1
|
Volle R, Luo L, Razafindratsimandresy R, Sadeuh-Mba SA, Gouandjika-Valisache I, Horwood P, Duong V, Buchy P, Joffret ML, Huang Z, Duizer E, Martin J, Chakrabarti LA, Dussart P, Jouvenet N, Delpeyroux F, Bessaud M. Neutralization of African enterovirus A71 genogroups by antibodies to canonical genogroups. J Gen Virol 2023; 104. [PMID: 37909282 DOI: 10.1099/jgv.0.001911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Enterovirus 71 (EV-A71) is a major public health problem, causing a range of illnesses from hand-foot-and-mouth disease to severe neurological manifestations. EV-A71 strains have been phylogenetically classified into eight genogroups (A to H), based on their capsid-coding genomic region. Genogroups B and C have caused large outbreaks worldwide and represent the two canonical circulating EV-A71 subtypes. Little is known about the antigenic diversity of new genogroups as compared to the canonical ones. Here, we compared the antigenic features of EV-A71 strains that belong to the canonical B and C genogroups and to genogroups E and F, which circulate in Africa. Analysis of the peptide sequences of EV-A71 strains belonging to different genogroups revealed a high level of conservation of the capsid residues involved in known linear and conformational neutralization antigenic sites. Using a published crystal structure of the EV-A71 capsid as a model, we found that most of the residues that are seemingly specific to some genogroups were mapped outside known antigenic sites or external loops. These observations suggest a cross-neutralization activity of anti-genogroup B or C antibodies against strains of genogroups E and F. Neutralization assays were performed with diverse rabbit and mouse anti-EV-A71 sera, anti-EV-A71 human standards and a monoclonal neutralizing antibody. All the batches of antibodies that were tested successfully neutralized all available isolates, indicating an overall broad cross-neutralization between the canonical genogroups B and C and genogroups E and F. A panel constituted of more than 80 individual human serum samples from Cambodia with neutralizing antibodies against EV-A71 subgenogroup C4 showed quite similar cross-neutralization activities between isolates of genogroups C4, E and F. Our results thus indicate that the genetic drift underlying the separation of EV-A71 strains into genogroups A, B, C, E and F does not correlate with the emergence of antigenically distinct variants.
Collapse
Affiliation(s)
- Romain Volle
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
- Present address: Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lingjie Luo
- Present address: Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, PR China
- Institut Pasteur, Control of Chronic Viral Infections (CIVIC) Group, Virus and Immunity Unit, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | | | - Serge Alain Sadeuh-Mba
- Present address: Maryland Department of Agriculture, Salisbury Animal Health Laboratory, Salisbury, USA
- Centre Pasteur of Cameroon, Yaounde, Cameroon
| | | | - Paul Horwood
- Present address: James Cook University, Townsville, Australia
- Institut Pasteur of Cambodia, Phnom Penh, Cambodia
| | - Veasna Duong
- Institut Pasteur of Cambodia, Phnom Penh, Cambodia
| | | | - Marie-Line Joffret
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Zhong Huang
- Present address: Fudan University, Shanghai, PR China
- Institut Pasteur of Shanghai - Chinese Academy of Sciences, Shanghai, PR China
| | - Erwin Duizer
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Javier Martin
- National Institute for Biological Standards and Control (NIBSC), Potters Bar, UK
| | - Lisa A Chakrabarti
- Institut Pasteur, Control of Chronic Viral Infections (CIVIC) Group, Virus and Immunity Unit, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | | | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Maël Bessaud
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| |
Collapse
|
2
|
Ding Y, Han Z. Effect of difference between EV-A71 virus epidemic strain and "vaccine strain" on neutralizing antibody titer. Hum Vaccin Immunother 2022; 18:2121565. [PMID: 36112355 DOI: 10.1080/21645515.2022.2121565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hand, foot and mouth disease was mainly caused by EV-A71 virus. The main antigen structure of VP1 region of EV-A71 was easily varied. Here, we investigated the seroprevalence of EV-A71 based on a large group of healthy individuals in Beijing, China, in order to study the effectiveness of EV-A71 vaccine in a real-world setting. BrCr and the clinical strain isolated from the Chinese mainland in 2008 ("vaccine strain:"CMU4232/BJ/CHN/2008), EV-A71 C4 epidemic strains isolated in 2010, 2013, and 2016, were tested for neutralizing antibodies (NtAb) in every year. Phylogenetic tree analysis of the EV-A71 strains above, as well as amino acid composition homologous sequence analysis were applied. The "vaccine strain" has 83.0% homology with FY23, H07 and FY7VP5. It belongs to the same branch of C4a as 10 C4, 13 C4 and 16 C4, and differs from the amino acid sites 283 and 293 of 16 C4. Compared with "vaccine strains," there was a significant difference between the 50-59 years old age group when the NtAb titer of 16 C4 strain was 1:512-1:1024. Our results suggest that changes in the functional epitopes of NtAb caused by amino acid 283 and 293 loci in EV-A71 strains may affect the production of neutralizing antibodies.
Collapse
Affiliation(s)
- Yiwei Ding
- Department of Respiratory and Critical Care Medicine, the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zhihai Han
- Department of Respiratory and Critical Care Medicine, the Sixth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Othman I, Slama I, Mastouri M, Bailly JL, Aouni M. First detection and characterization of EV-A71 and a new genogroup of CVA-24 causing neurological disease in Tunisia. Future Virol 2022. [DOI: 10.2217/fvl-2021-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Molecular characterization of enterovirus A71 (EV-A71) and coxsackievirus A24 (CVA-24) strains isolated during neurological diseases surveillance activities in Tunisian patients. Materials & methods: Specimens were obtained from two Tunisian children and analyzed for enterovirus with quantitative reverse transcription PCR (RT-qPCR). We sequenced the whole genome of strains detected. Results: The EV-A71 sequence reported was assigned to subgenogroup C2 with a high nucleotide sequence identity to other EV-A71 C2 detected in other countries, which suggests virus migration. Interestingly, in the VP1 coding region, the Tunisian CV-A24 strain displayed high sequence divergence from other CV-A24, which confirms that it represents a new genogroup. Conclusion: This is the first report of EV-A71 in Tunisia and the first report of a CV-A24 strain causing aseptic meningitis.
Collapse
Affiliation(s)
- Ines Othman
- Faculty of Pharmacy, LR99-ES27, Monastir, Tunisia
| | - Ichrak Slama
- Faculty of Pharmacy, LR99-ES27, Monastir, Tunisia
| | - Maha Mastouri
- Faculty of Pharmacy, LR99-ES27, Monastir, Tunisia
- Fattouma Bourguiba University Hospital, Laboratory of Microbiology, Monastir, Tunisia
| | - Jean-Luc Bailly
- Université Clermont Auvergne, Faculty of Pharmacy, LMGE CNRS 6023, Clermont-Ferrand, 63001, France
| | | |
Collapse
|
4
|
Atomistic-scale analysis of the deformation and failure of polypropylene composites reinforced by functionalized silica nanoparticles. Sci Rep 2021; 11:23108. [PMID: 34845272 PMCID: PMC8630061 DOI: 10.1038/s41598-021-02460-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/12/2021] [Indexed: 12/05/2022] Open
Abstract
Interfacial adhesion between polymer matrix and reinforcing silica nanoparticles plays an important role in strengthening polypropylene (PP) composite. To improve the adhesion strength, the surface of silica nanoparticles can be modified by grafted functional molecules. Using atomistic simulations, we examined the effect of functionalization of silica nanoparticles by hexamethyldisilazane (HMDS) and octyltriethoxysilane (OTES) molecules on the deformation and failure of silica-reinforced PP composite. We found that the ultimate tensile strength (UTS) of PP composite functionalized by OTES (28 MPa) is higher than that of HMDS (25 MPa), which is in turn higher than that passivated only by hydrogen (22 MPa). To understand the underlying mechanistic origin, we calculated the adhesive energy and interfacial strength of the interphase region, and found that both the adhesive energy and interfacial strength are the highest for the silica nanoparticles functionalized by OTES molecules, while both are the lowest by hydrogen. The ultimate failure of the polymer composite is initiated by the cavitation in the interphase region with the lowest mass density, and this cavitation failure mode is common for all the examined PP composites, but the cavitation position is dependent on the tail length of the functional molecules. The present work provides interesting insights into the deformation and cavitation failure mechanisms of the silica-reinforced PP composites, and the findings can be used as useful guidelines in selecting chemical agents for surface treatment of silica nanoparticles.
Collapse
|
5
|
Chang X, Zhu L, Hu J, Zhang Q, Zhang F, Lin Q, Gai X, Wang X. Unveiling of Evolution Pattern for HY12 Enterovirus Quasispecies and Pathogenicity Alteration. Viruses 2021; 13:2174. [PMID: 34834980 PMCID: PMC8619380 DOI: 10.3390/v13112174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Enterovirus, like the majority of RNA viruses, evolves to survive the changeable environments by a variety of strategies. Here, we showed that HY12 virus evolved to alter its characteristics and pathogenicity by employing a non-synonymous mutation. Analyses of 5'UTR, VP1 and VP2 gene sequences revealed the existence of HY12 virus in an array of mutants defined as quasispecies. The determination of diversity and complexity showed that the mutation rate and complexity of HY12 virus quasispecies increased, while the proportion of HY12 VP1 and VP2 consensus (master) sequences decreased with increasing passages. Synonymous mutation and non-synonymous mutation analysis displayed a positive selection for HY12 quasispecies evolution. A comparison of HY12 virus in different passages demonstrated that HY12 virus altered its characteristic, phenotype, and pathogenicity via non-synonymous mutation. These findings revealed the evolution pattern for HY12 virus, and the alteration of HY12 virus characteristics and pathogenicity by mutation.
Collapse
Affiliation(s)
- Xiaoran Chang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.C.); (L.Z.); (J.H.); (Q.Z.); (F.Z.); (Q.L.); (X.G.)
| | - Lisai Zhu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.C.); (L.Z.); (J.H.); (Q.Z.); (F.Z.); (Q.L.); (X.G.)
| | - Junying Hu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.C.); (L.Z.); (J.H.); (Q.Z.); (F.Z.); (Q.L.); (X.G.)
| | - Qun Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.C.); (L.Z.); (J.H.); (Q.Z.); (F.Z.); (Q.L.); (X.G.)
| | - Fuhui Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.C.); (L.Z.); (J.H.); (Q.Z.); (F.Z.); (Q.L.); (X.G.)
| | - Qian Lin
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.C.); (L.Z.); (J.H.); (Q.Z.); (F.Z.); (Q.L.); (X.G.)
| | - Xiaochun Gai
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.C.); (L.Z.); (J.H.); (Q.Z.); (F.Z.); (Q.L.); (X.G.)
| | - Xinping Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.C.); (L.Z.); (J.H.); (Q.Z.); (F.Z.); (Q.L.); (X.G.)
