1
|
Łukaszuk E, Dziewulska D, Stenzel T. Recombinant Viruses from the Picornaviridae Family Occurring in Racing Pigeons. Viruses 2024; 16:917. [PMID: 38932208 PMCID: PMC11209253 DOI: 10.3390/v16060917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Viruses from Picornaviridae family are known pathogens of poultry, although the information on their occurrence and pathogenicity in pigeons is scarce. In this research, efforts are made to broaden the knowledge on Megrivirus B and Pigeon picornavirus B prevalence, phylogenetic relationship with other avian picornaviruses and their possible connection with enteric disease in racing pigeons. As a result of Oxford Nanopore Sequencing, five Megrivirus and two pigeon picornavirus B-like genome sequences were recovered, among which three recombinant strains were detected. The recombinant fragments represented an average of 10.9% and 25.5% of the genome length of the Pigeon picornavirus B and Megrivirus B reference strains, respectively. The phylogenetic analysis revealed that pigeons are carriers of species-specific picornaviruses. TaqMan qPCR assays revealed 7.8% and 19.0% prevalence of Megrivirus B and 32.2% and 39.7% prevalence of Pigeon picornavirus B in the group of pigeons exhibiting signs of enteropathy and in the group of asymptomatic pigeons, respectively. In turn, digital droplet PCR showed a considerably higher number of genome copies of both viruses in sick than in asymptomatic pigeons. The results of quantitative analysis leave the role of picornaviruses in enteropathies of pigeons unclear.
Collapse
Affiliation(s)
| | | | - Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (E.Ł.); (D.D.)
| |
Collapse
|
2
|
Abaeva IS, Pestova TV, Hellen CUT. Genetic mechanisms underlying the structural elaboration and dissemination of viral internal ribosomal entry sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.590008. [PMID: 38883778 PMCID: PMC11178006 DOI: 10.1101/2024.04.17.590008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Viral internal ribosomal entry sites (IRESs) form several classes that use distinct mechanisms to mediate end-independent initiation of translation. The origin of viral IRESs is a longstanding question. The simplest IRESs comprise tandem pseudoknots and occur in the intergenic region (IGR) of Dicistroviridae genomes (order Picornavirales ). Larger IGR IRESs contain additional elements that determine specific properties such as binding to the head of the ribosoma l 40S subunit. Metagenomic analyses reported here identified novel groups of structurally distinct IGR-like IRESs. The smallest of these (∼120nt long) comprise three pseudoknots and bind directly to the ribosomal P site. Others are up to 260nt long: insertions occurred at specific loci, possibly reflecting non-templated nucleotide insertion during replication. Various groups can be arranged in order, differing by the cumulative addition of single structural elements, suggesting an accretion mechanism for the structural elaboration of IRESs. Identification of chimeric IRESs implicates recombinational exchange of domains as a second mechanism for the diversification of IRES structure. Recombination likely also accounts for the presence of IGR-like IRESs at the 5'-end of some dicistrovirus-like genomes (e.g. Hangzhou dicistrovirus 3) and in the RNA genomes of Tombusviridae (order Tolivirales ), Marnaviridae (order Picornavirale s), and the 'Ripiresk' picorna-like clade (order Picornavirale s).
Collapse
|
3
|
Zhang J, Fu H, Chen C, Jiang J, Lin Y, Jiang B, Lin L, Hu Q, Wan C. Rapid detection of pigeon Megrivirus using TaqMan real-time PCR technology. Poult Sci 2023; 102:103027. [PMID: 37651775 PMCID: PMC10480624 DOI: 10.1016/j.psj.2023.103027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
Megriviruses have been identified from fecal samples in wild pigeons in Hong Kong (China) and Hungary. In this study, the genomic sequences of pigeon Megriviruses (PiMeVs) were downloaded from GenBank and compared. Based on the genetic comparison results, a pair of primers and TaqMan probe were designed based on the conserved sequences of the 3C gene (located in the P3 gene coding region), and a TaqMan real-time PCR method (TaqMan-qPCR) was established. The standard curve of the TaqMan-qPCR had an axial intercept of 39.74 and a slope of -3.2475 with a linear correlation (R2) of 1.00 and an efficiency of 103.2%. No cross-amplification signal was found from other pigeon viruses (such as avian influenza virus, pigeon paramyxovirus type I, pigeon torque teno virus, pigeon adenovirus, and pigeon circovirus). The limit of detection concentration was 53.6 copies/μL. The intra- and interassay results were less than 1.0% based on the reproducibility test. Furthermore, field samples investigation by the established TaqMan-qPCR method showed that positive signals can be found from racing pigeon fecal samples and embryos. Thus, our data suggested that this visible TaqMan-qPCR method is sensitive, specific, and reproducible. Moreover, we first confirmed the presence of pigeon Megrivirus infection in racing pigeon embryos, indicating that the virus may be vertically transmitted. This study provides a reference basis for further understanding the epidemiology of PiMeVs.
Collapse
Affiliation(s)
- Jinpeng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Huanru Fu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuiteng Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Jinxiu Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yusheng Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Bin Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Lin Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Qilin Hu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Key Laboratory of Animal Genetics and Breeding/Fujian Animal Diseases Control Technology Development Centre, Fuzhou 350013, China.
| |
Collapse
|
4
|
Sandybayev N, Beloussov V, Strochkov V, Solomadin M, Granica J, Yegorov S. Next Generation Sequencing Approaches to Characterize the Respiratory Tract Virome. Microorganisms 2022; 10:microorganisms10122327. [PMID: 36557580 PMCID: PMC9785614 DOI: 10.3390/microorganisms10122327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic and heightened perception of the risk of emerging viral infections have boosted the efforts to better understand the virome or complete repertoire of viruses in health and disease, with a focus on infectious respiratory diseases. Next-generation sequencing (NGS) is widely used to study microorganisms, allowing the elucidation of bacteria and viruses inhabiting different body systems and identifying new pathogens. However, NGS studies suffer from a lack of standardization, in particular, due to various methodological approaches and no single format for processing the results. Here, we review the main methodological approaches and key stages for studies of the human virome, with an emphasis on virome changes during acute respiratory viral infection, with applications for clinical diagnostics and epidemiologic analyses.
Collapse
Affiliation(s)
- Nurlan Sandybayev
- Kazakhstan-Japan Innovation Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
- Correspondence: ; Tel.: +7-778312-2058
| | - Vyacheslav Beloussov
- Kazakhstan-Japan Innovation Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
- Molecular Genetics Laboratory TreeGene, Almaty 050009, Kazakhstan
| | - Vitaliy Strochkov
- Kazakhstan-Japan Innovation Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
| | - Maxim Solomadin
- School of Pharmacy, Karaganda Medical University, Karaganda 100000, Kazakhstan
| | - Joanna Granica
- Molecular Genetics Laboratory TreeGene, Almaty 050009, Kazakhstan
| | - Sergey Yegorov
- Michael G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4LB, Canada
| |
Collapse
|
5
|
Arhab Y, Miścicka A, Pestova TV, Hellen CUT. Horizontal gene transfer as a mechanism for the promiscuous acquisition of distinct classes of IRES by avian caliciviruses. Nucleic Acids Res 2021; 50:1052-1068. [PMID: 34928389 PMCID: PMC8789048 DOI: 10.1093/nar/gkab1243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023] Open
Abstract
In contrast to members of Picornaviridae which have long 5'-untranslated regions (5'UTRs) containing internal ribosomal entry sites (IRESs) that form five distinct classes, members of Caliciviridae typically have short 5'UTRs and initiation of translation on them is mediated by interaction of the viral 5'-terminal genome-linked protein (VPg) with subunits of eIF4F rather than by an IRES. The recent description of calicivirus genomes with 500-900nt long 5'UTRs was therefore unexpected and prompted us to examine them in detail. Sequence analysis and structural modelling of the atypically long 5'UTRs of Caliciviridae sp. isolate yc-13 and six other caliciviruses suggested that they contain picornavirus-like type 2 IRESs, whereas ruddy turnstone calicivirus (RTCV) and Caliciviridae sp. isolate hwf182cal1 calicivirus contain type 4 and type 5 IRESs, respectively. The suggestion that initiation on RTCV mRNA occurs by the type 4 IRES mechanism was confirmed experimentally using in vitro reconstitution. The high sequence identity between identified calicivirus IRESs and specific picornavirus IRESs suggests a common evolutionary origin. These calicivirus IRESs occur in a single phylogenetic branch of Caliciviridae and were likely acquired by horizontal gene transfer.
Collapse
Affiliation(s)
- Yani Arhab
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| |
Collapse
|
6
|
Virus Metagenomics in Farm Animals: A Systematic Review. Viruses 2020; 12:v12010107. [PMID: 31963174 PMCID: PMC7019290 DOI: 10.3390/v12010107] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
A majority of emerging infectious diseases are of zoonotic origin. Metagenomic Next-Generation Sequencing (mNGS) has been employed to identify uncommon and novel infectious etiologies and characterize virus diversity in human, animal, and environmental samples. Here, we systematically reviewed studies that performed viral mNGS in common livestock (cattle, small ruminants, poultry, and pigs). We identified 2481 records and 120 records were ultimately included after a first and second screening. Pigs were the most frequently studied livestock and the virus diversity found in samples from poultry was the highest. Known animal viruses, zoonotic viruses, and novel viruses were reported in available literature, demonstrating the capacity of mNGS to identify both known and novel viruses. However, the coverage of metagenomic studies was patchy, with few data on the virome of small ruminants and respiratory virome of studied livestock. Essential metadata such as age of livestock and farm types were rarely mentioned in available literature, and only 10.8% of the datasets were publicly available. Developing a deeper understanding of livestock virome is crucial for detection of potential zoonotic and animal pathogens and One Health preparedness. Metagenomic studies can provide this background but only when combined with essential metadata and following the “FAIR” (Findable, Accessible, Interoperable, and Reusable) data principles.
