- Bithi Chatterjee
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Carol Sze Leung
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Switzerland.
| |
Collapse
|
45
|
Modelling the structure of full-length Epstein–Barr virus nuclear antigen 1. Virus Genes 2014; 49:358-72. [DOI: 10.1007/s11262-014-1101-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/27/2014] [Indexed: 12/27/2022]
|
46
|
The first endogenous herpesvirus, identified in the tarsier genome, and novel sequences from primate rhadinoviruses and lymphocryptoviruses. PLoS Genet 2014; 10:e1004332. [PMID: 24945689 PMCID: PMC4063692 DOI: 10.1371/journal.pgen.1004332] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/07/2014] [Indexed: 11/19/2022] Open
Abstract
Herpesviridae is a diverse family of large and complex pathogens whose genomes are extremely difficult to sequence. This is particularly true for clinical samples, and if the virus, host, or both genomes are being sequenced for the first time. Although herpesviruses are known to occasionally integrate in host genomes, and can also be inherited in a Mendelian fashion, they are notably absent from the genomic fossil record comprised of endogenous viral elements (EVEs). Here, we combine paleovirological and metagenomic approaches to both explore the constituent viral diversity of mammalian genomes and search for endogenous herpesviruses. We describe the first endogenous herpesvirus from the genome of the Philippine tarsier, belonging to the Roseolovirus genus, and characterize its highly defective genome that is integrated and flanked by unambiguous host DNA. From a draft assembly of the aye-aye genome, we use bioinformatic tools to reveal over 100,000 bp of a novel rhadinovirus that is the first lemur gammaherpesvirus, closely related to Kaposi's sarcoma-associated virus. We also identify 58 genes of Pan paniscus lymphocryptovirus 1, the bonobo equivalent of human Epstein-Barr virus. For each of the viruses, we postulate gene function via comparative analysis to known viral relatives. Most notably, the evidence from gene content and phylogenetics suggests that the aye-aye sequences represent the most basal known rhadinovirus, and indicates that tumorigenic herpesviruses have been infecting primates since their emergence in the late Cretaceous. Overall, these data show that a genomic fossil record of herpesviruses exists despite their extremely large genomes, and expands the known diversity of Herpesviridae, which will aid the characterization of pathogenesis. Our analytical approach illustrates the benefit of intersecting evolutionary approaches with metagenomics, genetics and paleovirology. Herpesviridae is a family of DNA viruses that have characteristically large and complex genomes. This defining feature is also responsible for bioinformatic challenges that complicate herpesvirus genomics, and why an endogenous herpesvirus remains elusive. Given that several species of herpesvirus are clinically relevant to humans, there is a pressing demand for techniques capable of generating and managing large quantities of herpesvirus genome data. This is coupled with a need to explore herpesvirus diversity in order to understand pathogenesis within an evolutionary context. Lessons from the study of ancient viral integrations have also highlighted the need to include information offered by paleoviruses. Using perspectives from paleovirology and metagenomics, we identify three herpesviruses within the genome data of their primate hosts, including the first endogenous herpesvirus. All three viruses are closely related to important human pathogens and two of them are entirely new species. Both comparative molecular biology and evolutionary analysis were applied to examine our results for their clinical relevance. Furthermore, we demonstrate how this analytical approach was also used for the data collection itself, by treating nucleotide databases in their entirety as a single metagenomic resource.
Collapse
|
47
|
Harper KN, Armelagos GJ. Genomics, the origins of agriculture, and our changing microbe-scape: time to revisit some old tales and tell some new ones. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 152 Suppl 57:135-52. [PMID: 24249593 PMCID: PMC7159788 DOI: 10.1002/ajpa.22396] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Though agriculture is often viewed as one of humanity's crowning achievements, skeletal evidence indicates that dependence on domesticated plants and animals was accompanied by an increase in infectious disease. Scientists have proposed that many important infections emerged in the period following the advent of agriculture, as a result of newly dense populations and novel proximity to domestic animals that served as reservoirs for novel pathogens. Here, we review genomic evidence regarding pathogen origins, analyzing these data using the epidemiological transition framework. Genetic information has forced us to reconsider how and when many important pathogens emerged; it appears that a number of infections thought to result from contact with domesticated animals arose much earlier than agriculture was adopted. We also consider the broader effect of agriculture upon the microbiome, exploring potential consequences for human health. We end by discussing the changes in the human microbe-scape we are likely to see in the future.