- Key Laboratory for Zoonoses Research, Ministry of Education, Changchun 130062, China
| |
Collapse
|
6
|
Xu B, Wang J, Yan B, Xu C, Yin Q, Yang D. Global spatiotemporal transmission patterns of human enterovirus 71 from 1963 to 2019. Virus Evol 2021; 7:veab071. [PMID: 36819972 PMCID: PMC9927877 DOI: 10.1093/ve/veab071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 06/24/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Enterovirus 71 (EV71) can cause large outbreaks of hand, foot, and mouth disease (HFMD) and severe neurological diseases, which is regarded as a major threat to public health, especially in Asia-Pacific regions. However, the global spatiotemporal spread of this virus has not been identified. In this study, we used large sequence datasets and a Bayesian phylogenetic approach to compare the molecular epidemiology and geographical spread patterns of different EV71 subgroups globally. The study found that subgroups of HFMD presented global spatiotemporal variation, subgroups B0, B1, and B2 have caused early infections in Europe and America, and then subgroups C1, C2, C3, and C4 replaced B0-B2 as the predominant genotypes, especially in Asia-Pacific countries. The dispersal patterns of genotype B and subgroup C4 showed the complicated routes in Asia and the source might in some Asian countries, while subgroups C1 and C2 displayed more strongly supported pathways globally, especially in Europe. This study found the predominant subgroup of EV71 and its global spatiotemporal transmission patterns, which may be beneficial to reveal the long-term global spatiotemporal transmission patterns of human EV71 and carry out the HFMD vaccine development.
Collapse
Affiliation(s)
- Bing Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, 277, Yanta West Road, Xi’an, 710061, China
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100190, China
- Key Clinical Discipline by National Health Commission, 277, Yanta West Road, Xi’an, 710061, China
| | - Jinfeng Wang
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100190, China
| | - Bin Yan
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100190, China
| | - Chengdong Xu
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Qian Yin
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Deyan Yang
- College of Oceanography and Space Informatics, China University of Petroleum, 66 Changjiangxi Road, Huangdao District, Qingdao, 266580, China
| |
Collapse
|
7
|
Cross-Antigenicity between EV71 Sub-Genotypes: Implications for Vaccine Efficacy. Viruses 2021; 13:v13050720. [PMID: 33919184 PMCID: PMC8143144 DOI: 10.3390/v13050720] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 01/31/2023] Open
Abstract
Enterovirus A-71 (EV71) is a global, highly contagkkious pathogen responsible for severe cases of hand-food-mouth-disease (HFMD). The use of vaccines eliciting cross neutralizing antibodies (NTAbs) against the different circulating EV71 sub-genotypes is important for preventing HFMD outbreaks. Here, we tested the cross-neutralizing activities induced by EV71 genotype/sub-genotype A, B0-B4, C1, C2, C4, and C5 viruses using rats. Differences were noted in the cross-neutralization of the 10 sub-genotypes tested but there were generally good levels of cross-neutralization except against genotype A virus, against which neutralization antibody titres (NTAb) where the lowest with NTAbs being the highest against sub-genotype B4. Moreover, NTAb responses induced by C4, B4, C1, and C2 viruses were homogenous, with values of maximum/minimum NTAb ratios (MAX/MIN) against all B and C viruses ranging between 4.0 and 6.0, whereas MAX/MIN values against B3 and A viruses were highly variable, 48.0 and 256.0, respectively. We then dissected the cross-neutralizing ability of sera from infants and children and rats immunized with C4 EV71 vaccines. Cross-neutralizing titers against the 10 sub-genotypes were good in both vaccinated infants and children and rats with the MAX/MIN ranging from 1.8–3.4 and 5.1–7.1, respectively, which were similar to those found in naturally infected patients (2.8). Therefore, we conclude that C4 EV71 vaccines can provide global protection to infants and children against HFMD caused by different sub-genotypes.
Collapse
|
8
|
Sun H, Gao M, Cui D. Molecular characteristics of the VP1 region of enterovirus 71 strains in China. Gut Pathog 2020; 12:38. [PMID: 32818043 PMCID: PMC7427758 DOI: 10.1186/s13099-020-00377-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023] Open
Abstract
Background Enterovirus 71 (EV71) is the most commonly implicated causative agent of severe outbreaks of paediatric hand, foot, and mouth disease (HFMD).VP1 protein, a capsid protein of EV71, is responsible for the genotype of the virus and is essential for vaccine development and effectiveness. However, the genotypes of EV71 isolates in China are still not completely clear. Methods The VP1 gene sequences of 3712 EV71 virus strains from China, excluding repetitive sequences and 30 known EV71 genotypes as reference strains, between 1986 and 2019 were obtained from GenBank. Phylogenetic tree, amino acid homology, genetic variation and genotype analyses of the EV71VP1 protein were performed with MEGA 6.0 software. Results The amino acid identity was found to be 88.33%–100% among the 3712 EV71 strains, 93.47%–100% compared with vaccine strain H07, and 93.04%–100% compared with vaccine strains FY7VP5 or FY-23 K-B. Since 2000, the prevalent strains of EV71 were mainly of the C4 genotype. Among these, the C4a subgenotype was predominant, followed by the C4b subgenotype; other subgenotypes appeared sporadically between 2005 and 2018 in mainland China. The B4 genotype was the main genotype in Taiwan, and the epidemic strains were constantly changing. Some amino acid variations in VP1 of EV71 occurred with high frequencies, including A289T (20.99%), H22Q (16.49%), A293S (15.95%), S283T (15.11%), V249I (7.76%), N31D (7.25%), and E98K (6.65%). Conclusion The C4 genotype of EV71 in China matches the vaccine and should effectively control EV71. However, the efficacy of the vaccine is partially affected by the continuous change in epidemic strains in Taiwan. These results suggest that the genetic characteristics of the EV71-VP1 region should be continuously monitored, which is critical for epidemic control and vaccine design to prevent EV71 infection in children.
Collapse
Affiliation(s)
- Haiyan Sun
- Department of Clinical Laboratory, Shaoxing Second Hospital, Shaoxing, 312000 Zhejiang China
| | - Min Gao
- Department of Laboratory Medicine, Huzhou Central Hospital, Huzhou, 313003 Zhejiang China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 Zhejiang China.,Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Zhou Y, Van Tan L, Luo K, Liao Q, Wang L, Qiu Q, Zou G, Liu P, Anh NT, Hong NTT, He M, Wei X, Yu S, Lam TTY, Cui J, van Doorn HR, Yu H. Genetic Variation of Multiple Serotypes of Enteroviruses Associated with Hand, Foot and Mouth Disease in Southern China. Virol Sin 2020; 36:61-74. [PMID: 32725479 PMCID: PMC7385209 DOI: 10.1007/s12250-020-00266-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/06/2020] [Indexed: 12/04/2022] Open
Abstract
Enteroviruses (EVs) species A are a major public health issue in the Asia–Pacific region and cause frequent epidemics of hand, foot and mouth disease (HFMD) in China. Mild infections are common in children; however, HFMD can also cause severe illness that affects the central nervous system. To molecularly characterize EVs, a prospective HFMD virological surveillance program was performed in China between 2013 and 2016. Throat swabs, rectal swabs and stool samples were collected from suspected HFMD patients at participating hospitals. EVs were detected using generic real-time and nested reverse transcription-polymerase chain reactions (RT-PCRs). Then, the complete VP1 regions of enterovirus A71 (EV-A71), coxsackievirus A16 (CVA16) and CVA6 were sequenced to analyze amino acid changes and construct a viral molecular phylogeny. Of the 2836 enrolled HFMD patients, 2,517 (89%) were EV positive. The most frequently detected EVs were CVA16 (32.5%, 819), CVA6 (31.2%, 785), and EV-A71 (20.4%, 514). The subgenogroups CVA16_B1b, CVA6_D3a and EV-A71_C4a were predominant in China and recombination was not observed in the VP1 region. Sequence analysis revealed amino acid variations at the 30, 29 and 44 positions in the VP1 region of EV-A71, CVA16 and CVA6 (compared to the respective prototype strains BrCr, G10 and Gdula), respectively. Furthermore, in 21 of 24 (87.5%) identified EV-A71 samples, a known amino acid substitution (D31N) that may enhance neurovirulence was detected. Our study provides insights about the genetic characteristics of common HFMD-associated EVs. However, the emergence and virulence of the described mutations require further investigation.
Collapse
Affiliation(s)
- Yonghong Zhou
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Le Van Tan
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | - Kaiwei Luo
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Qiaohong Liao
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China.,Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, 102206, China
| | - Lili Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Qi Qiu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Gang Zou
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ping Liu
- Anhua County Center for Disease Control and Prevention, Anhua, 413000, China
| | - Nguyen To Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | | | - Min He
- Anhua County Center for Disease Control and Prevention, Anhua, 413000, China
| | - Xiaoman Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shuanbao Yu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, 102206, China
| | - Tommy Tsan-Yuk Lam
- Centre of Influenza Research & State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200032, China
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
10
|
Song Y, Zhang Y, Han Z, Xu W, Xiao J, Wang X, Wang J, Yang J, Yu Q, Yu D, Chen J, Huang W, Li J, Xie T, Lu H, Ji T, Yang Q, Yan D, Zhu S, Xu W. Genetic recombination in fast-spreading coxsackievirus A6 variants: a potential role in evolution and pathogenicity. Virus Evol 2020; 6:veaa048. [PMID: 34804589 PMCID: PMC8597624 DOI: 10.1093/ve/veaa048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common global epidemic. From 2008
onwards, many HFMD outbreaks caused by coxsackievirus A6 (CV-A6) have been
reported worldwide. Since 2013, with a dramatically increasing number of
CV-A6-related HFMD cases, CV-A6 has become the predominant HFMD pathogen in
mainland China. Phylogenetic analysis based on the VP1 capsid
gene revealed that subtype D3 dominated the CV-A6 outbreaks. Here, we performed
a large-scale (near) full-length genetic analysis of global and Chinese CV-A6
variants, including 158 newly sequenced samples collected extensively in
mainland China between 2010 and 2018. During the global transmission of subtype
D3 of CV-A6, the noncapsid gene continued recombining, giving rise to a series
of viable recombinant hybrids designated evolutionary lineages, and each lineage
displayed internal consistency in both genetic and epidemiological features. The
emergence of lineage –A since 2005 has triggered CV-A6 outbreaks
worldwide, with a rate of evolution estimated at
4.17 × 10−3 substitutions
site-1 year−1 based on a
large number of monophyletic open reading frame sequences, and created a series
of lineages chronologically through varied noncapsid recombination events. In
mainland China, lineage –A has generated another two novel widespread
lineages (–J and –L) through recombination within the
enterovirus A gene pool, with robust estimates of occurrence time. Lineage
–A, –J, and –L infections presented dissimilar clinical
manifestations, indicating that the conservation of the CV-A6 capsid gene
resulted in high transmissibility, but the lineage-specific noncapsid gene might
influence pathogenicity. Potentially important amino acid substitutions were
further predicted among CV-A6 variants. The evolutionary phenomenon of noncapsid
polymorphism within the same subtype observed in CV-A6 was uncommon in other
leading HFMD pathogens; such frequent recombination happened in fast-spreading
CV-A6, indicating that the recovery of deleterious genomes may still be ongoing
within CV-A6 quasispecies. CV-A6-related HFMD outbreaks have caused a
significant public health burden and pose a great threat to children’s
health; therefore, further surveillance is greatly needed to understand the full
genetic diversity of CV-A6 in mainland China.
