1
|
Marín-Moreno A, Reine F, Herzog L, Aron N, Jaffrézic F, Vilotte JL, Rezaei H, Andréoletti O, Martin D, Béringue V. Assessment of the Zoonotic Potential of Atypical Scrapie Prions in Humanized Mice Reveals Rare Phenotypic Convergence but Not Identity With Sporadic Creutzfeldt-Jakob Disease Prions. J Infect Dis 2024; 230:161-171. [PMID: 39052723 DOI: 10.1093/infdis/jiae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Atypical/Nor98 scrapie (AS) is an idiopathic infectious prion disease affecting sheep and goats. Recent findings suggest that zoonotic prions from classical bovine spongiform encephalopathy (C-BSE) may copropagate with atypical/Nor98 prions in AS sheep brains. Investigating the risk AS poses to humans is crucial. METHODS To assess the risk of sheep/goat-to-human transmission of AS, we serially inoculated brain tissue from field and laboratory isolates into transgenic mice overexpressing human prion protein (Met129 allele). We studied clinical outcomes as well as presence of prions in brains and spleens. RESULTS No transmission occurred on the primary passage, with no clinical disease or pathological prion protein in brains and spleens. On subsequent passages, 1 isolate gradually adapted, manifesting as prions with a phenotype resembling those causing MM1-type sporadic Creutzfeldt-Jakob disease in humans. However, further characterization using in vivo and in vitro techniques confirmed both prion agents as different strains, revealing a case of phenotypic convergence. Importantly, no C-BSE prions emerged in these mice, especially in the spleen, which is more permissive than the brain for C-BSE cross-species transmission. CONCLUSIONS The results obtained suggest a low zoonotic potential for AS. Rare adaptation may allow the emergence of prions phenotypically resembling those spontaneously forming in humans.
Collapse
Affiliation(s)
- Alba Marín-Moreno
- Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Versailles-Saint Quentin, Unité de Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Fabienne Reine
- Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Versailles-Saint Quentin, Unité de Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Laetitia Herzog
- Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Versailles-Saint Quentin, Unité de Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Naima Aron
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Ecole Nationale Vétérinaire de Toulouse, Unité Interactions Hôte Agent Pathogène, Toulouse, France
| | - Florence Jaffrézic
- Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, AgroParisTech, Unité de Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, AgroParisTech, Unité de Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Human Rezaei
- Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Versailles-Saint Quentin, Unité de Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Olivier Andréoletti
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Ecole Nationale Vétérinaire de Toulouse, Unité Interactions Hôte Agent Pathogène, Toulouse, France
| | - Davy Martin
- Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Versailles-Saint Quentin, Unité de Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Vincent Béringue
- Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Versailles-Saint Quentin, Unité de Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| |
Collapse
|
2
|
Pirisinu L, Di Bari MA, D’Agostino C, Vanni I, Riccardi G, Marcon S, Vaccari G, Chiappini B, Benestad SL, Agrimi U, Nonno R. A single amino acid residue in bank vole prion protein drives permissiveness to Nor98/atypical scrapie and the emergence of multiple strain variants. PLoS Pathog 2022; 18:e1010646. [PMID: 35731839 PMCID: PMC9255773 DOI: 10.1371/journal.ppat.1010646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/05/2022] [Accepted: 06/03/2022] [Indexed: 12/03/2022] Open
Abstract
Prions are infectious agents that replicate through the autocatalytic misfolding of the cellular prion protein (PrPC) into infectious aggregates (PrPSc) causing fatal neurodegenerative diseases in humans and animals. Prions exist as strains, which are encoded by conformational variants of PrPSc. The transmissibility of prions depends on the PrPC sequence of the recipient host and on the incoming prion strain, so that some animal prion strains are more contagious than others or are transmissible to new species, including humans. Nor98/atypical scrapie (AS) is a prion disease of sheep and goats reported in several countries worldwide. At variance with classical scrapie (CS), AS is considered poorly contagious and is supposed to be spontaneous in origin. The zoonotic potential of AS, its strain variability and the relationships with the more contagious CS strains remain largely unknown. We characterized AS isolates from sheep and goats by transmission in ovinised transgenic mice (tg338) and in two genetic lines of bank voles, carrying either methionine (BvM) or isoleucine (BvI) at PrP residue 109. All AS isolates induced the same pathological phenotype in tg338 mice, thus proving that they encoded the same strain, irrespective of their geographical origin or source species. In bank voles, we found that the M109I polymorphism dictates the susceptibility to AS. BvI were susceptible and faithfully reproduced the AS strain, while the transmission in BvM was highly inefficient and was characterized by a conformational change towards a CS-like prion strain. Sub-passaging experiments revealed that the main strain component of AS is accompanied by minor CS-like strain components, which can be positively selected during replication in both AS-resistant or AS-susceptible animals. These findings add new clues for a better comprehension of strain selection dynamics in prion infections and have wider implications for understanding the origin of contagious prion strains, such as CS. Prions are transmissible agents responsible for fatal neurodegenerative diseases in humans and animals. Prions exist as strains, exhibiting distinct disease phenotypes and transmission properties. Some prion diseases occur sporadically with a supposedly spontaneous origin, while others are contagious and give rise to epidemics, mainly in animals. We investigated the strain properties of Nor98/atypical scrapie (AS), a sporadic prion disease of small ruminants. We found that AS was faithfully reproduced not only in a homologous context, i.e. ovinised transgenic mice, but also in an unrelated animal species, the bank vole. A natural polymorphism of the bank vole prion protein, coding for methionine (BvM) or for isoleucine (BvI) at codon 109, dictated the susceptibility of voles to AS, with BvI being highly susceptible to AS and BvM rather resistant. Most importantly, the M109I polymorphism mediated the emergence of AS-derived mutant prion strains resembling classical scrapie (CS), a contagious prion disease. Finally, by sub-passages in bank voles, we found that the main strain component of AS is accompanied by minor CS-like strain components, which can be positively selected during replication in both AS-resistant or AS-susceptible vole lines. These findings allow a better understanding of strain selection dynamics and suggest a link between sporadic and contagious prion diseases.
Collapse
Affiliation(s)
- Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Angelo Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia D’Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Geraldina Riccardi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Marcon
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele Vaccari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Chiappini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
3
|
Ishida Y, Tian T, Brandt AL, Kelly AC, Shelton P, Roca AL, Novakofski J, Mateus-Pinilla NE. Association of chronic wasting disease susceptibility with prion protein variation in white-tailed deer ( Odocoileus virginianus). Prion 2021; 14:214-225. [PMID: 32835598 PMCID: PMC7518741 DOI: 10.1080/19336896.2020.1805288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic wasting disease (CWD) is caused by prions, infectious proteinaceous particles, PrPCWD. We sequenced the PRNP gene of 2,899 white-tailed deer (WTD) from Illinois and southern Wisconsin, finding 38 haplotypes. Haplotypes A, B, D, E, G and 10 others encoded Q95G96S100N103A123Q226, designated ‘PrP variant A.’ Haplotype C and five other haplotypes encoded PrP ‘variant C’ (Q95S96S100N103A123Q226). Haplotype F and three other haplotypes encoded PrP ‘variant F’ (H95G96S100N103A123Q226). The association of CWD with encoded PrP variants was examined in 2,537 tested WTD from counties with CWD. Relative to PrP variant A, CWD susceptibility was lower in deer with PrP variant C (OR = 0.26, p < 0.001), and even lower in deer with PrP variant F (OR = 0.10, p < 0.0001). Susceptibility to CWD was highest in deer with both chromosomes encoding PrP variant A, lower with one copy encoding PrP variant A (OR = 0.25, p < 0.0001) and lowest in deer without PrP variant A (OR = 0.07, p < 0.0001). There appeared to be incomplete dominance for haplotypes encoding PrP variant C in reducing CWD susceptibility. Deer with both chromosomes encoding PrP variant F (FF) or one encoding PrP variant C and the other F (CF) were all CWD negative. Our results suggest that an increased population frequency of PrP variants C or F and a reduced frequency of PrP variant A may reduce the risk of CWD infection. Understanding the population and geographic distribution of PRNP polymorphisms may be a useful tool in CWD management.
