1
|
Deep sequencing of the transcriptome from murine lung infected with H5N8 subtype avian influenza virus with combined substitutions I283M and K526R in PB2 gene. INFECTION GENETICS AND EVOLUTION 2020; 87:104672. [PMID: 33309772 DOI: 10.1016/j.meegid.2020.104672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/13/2020] [Accepted: 12/06/2020] [Indexed: 01/04/2023]
Abstract
H5N8 subtype highly pathogenic avian influenza viruses (HPAIVs) pose a huge threat to poultry industry and general public health. Our previous study demonstrated that synergistic effect of 283M and 526R in PB2 gene was a critical factor for viral high pathogenicity in mammals. However, the potential pathogenic mechanism of the mutant virus is still unclear. Here, RNA-seq method was used to analyze the global host response of murine lungs after infecting with parental r-JY virus and JY-PB2-I283M-K526R mutant virus. We found that both amounts and the expression levels of host differentially expressed genes (DEGs) were higher in mutant virus-infected mice compared with the group of parental virus. Furthermore, the DEGs mainly related with innate immune response by GO and KEGG analysis. Especially, PB2-I283M-K526R mutation strongly induced a sharp expression of cytokine storm-related genes, including MX1, CXCL10, and IFN-γ, performed by qRT-PCR. We also found that PB2-I283M-K526R mutation accelerated the level of cell apoptosis by heat map analysis of apoptosis-related DEGs in lungs and apoptosis assay in vitro. Taken together, our data demonstrated that PB2-I283M-K526R of H5N8 subtype HPAIV exacerbated the innate immune response and the level of cell apoptosis, which might be a key pathogenic mechanism for the enhanced pathogenicity of mutants in mammals.
Collapse
|
2
|
Downey J, Pernet E, Coulombe F, Divangahi M. Dissecting host cell death programs in the pathogenesis of influenza. Microbes Infect 2018; 20:560-569. [PMID: 29679740 PMCID: PMC7110448 DOI: 10.1016/j.micinf.2018.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Influenza A virus (IAV) is a pulmonary pathogen, responsible for significant yearly morbidity and mortality. Due to the absence of highly effective antiviral therapies and vaccine, as well as the constant threat of an emerging pandemic strain, there is considerable need to better understand the host-pathogen interactions and the factors that dictate a protective versus detrimental immune response to IAV. Even though evidence of IAV-induced cell death in human pulmonary epithelial and immune cells has been observed for almost a century, very little is known about the consequences of cell death on viral pathogenesis. Recent study indicates that both the type of cell death program and its kinetics have major implications on host defense and survival. In this review, we discuss advances in our understanding of cell death programs during influenza virus infection, in hopes of fostering new areas of investigation for targeted clinical intervention.
Collapse
Affiliation(s)
- Jeffrey Downey
- Department of Medicine, Department of Microbiology & Immunology, Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Erwan Pernet
- Department of Medicine, Department of Microbiology & Immunology, Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - François Coulombe
- Department of Medicine, Department of Microbiology & Immunology, Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Maziar Divangahi
- Department of Medicine, Department of Microbiology & Immunology, Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
3
|
Gao Z, Hu J, Wang X, Yang Q, Liang Y, Ma C, Liu D, Liu K, Hao X, Gu M, Liu X, Jiao XA, Liu X. The PA-interacting host protein nucleolin acts as an antiviral factor during highly pathogenic H5N1 avian influenza virus infection. Arch Virol 2018; 163:2775-2786. [PMID: 29974255 DOI: 10.1007/s00705-018-3926-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
Polymerase acidic (PA) protein is a multifunctional regulator of influenza A virus (IAV) replication and pathogenesis. In a previous study, we reported that nucleolin (NCL) is a novel PA-interacting host protein. In this study, we further explored the role of NCL during highly pathogenic H5N1 avian influenza virus infection. We found that depletion of endogenous NCL in mammalian cells by siRNA targeting during H5N1 infection resulted in significantly increased viral polymerase activity, elevated viral mRNA, cRNA and vRNA synthesis, accelerated viral replication, and enhanced apoptosis and necrosis. Moreover, siRNA silencing of NCL significantly exacerbated the inflammatory response, resulting in increased secretion of IL-6, TNF-α, TNF-β, CCL-4, CCL-8, IFN-α, IFN-β and IFN-γ. Conversely, overexpression of NCL significantly decreased IAV replication. Collectively, these data show that NCL acts as a novel potential antiviral factor during H5N1 infection. Further studies exploring the antiviral mechanisms of NCL may accelerate the development of new anti-influenza drugs.