Collapse
Affiliation(s)
- Yang Song
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Wen Xu
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, China
| | - Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Xianjun Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Jianxing Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Jianfang Yang
- Shanxi Center for Disease Control and Prevention, Taiyuan, Shanxi Province, China
| | - Qiuli Yu
- Hebei Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, China
| | - Deshan Yu
- Gansu Center for Disease Control and Prevention, Lanzhou, Gansu Province, China
| | - Jianhua Chen
- Gansu Center for Disease Control and Prevention, Lanzhou, Gansu Province, China
| | - Wei Huang
- Chongqing Center for Disease Control and Prevention, Chongqing City, China
| | - Jie Li
- Beijing Center for Disease Control and Prevention, Beijing City, China
| | - Tong Xie
- Tianjin Center for Disease Control and Prevention, Tianjin City, China
| | - Huanhuan Lu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Tianjiao Ji
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Qian Yang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei Province, China.,Anhui University of Science and Technology, Anhui Province, China
| |
Collapse
|
11
|
Ngangas ST, Lukashev A, Jugie G, Ivanova O, Mansuy JM, Mengelle C, Izopet J, L'honneur AS, Rozenberg F, Leyssene D, Hecquet D, Marque-Juillet S, Boutolleau D, Burrel S, Peigue-Lafeuille H, Archimbaud C, Benschop K, Henquell C, Mirand A, Bailly JL. Multirecombinant Enterovirus A71 Subgenogroup C1 Isolates Associated with Neurologic Disease, France, 2016-2017. Emerg Infect Dis 2019; 25:1204-1208. [PMID: 31107209 PMCID: PMC6537711 DOI: 10.3201/eid2506.181460] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In 2016, an upsurge of neurologic disease associated with infection with multirecombinant enterovirus A71 subgenogroup C1 lineage viruses was reported in France. These viruses emerged in the 2000s; 1 recombinant is widespread. This virus lineage has the potential to be associated with a long-term risk for severe disease among children.
Collapse
|
12
|
Huang SW, Cheng D, Wang JR. Enterovirus A71: virulence, antigenicity, and genetic evolution over the years. J Biomed Sci 2019; 26:81. [PMID: 31630680 PMCID: PMC6802317 DOI: 10.1186/s12929-019-0574-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023] Open
Abstract
As a neurotropic virus, enterovirus A71 (EV-A71) emerge and remerge in the Asia-Pacific region since the 1990s, and has continuously been a threat to global public health, especially in children. Annually, EV-A71 results in hand-foot-and-mouth disease (HFMD) and occasionally causes severe neurological disease. Here we reviewed the global epidemiology and genotypic evolution of EV-A71 since 1997. The natural selection, mutation and recombination events observed in the genetic evolution were described. In addition, we have updated the antigenicity and virulence determinants that are known to date. Understanding EV-A71 epidemiology, genetic evolution, antigenicity, and virulence determinants can expand our insights of EV-A71 pathogenesis, which may benefit us in the future.
Collapse
Affiliation(s)
- Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Dayna Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Jen-Ren Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan. .,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Center of Infectious Disease and Signaling Research, National Cheng Kung University, One, University Road, Tainan, 701, Taiwan. .,Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.
| |
Collapse
|
13
|
Apostol LN, Shimizu H, Suzuki A, Umami RN, Jiao MMA, Tandoc A, Saito M, Lupisan S, Oshitani H. Molecular characterization of enterovirus-A71 in children with acute flaccid paralysis in the Philippines. BMC Infect Dis 2019; 19:370. [PMID: 31046684 PMCID: PMC6498601 DOI: 10.1186/s12879-019-3955-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 04/08/2019] [Indexed: 12/03/2022] Open
Abstract
Background Several inactivated enterovirus-A71 (EV-A71) vaccines are currently licensed in China; however, the development of additional EV-A71 vaccines is ongoing, necessitating extensive analysis of the molecular epidemiology of the virus worldwide. Until 2012, laboratory confirmation of EV-A71 for hand, foot, and mouth disease (HFMD) and other associated diseases had not occurred in the Philippines. Because EV-A71 has been linked with cases of acute flaccid paralysis (AFP), AFP surveillance is one strategy for documenting its possible circulation in the country. To expand current knowledge on EV-A71, molecular epidemiologic analysis and genetic characterization of EV-A71 isolates were performed in this study. Methods A retrospective study was performed to identify and characterize nonpolio enteroviruses (NPEVs) associated with AFP in the Philippines, and nine samples were found to be EV-A71–positive. Following characterization of these EV-A71 isolates, the complete viral protein 1 (VP1) gene was targeted for phylogenetic analysis. Results Nine EV-A71 isolates detected in 2000 (n = 2), 2002 (n = 4), 2005 (n = 2), and 2010 (n = 1) were characterized using molecular methods. Genomic regions spanning the complete VP1 region were amplified and sequenced using specific primers. Phylogenetic analysis of the full-length VP1 region identified all nine EV-A71 Philippine isolates as belonging to the genogroup C lineage, specifically the C2 cluster. The result indicated a genetic linkage with several strains isolated in Japan and Taiwan, suggesting that strains in the C2 cluster identified in the Asia-Pacific region were circulating in the Philippines. Conclusion The study presents the genetic analysis of EV-A71 in the Philippines. Despite some limitations, the study provides additional genetic data on the circulating EV-A71 strains in the Asia-Pacific region, in which information on EV-A71 molecular epidemiology is incomplete. Considering that EV-A71 has a significant public health impact in the region, knowledge of its circulation in each country is important, especially for formulating vaccines covering a wide variety of strains.
Collapse
Affiliation(s)
- Lea Necitas Apostol
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Virology, Research Institute for Tropical Medicine, Muntinlupa, Philippines.
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Akira Suzuki
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku-RITM Collaborating Research Center for Emerging and Re-emerging Infectious Diseases, Muntinlupa, Philippines
| | - Rifqiyah Nur Umami
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.,Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, 16911, Indonesia
| | - Maria Melissa Ann Jiao
- Department of Virology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Amado Tandoc
- Department of Virology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Mariko Saito
- Tohoku-RITM Collaborating Research Center for Emerging and Re-emerging Infectious Diseases, Muntinlupa, Philippines
| | - Socorro Lupisan
- Department of Virology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku-RITM Collaborating Research Center for Emerging and Re-emerging Infectious Diseases, Muntinlupa, Philippines
| |
Collapse
|
14
|
Lema C, Torres C, Van der Sanden S, Cisterna D, Freire MC, Gómez RM. Global phylodynamics of Echovirus 30 revealed differential behavior among viral lineages. Virology 2019; 531:79-92. [PMID: 30856485 DOI: 10.1016/j.virol.2019.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/16/2019] [Accepted: 02/16/2019] [Indexed: 01/03/2023]
Abstract
Echovirus 30 (E30) is an important causative agent of aseptic meningitis worldwide. Despite this, the global and regional dispersion patterns, especially in South America, are still largely unknown. We performed an in-depth analysis of global E30 population dynamics, by using the VP1 sequences of 79 strains isolated in Argentina, between 1998 and 2012, and 856 sequences from GenBank. Furthermore, the 3Dpol regions of 329 sequences were analyzed to study potential recombination events. E30 evolution was characterized by co-circulation and continuous replacement of lineages over time, where four lineages appear to circulate at present and another four lineages appear to have stopped circulating. Five lineages showed a global distribution, whereas three other lineages had a more restricted circulation pattern. Strains isolated in South America belong to lineages E and F. Analysis of the 3Dpol region of Argentinean strains indicated that recombination events occurred in both lineages.
Collapse
Affiliation(s)
- Cristina Lema
- Neurovirosis Service at Virology Department, INEI-ANLIS, Dr. Carlos G. Malbran Institute, Argentina.
| | - Carolina Torres
- Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | | | - Daniel Cisterna
- Neurovirosis Service at Virology Department, INEI-ANLIS, Dr. Carlos G. Malbran Institute, Argentina
| | - María Cecilia Freire
- Neurovirosis Service at Virology Department, INEI-ANLIS, Dr. Carlos G. Malbran Institute, Argentina
| | - Ricardo M Gómez
- Institute of Biotechnology and Molecular Biology, CONICET-UNLP, 1900 La Plata, Argentina.
| |
Collapse
|
15
|
van der Sanden SMG, Koen G, van Eijk H, Koekkoek SM, de Jong MD, Wolthers KC. Prediction of Protection against Asian Enterovirus 71 Outbreak Strains by Cross-neutralizing Capacity of Serum from Dutch Donors, The Netherlands. Emerg Infect Dis 2018; 22:1562-9. [PMID: 27533024 PMCID: PMC4994357 DOI: 10.3201/eid2209.151579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Herd immunity induced by locally circulating strains could provide protection against introduction of new strains. Outbreaks of human enterovirus 71 (EV-71) in Asia are related to high illness and death rates among children. To gain insight into the potential threat for the population of Europe, we determined the neutralizing activity in intravenous immunoglobulin (IVIg) batches and individual serum samples from donors in the Netherlands against EV-71 strains isolated in Europe and in Asia. All IVIg batches and 41%, 79%, and 65% of serum samples from children ≤5 years of age, women of childbearing age, and HIV-positive men, respectively, showed high neutralizing activity against a Dutch C1 strain, confirming widespread circulation of EV-71 in the Netherlands. Asian B3–4 and C4 strains were efficiently cross-neutralized, predicting possible protection against extensive circulation and associated outbreaks of those types in Europe. However, C2 and C5 strains that had few mutations in the capsid region consistently escaped neutralization, emphasizing the importance of monitoring antigenic diversity among circulating EV-71 strains.
Collapse
MESH Headings
- Adult
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Capsid Proteins/genetics
- Cell Line
- Child, Preschool
- Coinfection
- Cross Protection/immunology
- Disease Outbreaks
- Enterovirus A, Human/classification
- Enterovirus A, Human/genetics
- Enterovirus A, Human/immunology
- Enterovirus Infections/epidemiology
- Enterovirus Infections/immunology
- Enterovirus Infections/prevention & control
- Enterovirus Infections/virology
- Female
- Genotype
- HIV Infections
- Humans
- Immunoglobulins, Intravenous/therapeutic use
- Infant
- Infant, Newborn
- Male
- Middle Aged
- Netherlands/epidemiology
- Neutralization Tests
- Population Surveillance
- Seroepidemiologic Studies
- Viral Plaque Assay
- Young Adult
Collapse
|
16
|
Full-Genome Sequence of an Enterovirus 71 Strain Isolated from a Throat Swab from a Child with Severe Hand-Foot-and-Mouth Disease in Changzhou, China, in 2017. GENOME ANNOUNCEMENTS 2018; 6:6/4/e01439-17. [PMID: 29371346 PMCID: PMC5786672 DOI: 10.1128/genomea.01439-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The full-length genome sequence of a human enterovirus 71 (EV71) strain (EV71/CZTN01/CHN/2017) was isolated from a throat swab from a child in Changzhou, China, in 2017. According to the phylogenetic analyses, the full-genome sequence in this study belongs to sub-subgenotype C4a.
Collapse
|
17
|
Wieczorek M, Purzyńska M, Krzysztoszek A, Ciąćka A, Figas A, Szenborn L. Genetic characterization of enterovirus A71 isolates from severe neurological cases in Poland. J Med Virol 2017; 90:372-376. [PMID: 28960454 DOI: 10.1002/jmv.24958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/18/2017] [Indexed: 01/01/2023]
Abstract
The aim of this study was to report a minor outbreak of enterovirus A71 (EV-A71) infection in Poland and characterize isolates from cases of severe neurological infection detected in 2013 and 2016. Phylogenetic analysis revealed that Polish strains belonged to the C genogroup: C1, C2, and C4. Severe neurological manifestations as encephalitis or acute flaccid paralysis (AFP), were associated with all detected subgenogroups. The C2 subgenogroup was associated with the outbreak in Gdansk, with serious cases of AFP, myelitis, cerebellitis, encephalitis, but also with mild, sporadic cases of aseptic meningitis, in other Polish cities. Data from the study established relationships of EV-A71 from Poland with previously characterized strains and confirmed the importance of high quality enterovirus surveillance with international reach.