Collapse
Affiliation(s)
- Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Ting Tian
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA.,School of Mathematics, Sun Yat-sen University , Guangzhou, People's Republic of China
| | - Adam L Brandt
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA.,Division of Natural Sciences, St. Norbert College , De Pere, WI, USA
| | - Amy C Kelly
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA.,Bayer U.S. - Crop Sciences Biotechnology Genomics and Data Science, BB4929-A , Chesterfield, MO, USA
| | - Paul Shelton
- Illinois Department of Natural Resources, Division of Wildlife Resources , Springfield, IL, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Jan Novakofski
- Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL, USA.,Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA
| | - Nohra E Mateus-Pinilla
- Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL, USA.,Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA
| |
Collapse
|
4
|
Casanova M, Machado C, Tavares P, Silva J, Fast C, Balkema-Buschmann A, Groschup MH, Orge L. Circulation of Nor98 Atypical Scrapie in Portuguese Sheep Confirmed by Transmission of Isolates into Transgenic Ovine ARQ-PrP Mice. Int J Mol Sci 2021; 22:ijms221910441. [PMID: 34638780 PMCID: PMC8508621 DOI: 10.3390/ijms221910441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Portugal was among the first European countries to report cases of Atypical Scrapie (ASc), the dominant form of Transmissible Spongiform Encephalopathy (TSE) in Portuguese small ruminants. Although the diagnostic phenotypes observed in Portuguese ASc cases seem identical to those described for Nor98, unequivocal identification requires TSE strain-typing using murine bioassays. In this regard, we initiated characterization of ASc isolates from sheep either homozygous for the ARQ genotype or the classical scrapie-resistant ARR genotype. Isolates from such genotypes were transmitted to TgshpXI mice expressing ovine PrPARQ. Mean incubation periods were 414 ± 58 and 483 ± 107 days in mice inoculated with AL141RQ/AF141RQ and AL141RR/AL141RR sheep isolates, respectively. Both isolates produced lesion profiles similar to French ASc Nor98 'discordant cases', where vacuolation was observed in the hippocampus (G6), cerebral cortex at the thalamus (G8) level, cerebellar white matter (W1) and cerebral peduncles (W3). Immunohistochemical PrPSc deposition was observed in the hippocampus, cerebellar cortex, cerebellar white matter and cerebral peduncles in the form of aggregates and fine granules. These findings were consistent with previously reported cases of ASc Nor98 transmitted to transgenic TgshpXI mice, confirming that the ASc strain present in Portuguese sheep corresponds to ASc Nor98.
Collapse
Affiliation(s)
- Mafalda Casanova
- Histopathology Facility, Instituto Gulbenkian de Ciência (IGC), 2780-156 Oeiras, Portugal;
- Veterinary Medicine Department, University of Évora, 7004-516 Évora, Portugal
| | - Carla Machado
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 2780-157 Oeiras, Portugal; (C.M.); (J.S.)
| | - Paula Tavares
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 4485-655 Vairão-Vila do Conde, Portugal;
| | - João Silva
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 2780-157 Oeiras, Portugal; (C.M.); (J.S.)
| | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Insel Riems, 17493 Greifswald, Germany; (C.F.); (A.B.-B.); (M.H.G.)
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Insel Riems, 17493 Greifswald, Germany; (C.F.); (A.B.-B.); (M.H.G.)
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Insel Riems, 17493 Greifswald, Germany; (C.F.); (A.B.-B.); (M.H.G.)
| | - Leonor Orge
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P., 2780-157 Oeiras, Portugal; (C.M.); (J.S.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Science—AL4AnimalS, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Correspondence:
| |
Collapse
|
5
|
Barrio T, Filali H, Otero A, Sheleby-Elías J, Marín B, Vidal E, Béringue V, Torres JM, Groschup M, Andréoletti O, Badiola JJ, Bolea R. Mixtures of prion substrains in natural scrapie cases revealed by ovinised murine models. Sci Rep 2020; 10:5042. [PMID: 32193445 PMCID: PMC7081250 DOI: 10.1038/s41598-020-61977-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/02/2020] [Indexed: 11/09/2022] Open
Abstract
Phenotypic variability in prion diseases, such as scrapie, is associated to the existence of prion strains, which are different pathogenic prion protein (PrPSc) conformations with distinct pathobiological properties. To faithfully study scrapie strain variability in natural sheep isolates, transgenic mice expressing sheep cellular prion protein (PrPC) are used. In this study, we used two of such models to bioassay 20 scrapie isolates from the Spain-France-Andorra transboundary territory. Animals were intracerebrally inoculated and survival periods, proteinase K-resistant PrP (PrPres) banding patterns, lesion profiles and PrPSc distribution were studied. Inocula showed a remarkable homogeneity on banding patterns, all of them but one showing 19-kDa PrPres. However, a number of isolates caused accumulation of 21-kDa PrPres in TgShp XI. A different subgroup of isolates caused long survival periods and presence of 21-kDa PrPres in Tg338 mice. It seemed that one major 19-kDa prion isoform and two distinct 21-kDa variants coexisted in source inocula, and that they could be separated by bioassay in each transgenic model. The reason why each model favours a specific component of the mixture is unknown, although PrPC expression level may play a role. Our results indicate that coinfection with more than one substrain is more frequent than infection with a single component.
Collapse
Affiliation(s)
- Tomás Barrio
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain
| | - Hicham Filali
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain
| | - Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain
| | - Jessica Sheleby-Elías
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain
| | - Belén Marín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain
| | - Enric Vidal
- Priocat Laboratory, Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
| | - Vincent Béringue
- UMR Virologie Immunologie Moléculaires (VIM-UR892), INRA, Université Paris-Saclay, 78352, Jouy-en-Josas, France
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, 28130, Valdeolmos, Madrid, Spain
| | - Martin Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Isle of Riems, Germany
| | - Olivier Andréoletti
- UMR INRA ENVT 1225- IHAP, École Nationale Vétérinaire de Toulouse, 31076, Toulouse, France
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain.
| |
Collapse
|
6
|
Nonno R, Marin-Moreno A, Carlos Espinosa J, Fast C, Van Keulen L, Spiropoulos J, Lantier I, Andreoletti O, Pirisinu L, Di Bari MA, Aguilar-Calvo P, Sklaviadis T, Papasavva-Stylianou P, Acutis PL, Acin C, Bossers A, Jacobs JG, Vaccari G, D'Agostino C, Chiappini B, Lantier F, Groschup MH, Agrimi U, Maria Torres J, Langeveld JPM. Characterization of goat prions demonstrates geographical variation of scrapie strains in Europe and reveals the composite nature of prion strains. Sci Rep 2020; 10:19. [PMID: 31913327 PMCID: PMC6949283 DOI: 10.1038/s41598-019-57005-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022] Open
Abstract
Bovine Spongiform Encephalopathy (BSE) is the only animal prion which has been recognized as a zoonotic agent so far. The identification of BSE in two goats raised the need to reliably identify BSE in small ruminants. However, our understanding of scrapie strain diversity in small ruminants remains ill-defined, thus limiting the accuracy of BSE surveillance and spreading fear that BSE might lurk unrecognized in goats. We investigated prion strain diversity in a large panel of European goats by a novel experimental approach that, instead of assessing the neuropathological profile after serial transmissions in a single animal model, was based on the direct interaction of prion isolates with several recipient rodent models expressing small ruminants or heterologous prion proteins. The findings show that the biological properties of scrapie isolates display different patterns of geographical distribution in Europe and suggest that goat BSE could be reliably discriminated from a wide range of biologically and geographically diverse goat prion isolates. Finally, most field prion isolates showed composite strain features, with discrete strain components or sub-strains being present in different proportions in individual goats or tissues. This has important implications for understanding the nature and evolution of scrapie strains and their transmissibility to other species, including humans.