Collapse
Affiliation(s)
- Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Qian Yang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Yanyan Liang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Chunxi Ma
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Dong Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Kaituo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoli Hao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xin-An Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.
| |
Collapse
|
4
|
Atkin-Smith GK, Duan M, Chen W, Poon IKH. The induction and consequences of Influenza A virus-induced cell death. Cell Death Dis 2018; 9:1002. [PMID: 30254192 PMCID: PMC6156503 DOI: 10.1038/s41419-018-1035-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 12/27/2022]
Abstract
Infection with Influenza A virus (IAV) causes significant cell death within the upper and lower respiratory tract and lung parenchyma. In severe infections, high levels of cell death can exacerbate inflammation and comprise the integrity of the epithelial cell barrier leading to respiratory failure. IAV infection of airway and alveolar epithelial cells promotes immune cell infiltration into the lung and therefore, immune cell types such as macrophages, monocytes and neutrophils are readily exposed to IAV and infection-induced death. Although the induction of cell death through apoptosis and necrosis following IAV infection is a well-known phenomenon, the molecular determinants responsible for inducing cell death is not fully understood. Here, we review the current understanding of IAV-induced cell death and critically evaluate the consequences of cell death in aiding either the restoration of lung homoeostasis or the progression of IAV-induced lung pathologies.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
5
|
Denney L, Ho LP. The role of respiratory epithelium in host defence against influenza virus infection. Biomed J 2018; 41:218-233. [PMID: 30348265 PMCID: PMC6197993 DOI: 10.1016/j.bj.2018.08.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022] Open
Abstract
The respiratory epithelium is the major interface between the environment and the host. Sophisticated barrier, sensing, anti-microbial and immune regulatory mechanisms have evolved to help maintain homeostasis and to defend the lung against foreign substances and pathogens. During influenza virus infection, these specialised structural cells and populations of resident immune cells come together to mount the first response to the virus, one which would play a significant role in the immediate and long term outcome of the infection. In this review, we focus on the immune defence machinery of the respiratory epithelium and briefly explore how it repairs and regenerates after infection.
Collapse
Affiliation(s)
- Laura Denney
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
6
|
Nainu F, Shiratsuchi A, Nakanishi Y. Induction of Apoptosis and Subsequent Phagocytosis of Virus-Infected Cells As an Antiviral Mechanism. Front Immunol 2017; 8:1220. [PMID: 29033939 PMCID: PMC5624992 DOI: 10.3389/fimmu.2017.01220] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/14/2017] [Indexed: 01/14/2023] Open
Abstract
Viruses are infectious entities that hijack host replication machineries to produce their progeny, resulting, in most cases, in disease and, sometimes, in death in infected host organisms. Hosts are equipped with an array of defense mechanisms that span from innate to adaptive as well as from humoral to cellular immune responses. We previously demonstrated that mouse cells underwent apoptosis in response to influenza virus infection. These apoptotic, virus-infected cells were then targeted for engulfment by macrophages and neutrophils. We more recently reported similar findings in the fruit fly Drosophila melanogaster, which lacks adaptive immunity, after an infection with Drosophila C virus. In these experiments, the inhibition of phagocytosis led to severe influenza pathologies in mice and early death in Drosophila. Therefore, the induction of apoptosis and subsequent phagocytosis of virus-infected cells appear to be an antiviral innate immune mechanism that is conserved among multicellular organisms. We herein discuss the underlying mechanisms and significance of the apoptosis-dependent phagocytosis of virus-infected cells. Investigations on the molecular and cellular features responsible for this underrepresented virus–host interaction may provide a promising avenue for the discovery of novel substances that are targeted in medical treatments against virus-induced intractable diseases.