Collapse
Affiliation(s)
- Magdalena Wieczorek
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | - Mariola Purzyńska
- Pomeranian Hospitals, Specialist Hospital of Infectious Diseases in Gdansk, Gdansk, Poland
| | - Arleta Krzysztoszek
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | - Agnieszka Ciąćka
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | - Agnieszka Figas
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | - Leszek Szenborn
- Department and Clinic of Pediatric Infectious Diseases, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
18
|
Anastasina M, Domanska A, Palm K, Butcher S. Human picornaviruses associated with neurological diseases and their neutralization by antibodies. J Gen Virol 2017. [PMID: 28631594 DOI: 10.1099/jgv.0.000780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Picornaviruses are the most commonly encountered infectious agents in mankind. They typically cause mild infections of the gastrointestinal or respiratory tract, but sometimes also invade the central nervous system. There, they can cause severe diseases with long-term sequelae and even be lethal. The most infamous picornavirus is poliovirus, for which significant epidemics of poliomyelitis were reported from the end of the nineteenth century. A successful vaccination campaign has brought poliovirus close to eradication, but neurological diseases caused by other picornaviruses have increasingly been reported since the late 1990s. In this review we focus on enterovirus 71, coxsackievirus A16, enterovirus 68 and human parechovirus 3, which have recently drawn attention because of their links to severe neurological diseases. We discuss the clinical relevance of these viruses and the primary role of humoral immunity in controlling them, and summarize current knowledge on the neutralization of such viruses by antibodies.
Collapse
Affiliation(s)
- Maria Anastasina
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland.,Protobios LLC, Mäealuse 4, 12618 Tallinn, Estonia
| | - Aušra Domanska
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| | - Kaia Palm
- Protobios LLC, Mäealuse 4, 12618 Tallinn, Estonia.,Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Sarah Butcher
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| |
Collapse
|
19
|
Shaukat S, Angez M, Mahmood T, Alam MM, Sharif S, Khurshid A, Rana MS, Zaidi SSZ. Molecular characterization of echovirus 13 uncovering high genetic diversity and identification of new genotypes in Pakistan. INFECTION GENETICS AND EVOLUTION 2016; 48:102-108. [PMID: 28011278 DOI: 10.1016/j.meegid.2016.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 11/15/2016] [Accepted: 12/18/2016] [Indexed: 11/26/2022]
Abstract
Echovirus 13 (E-13) is reported worldwide and is mostly related to aseptic meningitis but it is also isolated from cases of acute flaccid paralysis (AFP). Unfortunately, all studies conducted on non polio enterovirus in Pakistan only confirm E-13 isolation based on microneutralization assay but there is lack of molecular epidemiological data on this serotype. In this study, 113 stool samples were collected from AFP patients during 2008-2010. An enterovirus primer mediated real-time reverse transcriptase polymerase chain reaction, a standard microneutralization assay and sequencing of viral protein 1 gene (VP1) identified the predominant serotype E-13. For molecular characterization, genetic relationship between 12 clinical isolates of echovirus 13 was investigated by partial sequencing of viral protein 1 gene. These strains, combined with related sequences from GenBank were divided phylogenetically into two different genogroups A and B (>30% divergence) and were found genetically distinct from the circulating strains in the world. Additionally, phylogenic grouping pattern revealed that the study strains clustered into three distinct subgroups (A3, A7 and B3) having >23% nucleotide divergence representing three new genotypes. The genotype A7 seems to be restricted geographically. In conclusion, the current study provides an overview of the molecular epidemiology and evolution of E-13 in the country. This study strongly suggests that enterovirus surveillance system should be established in the country to determine the temporal and geographical trends and disease pattern of different enterovirus serotypes in the community.
Collapse
Affiliation(s)
- Shahzad Shaukat
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan; Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Mehar Angez
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan.
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Muhammad Masroor Alam
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan.
| | - Salmaan Sharif
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan.
| | - Adnan Khurshid
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan.
| | - Muhammad Suleman Rana
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan.
| | - Syed Sohail Zahoor Zaidi
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan.
| |
Collapse
|
20
|
Kim HJ, Hyeon JY, Hwang S, Lee YP, Lee SW, Yoo JS, Kang B, Ahn JB, Jeong YS, Lee JW. Epidemiology and virologic investigation of human enterovirus 71 infection in the Republic of Korea from 2007 to 2012: a nationwide cross-sectional study. BMC Infect Dis 2016; 16:425. [PMID: 27538397 PMCID: PMC4989503 DOI: 10.1186/s12879-016-1755-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enterovirus (EV) 71 is the main pathogen associated with hand, foot and mouth disease (HFMD) or herpangina. Outbreaks of HFMD caused by EV71 infection are associated severe neurological disease and high mortality rates in children. Several sporadic cases of EV71 infection occurred in the Republic of Korea (ROK) in 2000, and EV71 infections were not reported thereafter until 2006. In this prospective study, we report the epidemic and virologic characteristics of the EV71 endemic from 2007 to 2012 in the Republic of Korea. METHODS We analyzed characteristics of the EV71 infection-associated epidemic from collected specimens and clinical information from 9987 patients with suspected EV infection from the National EV Surveillance System in ROK. To identify the EV71 subgenotype, the homology of viral protein 1 sequences obtained using reverse transcription polymerase chain reaction was compared with the sequences on other countries available from GenBank database. RESULTS EV71 was detected in 585 (16.7 %) specimens (cerebrospinal fluid, stool or rectal swabs, throat swabs and blood) during study period and was most frequently observed during epidemic seasons in 2009-2012. Major manifestations due to EV71 infection were HFMD (62.2 %) and HFMD with severe neurological complications (28.4 %). Five deaths (0.9 %) due to EV71 infection occurred, with an increased mortality rate during the period after 2009. Most patients (476; 81.4 %) were less than 5 years of age. Analysis of the monthly distribution showed that there was an obvious seasonal pattern to the epidemics, with infections appearing from June to August. The major subgenotype of EV71 isolates circulating in ROK was the C4a strain, which has also appeared in China, Japan and Vietnam. CONCLUSIONS This surveillance provided valuable data on the epidemic characteristics of EV71 infections in ROK during a 6-year period. Our findings provide data to assist during future outbreaks of EV71 and associated acute neurologic disease.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Division of Vaccine Research, Center for Infectious Diseases, Korea National Institutes of Health, Korea Centers for Disease Control and Prevention, Osong-eup, Cheongju, Chungcheongbuk-do, 363-951, Republic of Korea
| | - Ji-Yeon Hyeon
- Division of Vaccine Research, Center for Infectious Diseases, Korea National Institutes of Health, Korea Centers for Disease Control and Prevention, Osong-eup, Cheongju, Chungcheongbuk-do, 363-951, Republic of Korea
| | - Seoyeon Hwang
- Division of Vaccine Research, Center for Infectious Diseases, Korea National Institutes of Health, Korea Centers for Disease Control and Prevention, Osong-eup, Cheongju, Chungcheongbuk-do, 363-951, Republic of Korea
| | - Yong-Pyo Lee
- Division of Vaccine Research, Center for Infectious Diseases, Korea National Institutes of Health, Korea Centers for Disease Control and Prevention, Osong-eup, Cheongju, Chungcheongbuk-do, 363-951, Republic of Korea
| | - Sang Won Lee
- Division of Vaccine Research, Center for Infectious Diseases, Korea National Institutes of Health, Korea Centers for Disease Control and Prevention, Osong-eup, Cheongju, Chungcheongbuk-do, 363-951, Republic of Korea
| | - Jung Sik Yoo
- Division of Vaccine Research, Center for Infectious Diseases, Korea National Institutes of Health, Korea Centers for Disease Control and Prevention, Osong-eup, Cheongju, Chungcheongbuk-do, 363-951, Republic of Korea
| | - Byunghak Kang
- Division of Vaccine Research, Center for Infectious Diseases, Korea National Institutes of Health, Korea Centers for Disease Control and Prevention, Osong-eup, Cheongju, Chungcheongbuk-do, 363-951, Republic of Korea
| | - Jeong-Bae Ahn
- Division of Vaccine Research, Center for Infectious Diseases, Korea National Institutes of Health, Korea Centers for Disease Control and Prevention, Osong-eup, Cheongju, Chungcheongbuk-do, 363-951, Republic of Korea
| | - Yong-Seok Jeong
- Department of Biology Graduate School, Kyung Hee University, Seoul, Dongdaemun-gu, 130-701, Republic of Korea
| | - June-Woo Lee
- Division of Vaccine Research, Center for Infectious Diseases, Korea National Institutes of Health, Korea Centers for Disease Control and Prevention, Osong-eup, Cheongju, Chungcheongbuk-do, 363-951, Republic of Korea.
| |
Collapse
|
21
|
Full-Genome Sequences of Seven Fatal Enterovirus 71 Strains Isolated in Shenzhen, China, in 2014. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00316-16. [PMID: 27125487 PMCID: PMC4850858 DOI: 10.1128/genomea.00316-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The whole-genome sequences of seven fatal enterovirus 71 (EV71) strains, isolated in southern China, in 2014, were determined. The complete genome sequences of these strains displayed close relationships to native EV71 strains and showed 94.2% to 99.8% identity to each other. All of these strains were assigned to subgenotype C4a based on phylogenetic analysis of the VP1 gene.
Collapse
|
22
|
Mirand A, Molet L, Hassel C, Peigue-Lafeuille HCLAN, Rozenberg F, Bailly JL, Henquell CCC. Enterovirus A71 subgenotype B5, France, 2013. Emerg Infect Dis 2015; 21:707-9. [PMID: 25811300 PMCID: PMC4378463 DOI: 10.3201/eid2104.141093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Hassel C, Mirand A, Lukashev A, TerletskaiaLadwig E, Farkas A, Schuffenecker I, Diedrich S, Huemer HP, Archimbaud C, Peigue-Lafeuille H, Henquell C, Bailly JL. Transmission patterns of human enterovirus 71 to, from and among European countries, 2003 to 2013. Euro Surveill 2015; 20:30005. [DOI: 10.2807/1560-7917.es.2015.20.34.30005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/21/2015] [Indexed: 11/20/2022] Open
Abstract
Enterovirus 71 (EV-71) is involved in epidemics of hand, foot, and mouth disease (HFMD) and has been reported to occur with severe neurological complications in eastern and south-east Asia. In other geographical areas, the transmission of this virus is poorly understood. We used large sequence datasets (of the gene encoding the viral protein 1, VP1) and a Bayesian phylogenetic approach to compare the molecular epidemiology and geographical spread patterns of EV-71 subgenogroups B4, B5, C1, C2, and C4 in Europe relative to other parts of the world. For the study, European countries considered were European Union (EU) Member States and Iceland, Norway and Switzerland. Viruses of the B4, B5, and C4 subgenogroups circulate mainly in eastern and south-east Asia. In Europe sporadic introductions of these subgenogroups are observed, however C1 and C2 viruses predominate. The phylogenies showed evidence of multiple events of spread involving C1 and C2 viruses within Europe since the mid-1990s. Two waves of sporadic C2 infections also occurred in 2010 and 2013. The 2007 Dutch outbreak caused by C2 and the occurrence of B5 and C4 infections in the EU between 2004 and 2013 arose while the circulation of C1 viruses was low. A transmission chain involving a C4 virus was traced from Japan to the EU and then further to Canada between 2001 and 2006. Recent events whereby spread of viruses have occurred from, to, and within Europe appear to be involved in the long term survival of EV-71, highlighting the need for enhanced surveillance of this virus.