Collapse
Affiliation(s)
- Romolo Nonno
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy.
| | | | | | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| | | | - John Spiropoulos
- Animal and Plant Health Agency, New Haw, Addlestone, Surrey, United Kingdom
| | - Isabelle Lantier
- INRA-Centre Val de Loire, Infectiologie et Santé Publique, Nouzilly, France
| | - Olivier Andreoletti
- UMR INRA ENVT 1225- IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Laura Pirisinu
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Michele A Di Bari
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | | | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Cristina Acin
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Alex Bossers
- Wageningen BioVeterinary Research, Lelystad, the Netherlands
| | - Jorge G Jacobs
- Wageningen BioVeterinary Research, Lelystad, the Netherlands
| | - Gabriele Vaccari
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Claudia D'Agostino
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Barbara Chiappini
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Frederic Lantier
- INRA-Centre Val de Loire, Infectiologie et Santé Publique, Nouzilly, France
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| | - Umberto Agrimi
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | | | | |
Collapse
|
7
|
Abstract
Atypical/Nor98 scrapie (AS) is a prion disease of small ruminants. Currently there are no efficient measures to control this form of prion disease, and, importantly, the zoonotic potential and the risk that AS might represent for other farmed animal species remains largely unknown. In this study, we investigated the capacity of AS to propagate in bovine PrP transgenic mice. Unexpectedly, the transmission of AS isolates originating from 5 different European countries to bovine PrP mice resulted in the propagation of the classical BSE (c-BSE) agent. Detection of prion seeding activity in vitro by protein misfolding cyclic amplification (PMCA) demonstrated that low levels of the c-BSE agent were present in the original AS isolates. C-BSE prion seeding activity was also detected in brain tissue of ovine PrP mice inoculated with limiting dilutions (endpoint titration) of ovine AS isolates. These results are consistent with the emergence and replication of c-BSE prions during the in vivo propagation of AS isolates in the natural host. These data also indicate that c-BSE prions, a known zonotic agent in humans, can emerge as a dominant prion strain during passage of AS between different species. These findings provide an unprecedented insight into the evolution of mammalian prion strain properties triggered by intra- and interspecies passage. From a public health perspective, the presence of c-BSE in AS isolates suggest that cattle exposure to small ruminant tissues and products could lead to new occurrences of c-BSE.
Collapse
|
8
|
Spiropoulos J, Lockey R, Beck KE, Vickery C, Holder TM, Thorne L, Arnold M, Andreoletti O, Simmons MM, Terry LA. Incomplete inactivation of atypical scrapie following recommended autoclave decontamination procedures. Transbound Emerg Dis 2019; 66:1993-2001. [PMID: 31111687 DOI: 10.1111/tbed.13247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/21/2019] [Accepted: 05/16/2019] [Indexed: 11/28/2022]
Abstract
Prions are highly resistant to the decontamination procedures normally used to inactivate conventional pathogens. This is a challenging problem not only in the medical and veterinary fields for minimizing the risk of transmission from potentially infective sources but also for ensuring the safe disposal or subsequent use of animal by-products. Specific pressure autoclaving protocols were developed for this purpose, but different strains of prions have been reported to have differing resistance patterns to established prion decontamination procedures, and as additional TSE strains are identified it is necessary to determine the effectiveness of such procedures. In this study we assessed the efficacy of sterilization using the EU recommended autoclave procedure for prions (133°C, 3 Bar for 20 min) on the atypical or Nor98 (AS/Nor98) scrapie strain of sheep and goats. Using a highly sensitive murine mouse model (tg338) that overexpresses ovine PrPC , we determined that this method of decontamination reduced the infectivity titre by 1010 . Infectivity was nonetheless still detected after applying the recommended autoclaving protocol. This shows that AS/Nor98 can survive the designated legislative decontamination conditions, albeit with a significant decrease in titre. The infectivity of a classical scrapie isolate subjected to the same decontamination conditions was reduced by 106 suggesting that the AS/Nor98 isolate is less sensitive to decontamination than the classical scrapie source.
Collapse
Affiliation(s)
| | - Richard Lockey
- Animal and Plant Health Agency (APHA), Weybridge, Surrey, UK
| | - Katy E Beck
- Animal and Plant Health Agency (APHA), Weybridge, Surrey, UK
| | - Chris Vickery
- Animal and Plant Health Agency (APHA), Weybridge, Surrey, UK
| | - Thomas M Holder
- Animal and Plant Health Agency (APHA), Weybridge, Surrey, UK
| | - Leigh Thorne
- Animal and Plant Health Agency (APHA), Weybridge, Surrey, UK
| | - Mark Arnold
- Animal and Plant Health Agency (APHA), Weybridge, Surrey, UK
| | - Olivier Andreoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | | | - Linda A Terry
- Animal and Plant Health Agency (APHA), Weybridge, Surrey, UK
| |
Collapse
|
9
|
Moore SJ, Smith JD, Richt JA, Greenlee JJ. Raccoons accumulate PrP Sc after intracranial inoculation of the agents of chronic wasting disease or transmissible mink encephalopathy but not atypical scrapie. J Vet Diagn Invest 2019; 31:200-209. [PMID: 30694116 DOI: 10.1177/1040638718825290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Prion diseases are neurodegenerative diseases characterized by the accumulation of misfolded prion protein (PrPSc) in the brain and other tissues. Animal prion diseases include scrapie in sheep, chronic wasting disease (CWD) in cervids, and transmissible mink encephalopathy (TME) in ranch-raised mink. We investigated the susceptibility of raccoons to various prion disease agents and compared the clinicopathologic features of the resulting disease. Raccoon kits were inoculated intracranially with the agents of raccoon-passaged TME (TMERac), bovine-passaged TME (TMEBov), hamster-adapted drowsy (TMEDY) or hyper TME (TMEHY), CWD from white-tailed deer (CWDWtd) or elk (CWDElk), or atypical (Nor98) scrapie. Raccoons were euthanized when they developed clinical signs of prion disease or at study endpoint (<82 mo post-inoculation). Brain was examined for the presence of spongiform change, and disease-associated PrPSc was detected using an enzyme immunoassay, western blot, and immunohistochemistry. All raccoons inoculated with the agents of TMERac and TMEBov developed clinical disease at ~6.6 mo post-inoculation, with widespread PrPSc accumulation in central nervous system tissues. PrPSc was detected in the brain of 1 of 4 raccoons in each of the CWDWtd-, CWDElk-, and TMEHY-inoculated groups. None of the raccoons inoculated with TMEDY or atypical scrapie agents developed clinical disease or detectable PrPSc accumulation. Our results indicate that raccoons are highly susceptible to infection with raccoon- and bovine-passaged TME agents, whereas CWD isolates from white-tailed deer or elk and hamster-adapted TMEHY transmit poorly. Raccoons appear to be resistant to infection with hamster-adapted TMEDY and atypical scrapie agents.
Collapse
Affiliation(s)
- S Jo Moore
- National Animal Disease Center, Ames, IA (Moore, Greenlee).,Iowa State University, College of Veterinary Medicine, Ames, IA (Smith).,Kansas State University, College of Veterinary Medicine, Manhattan, KS (Richt)
| | - Jodi D Smith
- National Animal Disease Center, Ames, IA (Moore, Greenlee).,Iowa State University, College of Veterinary Medicine, Ames, IA (Smith).,Kansas State University, College of Veterinary Medicine, Manhattan, KS (Richt)
| | - Jürgen A Richt
- National Animal Disease Center, Ames, IA (Moore, Greenlee).,Iowa State University, College of Veterinary Medicine, Ames, IA (Smith).,Kansas State University, College of Veterinary Medicine, Manhattan, KS (Richt)
| | - Justin J Greenlee
- National Animal Disease Center, Ames, IA (Moore, Greenlee).,Iowa State University, College of Veterinary Medicine, Ames, IA (Smith).,Kansas State University, College of Veterinary Medicine, Manhattan, KS (Richt)
| |
Collapse
|
10
|
Houston F, Andréoletti O. Animal prion diseases: the risks to human health. Brain Pathol 2019; 29:248-262. [PMID: 30588682 DOI: 10.1111/bpa.12696] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases of animals notably include scrapie in small ruminants, chronic wasting disease (CWD) in cervids and classical bovine spongiform encephalopathy (C-BSE). As the transmission barrier phenomenon naturally limits the propagation of prions from one species to another, and the lack of epidemiological evidence for an association with human prion diseases, the zoonotic potential of these diseases was for a long time considered negligible. However, in 1996, C-BSE was recognized as the cause of a new human prion disease, variant Creutzfeldt-Jakob disease (vCJD), which triggered an unprecedented public health crisis in Europe. Large-scale epidemio-surveillance programs for scrapie and C-BSE that were implemented in the EU after the BSE crisis revealed that the distribution and prevalence of prion diseases in the ruminant population had previously been underestimated. They also led to the recognition of new forms of TSEs (named atypical) in cattle and small ruminants and to the recent identification of CWD in Europe. At this stage, the characterization of the strain diversity and zoonotic abilities associated with animal prion diseases remains largely incomplete. However, transmission experiments in nonhuman primates and transgenic mice expressing human PrP clearly indicate that classical scrapie, and certain forms of atypical BSE (L-BSE) or CWD may have the potential to infect humans. The remaining uncertainties about the origins and relationships between animal prion diseases emphasize the importance of the measures implemented to limit human exposure to these potentially zoonotic agents, and of continued surveillance for both animal and human prion diseases.