Collapse
|
7
|
Kaszab E, Doszpoly A, Lanave G, Verma A, Bányai K, Malik YS, Marton S. Metagenomics revealing new virus species in farm and pet animals and aquaculture. GENOMICS AND BIOTECHNOLOGICAL ADVANCES IN VETERINARY, POULTRY, AND FISHERIES 2020. [PMCID: PMC7149329 DOI: 10.1016/b978-0-12-816352-8.00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Viral metagenomics is slowly taking over the traditional and widely used molecular techniques for the investigation of pathogenic viruses responsible for illness and inflicting great economic burden on the farm animal industry. Owing to the continued improvements in sequencing technologies and the dramatic reduction of per base costs of sequencing the use of next generation sequencing have been key factors in this progress. Discoveries linked to viral metagenomics are expected to be beneficial to the field of veterinary medicine starting from the development of better diagnostic assays to the design of new subunit vaccines with minimal investments. With these achievements the research has taken a giant leap even toward the better healthcare of animals and, as a result, the animal sector could be growing at an unprecedented pace.
Collapse
|
8
|
de Souza WM, Fumagalli MJ, Martin MC, de Araujo J, Orsi MA, Sanfilippo LF, Modha S, Durigon EL, Proença-Módena JL, Arns CW, Murcia PR, Figueiredo LTM. Pingu virus: A new picornavirus in penguins from Antarctica. Virus Evol 2019; 5:vez047. [PMID: 31850147 PMCID: PMC6908804 DOI: 10.1093/ve/vez047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Picornaviridae family comprises single-stranded, positive-sense RNA viruses distributed into forty-seven genera. Picornaviruses have a broad host range and geographic distribution in all continents. In this study, we applied a high-throughput sequencing approach to examine the presence of picornaviruses in penguins from King George Island, Antarctica. We discovered and characterized a novel picornavirus from cloacal swab samples of gentoo penguins (Pygoscelis papua), which we tentatively named Pingu virus. Also, using RT-PCR we detected this virus in 12.9 per cent of cloacal swabs derived from P. papua, but not in samples from adélie penguins (Pygoscelis adeliae) or chinstrap penguins (Pygoscelis antarcticus). Attempts to isolate the virus in a chicken cell line and in embryonated chicken eggs were unsuccessful. Our results expand the viral diversity, host range, and geographical distribution of the Picornaviridae.
Collapse
Affiliation(s)
- William Marciel de Souza
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900 Brazil
| | - Marcílio Jorge Fumagalli
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900 Brazil
| | - Matheus Cavalheiro Martin
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Jansen de Araujo
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415 - Butantã, São Paulo - SP, 05508-900 Brazil
| | - Maria Angela Orsi
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Luiz Francisco Sanfilippo
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415 - Butantã, São Paulo - SP, 05508-900 Brazil
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK
| | - Edison Luiz Durigon
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415 - Butantã, São Paulo - SP, 05508-900 Brazil
| | - José Luiz Proença-Módena
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Clarice Weis Arns
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Pablo Ramiro Murcia
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK
| | - Luiz Tadeu Moraes Figueiredo
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900 Brazil
| |
Collapse
|
9
|
Zylberberg M, Van Hemert C, Handel CM, DeRisi JL. Avian keratin disorder of Alaska black-capped chickadees is associated with Poecivirus infection. Virol J 2018; 15:100. [PMID: 29903045 PMCID: PMC6003155 DOI: 10.1186/s12985-018-1008-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/28/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Avian keratin disorder (AKD) is an epizootic of debilitating beak deformities, first documented in black-capped chickadees (Poecile atricapillus) in Alaska during the late 1990s. Similar deformities have now been recorded in dozens of species of birds across multiple continents. Despite this, the etiology of AKD has remained elusive, making it difficult to assess the impacts of this disease on wild populations. We previously identified an association between infection with a novel picornavirus, Poecivirus, and AKD in a small cohort of black-capped chickadees. METHODS To test if the association between Poecivirus and AKD holds in a larger study population, we used targeted PCR followed by Sanger sequencing to screen 124 symptomatic and asymptomatic black-capped chickadees for Poecivirus infection. We further compared the efficacy of multiple non-terminal field sampling methods (buccal swabs, cloacal swabs, fecal samples, and blood samples) for Poecivirus screening. Finally, we used both in situ hybridization and a strand-specific expression assay to localize Poecivirus to beak tissue of AKD-positive individuals and to determine if virus is actively replicating in beak tissue. RESULTS Poecivirus was detected in 28/28 (100%) individuals with AKD, but only 9/96 (9.4%) asymptomatic individuals with apparently normal beaks (p < 0.0001). We found that cloacal swabs are the most sensitive of these sample types for detecting Poecivirus in birds with AKD, but that buccal swabs should be combined with cloacal swabs in evaluating the infection status of asymptomatic birds. Finally, we used both in situ hybridization and a strand-specific expression assay to localize Poecivirus to beak tissue of AKD-positive individuals and to provide evidence of active viral replication. CONCLUSION The data presented here show a strong, statistically significant relationship between Poecivirus infection and AKD, and provide evidence that Poecivirus is indeed an avian virus, infecting and actively replicating in beak tissue of AKD-affected BCCH. Taken together, these data corroborate and extend the evidence for a potential causal association between Poecivirus and AKD in the black-capped chickadee. Poecivirus continues to warrant further investigation as a candidate agent of AKD.
Collapse
Affiliation(s)
- Maxine Zylberberg
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, 94158 USA
| | | | - Colleen M. Handel
- U. S. Geological Survey, Alaska Science Center, Anchorage, AK 99508 USA
| | - Joseph L. DeRisi
- Department of Pathology, University of California, San Francisco, California, 94143 USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
10
|
Kloc A, Rai DK, Rieder E. The Roles of Picornavirus Untranslated Regions in Infection and Innate Immunity. Front Microbiol 2018; 9:485. [PMID: 29616004 PMCID: PMC5870040 DOI: 10.3389/fmicb.2018.00485] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/28/2018] [Indexed: 11/17/2022] Open
Abstract
Viral genomes have evolved to maximize their potential of overcoming host defense mechanisms and to induce a variety of disease syndromes. Structurally, a genome of a virus consists of coding and noncoding regions, and both have been shown to contribute to initiation and progression of disease. Accumulated work in picornaviruses has stressed out the importance of the noncoding RNAs, or untranslated 5′- and 3′-regions (UTRs), in both replication and translation of viral genomes. Unsurprisingly, defects in these processes have been reported to cause viral attenuation and affect viral pathogenicity. However, substantial evidence suggests that these untranslated RNAs may influence the outcome of the host innate immune response. This review discusses the involvement of 5′- and 3′-terminus UTRs in induction and regulation of host immunity and its consequences for viral life cycle and virulence.
Collapse
Affiliation(s)
- Anna Kloc
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| | - Devendra K Rai
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| | - Elizabeth Rieder
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| |
Collapse
|
11
|
Pankovics P, Boros Á, Phan TG, Delwart E, Reuter G. A novel passerivirus (family Picornaviridae) in an outbreak of enteritis with high mortality in estrildid finches (Uraeginthus sp.). Arch Virol 2018; 163:1063-1071. [PMID: 29322272 DOI: 10.1007/s00705-017-3699-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/17/2017] [Indexed: 11/30/2022]
Abstract
An enteric outbreak with high mortality (34/52, 65.4%) was recorded in 2014 in home-reared estrildid finches (Estrildidae) in Hungary. A novel passerivirus was identified in a diseased violet-eared waxbill using viral metagenomics and confirmed by RT-(q)PCR. The complete genome of finch picornavirus strain waxbill/DB01/HUN/2014 (MF977321) showed the highest amino acid sequence identity of 38.9%, 61.6%, 69.6% in P1cap, 2Chel and 3CproDpol, respectively, to passerivirus A1 (GU182406). A high viral load (6.58 × 1010 genomic copies/ml) was measured in a cloacal specimen and in the tissues (spinal cord, lung, and the intestines) of two additional affected finches. In addition to intestinal symptoms (diarrhoea), the presence of extra-intestinal virus suggests a generalized infection in this fatal disease, for which the passerivirus might be a causative agent.
Collapse
Affiliation(s)
- Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA.,University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary. .,Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.
| |
Collapse
|
12
|
Kumar A, Murthy S, Kapoor A. Evolution of selective-sequencing approaches for virus discovery and virome analysis. Virus Res 2017; 239:172-179. [PMID: 28583442 PMCID: PMC5819613 DOI: 10.1016/j.virusres.2017.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/28/2016] [Accepted: 06/02/2017] [Indexed: 12/11/2022]
Abstract
Description of virus enrichment techniques for metagenomics based virome analysis. Usefulness of recently developed virome capture sequencing techniques. Perspective on negative and positive selection approaches for virome analysis.