Collapse
Affiliation(s)
- Chervin Hassel
- Clermont Université, Université d’Auvergne, EPIE, EA 4843, Clermont-Ferrand, France
| | - Audrey Mirand
- Clermont Université, Université d’Auvergne, EPIE, EA 4843, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service de Virologie, Centre National de Référence des Entérovirus et Paréchovirus – Laboratoire associé, Clermont-Ferrand, France
| | - Alexander Lukashev
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Elena TerletskaiaLadwig
- Prof. Gisela Enders & Kollegen MVZ GbR and Institute of Virology, Infectious Diseases and Epidemiology, Stuttgart, Germany
| | - Agnes Farkas
- Division of Virology, National Center for Epidemiology, Budapest, Hungary
| | - Isabelle Schuffenecker
- Laboratoire de Virologie Est des Hospices Civils de Lyon, Centre National de Référence des Entérovirus et Paréchovirus, Bron, France
| | - Sabine Diedrich
- National Reference Center for Poliomyelitis and Enterovirus, Robert Koch Institute, Berlin, Germany
| | | | - Christine Archimbaud
- Clermont Université, Université d’Auvergne, EPIE, EA 4843, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service de Virologie, Centre National de Référence des Entérovirus et Paréchovirus – Laboratoire associé, Clermont-Ferrand, France
| | - Hélène Peigue-Lafeuille
- Clermont Université, Université d’Auvergne, EPIE, EA 4843, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service de Virologie, Centre National de Référence des Entérovirus et Paréchovirus – Laboratoire associé, Clermont-Ferrand, France
| | - Cécile Henquell
- Clermont Université, Université d’Auvergne, EPIE, EA 4843, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service de Virologie, Centre National de Référence des Entérovirus et Paréchovirus – Laboratoire associé, Clermont-Ferrand, France
| | - Jean-Luc Bailly
- Clermont Université, Université d’Auvergne, EPIE, EA 4843, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service de Virologie, Centre National de Référence des Entérovirus et Paréchovirus – Laboratoire associé, Clermont-Ferrand, France
| |
Collapse
|
24
|
Phylodynamics of Enterovirus A71-Associated Hand, Foot, and Mouth Disease in Viet Nam. J Virol 2015; 89:8871-9. [PMID: 26085170 PMCID: PMC4524079 DOI: 10.1128/jvi.00706-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/07/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Enterovirus A71 (EV-A71) is a major cause of hand, foot, and mouth disease (HFMD) and is particularly prevalent in parts of Southeast Asia, affecting thousands of children and infants each year. Revealing the evolutionary and epidemiological dynamics of EV-A71 through time and space is central to understanding its outbreak potential. We generated the full genome sequences of 200 EV-A71 strains sampled from various locations in Viet Nam between 2011 and 2013 and used these sequence data to determine the evolutionary history and phylodynamics of EV-A71 in Viet Nam, providing estimates of the effective reproduction number (Re) of the infection through time. In addition, we described the phylogeography of EV-A71 throughout Southeast Asia, documenting patterns of viral gene flow. Accordingly, our analysis reveals that a rapid genogroup switch from C4 to B5 likely took place during 2012 in Viet Nam. We show that the Re of subgenogroup C4 decreased during the time frame of sampling, whereas that of B5 increased and remained >1 at the end of 2013, corresponding to a rise in B5 prevalence. Our study reveals that the subgenogroup B5 virus that emerged into Viet Nam is closely related to variants that were responsible for large epidemics in Malaysia and Taiwan and therefore extends our knowledge regarding its associated area of endemicity. Subgenogroup B5 evidently has the potential to cause more widespread outbreaks across Southeast Asia. IMPORTANCE EV-A71 is one of many viruses that cause HFMD, a common syndrome that largely affects infants and children. HFMD usually causes only mild illness with no long-term consequences. Occasionally, however, severe infection may arise, especially in very young children, causing neurological complications and even death. EV-A71 is highly contagious and is associated with the most severe HFMD cases, with large and frequent epidemics of the virus recorded worldwide. Although major advances have been made in the development of a potential EV-A71 vaccine, there is no current prevention and little is known about the patterns and dynamics of EV-A71 spread. In this study, we utilize full-length genome sequence data obtained from HFMD patients in Viet Nam, a geographical region where the disease has been endemic since 2003, to characterize the phylodynamics of this important emerging virus.
Collapse
|
25
|
Kok CC. Therapeutic and prevention strategies against human enterovirus 71 infection. World J Virol 2015; 4:78-95. [PMID: 25964873 PMCID: PMC4419123 DOI: 10.5501/wjv.v4.i2.78] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/21/2014] [Accepted: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
Human enterovirus 71 (HEV71) is the cause of hand, foot and mouth disease and associated neurological complications in children under five years of age. There has been an increase in HEV71 epidemic activity throughout the Asia-Pacific region in the past decade, and it is predicted to replace poliovirus as the extant neurotropic enterovirus of highest global public health significance. To date there is no effective antiviral treatment and no vaccine is available to prevent HEV71 infection. The increase in prevalence, virulence and geographic spread of HEV71 infection over the past decade provides increasing incentive for the development of new therapeutic and prevention strategies against this emerging viral infection. The current review focuses on the potential, advantages and disadvantages of these strategies. Since the explosion of outbreaks leading to large epidemics in China, research in natural therapeutic products has identified several groups of compounds with anti-HEV71 activities. Concurrently, the search for effective synthetic antivirals has produced promising results. Other therapeutic strategies including immunotherapy and the use of oligonucleotides have also been explored. A sound prevention strategy is crucial in order to control the spread of HEV71. To this end the ultimate goal is the rapid development, regulatory approval and widespread implementation of a safe and effective vaccine. The various forms of HEV71 vaccine designs are highlighted in this review. Given the rapid progress of research in this area, eradication of the virus is likely to be achieved.
Collapse
|
26
|
Saeed MI, Omar AR, Hussein MZ, Elkhidir IM, Sekawi Z. Systemic antibody response to nano-size calcium phospate biocompatible adjuvant adsorbed HEV-71 killed vaccine. Clin Exp Vaccine Res 2015; 4:88-98. [PMID: 25649429 PMCID: PMC4313114 DOI: 10.7774/cevr.2015.4.1.88] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/28/2014] [Accepted: 12/31/2014] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Since 1980s, human enterovirus-71 virus (HEV-71) is one of the common infectious disease in Asian Pacific region since late 1970s without effective commercial antiviral or protective vaccine is unavailable yet. The work examines the role of vaccine adjuvant particle size and the route of administration on postvaccination antibody response towards HEV-71 vaccine adsorbed to calcium phosphate (CaP) adjuvant. MATERIALS AND METHODS First, CaP nano-particles were compared to a commercial micro-size and vaccine alone. Secondly, intradermal reduced dosage was compared to the conventional intramuscular immunization. Killed HEV-71 vaccines adsorbed to CaP nano-size (73 nm) and commercial one of micro-size (1.7 µm) were administered through intradermal, intramuscular, rabbits received vaccine alone and unvaccinated animals. RESULTS CaP nano-particles adsorbed HEV-71 vaccine displayed higher antibody than the micro-size or unadsorbed vaccine alone, through both parenteral immunization routes. Moreover, the intradermal route (0.5 µg/mL) of 0.1-mL volume per vaccine dose induced equal IgG antibody level to 1.0-mL intramuscular route (0.5 µg/mL). CONCLUSION The intradermal vaccine adsorbed CaP nano-adjuvant showed safer and significant antibody response after one-tenth reduced dose quantity (0.5 µg/mL) of only 0.1-mL volume as the most suitable protective, cost effective and affordable formulation not only for HEV-71; but also for developing further effective vaccines toward other human pathogens.
Collapse
Affiliation(s)
- Mohamed Ibrahim Saeed
- Department of Microbiology and Parasitology, University of Putra Malaysia, Medical Faculty, Serdang, Malaysia
| | - Abd Rahaman Omar
- University of Putra Malaysia, Institute of Biosciences, Serdang, Malaysia
| | - Mohd Zobir Hussein
- University of Putra Malaysia, Institute of Advanced Technology, Serdang, Malaysia
| | - Isam Mohamed Elkhidir
- Department of Microbiology and Parasitology, University of Khartoum, Faculty of Medicine, Sudan, Malaysia
| | - Zamberi Sekawi
- Department of Microbiology and Parasitology, University of Putra Malaysia, Medical Faculty, Serdang, Malaysia
| |
Collapse
|
27
|
Schuffenecker I, Henquell C, Mirand A, Coste-Burel M, Marque-Juillet S, Desbois D, Lagathu G, Bornebusch L, Bailly JL, Lina B. New introductions of enterovirus 71 subgenogroup C4 strains, France, 2012. Emerg Infect Dis 2014; 20:1343-6. [PMID: 25061698 PMCID: PMC4111202 DOI: 10.3201/eid2008.131858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In France during 2012, human enterovirus 71 (EV-A71) subgenogroup C4 strains were detected in 4 children hospitalized for neonatal fever or meningitis. Phylogenetic analysis showed novel and independent EV-A71 introductions, presumably from China, and suggested circulation of C4 strains throughout France. This observation emphasizes the need for monitoring EV-A71 infections in Europe.
Collapse
|
28
|
Huang SW, Cheng HL, Hsieh HY, Chang CL, Tsai HP, Kuo PH, Wang SM, Liu CC, Su IJ, Wang JR. Mutations in the non-structural protein region contribute to intra-genotypic evolution of enterovirus 71. J Biomed Sci 2014; 21:33. [PMID: 24766641 PMCID: PMC4021180 DOI: 10.1186/1423-0127-21-33] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/11/2014] [Indexed: 12/03/2022] Open
Abstract
Background Clinical manifestations of enterovirus 71 (EV71) range from herpangina, hand-foot-and-mouth disease (HFMD), to severe neurological complications. Unlike the situation of switching genotypes seen in EV71 outbreaks during 1998–2008 in Taiwan, genotype B5 was responsible for two large outbreaks in 2008 and 2012, respectively. In China, by contrast, EV71 often persists as a single genotype in the population and causes frequent outbreaks. To investigate genetic changes in viral evolution, complete EV71 genome sequences were used to analyze the intra-genotypic evolution pattern in Taiwan, China, and the Netherlands. Results Genotype B5 was predominant in Taiwan’s 2008 outbreak and was re-emergent in 2012. EV71 strains from both outbreaks were phylogenetically segregated into two lineages containing fourteen non-synonymous substitutions predominantly in the non-structural protein coding region. In China, genotype C4 was first seen in 1998 and caused the latest large outbreak in 2008. Unlike shifting genotypes in Taiwan, genotype C4 persisted with progressive drift through time. A majority of non-synonymous mutations occurred in residues located in the non-structural coding region, showing annual increases. Interestingly, genotype B1/B2 in the Netherlands showed another stepwise evolution with dramatic EV71 activity increase in 1986. Phylogeny of the VP1 coding region in 1971–1986 exhibited similar lineage turnover with genotype C4 in China; however, phylogeny of the 3D-encoding region indicated separate lineage appearing after 1983, suggesting that the 3D-encoding region of genotype B2 was derived from an unidentified ancestor that contributed to intra-genotypic evolution in the Netherlands. Conclusions Unlike VP1 coding sequences long used for phylogenetic study of enteroviruses due to expected host immune escape, our study emphasizes a dominant role of non-synonymous mutations in non-structural protein regions that contribute to (re-)emergent genotypes in continuous stepwise evolution. Dozens of amino acid substitutions, especially in non-structural proteins, were identified via genetic changes driven through intra-genotypic evolution worldwide. These identified substitutions appeared to increase viral fitness in the population, affording valuable insights not only for viral evolution but also for prevention, control, and vaccine against EV71 infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jen-Ren Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University Hospital, Tainan, Taiwan.
| |
Collapse
|
29
|
Bessaud M, Razafindratsimandresy R, Nougairède A, Joffret ML, Deshpande JM, Dubot-Pérès A, Héraud JM, de Lamballerie X, Delpeyroux F, Bailly JL. Molecular comparison and evolutionary analyses of VP1 nucleotide sequences of new African human enterovirus 71 isolates reveal a wide genetic diversity. PLoS One 2014; 9:e90624. [PMID: 24598878 PMCID: PMC3944068 DOI: 10.1371/journal.pone.0090624] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/01/2014] [Indexed: 01/11/2023] Open
Abstract
Most circulating strains of Human enterovirus 71 (EV-A71) have been classified primarily into three genogroups (A to C) on the basis of genetic divergence between the 1D gene, which encodes the VP1 capsid protein. The aim of the present study was to provide further insights into the diversity of the EV-A71 genogroups following the recent description of highly divergent isolates, in particular those from African countries, including Madagascar. We classified recent EV-A71 isolates by a large comparison of 3,346 VP1 nucleotidic sequences collected from GenBank. Analysis of genetic distances and phylogenetic investigations indicated that some recently-reported isolates did not fall into the genogroups A-C and clustered into three additional genogroups, including one Indian genogroup (genogroup D) and 2 African ones (E and F). Our Bayesian phylogenetic analysis provided consistent data showing that the genogroup D isolates share a recent common ancestor with the members of genogroup E, while the isolates of genogroup F evolved from a recent common ancestor shared with the members of the genogroup B. Our results reveal the wide diversity that exists among EV-A71 isolates and suggest that the number of circulating genogroups is probably underestimated, particularly in developing countries where EV-A71 epidemiology has been poorly studied.