Collapse
Affiliation(s)
- Fiona Houston
- Infection and Immunity Division, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225-IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| |
Collapse
|
11
|
Silva CJ, Erickson-Beltran ML, Martín-Burriel I, Badiola JJ, Requena JR, Bolea R. Determining the Relative Susceptibility of Four Prion Protein Genotypes to Atypical Scrapie. Anal Chem 2018; 90:1255-1262. [PMID: 29240410 DOI: 10.1021/acs.analchem.7b03985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Atypical scrapie is a sheep prion (PrPSc) disease whose epidemiology is consistent with a sporadic origin and is associated with specific polymorphisms of the normal cellular prion protein (PrPC). To determine the relative amounts of PrP polymorphisms present in atypical scrapie, total PrP was digested with chymotrypsin to generate characteristic peptides spanning relevant polymorphisms at positions 136, 141, 154, 171, and 172 of sheep PrPC. A multiple reaction monitoring method (MRM), employing 15N-labeled internal standards, was used to detect and quantify these polymorphisms present in both the PrPSc and PrPC from heterozygous (ALRRY and ALHQY or ALRQD or AFRQY) atypical scrapie-infected or uninfected control sheep. Both polymorphisms of the full length and truncated (C1) natively expressed PrPC are produced in equal amounts. The overall amount of PrPC present in the infected or uninfected animals was similar. PrPSc isolated from heterozygotes was composed of significant amounts of both PrP polymorphisms, including the ALRRY polymorphism which is highly resistant to classical scrapie. Thus, an atypical scrapie infection does not result from an overexpression of sheep PrPC. The replication of all atypical scrapie prions occurs at comparable rates, despite polymorphisms at positions 141, 154, 171, or 172.
Collapse
Affiliation(s)
- Christopher J Silva
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service , Albany, California 94710, United States of America
| | - Melissa L Erickson-Beltran
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service , Albany, California 94710, United States of America
| | - Inmaculada Martín-Burriel
- LAGENBIO, Laboratorio de Genética Bioquímica, Facultad de Veterinaria, IA2 Universidad de Zaragoza , 50013, Zaragoza, Spain.,Veterinary Faculty, Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes (CIEETE), Universidad de Zaragoza , 50013, Zaragoza, Spain
| | - Juan José Badiola
- Veterinary Faculty, Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes (CIEETE), Universidad de Zaragoza , 50013, Zaragoza, Spain
| | - Jesús R Requena
- CIMUS Biomedical Research Institute & Department of Medical Sciences, University of Santiago de Compostela-IDIS , Santiago de Compostela, Spain
| | - Rosa Bolea
- Veterinary Faculty, Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes (CIEETE), Universidad de Zaragoza , 50013, Zaragoza, Spain
| |
Collapse
|
12
|
Houston F, Andréoletti O. The zoonotic potential of animal prion diseases. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:447-462. [PMID: 29887151 DOI: 10.1016/b978-0-444-63945-5.00025-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bovine spongiform encephalopathy (BSE) is the only animal prion disease that has been demonstrated to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans. The link between BSE and vCJD was established by careful surveillance, epidemiologic investigations, and experimental studies using in vivo and in vitro models of cross-species transmission. Similar approaches have been used to assess the zoonotic potential of other animal prion diseases, including atypical forms identified through active surveillance. There is no epidemiologic evidence that classical or atypical scrapie, atypical forms of BSE, or chronic wasting disease (CWD) is associated with human prion disease, but the limitations of the epidemiologic data should be taken into account when interpreting these results. Transmission experiments in nonhuman primates and human PrP transgenic mice suggest that classic scrapie, L-type atypical BSE (L-BSE), and CWD may have zoonotic potential, which for L-BSE appears to be equal to or greater than that of classic BSE. The results of in vitro conversion assays to analyze the human transmission barrier correlate well with the in vivo data. However, it is still difficult to predict the likelihood that an animal prion disease will transmit to humans under conditions of field exposure from the results of in vivo or in vitro experiments. This emphasizes the importance of continuing systematic surveillance for both human and animal prion diseases in identifying zoonotic transmission of diseases other than classic BSE.
Collapse
Affiliation(s)
- Fiona Houston
- Neurobiology Division, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom.
| | | |
Collapse
|
13
|
Nonno R, Angelo Di Bari M, Agrimi U, Pirisinu L. Transmissibility of Gerstmann-Sträussler-Scheinker syndrome in rodent models: New insights into the molecular underpinnings of prion infectivity. Prion 2017; 10:421-433. [PMID: 27892798 PMCID: PMC5161296 DOI: 10.1080/19336896.2016.1239686] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies, have revealed the bewildering phenomenon of transmissibility in neurodegenerative diseases. Hence, the experimental transmissibility of prion-like neurodegenerative diseases via template directed misfolding has become the focus of intense research. Gerstmann-Sträussler-Scheinker disease (GSS) is an inherited prion disease associated with mutations in the prion protein gene. However, with the exception of a few GSS cases with P102L mutation characterized by co-accumulation of protease-resistant PrP core (PrPres) of ∼21 kDa, attempts to transmit to rodents GSS associated to atypical misfolded prion protein with ∼8 kDa PrPres have been unsuccessful. As a result, these GSS subtypes have often been considered as non-transmissible proteinopathies rather than true prion diseases. In a recent study we inoculated bank voles with GSS cases associated with P102L, A117V and F198S mutations and found that they transmitted efficiently and produced distinct pathological phenotypes, irrespective of the presence of 21 kDa PrPres in the inoculum. This study demonstrates that GSS is a genuine prion disease characterized by both transmissibility and strain variation. We discuss the implications of these findings for the understanding of the heterogeneous clinic-pathological phenotypes of GSS and of the molecular underpinnings of prion infectivity.
Collapse
Affiliation(s)
- Romolo Nonno
- a Department of Veterinary Public Health and Food Safety , Istituto Superiore di Sanità , Rome , Italy
| | - Michele Angelo Di Bari
- a Department of Veterinary Public Health and Food Safety , Istituto Superiore di Sanità , Rome , Italy
| | - Umberto Agrimi
- a Department of Veterinary Public Health and Food Safety , Istituto Superiore di Sanità , Rome , Italy
| | - Laura Pirisinu
- a Department of Veterinary Public Health and Food Safety , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
14
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Skandamis P, Speybroeck N, Simmons M, Kuile BT, Threlfall J, Wahlström H, Acutis PL, Andreoletti O, Goldmann W, Langeveld J, Windig JJ, Ortiz Pelaez A, Snary E. Genetic resistance to transmissible spongiform encephalopathies (TSE) in goats. EFSA J 2017; 15:e04962. [PMID: 32625625 PMCID: PMC7010077 DOI: 10.2903/j.efsa.2017.4962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Breeding programmes to promote resistance to classical scrapie, similar to those for sheep in existing transmissible spongiform encephalopathies (TSE) regulations, have not been established in goats. The European Commission requested a scientific opinion from EFSA on the current knowledge of genetic resistance to TSE in goats. An evaluation tool, which considers both the weight of evidence and strength of resistance to classical scrapie of alleles in the goat PRNP gene, was developed and applied to nine selected alleles of interest. Using the tool, the quality and certainty of the field and experimental data are considered robust enough to conclude that the K222, D146 and S146 alleles both confer genetic resistance against classical scrapie strains known to occur naturally in the EU goat population, with which they have been challenged both experimentally and under field conditions. The weight of evidence for K222 is greater than that currently available for the D146 and S146 alleles and for the ARR allele in sheep in 2001. Breeding for resistance can be an effective tool for controlling classical scrapie in goats and it could be an option available to member states, both at herd and population levels. There is insufficient evidence to assess the impact of K222, D146 and S146 alleles on susceptibility to atypical scrapie and bovine spongiform encephalopathy (BSE), or on health and production traits. These alleles are heterogeneously distributed across the EU Member States and goat breeds, but often at low frequencies (< 10%). Given these low frequencies, high selection pressure may have an adverse effect on genetic diversity so any breeding for resistance programmes should be developed at Member States, rather than EU level and their impact monitored, with particular attention to the potential for any negative impact in rare or small population breeds.