Collapse
Affiliation(s)
- Firzan Nainu
- Laboratory of Pharmacology and Toxicology, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia.,Laboratory of Host Defense and Responses, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akiko Shiratsuchi
- Laboratory of Host Defense and Responses, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshinobu Nakanishi
- Laboratory of Host Defense and Responses, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
7
|
Wu M, Gibbons JG, DeLoid GM, Bedugnis AS, Thimmulappa RK, Biswal S, Kobzik L. Immunomodulators targeting MARCO expression improve resistance to postinfluenza bacterial pneumonia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L138-L153. [PMID: 28408365 DOI: 10.1152/ajplung.00075.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 01/12/2023] Open
Abstract
Downregulation of the alveolar macrophage (AM) receptor with collagenous structure (MARCO) leads to susceptibility to postinfluenza bacterial pneumonia, a major cause of morbidity and mortality. We sought to determine whether immunomodulation of MARCO could improve host defense and resistance to secondary bacterial pneumonia. RNAseq analysis identified a striking increase in MARCO expression between days 9 and 11 after influenza infection and indicated important roles for Akt and Nrf2 in MARCO recovery. In vitro, primary human AM-like monocyte-derived macrophages (AM-MDMs) and THP-1 macrophages were treated with IFNγ to model influenza effects. Activators of Nrf2 (sulforaphane) or Akt (SC79) caused increased MARCO expression and a MARCO-dependent improvement in phagocytosis in IFNγ-treated cells and improved survival in mice with postinfluenza pneumococcal pneumonia. Transcription factor analysis also indicated a role for transcription factor E-box (TFEB) in MARCO recovery. Overexpression of TFEB in THP-1 cells led to marked increases in MARCO. The ability of Akt activation to increase MARCO expression in IFNγ-treated AM-MDMs was abrogated in TFEB-knockdown cells, indicating Akt increases MARCO expression through TFEB. Increasing MARCO expression by targeting Nrf2 signaling or the Akt-TFEB-MARCO pathway are promising strategies to improve bacterial clearance and survival in postinfluenza bacterial pneumonia.
Collapse
Affiliation(s)
- Muzo Wu
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - John G Gibbons
- Biology Department, Clark University, Worcester, Massachusetts; and
| | - Glen M DeLoid
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Alice S Bedugnis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Rajesh K Thimmulappa
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Shyam Biswal
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Lester Kobzik
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts;
| |
Collapse
|
8
|
Koizumi Y, Nagase H, Nakajima T, Kawamura M, Ohta K. Toll-like receptor 3 ligand specifically induced bronchial epithelial cell death in caspase dependent manner and functionally upregulated Fas expression. Allergol Int 2016; 65 Suppl:S30-7. [PMID: 27321649 DOI: 10.1016/j.alit.2016.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Viral infections are the most common cause of asthma exacerbation. Virally infected epithelial cells undergo apoptosis. Although in healthy conditions, apoptosis may have a host-defensive role in limiting virus spread, this process may have a detrimental effect on damaged epithelium in asthma. Toll-like receptors (TLRs) are the receptors for various pathogens, and viruses possess several components that can activate TLR3, TLR4, and TLR7/8. However, as it has not been determined as to which component is responsible for virus-induced epithelial cell apoptosis, we comprehensively analyzed the effects of all TLR ligands on apoptosis. METHODS BEAS-2B cells or primary cultured human bronchial epithelial cells (PBECs) were stimulated by TLR 2, 3, 4, 5, 7/8, and 9 ligands and cell death was analyzed by flow cytometry. Chemokine generations induced by these ligands were also analyzed. RESULTS The TLR3 ligand polyinosinic-polycytidylic acid (poly I:C) specifically induced chemokine generation and apoptosis, while other TLR ligands including those for TLR5, 7/8, and 9 had no effect. The response to poly I:C had two phases, which included rapid secretion of chemokines and subsequent apoptosis in a later phase. Poly I:C induced apoptosis in a caspase-dependent manner and functionally upregulated the expression of Fas. CONCLUSIONS Previous findings indicating that viruses induced caspase-dependent death and upregulated Fas expression were reproduced by poly I:C, suggesting the central role of dsRNA/TLR3 in virus-induced apoptosis. Since these processes may have detrimental effects on pre-existing epithelial damage, the dsRNA/TLR3 pathway may be potential novel treatment target for virus-induced exacerbation of asthma.