Collapse
Affiliation(s)
- Maël Bessaud
- Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
- * E-mail:
| | | | - Antoine Nougairède
- Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
| | - Marie-Line Joffret
- Institut Pasteur, Unité de biologie des virus entériques, Paris, France
- INSERM U994, Paris, France
| | | | - Audrey Dubot-Pérès
- Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - Jean-Michel Héraud
- Institut Pasteur de Madagascar, Unité de Virologie, Antananarivo, Madagascar
| | - Xavier de Lamballerie
- Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
| | | | - Jean-Luc Bailly
- Clermont Université, Université d'Auvergne, EPIE EA4843, Clermont-Ferrand, France
| |
Collapse
|
30
|
Hao C, Hao C, Li W, Liu X, Luo J. Phylodynamics of human Coxsackievirus B5. Future Virol 2014. [DOI: 10.2217/fvl.14.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Aim: Coxsackievirus B5 is recognized as an important pathogen in aseptic meningitis and hand, foot and mouth disease of children. A new distinctive sublineage of Coxsackievirus B5 associated with outbreak of neurological hand, foot and mouth disease in China was recently reported. Materials & methods: We employed a molecular evolution method to study the genetic variation and evolutionary history of Coxsackievirus B5 in China. Coxsackievirus B5 isolates from China can be divided into four major groups with obvious temporal evolution routes. Results: A 'mutation box' covering amino acids 75, 85, 90 and 95 of VP1 protein was observed to be unique in the isolates group from Henan and Shandong province. The temporal evolution routes of the amino acids changes in the 'mutation box' were studied. Conclusion: Our results provide primary insight into the relationship between genetic variation and epidemic behavior of Coxsackievirus B5.
Collapse
Affiliation(s)
- Congjun Hao
- Department of Geriatrics, General Hospital of Beijing Military Command, Beijing 100700, PR China
| | - Chunyan Hao
- College of Chemical & Biological Engineering, Taiyuan University of Science & Technology, Taiyuan 030021, PR China
| | - Wenbin Li
- College of Chemical & Biological Engineering, Taiyuan University of Science & Technology, Taiyuan 030021, PR China
| | - Xianjun Liu
- College of Chemical & Biological Engineering, Taiyuan University of Science & Technology, Taiyuan 030021, PR China
| | - Jizheng Luo
- Department of Geriatrics, General Hospital of Beijing Military Command, Beijing 100700, PR China
| |
Collapse
|
31
|
Linsuwanon P, Puenpa J, Huang SW, Wang YF, Mauleekoonphairoj J, Wang JR, Poovorawan Y. Epidemiology and seroepidemiology of human enterovirus 71 among Thai populations. J Biomed Sci 2014; 21:16. [PMID: 24548776 PMCID: PMC3937078 DOI: 10.1186/1423-0127-21-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/09/2014] [Indexed: 11/23/2022] Open
Abstract
Background Human enterovirus 71 (EV71) is an important pathogen caused large outbreaks in Asian-Pacific region with severe neurological complications and may lead to death in young children. Understanding of the etiological spectrum and epidemic changes of enterovirus and population’s immunity against EV71 are crucial for the implementation of future therapeutic and prophylactic intervention. Results A total of 1,182 patients who presented with the symptoms of hand foot and mouth disease (67.3%) or herpangina (HA) (16.7%) and admitted to the hospitals during 2008-2013 were tested for enterovirus using pan-enterovirus PCR targeting 5′-untranslated region and specific PCR for viral capsid protein 1 gene. Overall, 59.7% were pan-enterovirus positive comprising 9.1% EV71 and 31.2% coxsackievirus species A (CV-A) including 70.5% CV-A6, 27.6% CV-A16, 1.1% CV-A10, and 0.8% CV-A5. HFMD and HA occurred endemically during 2008-2011. The number of cases increased dramatically in June 2012 with the percentage of the recently emerged CV-A6 significantly rose to 28.4%. Co-circulation between different EV71 genotypes was observed during the outbreak. Total of 161 sera obtained from healthy individuals were tested for neutralizing antibodies (NAb) against EV71 subgenotype B5 (EV71-B5) using microneutralization assay. The seropositive rate of EV71-B5 was 65.8%. The age-adjusted seroprevalence for individuals was found to be lowest in children aged >6 months to 2 years (42.5%). The seropositive rate remained relatively low in preschool children aged > 2 years to 6 years (48.3%) and thereafter increased sharply to more than 80% in individuals aged > 6 years. Conclusions This study describes longitudinal data reflecting changing patterns of enterovirus prevalence over 6 years and demonstrates high seroprevalences of EV71-B5 NAb among Thai individuals. The rate of EV71 seropositive increased with age but without gender-specific significant difference. We identified that relative lower EV71 seropositive rate in early 2012 may demonstrate widely presented of EV71-B5 in the population before account for a large outbreak scale epidemic occurred in 2012 with due to a relatively high susceptibility of the younger population.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatric, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
32
|
Mao Q, Cheng T, Zhu F, Li J, Wang Y, Li Y, Gao F, Yang L, Yao X, Shao J, Xia N, Liang Z, Wang J. The cross-neutralizing activity of enterovirus 71 subgenotype c4 vaccines in healthy chinese infants and children. PLoS One 2013; 8:e79599. [PMID: 24260259 PMCID: PMC3834186 DOI: 10.1371/journal.pone.0079599] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND EV71 is one of major etiologic causes of hand-foot-mouth disease (HFMD) and leads to severe neurological complications in young children and infants. Recently inactivated EV71 vaccines have been developed by five manufactures and clinically show good safety and immunogenicity. However, the cross-neutralizing activity of these vaccines remains unclear, and is of particular interest because RNA recombination is seen more frequently in EV71 epidemics. METHODOLOGY/PRINCIPAL FINDINGS In this post-hoc study, sera from a subset of 119 infants and children in two clinical trials of EV71 subgenotype C4 vaccines (ClinicalTrials.gov Identifier: NCT01313715 and NCT01273246), were detected for neutralizing antibody (NTAb) titres with sera from infected patients as controls. Cytopathogenic effect method was employed to test NTAb against EV71 subgenotype B4, B5, C2, C4 and C5, which were prominent epidemic strains worldwide over the past decade. To validate the accuracy of the results, ELISpot assay was employed in parallel to detect NTAb in all the post-vaccine sera. After two-dose vaccination, 49 out of 53 participants in initially seronegative group and 52 out of 53 participants in initially seropositive group showed less than 4-fold differences in NTAb titers against five EV71 strains, whereas corresponding values among sera from pediatric patients recovering from EV71-induced HFMD and subclinically infected participants were 8/8 and 41/43, respectively. The geometric mean titers of participants against five subgenotypes EV71 all grew significantly after vaccinations, irrespective of the baseline NTAb titer. The relative fold increase in antibody titers (NTAb-FI) against B4, B5, C2, and C5 displayed a positive correlation to the NTAb-FI against C4. CONCLUSIONS/SIGNIFICANCE The results demonstrated broad cross-neutralizing activity induced by two C4 EV71 vaccines in healthy Chinese infants and children. However, the degree of induced cross-protective immunity, and the potential escape evolution for EV71 still need to be monitored and researched in future for these new vaccines.
Collapse
Affiliation(s)
- Qunying Mao
- National Institutes for Food and Drug Control, Beijing, China
| | - Tong Cheng
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Science, Xiamen University, Xiamen, China
| | - Fengcai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jingxin Li
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yiping Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Yanping Li
- The Center for Disease Control and Prevention of the Guangxi Zhuang Autonomous Region, Nanning, China
| | - Fan Gao
- National Institutes for Food and Drug Control, Beijing, China
| | - Lisheng Yang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Science, Xiamen University, Xiamen, China
| | - Xin Yao
- National Institutes for Food and Drug Control, Beijing, China
| | - Jie Shao
- National Institutes for Food and Drug Control, Beijing, China
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Science, Xiamen University, Xiamen, China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control, Beijing, China
- * E-mail: (ZL); (JW)
| | - Junzhi Wang
- National Institutes for Food and Drug Control, Beijing, China
- * E-mail: (ZL); (JW)
| |
Collapse
|
33
|
Huang YP, Lin TL, Lin TH, Wu HS. Antigenic and genetic diversity of human enterovirus 71 from 2009 to 2012, Taiwan. PLoS One 2013; 8:e80942. [PMID: 24348916 PMCID: PMC3858369 DOI: 10.1371/journal.pone.0080942] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/07/2013] [Indexed: 12/13/2022] Open
Abstract
Different subgenogroups of enterovirus 71 (EV-71) have caused numerous outbreaks of hand, foot, and mouth disease worldwide, especially in the Asia-Pacific region. During the development of a vaccine against EV-71, the genetic and antigenic diversities of EV-71 isolates from Taiwan were analyzed by phylogenetic analyses and neutralization tests. The results showed that the dominant genogroups had changed twice, from B to C and from C to B, between 2009 and 2012. The subgenogroup B5 (B5b cluster) was dominant in 2008-2009 but was replaced by subgenogroup C4 in 2010-2011. From the end of 2011 to 2012, the re-emerging subgenogroup B5 (B5c cluster) was identified as the dominant subgenogroup of EV-71 outbreaks, and subgenogroups C2 and C4 were detected in sporadic cases. Interestingly, the amino acid substitution at position 145 in the VP1 gene was observed in some strains isolated from patients with acute flaccid paralysis. Furthermore, thirty-five strains and their corresponding serum samples were used to analyze the cross-protections and antigenic diversities among different subgenogroups (C4a, C5, B4, B5b, B5c, and C2-like) of EV-71. Evident antigenic diversity existed only for the C2-like subgenogroup, which was not effectively neutralized by other serum samples. In contrast, the anti-C2-like serum sample showed broad cross-reactivity against all other subgenogroups. Therefore, these results may provide valuable information for the selection of EV-71 vaccine candidates and the evolution of EV-71 subgenogroups in Taiwan from 2009 to 2012.