Collapse
|
15
|
Jeffrey M, González L, Simmons MM, Hunter N, Martin S, McGovern G. Altered trafficking of abnormal prion protein in atypical scrapie: prion protein accumulation in oligodendroglial inner mesaxons. Neuropathol Appl Neurobiol 2017; 43:215-226. [PMID: 26750308 DOI: 10.1111/nan.12302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/04/2016] [Accepted: 01/10/2016] [Indexed: 01/09/2023]
Abstract
AIMS Prion diseases exist in classical and atypical disease forms. Both forms are characterized by disease-associated accumulation of a host membrane sialoglycoprotein known as prion protein (PrPd ). In classical forms of prion diseases, PrPd can accumulate in the extracellular space as fibrillar amyloid, intracellularly within lysosomes, but mainly on membranes in association with unique and characteristic membrane pathology. These membrane changes are found in all species and strains of classical prion diseases and consist of spiral, branched and clathrin-coated membrane invaginations on dendrites. Atypical prion diseases have been described in ruminants and man and have distinct biological, biochemical and pathological properties when compared to classical disease. The purpose of this study was to determine whether the subcellular pattern of PrPd accumulation and membrane changes in atypical scrapie were the same as those found in classical prion diseases. METHODS Immunogold electron microscopy was used to examine brains of atypical scrapie-affected sheep and Tg338 mice. RESULTS Classical prion disease-associated membrane lesions were not found in atypical scrapie-affected sheep, however, white matter PrPd accumulation was localized mainly to the inner mesaxon and paranodal cytoplasm of oligodendroglia. Similar lesions were found in myelinated axons of atypical scrapie Tg338-infected mice. However, Tg338 mice also showed the unique grey matter membrane changes seen in classical forms of disease. CONCLUSIONS These data show that atypical scrapie infection directs a change in trafficking of abnormal PrP to axons and oligodendroglia and that the resulting pathology is an interaction between the agent strain and host genotype.
Collapse
Affiliation(s)
- M Jeffrey
- Pathology Department, Animal and Plant Health Agency, Lasswade, UK
| | - L González
- Pathology Department, Animal and Plant Health Agency, Lasswade, UK
| | - M M Simmons
- Pathology Department, Animal and Plant Health Agency, Addlestone, UK
| | - N Hunter
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - S Martin
- Pathology Department, Animal and Plant Health Agency, Lasswade, UK
| | - G McGovern
- Pathology Department, Animal and Plant Health Agency, Lasswade, UK
| |
Collapse
|
16
|
Pathology of Animal Transmissible Spongiform Encephalopathies (TSEs). Food Saf (Tokyo) 2017; 5:1-9. [PMID: 32231922 DOI: 10.14252/foodsafetyfscj.2016027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/24/2016] [Indexed: 11/21/2022] Open
Abstract
Pathology is the study of the structural and functional changes produced by diseases or - more specifically - the lesions they cause. To achieve this pathologists employ various approaches. These include description of lesions that are visible to the naked eye which are the subject of anatomic pathology and changes at the cellular level that are visible under the microscope, the subject of histopathology. Changes at the molecular level which are identified by probes that target specific molecules - mainly proteins that are detected using immunohistochemistry (IHC). As transmissible spongiform encephalopathies (TSEs) do not cause visible lesions anatomic pathology is not applicable to their study. For decades the application of histopathology to detect vacuoles or plaques was the only means of confirming TSE disease. The subsequent discovery of the cellular prion protein (PrPC) and its pathogenic isoform, PrPSc, which is a ubiquitous marker of TSEs, led to the production of anti-PrP antibodies, and enabled the development of PrPSc detection techniques such as immunohistochemistry, Histoblot and PET-blot that have evolved in parallel with similar biochemical methods such as Western blot and ELISA. These methods offer greater sensitivity than histopathology in TSE diagnosis and crucially they can be applied to analyze various phenotypic aspects of single TSE sources increasing the amount of data and offering higher discriminatory power. The above principles are applied to diagnose and define TSE phenotypes which form the basis of strain characterisation.
Collapse
|
17
|
Okada H, Miyazawa K, Imamura M, Iwamaru Y, Masujin K, Matsuura Y, Yokoyama T. Transmission of atypical scrapie to homozygous ARQ sheep. J Vet Med Sci 2016; 78:1619-1624. [PMID: 27320968 PMCID: PMC5095634 DOI: 10.1292/jvms.16-0259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two Cheviot ewes homozygous for the A136L141R154Q171 (AL141RQ) prion protein (PrP) genotype were exposed intracerebrally to brain pools prepared using four field cases of atypical scrapie from the United Kingdom. Animals were clinically normal until the end of the experiment, when they were culled 7 years post-inoculation. Limited accumulation of disease-associated PrP (PrPSc) was observed in the cerebellar molecular layer by immunohistochemistry, but not by western blot or enzyme-linked immunosorbent assay. In addition, PrPSc was partially localized in astrocytes and microglia, suggesting that these cells have a role in PrPSc processing, degradation or both. Our results indicate that atypical scrapie is transmissible to AL141RQ sheep, but these animals act as clinically silent carriers with long incubation times.
Collapse
Affiliation(s)
- Hiroyuki Okada
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal protein-misfolding neurodegenerative diseases. TSEs have been described in several species, including bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep and goats, chronic wasting disease (CWD) in cervids, transmissible mink encephalopathy (TME) in mink, and Kuru and Creutzfeldt-Jakob disease (CJD) in humans. These diseases are associated with the accumulation of a protease-resistant, disease-associated isoform of the prion protein (called PrP(Sc)) in the central nervous system and other tissues, depending on the host species. Typically, TSEs are acquired through exposure to infectious material, but inherited and spontaneous TSEs also occur. All TSEs share pathologic features and infectious mechanisms but have distinct differences in transmission and epidemiology due to host factors and strain differences encoded within the structure of the misfolded prion protein. The possibility that BSE can be transmitted to humans as the cause of variant Creutzfeldt-Jakob disease has brought attention to this family of diseases. This review is focused on the TSEs of livestock: bovine spongiform encephalopathy in cattle and scrapie in sheep and goats.
Collapse
Affiliation(s)
- Justin J Greenlee
- Justin J. Greenlee, DVM, PhD, Diplomate ACVP, is a research veterinary medical officer in the Virus and Prion Research Unit of the National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service in Ames, Iowa. M. Heather West Greenlee, PhD, is an associate professor of biomedical sciences at the Iowa State University College of Veterinary Medicine
| | - M Heather West Greenlee
- Justin J. Greenlee, DVM, PhD, Diplomate ACVP, is a research veterinary medical officer in the Virus and Prion Research Unit of the National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service in Ames, Iowa. M. Heather West Greenlee, PhD, is an associate professor of biomedical sciences at the Iowa State University College of Veterinary Medicine
| |
Collapse
|
19
|
Deer Prion Proteins Modulate the Emergence and Adaptation of Chronic Wasting Disease Strains. J Virol 2015; 89:12362-73. [PMID: 26423950 PMCID: PMC4665243 DOI: 10.1128/jvi.02010-15] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/23/2015] [Indexed: 12/02/2022] Open
Abstract
Transmission of chronic wasting disease (CWD) between cervids is influenced by the primary structure of the host cellular prion protein (PrPC). In white-tailed deer, PRNP alleles encode the polymorphisms Q95 G96 (wild type [wt]), Q95 S96 (referred to as the S96 allele), and H95 G96 (referred to as the H95 allele), which differentially impact CWD progression. We hypothesize that the transmission of CWD prions between deer expressing different allotypes of PrPC modifies the contagious agent affecting disease spread. To evaluate the transmission properties of CWD prions derived experimentally from deer of four PRNP genotypes (wt/wt, S96/wt, H95/wt, or H95/S96), transgenic (tg) mice expressing the wt allele (tg33) or S96 allele (tg60) were challenged with these prion agents. Passage of deer CWD prions into tg33 mice resulted in 100% attack rates, with the CWD H95/S96 prions having significantly longer incubation periods. The disease signs and neuropathological and protease-resistant prion protein (PrP-res) profiles in infected tg33 mice were similar between groups, indicating that a prion strain (Wisc-1) common to all CWD inocula was amplified. In contrast, tg60 mice developed prion disease only when inoculated with the H95/wt and H95/S96 CWD allotypes. Serial passage in tg60 mice resulted in adaptation of a novel CWD strain (H95+) with distinct biological properties. Transmission of first-passage tg60CWD-H95+ isolates into tg33 mice, however, elicited two prion disease presentations consistent with a mixture of strains associated with different PrP-res glycotypes. Our data indicate that H95-PRNP heterozygous deer accumulated two CWD strains whose emergence was dictated by the PrPC primary structure of the recipient host. These findings suggest that CWD transmission between cervids expressing distinct PrPC molecules results in the generation of novel CWD strains.