Recent advances in sequencing technologies have transformed the field of virus discovery and virome analysis. Once mostly confined to the traditional Sanger sequencing based individual virus discovery, is now entirely replaced by high throughput sequencing (HTS) based virus metagenomics that can be used to characterize the nature and composition of entire viromes. To better harness the potential of HTS for the study of viromes, sample preparation methodologies use different approaches to exclude amplification of non-viral components that can overshadow low-titer viruses. These virus-sequence enrichment approaches mostly focus on the sample preparation methods, like enzymatic digestion of non-viral nucleic acids and size exclusion of non-viral constituents by column filtration, ultrafiltration or density gradient centrifugation. However, recently a new approach of virus-sequence enrichment called virome-capture sequencing, focused on the amplification or HTS library preparation stage, was developed to increase the ability of virome characterization. This new approach has the potential to further transform the field of virus discovery and virome analysis, but its technical complexity and sequence-dependence warrants further improvements. In this review we discuss the different methods, their applications and evolution, for selective sequencing based virome analysis and also propose refinements needed to harness the full potential of HTS for virome analysis.
Collapse
Affiliation(s)
- Arvind Kumar
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine and Public Health, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
13
|
Complete Genome Sequence of a Porcine Kobuvirus Variant Strain from Jiangxi, China. GENOME ANNOUNCEMENTS 2017; 5:5/5/e01580-16. [PMID: 28153909 PMCID: PMC5289695 DOI: 10.1128/genomea.01580-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The complete genome sequence of a porcine kobuvirus (PKoV) variant strain, CH/KB-1/2014 from Jiangxi, China, with a 90-nucleotide deletion in the 2B gene, was determined and characterized. This study provides a better understanding of the molecular characteristics and evolution of PKoV in Jiangxi, China.
Collapse
|
14
|
Abstract
Taxonomical classification of newly discovered viruses and reclassification of previously discovered viruses provide an important foundation for detailing biological differences of scientific and clinical interest. The development of molecular analytical methods has enabled finer levels and more precise levels of classification. Periodically, there is need to refresh the literature and common understanding of current taxonomic classification, which we attempt to do here in addressing changes in human and animal viruses of medical significance between 2012 and 2015.
Collapse
|
15
|
Pankovics P, Boros Á, Tóth Z, Phan TG, Delwart E, Reuter G. Genetic characterization of a second novel picornavirus from an amphibian host, smooth newt (Lissotriton vulgaris). Arch Virol 2016; 162:1043-1050. [PMID: 28005212 DOI: 10.1007/s00705-016-3198-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022]
Abstract
In this study, a novel picornavirus was identified in faecal samples from smooth newts (Lissotriton vulgaris). The complete genome of picornavirus strain newt/II-5-Pilis/2014/HUN (KX463670) is 7755 nt long with type-IV IRES and has 39.6% aa sequence identity in the protein P1 to the corresponding protein of bat picornavirus (KJ641686, unassigned) and 42.7% and 53.5% aa sequence identity in the 2C and 3CD protein, respectively, to oscivirus (GU182410, genus Oscivirus). Interestingly, the L-protein of newt/II-5-Pilis/2014/HUN has conserved aa motifs that are similar to those found in phosphatase-1 catalytic (PP1C) subunit binding region (pfam10488) proteins. This second amphibian-origin picornavirus could represent a novel species and could be a founding member of a potential novel picornavirus genus.
Collapse
Affiliation(s)
- Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pecs, Hungary
- Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12., Pecs, 7624, Hungary
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pecs, Hungary
- Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12., Pecs, 7624, Hungary
| | - Zoltán Tóth
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pecs, Hungary.
- Department of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12., Pecs, 7624, Hungary.
| |
Collapse
|
16
|
Abstract
Avian keratin disorder (AKD), characterized by debilitating overgrowth of the avian beak, was first documented in black-capped chickadees (Poecile atricapillus) in Alaska. Subsequently, similar deformities have appeared in numerous species across continents. Despite the widespread distribution of this emerging pathology, the cause of AKD remains elusive. As a result, it is unknown whether suspected cases of AKD in the afflicted species are causally linked, and the impacts of this pathology at the population and community levels are difficult to evaluate. We applied unbiased, metagenomic next-generation sequencing to search for candidate pathogens in birds affected with AKD. We identified and sequenced the complete coding region of a novel picornavirus, which we are calling poecivirus. Subsequent screening of 19 AKD-affected black-capped chickadees and 9 control individuals for the presence of poecivirus revealed that 19/19 (100%) AKD-affected individuals were positive, while only 2/9 (22%) control individuals were infected with poecivirus. Two northwestern crows (Corvus caurinus) and two red-breasted nuthatches (Sitta canadensis) with AKD-consistent pathology also tested positive for poecivirus. We suggest that poecivirus is a candidate etiological agent of AKD. Avian keratin disorder (AKD) is an increasingly common disease of wild birds. This disease, characterized by beak overgrowth, was first described in the late 1990s and has been spreading rapidly both geographically and in terms of host species affected. AKD decreases host fitness and can be fatal. However, the cause of the disease has remained elusive, and its impact on host populations is poorly understood. We found a novel and divergent picornavirus in 19/19 AKD-affected black-capped chickadees that we examined but in only 2/9 control cases. We also found this virus in 4 individuals of 2 other passerine species that exhibited symptoms consistent with AKD. Our data suggest that this novel picornavirus warrants further investigation as the causative agent of AKD.
Collapse
|
17
|
Day JM, Zsak L. Molecular Characterization of Enteric Picornaviruses in Archived Turkey and Chicken Samples from the United States. Avian Dis 2016; 60:500-5. [PMID: 27309295 DOI: 10.1637/11289-092415-resnote] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent metagenomic analyses of the enteric viromes in turkeys and chickens have revealed complex viral communities comprised of multiple viral families. Of particular significance are the novel avian picobirnaviruses (family Picobirnaviridae), multiple genera of tailed phages (family Siphoviridae), and undescribed avian enteric picornaviruses (family Picornaviridae). In addition to these largely undescribed-and therefore relatively poorly understood-poultry enteric viral families, these metagenomic analyses have also revealed the presence of well-known groups of enteric viruses such as the chicken and turkey astroviruses (family Astroviridae) and the avian rotaviruses and reoviruses (family Reoviridae). The order Picornavirales is a group of viruses in flux, particularly among the avian picornaviruses, since several new genera have been described recently based upon community analysis of enteric viromes from poultry and other avian species worldwide. Our previous investigation of the turkey enteric picornaviruses suggests the avian enteric picornaviruses may contribute to the enteric disease syndromes and performance problems often observed in turkeys in the Southeastern United States. This report describes our recent phylogenetic analysis of turkey and chicken enteric samples archived at the Southeast Poultry Research Laboratory from 2004 to present and is a first step in placing these novel avian picornaviruses within the larger Picornaviridae family.
Collapse
Affiliation(s)
- J Michael Day
- A USDA/ARS, U.S. National Poultry Research Center, Southeast Poultry Research Laboratory, 934 College Station Road, Athens, GA 30605
| | - Laszlo Zsak
- A USDA/ARS, U.S. National Poultry Research Center, Southeast Poultry Research Laboratory, 934 College Station Road, Athens, GA 30605
| |
Collapse
|
18
|
A diarrheic chicken simultaneously co-infected with multiple picornaviruses: Complete genome analysis of avian picornaviruses representing up to six genera. Virology 2016; 489:63-74. [DOI: 10.1016/j.virol.2015.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/24/2015] [Accepted: 12/03/2015] [Indexed: 12/23/2022]
|
19
|
Haryanto A, Ermawati R, Wati V, Irianingsih SH, Wijayanti N. Analysis of viral protein-2 encoding gene of avian encephalomyelitis virus from field specimens in Central Java region, Indonesia. Vet World 2016; 9:25-31. [PMID: 27051180 PMCID: PMC4819345 DOI: 10.14202/vetworld.2016.25-31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/15/2022] Open
Abstract
Aim: Avian encephalomyelitis (AE) is a viral disease which can infect various types of poultry, especially chicken. In Indonesia, the incidence of AE infection in chicken has been reported since 2009, the AE incidence tends to increase from year to year. The objective of this study was to analyze viral protein 2 (VP-2) encoding gene of AE virus (AEV) from various species of birds in field specimen by reverse transcription polymerase chain reaction (RT-PCR) amplification using specific nucleotides primer for confirmation of AE diagnosis. Materials and Methods: A total of 13 AEV samples are isolated from various species of poultry which are serologically diagnosed infected by AEV from some areas in central Java, Indonesia. Research stage consists of virus samples collection from field specimens, extraction of AEV RNA, amplification of VP-2 protein encoding gene by RT-PCR, separation of RT-PCR product by agarose gel electrophoresis, DNA sequencing and data analysis. Results: Amplification products of the VP-2 encoding gene of AEV by RT-PCR methods of various types of poultry from field specimens showed a positive results on sample code 499/4/12 which generated DNA fragment in the size of 619 bp. Sensitivity test of RT-PCR amplification showed that the minimum concentration of RNA template is 127.75 ng/µl. The multiple alignments of DNA sequencing product indicated that positive sample with code 499/4/12 has 92% nucleotide homology compared with AEV with accession number AV1775/07 and 85% nucleotide homology with accession number ZCHP2/0912695 from Genbank database. Analysis of VP-2 gene sequence showed that it found 46 nucleotides difference between isolate 499/4/12 compared with accession number AV1775/07 and 93 nucleotides different with accession number ZCHP2/0912695. Conclusions: Analyses of the VP-2 encoding gene of AEV with RT-PCR method from 13 samples from field specimen generated the DNA fragment in the size of 619 bp from one sample with sample code 499/4/12. The sensitivity rate of RT-PCR is to amplify the VP-2 gene of AEV until 127.75 ng/µl of RNA template. Compared to Genbank databases, isolate 499/4/12 has 85% and 92% nucleotide homology.