Collapse
Affiliation(s)
- Yuan-Pin Huang
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, Republic of China
| | - Tsuey-Li Lin
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, Republic of China
| | - Ting-Han Lin
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, Republic of China
| | - Ho-Sheng Wu
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, Republic of China
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
34
|
Phylogenetic patterns of human coxsackievirus B5 arise from population dynamics between two genogroups and reveal evolutionary factors of molecular adaptation and transmission. J Virol 2013; 87:12249-59. [PMID: 24006446 DOI: 10.1128/jvi.02075-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to gain insights into the tempo and mode of the evolutionary processes that sustain genetic diversity in coxsackievirus B5 (CVB5) and into the interplay with virus transmission. We estimated phylodynamic patterns with a large sample of virus strains collected in Europe by Bayesian statistical methods, reconstructed the ancestral states of genealogical nodes, and tested for selection. The genealogies estimated with the structural one-dimensional gene encoding the VP1 protein and nonstructural 3CD locus allowed the precise description of lineages over time and cocirculating virus populations within the two CVB5 clades, genogroups A and B. Strong negative selection shaped the evolution of both loci, but compelling phylogenetic data suggested that immune selection pressure resulted in the emergence of the two genogroups with opposed evolutionary pathways. The genogroups also differed in the temporal occurrence of the amino acid changes. The virus strains of genogroup A were characterized by sequential acquisition of nonsynonymous changes in residues exposed at the virus 5-fold axis. The genogroup B viruses were marked by selection of three changes in a different domain (VP1 C terminus) during its early emergence. These external changes resulted in a selective sweep, which was followed by an evolutionary stasis that is still ongoing after 50 years. The inferred population history of CVB5 showed an alternation of the prevailing genogroup during meningitis epidemics across Europe and is interpreted to be a consequence of partial cross-immunity.
Collapse
|
35
|
Detection of human enteroviruses and parechoviruses as part of the national enterovirus surveillance in the Netherlands, 1996–2011. Eur J Clin Microbiol Infect Dis 2013; 32:1525-31. [DOI: 10.1007/s10096-013-1906-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/09/2013] [Indexed: 11/28/2022]
|
36
|
He SJ, Han JF, Ding XX, Wang YD, Qin CF. Characterization of enterovirus 71 and coxsackievirus A16 isolated in hand, foot, and mouth disease patients in Guangdong, 2010. Int J Infect Dis 2013; 17:e1025-30. [PMID: 23791223 DOI: 10.1016/j.ijid.2013.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/12/2013] [Accepted: 04/14/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is an acute viral disease caused by human enteroviruses, especially human enterovirus 71 (HEV71) and coxsackievirus A16 (CVA16), and mainly affects infants and young children. After the outbreak in 2008 in Fuyang, China, HFMD was classified as a category C notifiable infectious disease by the Ministry of Health of China. METHODS In this study, we report the epidemiologic and clinical manifestations of HFMD in Guangdong Province, China in 2010, and characterize HEV71 and CVA16 isolated from clinical specimens. RESULTS Among the 542 HFMD patients, 495 (91.3%) were positive for enterovirus as detected by real-time reverse transcriptase PCR; 243 were positive for HEV71 (49.1%, 243/495) and 114 were positive for CVA16 (23.0%, 114/495). Most of the affected children were aged 5 years or under (93.7%, 508/542). Phylogenetic analyses of VP1 gene sequences showed that the HEV71 isolates belonged to C4a subgenotype, and CVA16 isolates belonged to B1 genotype. CONCLUSIONS Our results demonstrate that HEV71 and CVA16 are the primary causative agents responsible for HFMD in Guangdong Province, and their co-circulation poses a potential risk to public health.
Collapse
Affiliation(s)
- Si-Jie He
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | | | | | | | | |
Collapse
|
37
|
Rao CD, Yergolkar P, Shankarappa KS. Antigenic diversity of enteroviruses associated with nonpolio acute flaccid paralysis, India, 2007-2009. Emerg Infect Dis 2013; 18:1833-40. [PMID: 23092622 PMCID: PMC3559176 DOI: 10.3201/eid1811.111457] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Because of the broadened acute flacid paralysis (AFP) definition and enhanced surveillance, many nonpolio AFP (NP-AFP) cases have been reported in India since 2005. To determine the spectrum of nonpolio enterovirus (NPEV) serotypes associated with NP-AFP from polio-endemic and -free regions, we studied antigenic diversity of AFP-associated NPEVs. Of fecal specimens from 2,786 children with NP-AFP in 1 polio-endemic and 2 polio-free states, 823 (29.5%) were positive for NPEVs in RD cells, of which 532 (64.6%) were positive by viral protein 1 reverse transcription PCR. We identified 66 serotypes among 581 isolates, with enterovirus 71 most frequently (8.43%) detected, followed by enterovirus 13 (7.1%) and coxsackievirus B5 (5.0%). Most strains within a serotype represented new genogropups or subgenogroups. Agents for ≈35.0% and 70.0% of culture-positive and -negative cases, respectively, need to be identified. Association of human enterovirus with NP-AFP requires better assessment and understanding of health risks of NPEV infections after polio elimination.
Collapse
Affiliation(s)
- C Durga Rao
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| | | | | |
Collapse
|
38
|
Wu CY, Wang HC, Wang KT, Weng SC, Chang WH, Shih DYC, Lo CF, Wang DY. Neutralization of five subgenotypes of Enterovirus 71 by Taiwanese human plasma and Taiwanese plasma derived intravenous immunoglobulin. Biologicals 2013; 41:154-7. [PMID: 23515089 DOI: 10.1016/j.biologicals.2013.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/31/2013] [Accepted: 02/26/2013] [Indexed: 11/16/2022] Open
Abstract
Enterovirus 71 (EV71) commonly occurs in children, causing hand, foot and mouth disease (HFMD) in about 29% of patients. Studies have suggested that patients develop meningitis and encephalopathy with a mortality rate of 4-26%. EV71 subgenotypes including B4, B5, C2, C4 and C5 have caused HFMD epidemics in Taiwan. In terms of therapeutical strategy, intravenous immunoglobulin (IVIG) has been shown to improve patient conditions. In this study, the EV71 neutralizing titer was evaluated in 75 human plasmas and 8 lots of Taiwanese plasma derived IVIG. Results showed that human plasmas and IVIG significantly neutralized B4 and C2 subgenotypes. Four percent of human plasma contained neutralizing antibody titer of 1:128 against B4 and C2. Most IVIG lots possessed a median effective dose of over 100 against B4 and C2. IVIG lots had an average neutralizing capacity of 5.60, 0.90, 4.30, 1.12 and 0.77 log10 CCID50/ml against B4, B5, C2, C4 and C5, respectively. In conclusion, effective neutralization of B4 and C2 could be due to their earlier appearance in the EV71 epidemiology timeline of Taiwan. IVIG derived from Taiwanese plasma may be desirable for treatment of patients infected with EV71 of specific subgenotypes.
Collapse
Affiliation(s)
- Chi-Yu Wu
- Section of Biologics & Advanced Therapeutic Product Analysis, Division of Research and Analysis, Taiwan Food and Drug Administration, Department of Health, Executive Yuan, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
39
|
High frequency and diversity of species C enteroviruses in Cameroon and neighboring countries. J Clin Microbiol 2012; 51:759-70. [PMID: 23254123 DOI: 10.1128/jcm.02119-12] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human enteroviruses (HEVs) are endemic worldwide and among the most common viruses infecting humans. Nevertheless, there are very limited data on the circulation and genetic diversity of HEVs in developing countries and sub-Saharan Africa in particular. We investigated the circulation and genetic diversity of HEVs among 436 healthy children in a limited area of the far north region of Cameroon in 2008 and 2009. We also characterized the genetic biodiversity of 146 nonpolio enterovirus (NPEV) isolates obtained throughout the year 2008 from stool specimens of patients with acute flaccid paralysis (AFP) in Cameroon, Chad, and Gabon. We found a high rate of NPEV infections (36.9%) among healthy children in the far north region of Cameroon. Overall, 45 different HEV types were found among healthy children and AFP patients. Interestingly, this study uncovered a high rate of HEVs of species C (HEV-C) among all typed NPEVs: 63.1% (94/149) and 39.5% (49/124) in healthy children and AFP cases, respectively. Besides extensive circulation, the most prevalent HEV-C type, coxsackievirus A-13, featured a tremendous intratypic diversity. Africa-specific HEV lineages were discovered, including HEV-C lineages and the recently reported EV-A71 "genogroup E." Virtually all pathogenic circulating vaccine-derived polioviruses (cVDPVs) that have been fully characterized were recombinants between oral poliovaccine (OPV) strains and cocirculating HEV-C strains. The extensive circulation of diverse HEV-C types and lineages in countries where OPV is massively used constitutes a major viral factor that could promote the emergence of recombinant cVDPVs in the Central African subregion.
Collapse
|
40
|
Guan D, van der Sanden S, Zeng H, Li W, Zheng H, Ma C, Su J, Liu Z, Guo X, Zhang X, Liu L, Koopmans M, Ke C. Population dynamics and genetic diversity of C4 strains of human enterovirus 71 in Mainland China, 1998-2010. PLoS One 2012; 7:e44386. [PMID: 22984501 PMCID: PMC3440427 DOI: 10.1371/journal.pone.0044386] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 08/06/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Since 1997, several countries within the Asian Pacific region have been affected by one or more massive outbreaks of Hand Foot and Mouth Disease (HFMD). Virus typing experiments revealed that these outbreaks were caused by strains of human enterovirus 71 (EV71) belonging to several different, recently emerged subgenogroups. In mainland China, a different situation was observed. The first outbreak, localized in Shangdong Province, was reported in 2007, and was followed by a wide-spread outbreak in mainland China in 2008. Since then, numbers of reported HFMD cases have been persistently high. METHODOLOGY/PRINCIPAL FINDINGS To gain insight in the epidemiological behavior of EV71 in China, we studied genetic diversity and EV71 population dynamics to address whether the increase in number of reported EV71 infections reflects a real increase in viral spread or is just the result of increased awareness and surveillance. We used systematically collected VP1 gene sequences of 257 EV71 strains collected in Guangdong province from 2008 to 2010 as part of HFMD surveillance activities, and supplemented them with 305 GenBank EV71 reference stains collected in China from 1998 to 2010. All isolates from Guangdong Province belonged to subgenogroup C4. Viral population dynamics indicated that the increased reporting of HFMD in China since 2007 reflects a real increase in viral spread and continued replacement of viral lineages through time. Amino acid sequence comparisons revealed substitution of amino acid in residues 22, 145 and 289 through time regularly with the VP1 gene of EV71 strains isolated in mainland China from 1998 to 2010. CONCLUSIONS EV71 strains isolated in mainland China mainly belonged to subgenogroup C4. There was exponential growth of the EV71 virus population in 2007 and 2008. There was amino acid substitution through time regularly with the VP1 gene which possibly increased viral spread and/or ability of the virus to circulate persistently among the Chinese population.