IMPORTANCE CWD prions are contagious among wild and captive cervids in North America and in South Korea. We present data linking the amino acid variant Q95H in white-tailed deer cellular prion protein (PrPC) to the emergence of a novel CWD strain (H95+). We show that, upon infection, deer expressing H95-PrPC molecules accumulated a mixture of CWD strains that selectively propagated depending on the PRNP genotype of the host in which they were passaged. Our study also demonstrates that mice expressing the deer S96-PRNP allele, previously shown to be resistant to various cervid prions, are susceptible to H95+ CWD prions. The potential for the generation of novel strains raises the possibility of an expanded host range for CWD.
Collapse
|
20
|
Chong A, Kennedy I, Goldmann W, Green A, González L, Jeffrey M, Hunter N. Archival search for historical atypical scrapie in sheep reveals evidence for mixed infections. J Gen Virol 2015; 96:3165-3178. [PMID: 26281831 DOI: 10.1099/jgv.0.000234] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural scrapie in sheep occurs in classical and atypical forms, which may be distinguished on the basis of the associated neuropathology and properties of the disease-associated prion protein on Western blots. First detected in 1998, atypical scrapie is known to have occurred in UK sheep since the 1980s. However, its aetiology remains unclear and it is often considered as a sporadic, non-contagious disease unlike classical scrapie which is naturally transmissible. Although atypical scrapie tends to occur in sheep of prion protein (PRNP) genotypes that are different from those found predominantly in classical scrapie, there is some overlap so that there are genotypes in which both scrapie forms can occur. In this search for early atypical scrapie cases, we made use of an archive of fixed and frozen sheep samples, from both scrapie-affected and healthy animals (∼1850 individuals), dating back to the 1960s. Using a selection process based primarily on PRNP genotyping, but also on contemporaneous records of unusual clinical signs or pathology, candidate sheep samples were screened by Western blot, immunohistochemistry and strain-typing methods using tg338 mice. We identified, from early time points in the archive, three atypical scrapie cases, including one sheep which died in 1972 and two which showed evidence of mixed infection with classical scrapie. Cases with both forms of scrapie in the same animal as recognizable entities suggest that mixed infections have been around for a long time and may potentially contribute to the variety of scrapie strains.
Collapse
Affiliation(s)
- Angela Chong
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Iain Kennedy
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Wilfred Goldmann
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Andrew Green
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Lorenzo González
- Animal and Plant Health Agency (APHA - Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Martin Jeffrey
- Animal and Plant Health Agency (APHA - Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Nora Hunter
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
21
|
Scientific Opinion on a request for a review of a scientific publication concerning the zoonotic potential of ovine scrapie prions. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
22
|
Does the Presence of Scrapie Affect the Ability of Current Statutory Discriminatory Tests To Detect the Presence of Bovine Spongiform Encephalopathy? J Clin Microbiol 2015; 53:2593-604. [PMID: 26041899 DOI: 10.1128/jcm.00508-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/27/2015] [Indexed: 11/20/2022] Open
Abstract
Current European Commission (EC) surveillance regulations require discriminatory testing of all transmissible spongiform encephalopathy (TSE)-positive small ruminant (SR) samples in order to classify them as bovine spongiform encephalopathy (BSE) or non-BSE. This requires a range of tests, including characterization by bioassay in mouse models. Since 2005, naturally occurring BSE has been identified in two goats. It has also been demonstrated that more than one distinct TSE strain can coinfect a single animal in natural field situations. This study assesses the ability of the statutory methods as listed in the regulation to identify BSE in a blinded series of brain samples, in which ovine BSE and distinct isolates of scrapie are mixed at various ratios ranging from 99% to 1%. Additionally, these current statutory tests were compared with a new in vitro discriminatory method, which uses serial protein misfolding cyclic amplification (sPMCA). Western blotting consistently detected 50% BSE within a mixture, but at higher dilutions it had variable success. The enzyme-linked immunosorbent assay (ELISA) method consistently detected BSE only when it was present as 99% of the mixture, with variable success at higher dilutions. Bioassay and sPMCA reported BSE in all samples where it was present, down to 1%. sPMCA also consistently detected the presence of BSE in mixtures at 0.1%. While bioassay is the only validated method that allows comprehensive phenotypic characterization of an unknown TSE isolate, the sPMCA assay appears to offer a fast and cost-effective alternative for the screening of unknown isolates when the purpose of the investigation was solely to determine the presence or absence of BSE.
Collapse
|
23
|
Simmons MM, Moore SJ, Lockey R, Chaplin MJ, Konold T, Vickery C, Spiropoulos J. Phenotype shift from atypical scrapie to CH1641 following experimental transmission in sheep. PLoS One 2015; 10:e0117063. [PMID: 25710519 PMCID: PMC4339189 DOI: 10.1371/journal.pone.0117063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022] Open
Abstract
The interactions of host and infecting strain in ovine transmissible spongiform encephalopathies are known to be complex, and have a profound effect on the resulting phenotype of disease. In contrast to classical scrapie, the pathology in naturally-occurring cases of atypical scrapie appears more consistent, regardless of genotype, and is preserved on transmission within sheep homologous for the prion protein (PRNP) gene. However, the stability of transmissible spongiform encephalopathy phenotypes on passage across and within species is not absolute, and there are reports in the literature where experimental transmissions of particular isolates have resulted in a phenotype consistent with a different strain. In this study, intracerebral inoculation of atypical scrapie between two genotypes both associated with susceptibility to atypical forms of disease resulted in one sheep displaying an altered phenotype with clinical, pathological, biochemical and murine bioassay characteristics all consistent with the classical scrapie strain CH1641, and distinct from the atypical scrapie donor, while the second sheep did not succumb to challenge. One of two sheep orally challenged with the same inoculum developed atypical scrapie indistinguishable from the donor. This study adds to the range of transmissible spongiform encephalopathy phenotype changes that have been reported following various different experimental donor-recipient combinations. While these circumstances may not arise through natural exposure to disease in the field, there is the potential for iatrogenic exposure should current disease surveillance and feed controls be relaxed. Future sheep to sheep transmission of atypical scrapie might lead to instances of disease with an alternative phenotype and onward transmission potential which may have adverse implications for both public health and animal disease control policies.
Collapse
Affiliation(s)
- Marion M. Simmons
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
- * E-mail:
| | - S. Jo Moore
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Richard Lockey
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Melanie J Chaplin
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Timm Konold
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Christopher Vickery
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - John Spiropoulos
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| |
Collapse
|
24
|
Wadsworth JDF, Joiner S, Linehan JM, Balkema-Buschmann A, Spiropoulos J, Simmons MM, Griffiths PC, Groschup MH, Hope J, Brandner S, Asante EA, Collinge J. Atypical scrapie prions from sheep and lack of disease in transgenic mice overexpressing human prion protein. Emerg Infect Dis 2014; 19:1731-9. [PMID: 24188521 PMCID: PMC3837652 DOI: 10.3201/eid1911.121341] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants.