Collapse
|
9
|
Short KR, Kasper J, van der Aa S, Andeweg AC, Zaaraoui-Boutahar F, Goeijenbier M, Richard M, Herold S, Becker C, Scott DP, Limpens RWAL, Koster AJ, Bárcena M, Fouchier RAM, Kirkpatrick CJ, Kuiken T. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur Respir J 2016; 47:954-66. [PMID: 26743480 DOI: 10.1183/13993003.01282-2015] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/03/2015] [Indexed: 01/25/2023]
Abstract
A major cause of respiratory failure during influenza A virus (IAV) infection is damage to the epithelial-endothelial barrier of the pulmonary alveolus. Damage to this barrier results in flooding of the alveolar lumen with proteinaceous oedema fluid, erythrocytes and inflammatory cells. To date, the exact roles of pulmonary epithelial and endothelial cells in this process remain unclear.Here, we used an in vitro co-culture model to understand how IAV damages the pulmonary epithelial-endothelial barrier. Human epithelial cells were seeded on the upper half of a transwell membrane while human endothelial cells were seeded on the lower half. These cells were then grown in co-culture and IAV was added to the upper chamber.We showed that the addition of IAV (H1N1 and H5N1 subtypes) resulted in significant barrier damage. Interestingly, we found that, while endothelial cells mounted a pro-inflammatory/pro-coagulant response to a viral infection in the adjacent epithelial cells, damage to the alveolar epithelial-endothelial barrier occurred independently of endothelial cells. Rather, barrier damage was associated with disruption of tight junctions amongst epithelial cells, and specifically with loss of tight junction protein claudin-4.Taken together, these data suggest that maintaining epithelial cell integrity is key in reducing pulmonary oedema during IAV infection.
Collapse
Affiliation(s)
- Kirsty R Short
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Jennifer Kasper
- Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Stijn van der Aa
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Arno C Andeweg
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Marco Goeijenbier
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathilde Richard
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Susanne Herold
- University of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University of Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Christin Becker
- University of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University of Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Dana P Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ronald W A L Limpens
- Dept of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, The Netherlands
| | - Abraham J Koster
- Dept of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, The Netherlands
| | - Montserrat Bárcena
- Dept of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ron A M Fouchier
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Thijs Kuiken
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Gerits N, Johannessen M, Tümmler C, Walquist M, Kostenko S, Snapkov I, van Loon B, Ferrari E, Hübscher U, Moens U. Agnoprotein of polyomavirus BK interacts with proliferating cell nuclear antigen and inhibits DNA replication. Virol J 2015; 12:7. [PMID: 25638270 PMCID: PMC4318453 DOI: 10.1186/s12985-014-0220-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 12/01/2014] [Indexed: 12/25/2022] Open
Abstract
Background The human polyomavirus BK expresses a 66 amino-acid peptide referred to as agnoprotein. Though mutants lacking agnoprotein are severely reduced in producing infectious virions, the exact function of this peptide remains incompletely understood. To elucidate the function of agnoprotein, we searched for novel cellular interaction partners. Methods Yeast-two hybrid assay was performed with agnoprotein as bait against human kidney and thymus libraries. The interaction between agnoprotein and putative partners was further examined by GST pull down, co-immunoprecipitation, and fluorescence resonance energy transfer studies. Biochemical and biological studies were performed to examine the functional implication of the interaction of agnoprotein with cellular target proteins. Results Proliferating cell nuclear antigen (PCNA), which acts as a processivity factor for DNA polymerase δ, was identified as an interaction partner. The interaction between agnoprotein and PCNA is direct and occurs also in human cells. Agnoprotein exerts an inhibitory effect on PCNA-dependent DNA synthesis in vitro and reduces cell proliferation when ectopically expressed. Overexpression of PCNA restores agnoprotein-mediated inhibition of cell proliferation. Conclusion Our data suggest that PCNA is a genuine interaction partner of agnoprotein and the inhibitory effect on PCNA-dependent DNA synthesis by the agnoprotein may play a role in switching off (viral) DNA replication late in the viral replication cycle when assembly of replicated genomes and synthesized viral capsid proteins occurs. Electronic supplementary material The online version of this article (doi:10.1186/s12985-014-0220-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ugo Moens
- UiT - The Arctic University of Norway, Faculty of Health Sciences, Department of Medical Biology, Molecular Inflammation Research Group, Tromsø NO-9037, Norway.