Collapse
Affiliation(s)
- Dawei Guan
- Key Laboratory of Pathogen Detection for Emergency Response of Guangdong Province, Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Sabine van der Sanden
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Hanri Zeng
- Key Laboratory of Pathogen Detection for Emergency Response of Guangdong Province, Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Wei Li
- Key Laboratory of Pathogen Detection for Emergency Response of Guangdong Province, Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Huanying Zheng
- Key Laboratory of Pathogen Detection for Emergency Response of Guangdong Province, Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Cong Ma
- Key Laboratory of Pathogen Detection for Emergency Response of Guangdong Province, Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Juan Su
- Key Laboratory of Pathogen Detection for Emergency Response of Guangdong Province, Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Zheng Liu
- Key Laboratory of Pathogen Detection for Emergency Response of Guangdong Province, Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Xue Guo
- Key Laboratory of Pathogen Detection for Emergency Response of Guangdong Province, Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Xin Zhang
- Key Laboratory of Pathogen Detection for Emergency Response of Guangdong Province, Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Leng Liu
- Key Laboratory of Pathogen Detection for Emergency Response of Guangdong Province, Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Marion Koopmans
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Changwen Ke
- Key Laboratory of Pathogen Detection for Emergency Response of Guangdong Province, Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
41
|
Kolpe AB, Kiener TK, Grotenbreg GM, Kwang J. Display of enterovirus 71 VP1 on baculovirus as a type II transmembrane protein elicits protective B and T cell responses in immunized mice. Virus Res 2012; 168:64-72. [PMID: 22728446 DOI: 10.1016/j.virusres.2012.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/22/2012] [Accepted: 06/12/2012] [Indexed: 01/24/2023]
Abstract
Human enterovirus 71 (EV71) has become a major public health threat across Asia Pacific. The virus causes hand, foot, and mouth disease which can lead to neurological complications in young children. There are no specific antivirals or vaccines against EV71 infection. The major neutralizing epitope of EV71 is located in the carboxy-terminal half of the VP1 protein at amino acid positions 215-219 (Lim et al., 2012). To study the immunogenicity of VP1 we have developed a baculovirus vector which displays VP1 as a type II transmembrane protein, providing an accessible C-terminus. Immunization of mice with this recombinant baculovirus elicited neutralizing antibodies against heterologous EV71 in an in vitro microneutralization assay. Passive protection of neonatal mice confirmed the prophylactic efficacy of the antisera. Additionally, EV71 specific T cell responses were stimulated. Taken together, our results demonstrate that the display of VP1 as a type II transmembrane protein efficiently stimulated both humoral and cellular immunities.
Collapse
Affiliation(s)
- Annasaheb B Kolpe
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
42
|
Molecular characterization of human enteroviruses in the Central African Republic: uncovering wide diversity and identification of a new human enterovirus A71 genogroup. J Clin Microbiol 2012; 50:1650-8. [PMID: 22337981 DOI: 10.1128/jcm.06657-11] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human enteroviruses (HEV) are among the most common viruses infecting humans. Their circulation has been widely studied in most parts of the world but not in sub-Saharan Africa, where poliomyelitis remains prevalent. We report here the molecular characterization of 98 nonpoliovirus (non-PV) HEV strains isolated from 93 randomly selected cell culture-positive supernatants from stool samples collected from 1997 through 2006 from children with acute flaccid paralysis living in the Central African Republic (CAR). The isolates were typed by sequencing the VP1 coding region and sequenced further in the VP2 coding region, and phylogenetic studies were carried out. Among the 98 VP1 sequences, 3, 74, 18, and 3 were found to belong to the HEV-A, -B, -C, and -D species, respectively. Overall, 42 types were detected. In most cases, the VP2 type was correlated with that of the VP1 region. Some of the isolates belonged to lineages that also contain viruses isolated in distant countries, while others belonged to lineages containing viruses isolated only in Africa. In particular, one isolate (type EV-A71) did not fall into any of the genogroups already described, indicating the existence of a previously unknown genogroup for this type. These results illustrate the considerable diversity of HEV isolates from the stools of paralyzed children in the CAR. The presence of diverse HEV-C types makes recombination between poliovirus and other HEV-C species possible and could promote the emergence of recombinant vaccine-derived polioviruses similar to those that have been implicated in repeated poliomyelitis outbreaks in several developing countries.
Collapse
|
43
|
Huang SW, Wang YF, Yu CK, Su IJ, Wang JR. Mutations in VP2 and VP1 capsid proteins increase infectivity and mouse lethality of enterovirus 71 by virus binding and RNA accumulation enhancement. Virology 2012; 422:132-43. [DOI: 10.1016/j.virol.2011.10.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/28/2011] [Accepted: 10/13/2011] [Indexed: 10/15/2022]
|
44
|
The association of recombination events in the founding and emergence of subgenogroup evolutionary lineages of human enterovirus 71. J Virol 2011; 86:2676-85. [PMID: 22205739 DOI: 10.1128/jvi.06065-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Enterovirus 71 (EV71) is responsible for frequent large-scale outbreaks of hand, foot, and mouth disease worldwide and represent a major etiological agent of severe, sometimes fatal neurological disease. EV71 variants have been classified into three genogroups (GgA, GgB, and GgC), and the latter two are further subdivided into subgenogroups B1 to B5 and C1 to C5. To investigate the dual roles of recombination and evolution in the epidemiology and transmission of EV71 worldwide, we performed a large-scale genetic analysis of isolates (n = 308) collected from 19 countries worldwide over a 40-year period. A series of recombination events occurred over this period, which have been identified through incongruities in sequence grouping between the VP1 and 3Dpol regions. Eleven 3Dpol clades were identified, each specific to EV71 and associated with specific subgenogroups but interspersed phylogenetically with clades of coxsackievirus A16 and other EV species A serotypes. The likelihood of recombination increased with VP1 sequence divergence; mean half-lives for EV71 recombinant forms (RFs) of 6 and 9 years for GgB and GgC overlapped with those observed for the EV-B serotypes, echovirus 9 (E9), E30, and E11, respectively (1.3 to 9.8 years). Furthermore, within genogroups, sporadic recombination events occurred, such as the linkage of two B4 variants to RF-W instead of RF-A and of two C4 variants to RF-H. Intriguingly, recombination events occurred as a founding event of most subgenogroups immediately preceding their lineage expansion and global emergence. The possibility that recombination contributed to their subsequent spread through improved fitness requires further biological and immunological characterization.
Collapse
|
45
|
Liang Z, Mao Q, Gao Q, Li X, Dong C, Yu X, Yao X, Li F, Yin W, Li Q, Shen X, Wang J. Establishing China's national standards of antigen content and neutralizing antibody responses for evaluation of enterovirus 71 (EV71) vaccines. Vaccine 2011; 29:9668-74. [DOI: 10.1016/j.vaccine.2011.10.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/13/2011] [Accepted: 10/05/2011] [Indexed: 11/16/2022]
|
46
|
Antigenicity, animal protective effect and genetic characteristics of candidate vaccine strains of enterovirus 71. Arch Virol 2011; 157:37-41. [DOI: 10.1007/s00705-011-1136-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/24/2011] [Indexed: 02/07/2023]
|
47
|
Reemerging of enterovirus 71 in Taiwan: the age impact on disease severity. Eur J Clin Microbiol Infect Dis 2011; 31:1219-24. [PMID: 21983920 DOI: 10.1007/s10096-011-1432-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
Enterovirus 71 (EV71) infection commonly strike children under the age of 3 years, with an occasionally unfavorable outcome in children. This study was designed to explore the relationship between age and the severity of complications, which may associate with antibody-dependent enhancement (ADE) in EV71. All EV71-infected patients during the outbreak of 2008 were recruited. In total, 134 patients were enrolled and categorized into two age groups, 0-12 months (n = 18) and >12 months (n = 116). Pulmonary edema/hemorrhage more commonly occur in patients younger than 12 months. No difference in the occurrence of herpangina/hand-foot-and-mouth disease (HFMD), uncomplicated brainstem encephalitis (BE), or autonomic nervous system (ANS) dysregulation was noted between the two age groups. Patients with pulmonary edema/hemorrhage (11.9 ± 14.7 months) were younger than patients with herpangina/HFMD (35.8 ± 26.4 months) or ANS dysregulation (33.9 ± 20.9 months). Our findings are in agreement with the data regarding the outbreak in Taiwan, in which a decrease in age corresponded to an increase in disease severity with regard to central nervous system complications. A reduction of maternal antibodies to the subneutralizing level within 1 year of age may be associated with the ADE of the infection. This study could provide possible clinical significance with regard to ADE phenomena in young infants infected by EV71.
Collapse
|
48
|
Huang SW, Kiang D, Smith DJ, Wang JR. Evolution of re-emergent virus and its impact on enterovirus 71 epidemics. Exp Biol Med (Maywood) 2011; 236:899-908. [DOI: 10.1258/ebm.2010.010233] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enterovirus 71 (EV71), a member of the Enterovirus genus in the Picornaviridae family, has become an emergent infectious disease worldwide, most notably in Asia. As a neurotropic virus, EV71 infection occasionally causes neurological diseases with pulmonary edema, which is fatal for children. In this review, we examine the epidemiology of EV71, with three waves of increased EV71 activity since the 1970s and discuss the genotypic changes in phylogeny between the outbreaks or epidemics. Genetic changes including mutations and recombinations as well as the diversity of antigenic properties among EV71 strains in various outbreaks are described. Furthermore, the impact of genetic changes on viral pathogenesis and vaccine candidate selection are addressed. In conclusion, these genetic and antigenic investigations of EV71 evolution have provided us with new insight into the trend of EV71 epidemiology, which may contribute to a better understanding of the viral pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Sheng-Wen Huang
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - David Kiang
- Microbiology Section, Food and Drug Laboratory Branch, California Department of Public Health, CA 94804-6403, USA
| | - Derek J Smith
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Department of Virology, Erasmus Medical Centre, Rotterdam 3015 GE, Netherlands
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892-2220, USA
| | - Jen-Ren Wang
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University
- Division of Infectious Diseases, National Health Research Institutes, Tainan 701, Taiwan
| |
Collapse
|
49
|
Siafakas N, Attilakos A, Vourli S, Stefos E, Meletiadis J, Nikolaidou P, Zerva L. Molecular detection and identification of enteroviruses in children admitted to a university hospital in Greece. Mol Cell Probes 2011; 25:249-54. [PMID: 21803150 DOI: 10.1016/j.mcp.2011.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 06/02/2011] [Indexed: 12/17/2022]
Abstract
Although enteroviral infections occur frequently during childhood, the circulation of particular serotypes has never been studied in Greece. The objectives of the present report were molecular detection and identification of human enteroviruses in children admitted with nonspecific febrile illness or meningitis to a university hospital during a 22-month period. A one-step Real-Time RT-PCR protocol was used for rapid enterovirus detection in genetic material extracted directly from clinical samples, and a sensitive reverse transcription-semi-nested PCR targeting part of the VP1-coding region was used for genotypic identification of the different serotypes. Twenty-one enterovirus strains were detected and identified in 20 stool samples, one cerebrospinal fluid (CSF) sample, one whole blood sample and one throat swab from 21 out of 134 febrile patients (15.7%). Ten strains belonged to Human Enterovirus Species B (HEV-B) (six serotypes) and eleven to HEV-A (four serotypes). Most of the strains were closely associated with virulent strains circulating in Europe and elsewhere. Detection of the emerging pathogen enterovirus 71 for a first time in Greece was particularly important.
Collapse
Affiliation(s)
- Nikolaos Siafakas
- Clinical Microbiology Laboratory, ATTIKON University Hospital, Medical School, National and Kapodistrian University of Athens, 1, Rimini str., Haidari 124 62, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
50
|
van der Sanden S, van Eek J, Martin DP, van der Avoort H, Vennema H, Koopmans M. Detection of recombination breakpoints in the genomes of human enterovirus 71 strains isolated in the Netherlands in epidemic and non-epidemic years, 1963–2010. INFECTION GENETICS AND EVOLUTION 2011; 11:886-94. [DOI: 10.1016/j.meegid.2011.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/10/2011] [Accepted: 02/14/2011] [Indexed: 11/25/2022]
|