Collapse
|
25
|
Affiliation(s)
- V. Beringue
- UR892 Virologie et Immunologie Moléculaires Centre de Recherche de Jouy-en-Josas F-78352 Jouy-en-Josas, France
| | - O. Andreoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles 31076 Toulouse, France
| |
Collapse
|
26
|
Pirisinu L, Nonno R, Esposito E, Benestad SL, Gambetti P, Agrimi U, Zou WQ. Small ruminant nor98 prions share biochemical features with human gerstmann-sträussler-scheinker disease and variably protease-sensitive prionopathy. PLoS One 2013; 8:e66405. [PMID: 23826096 PMCID: PMC3691246 DOI: 10.1371/journal.pone.0066405] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/06/2013] [Indexed: 01/08/2023] Open
Abstract
Prion diseases are classically characterized by the accumulation of pathological prion protein (PrPSc) with the protease resistant C-terminal fragment (PrPres) of 27–30 kDa. However, in both humans and animals, prion diseases with atypical biochemical features, characterized by PK-resistant PrP internal fragments (PrPres) cleaved at both the N and C termini, have been described. In this study we performed a detailed comparison of the biochemical features of PrPSc from atypical prion diseases including human Gerstmann-Sträussler-Scheinker disease (GSS) and variably protease-sensitive prionopathy (VPSPr) and in small ruminant Nor98 or atypical scrapie. The kinetics of PrPres production and its cleavage sites after PK digestion were analyzed, along with the PrPSc conformational stability, using a new method able to characterize both protease-resistant and protease-sensitive PrPSc components. All these PrPSc types shared common and distinctive biochemical features compared to PrPSc from classical prion diseases such as sporadic Creutzfeldt-Jakob disease and scrapie. Notwithstanding, distinct biochemical signatures based on PrPres cleavage sites and PrPSc conformational stability were identified in GSS A117V, GSS F198S, GSS P102L and VPSPr, which allowed their specific identification. Importantly, the biochemical properties of PrPSc from Nor98 and GSS P102L largely overlapped, but were distinct from the other human prions investigated. Finally, our study paves the way towards more refined comparative approaches to the characterization of prions at the animal–human interface.
Collapse
Affiliation(s)
- Laura Pirisinu
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
- * E-mail: (LP); (WQZ)
| | - Romolo Nonno
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Esposito
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | | | - Pierluigi Gambetti
- Department of Pathology, National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Wen-Quan Zou
- Department of Pathology, National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (LP); (WQZ)
| |
Collapse
|
27
|
Griffiths PC, Plater JM, Chave A, Jayasena D, Tout AC, Rice PB, Vickery CM, Spiropoulos J, Stack MJ, Windl O. Overexpression of chimaeric murine/ovine PrP (A136H154Q171) in transgenic mice facilitates transmission and differentiation of ruminant prions. J Gen Virol 2013; 94:2577-2586. [PMID: 23761404 DOI: 10.1099/vir.0.051581-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Development of transgenic mouse models expressing heterologous prion protein (PrP) has facilitated and advanced in vivo studies of prion diseases affecting humans and animals. Here, novel transgenic mouse lines expressing a chimaeric murine/ovine (Mu/Ov) PrP transgene, including amino acid residues alanine, histidine and glutamine at ovine polymorphic codons 136, 154 and 171 (A136H154Q171), were generated to provide a means of assessing the susceptibility of the ovine AHQ allele to ruminant prion diseases in an in vivo model. Transmission studies showed that the highest level of transgene overexpression, in Tg(Mu/OvPrP(AHQ))EM16 (EM16) mice, conferred high susceptibility to ruminant prions. Highly efficient primary transmission of atypical scrapie from sheep was shown, irrespective of donor sheep PrP genotype, with mean incubation periods (IPs) of 154–178 days post-inoculation (p.i.), 100% disease penetrance and early Western blot detection of protease-resistant fragments (PrP(res)) of the disease-associated isoform, PrP(Sc), in EM16 brain from 110 days p.i. onwards. EM16 mice were also highly susceptible to classical scrapie and bovine spongiform encephalopathy (BSE), with mean IPs 320 and 246 days faster, respectively, than WT mice. Primary passage of atypical scrapie, classical scrapie and BSE showed that the PrP(res) profiles associated with disease in the natural host were faithfully maintained in EM16 mice, and were distinguishable based on molecular masses, antibody reactivities and glycoform percentages. Immunohistochemistry was used to confirm PrP(Sc) deposition in brain sections from terminal phase transmissible spongiform encephalopathy-challenged EM16 mice. The findings indicate that EM16 mice represent a suitable bioassay model for detection of atypical scrapie infectivity and offer the prospect of differentiation of ruminant prions.
Collapse
Affiliation(s)
- Peter C Griffiths
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Jane M Plater
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Alun Chave
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Dhanushka Jayasena
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Anna C Tout
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Paul B Rice
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Christopher M Vickery
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - John Spiropoulos
- Pathology Unit, Specialist Scientific Support Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Michael J Stack
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Otto Windl
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
28
|
Corda E, Beck KE, Sallis RE, Vickery CM, Denyer M, Webb PR, Bellworthy SJ, Spencer YI, Simmons MM, Spiropoulos J. The interpretation of disease phenotypes to identify TSE strains in mice: characterisation of BSE using PrPSc distribution patterns in the brain. Vet Res 2012; 43:86. [PMID: 23245876 PMCID: PMC3567960 DOI: 10.1186/1297-9716-43-86] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/06/2012] [Indexed: 11/20/2022] Open
Abstract
In individual animals affected by transmissible spongiform encephalopathies, different disease phenotypes can be identified which are attributed to different strains of the agent. In the absence of reliable technology to fully characterise the agent, classification of disease phenotype has been used as a strain typing tool which can be applied in any host. This approach uses standardised data on biological parameters, established for a single host, to allow comparison of different prion sources. Traditionally prion strain characterisation in wild type mice is based on incubation periods and lesion profiles after the stabilisation of the agent into the new host which requires serial passages. Such analysis can take many years, due to prolonged incubation periods. The current study demonstrates that the PrPSc patterns produced by one serial passage in wild type mice of bovine or ovine BSE were consistent, stable and showed minimal and predictable differences from mouse-stabilised reference strains. This biological property makes PrPSc deposition pattern mapping a powerful tool in the identification and definition of TSE strains on primary isolation, making the process of characterisation faster and cheaper than a serial passage protocol. It can be applied to individual mice and therefore it is better suited to identify strain diversity within single inocula in case of co-infections or identify strains in cases where insufficient mice succumb to disease for robust lesion profiles to be constructed. The detailed description presented in this study provides a reference document for identifying BSE in wild type mice.
Collapse
Affiliation(s)
- Erica Corda
- School of Veterinary Medicine, University of Milan, Milan, Italy
| | - Katy E Beck
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Rosemary E Sallis
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Christopher M Vickery
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Margaret Denyer
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Paul R Webb
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Susan J Bellworthy
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Yvonne I Spencer
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Marion M Simmons
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - John Spiropoulos
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| |
Collapse
|
29
|
Wilson R, Plinston C, Hunter N, Casalone C, Corona C, Tagliavini F, Suardi S, Ruggerone M, Moda F, Graziano S, Sbriccoli M, Cardone F, Pocchiari M, Ingrosso L, Baron T, Richt J, Andreoletti O, Simmons M, Lockey R, Manson JC, Barron RM. Chronic wasting disease and atypical forms of bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein. J Gen Virol 2012; 93:1624-1629. [PMID: 22495232 DOI: 10.1099/vir.0.042507-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans.