Collapse
Affiliation(s)
- Aris Haryanto
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ratna Ermawati
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Vera Wati
- Division of Biotechnology, Animal Disease Investigation Center Wates, Daerah Istimewa Yogyakarta Province, Indonesia
| | - Sri Handayani Irianingsih
- Division of Virology, Animal Disease Investigation Center Wates, Daerah Istimewa Yogyakarta Province, Indonesia
| | - Nastiti Wijayanti
- Department of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
20
|
Abstract
The characterization of the human blood-associated viral community (also called blood virome) is essential for epidemiological surveillance and to anticipate new potential threats for blood transfusion safety. Currently, the risk of blood-borne agent transmission of well-known viruses (HBV, HCV, HIV and HTLV) can be considered as under control in high-resource countries. However, other viruses unknown or unsuspected may be transmitted to recipients by blood-derived products. This is particularly relevant considering that a significant proportion of transfused patients are immunocompromised and more frequently subjected to fatal outcomes. Several measures to prevent transfusion transmission of unknown viruses have been implemented including the exclusion of at-risk donors, leukocyte reduction of donor blood, and physicochemical treatment of the different blood components. However, up to now there is no universal method for pathogen inactivation, which would be applicable for all types of blood components and, equally effective for all viral families. In addition, among available inactivation procedures of viral genomes, some of them are recognized to be less effective on non-enveloped viruses, and inadequate to inactivate higher viral titers in plasma pools or derivatives. Given this, there is the need to implement new methodologies for the discovery of unknown viruses that may affect blood transfusion. Viral metagenomics combined with High Throughput Sequencing appears as a promising approach for the identification and global surveillance of new and/or unexpected viruses that could impair blood transfusion safety.
Collapse
Affiliation(s)
- V Sauvage
- Département d'études des agents transmissibles par le sang, Institut national de la transfusion sanguine (INTS), Centre national de référence des hépatites virales B et C et du VIH en transfusion, 75015 Paris, France.
| | - M Eloit
- PathoQuest, bâtiment François-Jacob, 25, rue du Dr-Roux, 75015 Paris, France; Inserm U1117, Biology of Infection Unit, Laboratory of Pathogen Discovery, Institut Pasteur, 28, rue du Docteur-Roux, 75724 Paris, France
| |
Collapse
|
21
|
Pankovics P, Boros Á, Bíró H, Horváth KB, Phan TG, Delwart E, Reuter G. Novel picornavirus in domestic rabbits (Oryctolagus cuniculus var. domestica). INFECTION GENETICS AND EVOLUTION 2015; 37:117-22. [PMID: 26588888 PMCID: PMC7172602 DOI: 10.1016/j.meegid.2015.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/20/2015] [Accepted: 11/14/2015] [Indexed: 12/12/2022]
Abstract
Picornaviruses (family Picornaviridae) are small, non-enveloped viruses with positive sense, single-stranded RNA genomes. The numbers of the novel picornavirus species and genera are continuously increasing. Picornaviruses infect numerous vertebrate species from fish to mammals, but have not been identified in a member of the Lagomorpha order (pikas, hares and rabbits). In this study, a novel picornavirus was identified in 16 (28.6%) out of 56 faecal samples collected from clinically healthy rabbits (Oryctolagus cuniculus var. domestica) in two (one commercial and one family farms) of four rabbit farms in Hungary. The 8364 nucleotide (2486 amino acid) long complete genome sequence of strain Rabbit01/2013/HUN (KT325852) has typical picornavirus genome organization with type-V IRES at the 5'UTR, encodes a leader (L) and a single 2A(H-box/NC) proteins, contains a hepatitis-A-virus-like cis-acting replication element (CRE) in the 2A, but it does not contain the sequence forming a "barbell-like" secondary structure in the 3'UTR. Rabbit01/2013/HUN has 52.9%, 52% and 57.2% amino acid identity to corresponding proteins of species Aichivirus A (genus Kobuvirus): to murine Kobuvirus (JF755427) in P1, to canine Kobuvirus (JN387133) in P2 and to feline Kobuvirus (KF831027) in P3, respectively. The sequence and phylogenetic analysis indicated that Rabbit01/2013/HUN represents a novel picornavirus species possibly in genus Kobuvirus. This is the first report of detection of picornavirus in rabbit. Further study is needed to clarify whether this novel picornavirus plays a part in any diseases in domestic or wild rabbits.
Collapse
Affiliation(s)
- Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | | | - Katalin Barbara Horváth
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.
| |
Collapse
|
22
|
Zhou H, Zhu S, Quan R, Wang J, Wei L, Yang B, Xu F, Wang J, Chen F, Liu J. Identification and Genome Characterization of the First Sicinivirus Isolate from Chickens in Mainland China by Using Viral Metagenomics. PLoS One 2015; 10:e0139668. [PMID: 26461027 PMCID: PMC4603672 DOI: 10.1371/journal.pone.0139668] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/16/2015] [Indexed: 02/07/2023] Open
Abstract
Unlike traditional virus isolation and sequencing approaches, sequence-independent amplification based viral metagenomics technique allows one to discover unexpected or novel viruses efficiently while bypassing culturing step. Here we report the discovery of the first Sicinivirus isolate (designated as strain JSY) of picornaviruses from commercial layer chickens in mainland China by using a viral metagenomics technique. This Sicinivirus isolate, which contains a whole genome of 9,797 nucleotides (nt) excluding the poly(A) tail, possesses one of the largest picornavirus genome so far reported, but only shares 88.83% and 82.78% of amino acid sequence identity to that of ChPV1 100C (KF979332) and Sicinivirus 1 strain UCC001 (NC_023861), respectively. The complete 939 nt 5′UTR of the isolate strain contains at least twelve stem-loop domains (A–L), representing the highest set of loops reported within Sicinivirus genus. The conserved 'barbell-like' structure was also present in the 272 nt 3′UTR of the isolate as that in the 3′ UTR of Sicinivirus 1 strain UCC001. The 8,586 nt large open reading frame encodes a 2,862 amino acids polyprotein precursor. Moreover, Sicinivirus infection might be widely present in commercial chicken farms in Yancheng region of the Jiangsu Province as evidenced by all the tested stool samples from three different farms being positive (17/17) for Sicinivirus detection. This is the first report on identification of Sicinivirus in commercial layer chickens with a severe clinical disease in mainland China, however, further studies are needed to evaluate the pathogenic potential of this picornavirus in chickens.
Collapse
Affiliation(s)
- Hongzhuan Zhou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People’s Republic of China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People’s Republic of China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People’s Republic of China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People’s Republic of China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People’s Republic of China
| | - Bing Yang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People’s Republic of China
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People’s Republic of China
| | - Jinluo Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People’s Republic of China
| | - Fuyong Chen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100197, People’s Republic of China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People’s Republic of China
- * E-mail:
| |
Collapse
|
23
|
Day JM, Zsak L. Investigating Turkey Enteric Picornavirus and Its Association with Enteric Disease in Poults. Avian Dis 2015; 59:138-42. [PMID: 26292547 DOI: 10.1637/10940-092414-regr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous research into the viral community in the poultry gastrointestinal tract has revealed a number of novel and partially described enteric viruses. It is evident that the poultry gut viral community remains minimally characterized and incompletely understood. Investigations into the microbiome of the poultry gut have provided some insight into the geographical distribution and the rapidly evolving taxonomy of the avian enteric picornaviruses. The present investigation was undertaken to produce a comparative metagenomic analysis of the gut virome from a healthy turkey flock versus a flock placed in the field. This investigation revealed a number of enteric picornavirus sequences that were present in the commercial birds in the field that were completely absent in the healthy flock. A novel molecular diagnostic assay was used to track the shedding of field strains of turkey enteric picornavirus in commercial poults inoculated with picornavirus-positive intestinal homogenates prepared from turkeys that were experiencing moderate enteric disease. The propagation of this novel enteric picornavirus in commercial poults resulted in significant reduction in weight gain, and suggests that this common inhabitant of the turkey gut may result in performance problems or enteric disease in the field.
Collapse
|
24
|
Nagai M, Omatsu T, Aoki H, Kaku Y, Belsham GJ, Haga K, Naoi Y, Sano K, Umetsu M, Shiokawa M, Tsuchiaka S, Furuya T, Okazaki S, Katayama Y, Oba M, Shirai J, Katayama K, Mizutani T. Identification and complete genome analysis of a novel bovine picornavirus in Japan. Virus Res 2015; 210:205-12. [PMID: 26260333 PMCID: PMC7114519 DOI: 10.1016/j.virusres.2015.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/24/2015] [Accepted: 08/05/2015] [Indexed: 01/04/2023]
Abstract
We identified novel viruses in feces from cattle with diarrhea collected in 2009 in Hokkaido Prefecture, Japan, by using a metagenomics approach and determined the (near) complete sequences of the virus. Sequence analyses revealed that they had a standard picornavirus genome organization, i.e. 5' untranslated region (UTR) - L- P1 (VP4- VP3- VP2- VP1) - P2 (2A- 2B- 2C) - P3 (3A- 3B- 3C-3D) - 3'UTR- poly(A). They are closely related to other unclassified Chinese picornaviruses; bat picornaviruses group 1-3, feline picornavirus, and canine picornavirus, sharing 45.4-51.4% (P1), 38.0-44.9% (P2), and 49.6-53.3% (P3) amino acid identities, respectively. The phylogenetic analyses and detailed genome characterization showed that they, together with the unclassified Chinese picornaviruses, grouped as a cluster for the P1, 2C, 3CD and VP1 coding regions. These viruses had conserved features (e.g. predicted protein cleavage sites, presence of a leader protein, 2A, 2C, 3C, and 3D functional domains), suggesting they have a common ancestor. Reverse-transcription-PCR assays, using specific primers designed from the 5'UTR sequence of these viruses, showed that 23.0% (20/87) of fecal samples from cattle with diarrhea were positive, indicating the prevalence of these picornavirus in the Japanese cattle population in Hokkaido Prefecture. However, further studies are needed to investigate the pathogenic potential and etiological role of these viruses in cattle.