| |
Collapse
|
11
|
PA-X decreases the pathogenicity of highly pathogenic H5N1 influenza A virus in avian species by inhibiting virus replication and host response. J Virol 2015; 89:4126-42. [PMID: 25631083 DOI: 10.1128/jvi.02132-14] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED PA-X is a newly discovered protein that decreases the virulence of the 1918 H1N1 virus in a mouse model. However, the role of PA-X in the pathogenesis of highly pathogenic avian influenza viruses (HPAIV) of the H5N1 subtype in avian species is totally unknown. By generating two PA-X-deficient viruses and evaluating their virulence in different animal models, we show here that PA-X diminishes the virulence of the HPAIV H5N1 strain A/Chicken/Jiangsu/k0402/2010 (CK10) in mice, chickens, and ducks. Expression of PA-X dampens polymerase activity and virus replication both in vitro and in vivo. Using microarray analysis, we found that PA-X blunts the global host response in chicken lungs, markedly downregulating genes associated with the inflammatory and cell death responses. Correspondingly, a decreased cytokine response was recapitulated in multiple organs of chickens and ducks infected with the wild-type virus relative to those infected with the PA-X-deficient virus. In addition, the PA-X protein exhibits antiapoptotic activity in chicken and duck embryo fibroblasts. Thus, our results demonstrated that PA-X acts as a negative virulence regulator and decreases virulence by inhibiting viral replication and the host innate immune response. Therefore, we here define the role of PA-X in the pathogenicity of H5N1 HPAIV, furthering our understanding of the intricate pathogenesis of influenza A virus. IMPORTANCE Influenza A virus (IAV) continues to pose a huge threat to global public health. Eight gene segments of the IAV genome encode as many as 17 proteins, including 8 main viral proteins and 9 accessory proteins. The presence of these accessory proteins may further complicate the pathogenesis of IAV. PA-X is a newly identified protein in segment 3 that acts to decrease the virulence of the 1918 H1N1 virus in mice by modulating host gene expression. Our study extends these functions of PA-X to H5N1 HPAIV. We demonstrated that loss of PA-X expression increases the virulence and replication of an H5N1 virus in mice and avian species and alters the host innate immune and cell death responses. Our report is the first to delineate the role of the novel PA-X protein in the pathogenesis of H5N1 viruses in avian species and promotes our understanding of H5N1 HPAIV.
Collapse
|
12
|
Liu B, Meng D, Wei T, Zhang S, Hu Y, Wang M. Apoptosis and pro-inflammatory cytokine response of mast cells induced by influenza A viruses. PLoS One 2014; 9:e100109. [PMID: 24923273 PMCID: PMC4055757 DOI: 10.1371/journal.pone.0100109] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/22/2014] [Indexed: 01/07/2023] Open
Abstract
The pathogenesis of the influenza A virus has been investigated heavily, and both the inflammatory response and apoptosis have been found to have a definitive role in this process. The results of studies performed by the present and other groups have indicated that mast cells may play a role in the severity of the disease. To further investigate cellular responses to influenza A virus infection, apoptosis and inflammatory response were studied in mouse mastocytoma cell line P815. This is the first study to demonstrate that H1N1 (A/WSN/33), H5N1 (A/Chicken/Henan/1/04), and H7N2 (A/Chicken/Hebei/2/02) influenza viruses can induce mast cell apoptosis. They were found to do this mainly through the mitochondria/cytochrome c-mediated intrinsic pathway, and the activation of caspase 8-mediated extrinsic pathway was here found to be weak. Two pro-apoptotic Bcl-2 homology domain 3 (BH3) -only molecules Bim and Puma appeared to be involved in the apoptotic pathways. When virus-induced apoptosis was inhibited in P815 cells using pan-caspase (Z-VAD-fmk) and caspase-9 (Z-LEHD-fmk) inhibitors, the replication of these three subtypes of viruses was suppressed and the secretions of pro-inflammatory cytokines and chemokines, including IL-6, IL-18, TNF-α, and MCP-1, decreased. The results of this study may further understanding of the role of mast cells in host defense and pathogenesis of influenza virus. They may also facilitate the development of novel therapeutic aids against influenza virus infection.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Di Meng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tangting Wei