Collapse
Affiliation(s)
- Rona Wilson
- Neuropathogenesis Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| | - Chris Plinston
- Neuropathogenesis Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| | - Nora Hunter
- Neuropathogenesis Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Cristiano Corona
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | | | - Silvia Suardi
- IRCCS Foundation, 'Carlo Besta' Neurological Institute, Milan, Italy
| | | | - Fabio Moda
- IRCCS Foundation, 'Carlo Besta' Neurological Institute, Milan, Italy
| | - Silvia Graziano
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marco Sbriccoli
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Franco Cardone
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maurizio Pocchiari
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Loredana Ingrosso
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Thierry Baron
- Agence Nationale de Sécurité Sanitaire, Lyon, France
| | - Juergen Richt
- USDA, ARS, National Animal Disease Center, PO Box 70, Ames, IA 50010, USA
| | - Olivier Andreoletti
- UMR 1225 Interactions Hôtes-Agents Pathogènes, INRA, Ecole Nationale Vétérinaire, 23 chemin des Capelles, B.P. 87614, 31076 Toulouse Cedex 3, France
| | - Marion Simmons
- Neuropathology Section, Department of Pathology and Host Susceptibility, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK
| | - Richard Lockey
- Neuropathology Section, Department of Pathology and Host Susceptibility, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK
| | - Jean C Manson
- Neuropathogenesis Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| | - Rona M Barron
- Neuropathogenesis Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| |
Collapse
|
30
|
O'Rourke KI, Schneider DA, Spraker TR, Dassanayake RP, Highland MA, Zhuang D, Truscott TC. Transmissibility of caprine scrapie in ovine transgenic mice. BMC Vet Res 2012; 8:42. [PMID: 22472560 PMCID: PMC3489715 DOI: 10.1186/1746-6148-8-42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/17/2012] [Indexed: 01/19/2023] Open
Abstract
Background The United States control program for classical ovine scrapie is based in part on the finding that infection is typically spread through exposure to shed placentas from infected ewes. Transmission from goats to sheep is less well described. A suitable rodent model for examining the effect of caprine scrapie isolates in the ovine host will be useful in the ovine scrapie eradication effort. In this study, we describe the incubation time, brain lesion profile, glycoform pattern and PrPSc distribution patterns in a well characterized transgenic mouse line (Tg338) expressing the ovine VRQ prion allele, following inoculation with brain from scrapie infected goats. Results First passage incubation times of caprine tissue in Tg338 ovinized mice varied widely but second passage intervals were shorter and consistent. Vacuolation profiles, glycoform patterns and paraffin-embedded tissue blots from terminally ill second passage mice derived from sheep or goat inocula were similar. Proteinase K digestion products of murine tissue were slightly smaller than the original ruminant inocula, a finding consistent with passage of several ovine strains in previous reports. Conclusions These findings demonstrate that Tg338 mice propagate prions of caprine origin and provide a suitable baseline for examination of samples identified in the expanded US caprine scrapie surveillance program.
Collapse
Affiliation(s)
- Katherine I O'Rourke
- United States Department of Agriculture, Agricultural Research Service, Pullman, WA 99164, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Götte DR, Benestad SL, Laude H, Zurbriggen A, Oevermann A, Seuberlich T. Atypical scrapie isolates involve a uniform prion species with a complex molecular signature. PLoS One 2011; 6:e27510. [PMID: 22096587 PMCID: PMC3214077 DOI: 10.1371/journal.pone.0027510] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/18/2011] [Indexed: 12/20/2022] Open
Abstract
The pathobiology of atypical scrapie, a prion disease affecting sheep and goats, is still poorly understood. In a previous study, we demonstrated that atypical scrapie affecting small ruminants in Switzerland differs in the neuroanatomical distribution of the pathological prion protein (PrPd). To investigate whether these differences depend on host-related vs. pathogen-related factors, we transmitted atypical scrapie to transgenic mice over-expressing the ovine prion protein (tg338). The clinical, neuropathological, and molecular phenotype of tg338 mice is similar between mice carrying the Swiss atypical scrapie isolates and the Nor98, an atypical scrapie isolate from Norway. Together with published data, our results suggest that atypical scrapie is caused by a uniform type of prion, and that the observed phenotypic differences in small ruminants are likely host-dependant. Strikingly, by using a refined SDS-PAGE technique, we established that the prominent proteinase K-resistant prion protein fragment in atypical scrapie consists of two separate, unglycosylated peptides with molecular masses of roughly 5 and 8 kDa. These findings show similarities to those for other prion diseases in animals and humans, and lay the groundwork for future comparative research.
Collapse
Affiliation(s)
- Dorothea R. Götte
- NeuroCentre, National and OIE Reference Laboratories for BSE and Scrapie, Division of Experimental Clinical Research, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | | | - Hubert Laude
- 3U892 Virologie Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Andreas Zurbriggen
- NeuroCentre, National and OIE Reference Laboratories for BSE and Scrapie, Division of Experimental Clinical Research, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - Anna Oevermann
- NeuroCentre, National and OIE Reference Laboratories for BSE and Scrapie, Division of Experimental Clinical Research, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - Torsten Seuberlich
- NeuroCentre, National and OIE Reference Laboratories for BSE and Scrapie, Division of Experimental Clinical Research, Vetsuisse Faculty, University of Berne, Berne, Switzerland
- * E-mail:
| |
Collapse
|
32
|
Atypical/Nor98 scrapie infectivity in sheep peripheral tissues. PLoS Pathog 2011; 7:e1001285. [PMID: 21347349 PMCID: PMC3037359 DOI: 10.1371/journal.ppat.1001285] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 01/10/2011] [Indexed: 11/19/2022] Open
Abstract
Atypical/Nor98 scrapie was first identified in 1998 in Norway. It is now considered as a worldwide disease of small ruminants and currently represents a significant part of the detected transmissible spongiform encephalopathies (TSE) cases in Europe. Atypical/Nor98 scrapie cases were reported in ARR/ARR sheep, which are highly resistant to BSE and other small ruminants TSE agents. The biology and pathogenesis of the Atypical/Nor98 scrapie agent in its natural host is still poorly understood. However, based on the absence of detectable abnormal PrP in peripheral tissues of affected individuals, human and animal exposure risk to this specific TSE agent has been considered low. In this study we demonstrate that infectivity can accumulate, even if no abnormal PrP is detectable, in lymphoid tissues, nerves, and muscles from natural and/or experimental Atypical/Nor98 scrapie cases. Evidence is provided that, in comparison to other TSE agents, samples containing Atypical/Nor98 scrapie infectivity could remain PrPSc negative. This feature will impact detection of Atypical/Nor98 scrapie cases in the field, and highlights the need to review current evaluations of the disease prevalence and potential transmissibility. Finally, an estimate is made of the infectivity loads accumulating in peripheral tissues in both Atypical/Nor98 and classical scrapie cases that currently enter the food chain. The results obtained indicate that dietary exposure risk to small ruminants TSE agents may be higher than commonly believed. Following the bovine spongiform encephalopathy (BSE) crisis and the identification of its zoonotic properties, a sanitary policy has been implemented based on both eradication of transmissible spongiform encephalopathies (TSE) in food-producing animals and exclusion of known infectious materials from the food chain. Atypical/Nor98 scrapie is a prion disease of small ruminants identified worldwide. Currently it represents a significant part of the TSE cases detected in Europe. The restricted tissue distribution of Atypical/Nor98 scrapie agent in its natural host and the low detected prevalence of secondary cases in affected flocks meant that it is believed to be a poorly transmissible disease. This has led to the view that Atypical/Nor98 scrapie is a spontaneous disorder for which human and animal exposure risk remains low. In this study we demonstrate that in affected individuals, Atypical/Nor98 scrapie agent can disseminate in lymphoid tissues, nerves, and muscles, challenging the idea that it is a brain-restricted infectious agent. Evidence for the deficiencies in the current methods applied for monitoring Atypical/Nor98 scrapie is provided that would indicate an underestimation in the prevalence in the general population and in the affected flocks. These elements challenge the hypothesis on the biology of this recently identified TSE agent.
Collapse
|
33
|
Joint Scientific Opinion on any possible epidemiological or molecular association between TSEs in animals and humans. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.1945] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
34
|
Abstract
Although prion diseases, such as Creutzfeldt-Jakob disease (CJD) in humans and scrapie in sheep, have long been recognized, our understanding of their epidemiology and pathogenesis is still in its early stages. Progress is hampered by the lengthy incubation periods and the lack of effective ways of monitoring and characterizing these agents. Protease-resistant conformers of the prion protein (PrP), known as the "scrapie form" (PrP(Sc)), are used as disease markers, and for taxonomic purposes, in correlation with clinical, pathological, and genetic data. In humans, prion diseases can arise sporadically (sCJD) or genetically (gCJD and others), caused by mutations in the PrP-gene (PRNP), or as a foodborne infection, with the agent of bovine spongiform encephalopathy (BSE) causing variant CJD (vCJD). Person-to-person spread of human prion disease has only been known to occur following cannibalism (kuru disease in Papua New Guinea) or through medical or surgical treatment (iatrogenic CJD, iCJD). In contrast, scrapie in small ruminants and chronic wasting disease (CWD) in cervids behave as infectious diseases within these species. Recently, however, so-called atypical forms of prion diseases have been discovered in sheep (atypical/Nor98 scrapie) and in cattle, BSE-H and BSE-L. These maladies resemble sporadic or genetic human prion diseases and might be their animal equivalents. This hypothesis also raises the significant public health question of possible epidemiological links between these diseases and their counterparts in humans.
Collapse
|