Collapse
Affiliation(s)
- Makoto Nagai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Hiroshi Aoki
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Yoshihiro Kaku
- Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Kei Haga
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Yuki Naoi
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kaori Sano
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Moeko Umetsu
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Mai Shiokawa
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Shinobu Tsuchiaka
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Furuya
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Sachiko Okazaki
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Junsuke Shirai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kazuhiko Katayama
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
25
|
Detection of a mammalian-like astrovirus in bird, European roller (Coracias garrulus). INFECTION GENETICS AND EVOLUTION 2015; 34:114-21. [DOI: 10.1016/j.meegid.2015.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/04/2015] [Accepted: 06/17/2015] [Indexed: 12/29/2022]
|
26
|
Daly GM, Leggett RM, Rowe W, Stubbs S, Wilkinson M, Ramirez-Gonzalez RH, Caccamo M, Bernal W, Heeney JL. Host Subtraction, Filtering and Assembly Validations for Novel Viral Discovery Using Next Generation Sequencing Data. PLoS One 2015; 10:e0129059. [PMID: 26098299 PMCID: PMC4476701 DOI: 10.1371/journal.pone.0129059] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 05/04/2015] [Indexed: 12/18/2022] Open
Abstract
The use of next generation sequencing (NGS) to identify novel viral sequences from eukaryotic tissue samples is challenging. Issues can include the low proportion and copy number of viral reads and the high number of contigs (post-assembly), making subsequent viral analysis difficult. Comparison of assembly algorithms with pre-assembly host-mapping subtraction using a short-read mapping tool, a k-mer frequency based filter and a low complexity filter, has been validated for viral discovery with Illumina data derived from naturally infected liver tissue and simulated data. Assembled contig numbers were significantly reduced (up to 99.97%) by the application of these pre-assembly filtering methods. This approach provides a validated method for maximizing viral contig size as well as reducing the total number of assembled contigs that require down-stream analysis as putative viral nucleic acids.
Collapse
Affiliation(s)
- Gordon M. Daly
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB30ES, United Kingdom
| | - Richard M. Leggett
- The Genome Analysis Centre (TGAC), Norwich Research Park, Norwich, NR47UH, United Kingdom
| | - William Rowe
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB30ES, United Kingdom
| | - Samuel Stubbs
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB30ES, United Kingdom
| | - Maxim Wilkinson
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB30ES, United Kingdom
| | | | - Mario Caccamo
- The Genome Analysis Centre (TGAC), Norwich Research Park, Norwich, NR47UH, United Kingdom
| | - William Bernal
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London, SE59RS, United Kingdom
| | - Jonathan L. Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB30ES, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Olarte-Castillo XA, Heeger F, Mazzoni CJ, Greenwood AD, Fyumagwa R, Moehlman PD, Hofer H, East ML. Molecular characterization of canine kobuvirus in wild carnivores and the domestic dog in Africa. Virology 2015; 477:89-97. [PMID: 25667111 DOI: 10.1016/j.virol.2015.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/23/2014] [Accepted: 01/09/2015] [Indexed: 11/29/2022]
Abstract
Knowledge of Kobuvirus (Family Picornaviridae) infection in carnivores is limited and has not been described in domestic or wild carnivores in Africa. To fill this gap in knowledge we used RT-PCR to screen fresh feces from several African carnivores. We detected kobuvirus RNA in samples from domestic dog, golden jackal, side-striped jackal and spotted hyena. Using next generation sequencing we obtained one complete Kobuvirus genome sequence from each of these species. Our phylogenetic analyses revealed canine kobuvirus (CaKV) infection in all four species and placed CaKVs from Africa together and separately from CaKVs from elsewhere. Wild carnivore strains were more closely related to each other than to those from domestic dogs. We found that the secondary structure model of the IRES was similar to the Aichivirus-like IRES subclass and was conserved among African strains. We describe the first CaKVs from Africa and extend the known host range of CaKV.
Collapse
Affiliation(s)
- Ximena A Olarte-Castillo
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315 Berlin, Germany
| | - Felix Heeger
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315 Berlin, Germany; Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Straße 6-8, 14195 Berlin, Germany
| | - Camila J Mazzoni
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315 Berlin, Germany; Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Straße 6-8, 14195 Berlin, Germany
| | - Alex D Greenwood
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315 Berlin, Germany
| | - Robert Fyumagwa
- Tanzania Wildlife Research Institute, P.O. Box 661, Arusha, Tanzania
| | | | - Heribert Hofer
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315 Berlin, Germany
| | - Marion L East
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315 Berlin, Germany.
| |
Collapse
|
28
|
Chan JFW, To KKW, Chen H, Yuen KY. Cross-species transmission and emergence of novel viruses from birds. Curr Opin Virol 2015; 10:63-9. [PMID: 25644327 PMCID: PMC7102742 DOI: 10.1016/j.coviro.2015.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/29/2014] [Accepted: 01/09/2015] [Indexed: 12/29/2022]
Abstract
The role of birds in cross-species transmission and emergence of novel viruses such as avian influenza A viruses are discussed. The novel avian viruses identified between 2012 and 2014 are summarized. The concept of ‘pathogen augmentation’ is introduced.
Birds, the only living member of the Dinosauria clade, are flying warm-blooded vertebrates displaying high species biodiversity, roosting and migratory behavior, and a unique adaptive immune system. Birds provide the natural reservoir for numerous viral species and therefore gene source for evolution, emergence and dissemination of novel viruses. The intrusions of human into natural habitats of wild birds, the domestication of wild birds as pets or racing birds, and the increasing poultry consumption by human have facilitated avian viruses to cross species barriers to cause zoonosis. Recently, a novel adenovirus was exclusively found in birds causing an outbreak of Chlamydophila psittaci infection among birds and humans. Instead of being the primary cause of an outbreak by jumping directly from bird to human, a novel avian virus can be an augmenter of another zoonotic agent causing the outbreak. A comprehensive avian virome will improve our understanding of birds’ evolutionary dynamics.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
29
|
Day JM, Oakley BB, Seal BS, Zsak L. Comparative analysis of the intestinal bacterial and RNA viral communities from sentinel birds placed on selected broiler chicken farms. PLoS One 2015; 10:e0117210. [PMID: 25635690 PMCID: PMC4311960 DOI: 10.1371/journal.pone.0117210] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/21/2014] [Indexed: 12/28/2022] Open
Abstract
There is a great deal of interest in characterizing the complex microbial communities in the poultry gut, and in understanding the effects of these dynamic communities on poultry performance, disease status, animal welfare, and microbes with human health significance. Investigations characterizing the poultry enteric virome have identified novel poultry viruses, but the roles these viruses play in disease and performance problems have yet to be fully characterized. The complex bacterial community present in the poultry gut influences gut development, immune status, and animal health, each of which can be an indicator of overall performance. The present metagenomic investigation was undertaken to provide insight into the colonization of specific pathogen free chickens by enteric microorganisms under field conditions and to compare the pre-contact intestinal microbiome with the altered microbiome following contact with poultry raised in the field. Analysis of the intestinal virome from contact birds ("sentinels") placed on farms revealed colonization by members of the Picornaviridae, Picobirnaviridae, Reoviridae, and Astroviridae that were not present in pre-contact birds or present in proportionally lower numbers. Analysis of the sentinel gut bacterial community revealed an altered community in the post-contact birds, notably by members of the Lachnospiracea/Clostridium and Lactobacillus families and genera. Members of the avian enteric Reoviridae and Astroviridae have been well-characterized and have historically been implicated in poultry enteric disease; members of the Picobirnaviridae and Picornaviridae have only relatively recently been described in the poultry and avian gut, and their roles in the recognized disease syndromes and in poultry performance in general have not been determined. This metagenomic analysis has provided insight into the colonization of the poultry gut by enteric microbes circulating in commercial broiler flocks, and has identified enteric viruses and virus communities that warrant further study in order to understand their role(s) in avian gut health and disease.
Collapse
Affiliation(s)
- J. Michael Day
- United States Department of Agriculture, Agricultural Research Service, Southeast Poultry Research Laboratory, Athens, GA, United States of America
| | - Brian B. Oakley
- United States Department of Agriculture, Agricultural Research Service, Poultry Microbiological Safety Research Unit, Athens, GA, United States of America
| | - Bruce S. Seal
- United States Department of Agriculture, Agricultural Research Service, Poultry Microbiological Safety Research Unit, Athens, GA, United States of America
| | - Laszlo Zsak
- United States Department of Agriculture, Agricultural Research Service, Southeast Poultry Research Laboratory, Athens, GA, United States of America
| |
Collapse
|
30
|
Choi JW, Lee MH, Lee KK, Oem JK. Genetic characteristics of the complete feline kobuvirus genome. Virus Genes 2014; 50:52-7. [PMID: 25404141 DOI: 10.1007/s11262-014-1144-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/08/2014] [Indexed: 11/30/2022]
Abstract
We sequenced the complete genome of a feline kobuvirus and determined relationships with other kobuviruses. This kobuvirus has an 8,269-nucleotide-long RNA genome, excluding the poly(A) tail. The genome contains a 7,311-bp open reading frame (ORF) encoding a putative polyprotein precursor of 2,437 amino acids, a 717-bp 5'-untranslated region (UTR), and a 241-bp 3'-UTR. The L protein sequence was found to be the most variable region in the feline kobuvirus genome. Interestingly, the 5'-UTR B and C stem-loops were conserved as observed with other kobuviruses; however, a secondary structure corresponding to stem-loop A was not found in the full length 5'-UTR sequence. Phylogenetic tree analysis showed that kobuviruses can be divided into 3 main groups. The feline kobuvirus belongs to the Aichivirus A species containing Aichivirus, mouse kobuvirus, and canine kobuvirus.