Collapse
Affiliation(s)
- Kristin N Harper
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032
| | | |
Collapse
|
48
|
Next-generation sequence analysis of the genome of RFHVMn, the macaque homolog of Kaposi's sarcoma (KS)-associated herpesvirus, from a KS-like tumor of a pig-tailed macaque. J Virol 2013; 87:13676-93. [PMID: 24109218 DOI: 10.1128/jvi.02331-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete sequence of retroperitoneal fibromatosis-associated herpesvirus Macaca nemestrina (RFHVMn), the pig-tailed macaque homolog of Kaposi's sarcoma-associated herpesvirus (KSHV), was determined by next-generation sequence analysis of a Kaposi's sarcoma (KS)-like macaque tumor. Colinearity of genes was observed with the KSHV genome, and the core herpesvirus genes had strong sequence homology to the corresponding KSHV genes. RFHVMn lacked homologs of open reading frame 11 (ORF11) and KSHV ORFs K5 and K6, which appear to have been generated by duplication of ORFs K3 and K4 after the divergence of KSHV and RFHV. RFHVMn contained positional homologs of all other unique KSHV genes, although some showed limited sequence similarity. RFHVMn contained a number of candidate microRNA genes. Although there was little sequence similarity with KSHV microRNAs, one candidate contained the same seed sequence as the positional homolog, kshv-miR-K12-10a, suggesting functional overlap. RNA transcript splicing was highly conserved between RFHVMn and KSHV, and strong sequence conservation was noted in specific promoters and putative origins of replication, predicting important functional similarities. Sequence comparisons indicated that RFHVMn and KSHV developed in long-term synchrony with the evolution of their hosts, and both viruses phylogenetically group within the RV1 lineage of Old World primate rhadinoviruses. RFHVMn is the closest homolog of KSHV to be completely sequenced and the first sequenced RV1 rhadinovirus homolog of KSHV from a nonhuman Old World primate. The strong genetic and sequence similarity between RFHVMn and KSHV, coupled with similarities in biology and pathology, demonstrate that RFHVMn infection in macaques offers an important and relevant model for the study of KSHV in humans.
Collapse
|
49
|
Moss WN, Steitz JA. Genome-wide analyses of Epstein-Barr virus reveal conserved RNA structures and a novel stable intronic sequence RNA. BMC Genomics 2013; 14:543. [PMID: 23937650 PMCID: PMC3751371 DOI: 10.1186/1471-2164-14-543] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/07/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a human herpesvirus implicated in cancer and autoimmune disorders. Little is known concerning the roles of RNA structure in this important human pathogen. This study provides the first comprehensive genome-wide survey of RNA and RNA structure in EBV. RESULTS Novel EBV RNAs and RNA structures were identified by computational modeling and RNA-Seq analyses of EBV. Scans of the genomic sequences of four EBV strains (EBV-1, EBV-2, GD1, and GD2) and of the closely related Macacine herpesvirus 4 using the RNAz program discovered 265 regions with high probability of forming conserved RNA structures. Secondary structure models are proposed for these regions based on a combination of free energy minimization and comparative sequence analysis. The analysis of RNA-Seq data uncovered the first observation of a stable intronic sequence RNA (sisRNA) in EBV. The abundance of this sisRNA rivals that of the well-known and highly expressed EBV-encoded non-coding RNAs (EBERs). CONCLUSION This work identifies regions of the EBV genome likely to generate functional RNAs and RNA structures, provides structural models for these regions, and discusses potential functions suggested by the modeled structures. Enhanced understanding of the EBV transcriptome will guide future experimental analyses of the discovered RNAs and RNA structures.
Collapse
Affiliation(s)
- Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
50
|
Absence of frequent herpesvirus transmission in a nonhuman primate predator-prey system in the wild. J Virol 2013; 87:10651-9. [PMID: 23885068 DOI: 10.1128/jvi.01104-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emergence of viruses into the human population by transmission from nonhuman primates (NHPs) represents a serious potential threat to human health that is primarily associated with the increased bushmeat trade. Transmission of RNA viruses across primate species appears to be relatively frequent. In contrast, DNA viruses appear to be largely host specific, suggesting low transmission potential. Herein, we use a primate predator-prey system to study the risk of herpesvirus transmission between different primate species in the wild. The system was comprised of western chimpanzees (Pan troglodytes verus) and their primary (western red colobus, Piliocolobus badius badius) and secondary (black-and-white colobus, Colobus polykomos) prey monkey species. NHP species were frequently observed to be coinfected with multiple beta- and gammaherpesviruses (including new cytomegalo- and rhadinoviruses). However, despite frequent exposure of chimpanzees to blood, organs, and bones of their herpesvirus-infected monkey prey, there was no evidence for cross-species herpesvirus transmission. These findings suggest that interspecies transmission of NHP beta- and gammaherpesviruses is, at most, a rare event in the wild.
Collapse
|