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Siyi Zhang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanxin Hu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ming Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Zhongmu Institutes of China Animal Husbandry Group, Beijing, China
| |
Collapse
|
13
|
Strengert M, Jennings R, Davanture S, Hayes P, Gabriel G, Knaus UG. Mucosal reactive oxygen species are required for antiviral response: role of Duox in influenza a virus infection. Antioxid Redox Signal 2014; 20:2695-709. [PMID: 24128054 DOI: 10.1089/ars.2013.5353] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS Influenza A virus (IAV), a major airborne pathogen, is closely associated with significant morbidity and mortality. The primary target for influenza virus replication is the respiratory epithelium, which reacts to infection by mounting a multifaceted antiviral response. A part of this mucosal host defense is the generation of reactive oxygen species (ROS) by NADPH oxidases. Duox1 and Duox2 are the main ROS-producing enzymes in the airway epithelium, but their contribution to mammalian host defense is still ill defined. RESULTS To gain a better understanding of Duox function in respiratory tract infections, human differentiated lung epithelial cells and an animal model were used to monitor the effect of epithelial ROS on IAV propagation. IAV infection led to coordinated up-regulation of Duox2 and Duox-mediated ROS generation. Interference with H2O2 production and ROS signaling by oxidase inhibition or H2O2 decomposition augmented IAV replication. A nuclear pool of Duox enzymes participated in the regulation of the spliceosome, which is critical for alternative splicing of viral transcripts and controls the assembly of viable virions. In vivo silencing of Duox increased the viral load on intranasal infection with 2009 pandemic H1N1 influenza virus. INNOVATION This is the first study conclusively linking Duox NADPH oxidases with the antiviral mammalian immune response. Further, ROS generated by Duox enzymes localized adjacent to nuclear speckles altered the splicing of viral genes. CONCLUSION Duox-derived ROS are host protective and essential for counteracting IAV replication.
Collapse
|
14
|
Handel A, Akin V, Pilyugin SS, Zarnitsyna V, Antia R. How sticky should a virus be? The impact of virus binding and release on transmission fitness using influenza as an example. J R Soc Interface 2014; 11:20131083. [PMID: 24430126 DOI: 10.1098/rsif.2013.1083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Budding viruses face a trade-off: virions need to efficiently attach to and enter uninfected cells while newly generated virions need to efficiently detach from infected cells. The right balance between attachment and detachment-the right amount of stickiness-is needed for maximum fitness. Here, we design and analyse a mathematical model to study in detail the impact of attachment and detachment rates on virus fitness. We apply our model to influenza, where stickiness is determined by a balance of the haemagglutinin (HA) and neuraminidase (NA) proteins. We investigate how drugs, the adaptive immune response and vaccines impact influenza stickiness and fitness. Our model suggests that the location in the 'stickiness landscape' of the virus determines how well interventions such as drugs or vaccines are expected to work. We discuss why hypothetical NA enhancer drugs might occasionally perform better than the currently available NA inhibitors in reducing virus fitness. We show that an increased antibody or T-cell-mediated immune response leads to maximum fitness at higher stickiness. We further show that antibody-based vaccines targeting mainly HA or NA, which leads to a shift in stickiness, might reduce virus fitness above what can be achieved by the direct immunological action of the vaccine. Overall, our findings provide potentially useful conceptual insights for future vaccine and drug development and can be applied to other budding viruses beyond influenza.