Collapse
Affiliation(s)
- Jeong-Won Choi
- Viral Disease Diagnostic Laboratory, Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, 480 Anyang-6-Dong, Anyang, 430-824, Republic of Korea
| | | | | | | |
Collapse
|
31
|
Sasaki M, Orba Y, Ueno K, Ishii A, Moonga L, Hang'ombe BM, Mweene AS, Ito K, Sawa H. Metagenomic analysis of the shrew enteric virome reveals novel viruses related to human stool-associated viruses. J Gen Virol 2014; 96:440-452. [PMID: 25381053 DOI: 10.1099/vir.0.071209-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Shrews are small insectivorous mammals that are distributed worldwide. Similar to rodents, shrews live on the ground and are commonly found near human residences. In this study, we investigated the enteric virome of wild shrews in the genus Crocidura using a sequence-independent viral metagenomics approach. A large portion of the shrew enteric virome was composed of insect viruses, whilst novel viruses including cyclovirus, picornavirus and picorna-like virus were also identified. Several cycloviruses, including variants of human cycloviruses detected in cerebrospinal fluid and stools, were detected in wild shrews at a high prevalence rate. The identified picornavirus was distantly related to human parechovirus, inferring the presence of a new genus in this family. The identified picorna-like viruses were characterized as different species of calhevirus 1, which was discovered previously in human stools. Complete or nearly complete genome sequences of these novel viruses were determined in this study and then were subjected to further genetic characterization. Our study provides an initial view of the diversity and distinctiveness of the shrew enteric virome and highlights unique novel viruses related to human stool-associated viruses.
Collapse
Affiliation(s)
- Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Keisuke Ueno
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Akihiro Ishii
- Hokudai Center for Zoonosis Control in Zambia, PO Box 32379, Lusaka, Zambia
| | - Ladslav Moonga
- Department of Paraclinical Studies, School of Veterinary and Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Bernard M Hang'ombe
- Department of Paraclinical Studies, School of Veterinary and Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary and Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Global Institution for Collaborative Research and Education, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.,Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| |
Collapse
|
32
|
Boros Á, Pankovics P, Adonyi Á, Phan TG, Delwart E, Reuter G. Genome characterization of a novel chicken picornavirus distantly related to the members of genus Avihepatovirus with a single 2A protein and a megrivirus-like 3' UTR. INFECTION GENETICS AND EVOLUTION 2014; 28:333-8. [PMID: 25445649 DOI: 10.1016/j.meegid.2014.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/22/2014] [Accepted: 10/27/2014] [Indexed: 11/25/2022]
Abstract
The members of the genus Avihepatovirus and related picornaviruses ("Aalivius") of ducks, turkey and chickens possess identical 2A peptide composition including three functionally unrelated 2A peptides which is a characteristic genome feature of these monophyletic avian picornaviruses. The complete genome of a novel picornavirus provisionally named Orivirus A1 (KM203656) from a cloacal sample of a 4-week-old diarrheic chicken (Gallus gallus domesticus) distantly related to members of genus Avihepatovirus was characterized. The study strain contains a type-II-like IRES, a single 2A protein of unknown function unrelated to the 2A proteins of avihepatoviruses and a long 3' untranslated region (UTR) with multiple repeated sequence motifs followed by an AUG-rich region. The repeated sequences of the 3' UTR show significant identity to the "Unit A" sequences of the phylogenetically distant megriviruses. The presence of a novel single 2A and the megrivirus-like "Unit A" motifs suggest multiple recombination events in the evolution of this novel picornavirus.
Collapse
Affiliation(s)
- Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Ádám Adonyi
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.
| |
Collapse
|
33
|
Boros Á, Pankovics P, Reuter G. Avian picornaviruses: molecular evolution, genome diversity and unusual genome features of a rapidly expanding group of viruses in birds. INFECTION GENETICS AND EVOLUTION 2014; 28:151-66. [PMID: 25278047 DOI: 10.1016/j.meegid.2014.09.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 12/29/2022]
Abstract
Picornaviridae is one of the most diverse families of viruses infecting vertebrate species. In contrast to the relative small number of mammal species compared to other vertebrates, the abundance of mammal-infecting picornaviruses was significantly overrepresented among the presently known picornaviruses. Therefore most of the current knowledge about the genome diversity/organization patterns and common genome features were based on the analysis of mammal-infecting picornaviruses. Beside the well known reservoir role of birds in case of several emerging viral pathogens, little is known about the diversity of picornaviruses circulating among birds, although in the last decade the number of known avian picornavirus species with complete genome was increased from one to at least 15. However, little is known about the geographic distribution, host spectrum or pathogenic potential of the recently described picornaviruses of birds. Despite the low number of known avian picornaviruses, the phylogenetic and genome organization diversity of these viruses were remarkable. Beside the common L-4-3-4 and 4-3-4 genome layouts unusual genome patterns (3-4-4; 3-5-4, 3-6-4; 3-8-4) with variable, multicistronic 2A genome regions were found among avian picornaviruses. The phylogenetic and genomic analysis revealed the presence of several conserved structures at the untranslated regions among phylogenetically distant avian and non-avian picornaviruses as well as at least five different avian picornavirus phylogenetic clusters located in every main picornavirus lineage with characteristic genome layouts which suggests the complex evolution history of these viruses. Based on the remarkable genetic diversity of the few known avian picornaviruses, the emergence of further divergent picornaviruses causing challenges in the current taxonomy and also in the understanding of the evolution and genome organization of picornaviruses will be strongly expected. In this review we would like to summarize the current knowledge about the taxonomy, pathogenic potential, phylogenetic/genomic diversity and evolutional relationship of avian picornaviruses.
Collapse
Affiliation(s)
- Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary.
| |
Collapse
|
34
|
Pankovics P, Boros Á, Kiss T, Reuter G. Identification and complete genome analysis of kobuvirus in faecal samples of European roller (Coracias garrulus): for the first time in a bird. Arch Virol 2014; 160:345-51. [PMID: 25195063 DOI: 10.1007/s00705-014-2228-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/31/2014] [Indexed: 12/11/2022]
Abstract
The genus Kobuvirus (Picornaviridae) consists of three species, Aichivirus A (e.g., Aichi virus, which infects humans), Aichivirus B and Aichivirus C. Kobuvirus have not been detected in non-mammal species including birds. In this study, a novel kobuvirus was identified in 3 (17 %) out of 18 faecal samples collected from European rollers (Coracias garrulus) in Hungary. The complete genome sequence of strain SZAL6-KoV/2011/HUN (KJ934637), which was determined using a novel 5'/3' RACE method (dsRNA-RACE) involving a double-stranded (ds)RNA intermediate, has a type-V IRES at the 5' end and a cis-acting element (CRE) in the 3C gene and encodes L and 2A(H-box/NC) proteins, but it does not contain the sequence forming a "barbell-like" secondary RNA structure in the 3'UTR. SZAL6-KoV/2011/HUN has 72 %, 73 %, and 81 % amino acid sequence identity to the P1, P2, and P3 protein, respectively, of Aichi virus. Evolutionary analysis showed that SZAL6-KoV/2011/HUN shares a common ancestor with other kobuviruses but belongs to a more ancient lineage in the species Aichivirus A. Investigation of the known kobuviruses in different animals and discovery of novel kobuviruses in potential host species helps to clarify the evolutionary connection and zoonotic potential of kobuviruses.
Collapse
Affiliation(s)
- Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Szabadság út 7, 7623, Pécs, Hungary
| | | | | | | |
Collapse
|
35
|
Day JM, Gonder E, Jennings S, Rives D, Robbins K, Tilley B, Wooming B. Investigating turkey enteric coronavirus circulating in the Southeastern United States and Arkansas during 2012 and 2013. Avian Dis 2014; 58:313-7. [PMID: 25055640 DOI: 10.1637/10674-092313-resnote.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Periodic monitoring of poultry flocks in the United States via molecular diagnostic methods has revealed a number of potential enteric viral pathogens in continuous circulation in turkeys and chickens. Recently turkey integrators in the Southeastern United States and Arkansas experienced an outbreak of moderate to severe enteritis associated with turkey enteric coronavirus (TCoV), and numerous enteric samples collected from turkey flocks in these areas tested positive for TCoV via real-time reverse-transcriptase PCR (RRT-PCR). This report details the subsequent sequence and phylogenetic analysis of the TCoV spike glycoprotein and the comparison of outbreak-associated isolates to sequences in the public database. TCoVs investigated during the present outbreak grouped geographically based upon state of origin, and the RRT-PCR assay was a good indicator of subsequent seroconversion by TCoV-positive turkey flocks.
Collapse
|
36
|
Liao Q, Zheng L, Yuan Y, Shi J, Zhang D. Genomic characterization of a novel picornavirus in Pekin ducks. Vet Microbiol 2014; 172:78-91. [DOI: 10.1016/j.vetmic.2014.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 04/28/2014] [Accepted: 05/03/2014] [Indexed: 12/26/2022]
|
37
|
Lau SKP, Woo PCY, Yip CCY, Li KSM, Fan RYY, Bai R, Huang Y, Chan KH, Yuen KY. Chickens host diverse picornaviruses originated from potential interspecies transmission with recombination. J Gen Virol 2014; 95:1929-1944. [PMID: 24906980 DOI: 10.1099/vir.0.066597-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
While chickens are an important reservoir for emerging pathogens such as avian influenza viruses, little is known about the diversity of picornaviruses in poultry. We discovered a previously unknown diversity of picornaviruses in chickens in Hong Kong. Picornaviruses were detected in 87 cloacal and 7 tracheal samples from 93 of 900 chickens by reverse transcription-PCR, with their partial 3D(pol) gene sequences forming five distinct clades (I to V) among known picornaviruses. Analysis of eight genomes from different clades revealed seven different picornaviruses, including six novel picornavirus species (ChPV1 from clade I, ChPV2 and ChPV3 from clade II, ChPV4 and ChPV5 from clade III, ChGV1 from clade IV) and one existing species (Avian encephalomyelitis virus from clade V). The six novel chicken picornavirus genomes exhibited distinct phylogenetic positions and genome features different from related picornaviruses, supporting their classification as separate species. Moreover, ChPV1 may potentially belong to a novel genus, with low sequence homologies to related picornaviruses, especially in the P1 and P2 regions, including the predicted L and 2A proteins. Nevertheless, these novel picornaviruses were most closely related to picornaviruses of other avian species (ChPV1 related to Passerivirus A, ChPV2 and ChPV3 to Avisivirus A and Duck hepatitis A virus, ChPV4 and ChPV5 to Melegrivirus A, ChGV1 to Gallivirus A). Furthermore, ChPV5 represented a potential recombinant picornavirus, with its P2 and P3 regions possibly originating from Melegrivirus A. Chickens are an important reservoir for diverse picornaviruses that may cross avian species barriers through mutation or recombination.
Collapse
Affiliation(s)
- Susanna K P Lau
- Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, PR China.,State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, University of Hong Kong, Hong Kong, PR China.,Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, PR China
| | - Patrick C Y Woo
- Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, PR China.,Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, PR China.,State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Cyril C Y Yip
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Kenneth S M Li
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Rachel Y Y Fan
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Ru Bai
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Yi Huang
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Kwok-Hung Chan
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, PR China.,Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, PR China.,Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
38
|
Reuter G, Boros A, Kiss T, Delwart E, Pankovics P. Complete genome characterization of mosavirus (family Picornaviridae) identified in droppings of a European roller (Coracias garrulus) in Hungary. Arch Virol 2014; 159:2723-9. [PMID: 24824348 DOI: 10.1007/s00705-014-2113-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/30/2014] [Indexed: 12/27/2022]
Abstract
Mosavirus (mosavirus A1, M-7/2010/USA, JF973687), a novel picornavirus, was found in a canyon mouse (Peromyscus crinitus) in the USA in 2010. It represents a novel species (Mosavirus A) in a novel genus (Mosavirus) in the family Picornaviridae. In this study, the first complete genome sequence of another mosavirus, SZAL6-MoV/2011/HUN (KF958461), was determined from one out of 18 fecal samples from an Afro-Palearctic migratory bird, the European roller (Coracias garrulus). The complete genome of SZAL6-MoV/2011/HUN is 8385 nt long (from poly(C) tract to poly(A) tail), contains a 646-nt-long 5'UTR that forms a type II IRES, and encodes a potential 2550-aa-long polyprotein precursor including an aphthovirus-like L(pro)-proteinase, a small aphthovirus-like 2A(NPG↓P), and two 3B(VPg) proteins. SZAL6-MoV/2011/HUN has 67 %, 74 %, and 76 % aa sequence identity in the P1, P2, and P3 region, respectively, to M-7/2010/USA and represents a second mosavirus type, mosavirus A2.
Collapse
Affiliation(s)
- Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Szabadság út 7, Pecs, 7623, Hungary,
| | | | | | | | | |
Collapse
|
39
|
Abstract
A previous metagenomic analysis of the turkey gut RNA virus community identified novel enteric viruses that may play roles in poultry enteric diseases or in performance problems noted in the field. As part of the molecular characterization of these novel enteric viruses, a reverse transcriptase-PCR diagnostic assay was developed, targeting a novel turkey-origin picobirnavirus (PBV) initially identified in a pooled intestinal sample from turkey poults in North Carolina. Little detailed molecular information exists regarding the family Picobirnaviridae, particularly for the PBVs that have been described in avian species. This diagnostic assay targets the turkey PBV RNA-dependent RNA polymerase gene and produces an 1135-bp amplicon. This assay was validated using in vitro transcribed RNA and was tested using archived enteric samples collected from turkey flocks in the southeastern United States. Further, a phylogenetic analysis suggests the turkey PBV is unique because it does not group closely with the recognized PBV genogroups circulating in mammalian hosts.
Collapse
|
40
|
Bullman S, Kearney K, O’Mahony M, Kelly L, Whyte P, Fanning S, Morgan JG. Identification and genetic characterization of a novel picornavirus from chickens. J Gen Virol 2014; 95:1094-1103. [DOI: 10.1099/vir.0.061085-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A novel picornavirus from commercial broiler chickens (Gallus gallus domesticus) has been identified and genetically characterized. The viral genome consists of a single-stranded, positive-sense RNA genome of >9243 nt excluding the poly(A) tail and as such represents one of the largest picornavirus genomes reported to date. The virus genome is GC-rich with a G+C content of 54.5 %. The genomic organization is similar to other picornaviruses: 5′ UTR–L–VP0–VP3–VP1–2A–2B–2C–3A–3B–3C–3D–3′ UTR. The partially characterized 5′ UTR of >373 nt appears to possess a type II internal ribosomal entry site (IRES), which is also found in members of the genera Aphthovirus and Cardiovirus. This IRES exhibits significant sequence similarity to turkey ‘gallivirus A’. The 3′ UTR of 278 nt contains the conserved 48 nt ‘barbell-like’ structure identified in ‘passerivirus’, ‘gallivirus’, Avihepatovirus and some Kobuvirus genus members. A predicted large open reading frame (ORF) of 8592 nt encodes a potential polyprotein precursor of 2864 amino acids. In addition, the virus contains a predicted large L protein of 462 amino acids. Pairwise sequence comparisons, along with phylogenetic analysis revealed the highest percentage identity to ‘Passerivirus A’ (formerly called turdivirus 1), forming a monophyletic group across the P1, P2 and P3 regions, with <40, <40 and <50 % amino acid identity respectively. Reduced identity was observed against ‘gallivirus A’ and members of the Kobuvirus genus. Quantitative PCR analysis estimated a range of 4×105 to 5×108 viral genome copies g-1 in 22 (73 %) of 30 PCR-positive faeces. Based on sequence and phylogenetic analysis, we propose that this virus is the first member of a potential novel genus within the family Picornaviridae. Further studies are required to investigate the pathogenic potential of this virus within the avian host.
Collapse
Affiliation(s)
- Susan Bullman
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Karen Kearney
- School of Microbiology, University College Cork, Cork, Ireland
| | - Michael O’Mahony
- Department of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lorraine Kelly
- Department of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul Whyte
- Department of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Seamus Fanning
- Department of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - John G. Morgan
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
41
|
Comparative complete genome analysis of chicken and Turkey megriviruses (family picornaviridae): long 3' untranslated regions with a potential second open reading frame and evidence for possible recombination. J Virol 2014; 88:6434-43. [PMID: 24672039 DOI: 10.1128/jvi.03807-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Members of the family Picornaviridae consist of small positive-sense single-stranded RNA (+ssRNA) viruses capable of infecting various vertebrate species, including birds. One of the recently identified avian picornaviruses, with a remarkably long (>9,040-nucleotide) but still incompletely sequenced genome, is turkey hepatitis virus 1 (THV-1; species Melegrivirus A, genus Megrivirus), a virus associated with liver necrosis and enteritis in commercial turkeys (Meleagris gallopavo). This report presents the results of the genetic analysis of three complete genomes of megriviruses from fecal samples of chickens (chicken/B21-CHV/2012/HUN, GenBank accession no. KF961186, and chicken/CHK-IV-CHV/2013/HUN, GenBank accession no. KF961187) (Gallus gallus domesticus) and turkey (turkey/B407-THV/2011/HUN, GenBank accession no. KF961188) (Meleagris gallopavo) with the largest picornavirus genome (up to 9,739 nucleotides) so far described. The close phylogenetic relationship to THV-1 in the nonstructural protein-coding genome region and possession of the same internal ribosomal entry site type (IVB-like) suggest that the study strains belong to the genus Megrivirus. However, the genome comparisons revealed numerous unique variations (e.g., different numbers of potential 2A peptides, unusually long 3' genome parts with various lengths of a potential second open reading frame, and multiple repeating sequence motifs in the 3' untranslated region) and heterogeneous sequence relationships between the structural and nonstructural genome regions. These differences suggest the classification of chicken megrivirus-like viruses into a candidate novel species in the genus Megrivirus. Based on the different phylogenetic positions of chicken megrivirus-like viruses at the structural and nonstructural genome regions, the recombinant nature of these viruses is plausible. IMPORTANCE The comparative genome analysis of turkey and novel chicken megriviruses revealed numerous unique genome features, e.g., up to four potential 2A peptides, unusually long 3' genome parts with various lengths containing a potential second open reading frame, multiple repeating sequence motifs, and heterogeneous sequence relationships (possibly due to a recombination event) between the structural and nonstructural genome regions. Our results could help us to better understand the evolution and diversity (in terms of sequence and genome layout) of picornaviruses.