Collapse
Affiliation(s)
- Andreas Handel
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, , Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
15
|
Short KR, Kroeze EJBV, Fouchier RAM, Kuiken T. Pathogenesis of influenza-induced acute respiratory distress syndrome. THE LANCET. INFECTIOUS DISEASES 2013; 14:57-69. [PMID: 24239327 DOI: 10.1016/s1473-3099(13)70286-x] [Citation(s) in RCA: 372] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a fatal complication of influenza infection. In this Review we provide an integrated model for its pathogenesis. ARDS involves damage to the epithelial-endothelial barrier, fluid leakage into the alveolar lumen, and respiratory insufficiency. The most important part of the epithelial-endothelial barrier is the alveolar epithelium, strengthened by tight junctions. Influenza virus targets these epithelial cells, reducing sodium pump activity, damaging tight junctions, and killing infected cells. Infected epithelial cells produce cytokines that attract leucocytes--neutrophils and macrophages--and activate adjacent endothelial cells. Activated endothelial cells and infiltrated leucocytes stimulate further infiltration, and leucocytes induce production of reactive oxygen species and nitric oxide that damage the barrier. Activated macrophages also cause direct apoptosis of epithelial cells. This model for influenza-induced ARDS differs from the classic model, which is centred on endothelial damage, and provides a rationale for therapeutic intervention to moderate host response in influenza-induced ARDS.
Collapse
Affiliation(s)
- Kirsty R Short
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
16
|
Wu W, Zhang W, Booth JL, Metcalf JP. Influenza A(H1N1)pdm09 virus suppresses RIG-I initiated innate antiviral responses in the human lung. PLoS One 2012; 7:e49856. [PMID: 23185463 PMCID: PMC3503992 DOI: 10.1371/journal.pone.0049856] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 10/15/2012] [Indexed: 12/31/2022] Open
Abstract
Influenza infection is a major cause of morbidity and mortality. Retinoic acid-inducible gene I (RIG-I) is believed to play an important role in the recognition of, and response to, influenza virus and other RNA viruses. Our study focuses on the hypothesis that pandemic H1N1/09 influenza virus alters the influenza-induced proinflammatory response and suppresses host antiviral activity. We first compared the innate response to a clinical isolate of influenza A(H1N1)pdm09 virus, OK/09, a clinical isolate of seasonal H3N2 virus, OK/06, and to a laboratory adapted seasonal H1N1 virus, PR8, using a unique human lung organ culture model. Exposure of human lung tissue to either pandemic or seasonal influenza virus resulted in infection and replication in alveolar epithelial cells. Pandemic virus induces a diminished RIG-I mRNA and antiviral cytokine response than seasonal virus in human lung. The suppression of antiviral response and RIG-I mRNA expression was confirmed at the protein level by ELISA and western blot. We performed a time course of RIG-I and interferon-β (IFN-β) mRNA induction by the two viruses. RIG-I and IFN-β induction by OK/09 was of lower amplitude and shorter duration than that caused by PR8. In contrast, the pandemic virus OK/09 caused similar induction of proinflammatory cytokines, IL-8 and IL-6, at both the transcriptional and translational level as PR8 in human lung. Differential antiviral responses did not appear to be due to a difference in cellular infectivity as immunohistochemistry showed that both viruses infected alveolar macrophages and epithelial cells. These findings show that influenza A(H1N1)pdm09 virus suppresses anti-viral immune responses in infected human lung through inhibition of viral-mediated induction of the pattern recognition receptor, RIG-I, though proinflammatory cytokine induction was unaltered. This immunosuppression of the host antiviral response by pandemic virus may have contributed to the more serious lung infections that occurred in the H1N1 pandemic of 2009.