Collapse
|
42
|
Wang X, Liu N, Wang F, Ning K, Li Y, Zhang D. Genetic characterization of a novel duck-origin picornavirus with six 2A proteins. J Gen Virol 2014; 95:1289-1296. [PMID: 24659102 DOI: 10.1099/vir.0.063313-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A novel virus was detected from diseased ducks and completely determined. The virus was shown to have a picornavirus-like genome layout. Interestingly, the genome contained a total of up to six 2As, including four 2As (2A1-2A4) each having an NPGP motif, an AIG1-like 2A5, and a parechovirus-like 2A6. The 5'UTR was predicted to possess a hepacivirus/pestivirus-like internal ribosome entry site (IRES). However, the subdomain IIIe consisted of a 3 nt stem and five unpaired bases, distinct from those found in all other HP-like IRESs. The virus was most closely related to duck hepatitis A virus, with amino acid identities of 37.7 %, 39 % and 43.7 % in the P1, P2 and P3 regions, respectively. Based on these investigations, together with phylogenetic analyses, the virus could be considered as the founding member of a novel picornavirus genus that we tentatively named 'Aalivirus', with 'Aalivirus A' as the type species.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian, Beijing 100193, PR China
| | - Ning Liu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian, Beijing 100193, PR China
| | - Fumin Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian, Beijing 100193, PR China
| | - Kang Ning
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian, Beijing 100193, PR China
| | - Yanbo Li
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian, Beijing 100193, PR China
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian, Beijing 100193, PR China
| |
Collapse
|
43
|
Lim ES, Cao S, Holtz LR, Antonio M, Stine OC, Wang D. Discovery of rosavirus 2, a novel variant of a rodent-associated picornavirus, in children from The Gambia. Virology 2014; 454-455:25-33. [PMID: 24725928 DOI: 10.1016/j.virol.2014.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 12/18/2022]
Abstract
We describe the identification of a novel picornavirus recovered from the fecal specimen of a child in The Gambia, provisionally named rosavirus 2. Comparison of the rosavirus 2 complete genome demonstrated 71.9% nucleotide identity to its closest relative rosavirus M-7, an unclassified picornavirus identified from rodent fecal material. A unique RNA structure was predicted in the 3' UTR of rosavirus 2 that was conserved with rosavirus M-7 and cadiciviruses. We detected rosavirus 2 in four pediatric fecal specimens (0.55% prevalence) in a Gambian diarrheal case-control cohort, but we did not detect it in a panel of 634 pediatric diarrheal stool specimens from the USA. There was no statistical evidence that rosavirus 2 was associated with diarrheal cases. This study broadens our understanding of unknown viruses present in children in developing country settings.
Collapse
Affiliation(s)
- Efrem S Lim
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Song Cao
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lori R Holtz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - O Colin Stine
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David Wang
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
44
|
Phan TG, Vo NP, Boros Á, Pankovics P, Reuter G, Li OTW, Wang C, Deng X, Poon LLM, Delwart E. The viruses of wild pigeon droppings. PLoS One 2013; 8:e72787. [PMID: 24023772 PMCID: PMC3762862 DOI: 10.1371/journal.pone.0072787] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/12/2013] [Indexed: 01/14/2023] Open
Abstract
Birds are frequent sources of emerging human infectious diseases. Viral particles were enriched from the feces of 51 wild urban pigeons (Columba livia) from Hong Kong and Hungary, their nucleic acids randomly amplified and then sequenced. We identified sequences from known and novel species from the viral families Circoviridae, Parvoviridae, Picornaviridae, Reoviridae, Adenovirus, Astroviridae, and Caliciviridae (listed in decreasing number of reads), as well as plant and insect viruses likely originating from consumed food. The near full genome of a new species of a proposed parvovirus genus provisionally called Aviparvovirus contained an unusually long middle ORF showing weak similarity to an ORF of unknown function from a fowl adenovirus. Picornaviruses found in both Asia and Europe that are distantly related to the turkey megrivirus and contained a highly divergent 2A1 region were named mesiviruses. All eleven segments of a novel rotavirus subgroup related to a chicken rotavirus in group G were sequenced and phylogenetically analyzed. This study provides an initial assessment of the enteric virome in the droppings of pigeons, a feral urban species with frequent human contact.
Collapse
Affiliation(s)
- Tung Gia Phan
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Nguyen Phung Vo
- Blood Systems Research Institute, San Francisco, California, United States of America
- Pharmacology Department, School of Pharmacy, Ho Chi Minh City University of Medicine and Pharmacy, Ho Chi Minh, Vietnam
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Olive T. W. Li
- Centre of Influenza Research and School of Public Health, University of Hong Kong, Hong Kong SAR
| | - Chunling Wang
- Stanford Genome Technology Center, Stanford, California, United States of America
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Leo L. M. Poon
- Centre of Influenza Research and School of Public Health, University of Hong Kong, Hong Kong SAR
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
|
46
|
Boros Á, Kiss T, Kiss O, Pankovics P, Kapusinszky B, Delwart E, Reuter G. Genetic characterization of a novel picornavirus distantly related to the marine mammal-infecting aquamaviruses in a long-distance migrant bird species, European roller (Coracias garrulus). J Gen Virol 2013; 94:2029-2035. [PMID: 23804566 DOI: 10.1099/vir.0.054676-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite the continuously growing number of known avian picornaviruses (family Picornaviridae), knowledge of their genetic diversity in wild birds, especially in long-distance migrant species is very limited. In this study, we report the presence of a novel picornavirus identified from one of 18 analysed faecal samples of an Afro-Palearctic migrant bird, the European roller (Coracias garrulus L., 1758), which is distantly related to the marine-mammal-infecting seal aquamavirus A1 (genus Aquamavirus). The phylogenetic analyses and the low sequence identity (P1 26.3 %, P2 25.8 % and P3 28.4 %) suggest that this picornavirus could be the founding member of a novel picornavirus genus that we have provisionally named 'Kunsagivirus', with 'Greplavirus A' (strain roller/SZAL6-KuV/2011/HUN, GenBank accession no. KC935379) as the candidate type species.
Collapse
Affiliation(s)
- Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Tamás Kiss
- Hungarian Ornithological and Nature Conservation Society, Budapest, Hungary
| | - Orsolya Kiss
- Ecology Department, Szeged University, Közép fasor 52, Szeged, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | | | - Eric Delwart
- University of California San Francisco, San Francisco, CA, USA.,Blood Systems Research Institute, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| |
Collapse
|
47
|
Divergent picornavirus from a Turkey with gastrointestinal disease. GENOME ANNOUNCEMENTS 2013; 1:1/3/e00134-13. [PMID: 23640375 PMCID: PMC3642282 DOI: 10.1128/genomea.00134-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel picornavirus, turkey avisivirus (TuASV), was identified from the feces of turkeys (Meleagris gallopavo) with gastrointestinal disease from a farm in Indiana. Its genome organization is as follows: 5' untranslated region (UTR)(IRES-II) [VP0, VP3, VP1, 2A, 2B, 2C, 3A, 3B, 3C(pro), 3D(pol)] 3' UTR-poly(A). TuASV shares only 34% (P1), 36% (P2), and 35% (P3) amino acid identities with avihepatoviruses, indicating that it potentially represents a novel picornavirus genus.
Collapse
|
48
|
Boros Á, Nemes C, Pankovics P, Kapusinszky B, Delwart E, Reuter G. Genetic characterization of a novel picornavirus in turkeys (Meleagris gallopavo) distinct from turkey galliviruses and megriviruses and distantly related to the members of the genus Avihepatovirus. J Gen Virol 2013; 94:1496-1509. [PMID: 23559479 DOI: 10.1099/vir.0.051797-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study reports the metagenomic detection and complete genome characterization of a novel turkey picornavirus from faecal samples of healthy (1/3) and affected (6/8) commercial turkeys with enteric and/or stunting syndrome in Hungary. The virus was detected at seven of the eight farms examined. The turkey/M176-TuASV/2011/HUN genome (KC465954) was genetically different from the currently known picornaviruses of turkey origin (megriviruses and galliviruses), and showed distant phylogenetic relationship and common genomic features (e.g. uncleaved VP0 and three predicted and unrelated 2A polypeptides) to duck hepatitis A virus (DHAV) of the genus Avihepatovirus. The complete genome analysis revealed multiple distinct genome features like the presence of two in-tandem aphthovirus 2A-like sequence repeats with DxExNPG/P 'ribosome-skipping' sites (76 %, 23/30 amino acids identical), with the first aphthovirus 2A-like sequence being located at the end of the VP1 capsid protein (VP1/2A1 'ribosome-skipping' site). The phylogenetic analyses, low sequence identity (33, 32 and 36 % amino acid identity in P1, P2 and P3 regions) to DHAV, and the type II-like internal ribosome entry site suggests that this turkey picornavirus is related to, but distinct from the genus Avihepatovirus and it could be the founding member of a novel Avihepatovirus sister-clade genus. This is the third, taxonomically highly distinct picornavirus clade identified from turkeys exhibiting varied symptoms.
Collapse
Affiliation(s)
- Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Csaba Nemes
- Veterinary Diagnostic Directorate of the Central Agricultural Office, Kaposvár, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | | | - Eric Delwart
- University of California San Francisco, San Francisco, CA, USA.,Blood Systems Research Institute, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| |
Collapse
|