Collapse
MESH Headings
- Antiviral Agents
- DEAD Box Protein 58
- DEAD-box RNA Helicases/administration & dosage
- DEAD-box RNA Helicases/metabolism
- Humans
- Immunity, Innate/drug effects
- Immunity, Innate/immunology
- Immunosuppression Therapy
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/metabolism
- Influenza, Human/immunology
- Influenza, Human/metabolism
- Influenza, Human/virology
- Interferon-beta/administration & dosage
- Interferon-beta/immunology
- Interleukin-6/immunology
- Interleukin-6/metabolism
- Interleukin-8/immunology
- Interleukin-8/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/virology
- Organ Culture Techniques
- Pandemics
- Receptors, Immunologic
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Wei Zhang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - J. Leland Booth
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jordan P. Metcalf
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
17
|
Villar CC, Chukwuedum Aniemeke J, Zhao XR, Huynh-Ba G. Induction of apoptosis in oral epithelial cells by Candida albicans. Mol Oral Microbiol 2012; 27:436-48. [PMID: 23134609 DOI: 10.1111/j.2041-1014.2012.00648.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During infection, interactions between Candida albicans and oral epithelial cells result in oral epithelial cell death. This is clinically manifested by the development of oral mucosal ulcerations generally associated with discomfort. In vitro studies have shown that C. albicans induces early apoptotic alterations in oral epithelial cells; however, these studies have also shown that treatment of infected cells with caspase inhibitors does not prevent their death. The reasons for these contradictory results are unknown and it is still not clear if C. albicans stimulates oral epithelial signaling pathways that promote apoptotic cell death. Activation of specific death pathways in response to microbial organisms plays an essential role in modulating the pathogenesis of a variety of infectious diseases. The aim of this study was to (i) characterize C. albicans-induced apoptotic morphological alterations in oral epithelial cells, and (ii) investigate the activation of apoptotic signaling pathways and expression of apoptotic genes during infection. Candida albicans induced early apoptotic changes in over 50% of oral epithelial cells. However, only 15% of those showed mid-late apoptotic alterations. At the molecular level, C. albicans caused a loss of the mitochondrial transmembrane potential and translocation of mitochondrial cytochrome c. Caspase-3/9 activities increased only during the first hours of infection. Moreover, poly[ADP ribose] polymerase 1 was cleaved into apoptotic and necrotic-like fragments. Finally, five anti-apoptotic genes were significantly upregulated and two pro-apoptotic genes were downregulated during infection. Altogether, these findings indicate that epithelial apoptotic pathways are activated in response to C. albicans, but fail to progress and promote apoptotic cell death.
Collapse
Affiliation(s)
- C Cunha Villar
- Department of Periodontics, The University of Texas, Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | | | | | | |
Collapse
|
18
|
Reperant LA, Kuiken T, Grenfell BT, Osterhaus ADME, Dobson AP. Linking influenza virus tissue tropism to population-level reproductive fitness. PLoS One 2012; 7:e43115. [PMID: 22952637 PMCID: PMC3429484 DOI: 10.1371/journal.pone.0043115] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022] Open
Abstract
Influenza virus tissue tropism defines the host cells and tissues that support viral replication and contributes to determining which regions of the respiratory tract are infected in humans. The location of influenza virus infection along the respiratory tract is a key determinant of virus pathogenicity and transmissibility, which are at the basis of influenza burdens in the human population. As the pathogenicity and transmissibility of influenza virus ultimately determine its reproductive fitness at the population level, strong selective pressures will shape influenza virus tissue tropisms that maximize fitness. At present, the relationships between influenza virus tissue tropism within hosts and reproductive fitness at the population level are poorly understood. The selective pressures and constraints that shape tissue tropism and thereby influence the location of influenza virus infection along the respiratory tract are not well characterized. We use mathematical models that link within-host infection dynamics in a spatially-structured human respiratory tract to between-host transmission dynamics, with the aim of characterizing the possible selective pressures on influenza virus tissue tropism. The results indicate that spatial heterogeneities in virus clearance, virus pathogenicity or both, resulting from the unique structure of the respiratory tract, may drive optimal receptor binding affinity--that maximizes influenza virus reproductive fitness at the population level--towards sialic acids with α2,6 linkage to galactose. The expanding cell pool deeper down the respiratory tract, in association with lower clearance rates, may result in optimal infectivity rates--that likewise maximize influenza virus reproductive fitness at the population level--to exhibit a decreasing trend towards deeper regions of the respiratory tract. Lastly, pre-existing immunity may drive influenza virus tissue tropism towards upper regions of the respiratory tract. The proposed framework provides a new template for the cross-scale study of influenza virus evolutionary and epidemiological dynamics in humans.
Collapse
Affiliation(s)
- Leslie A Reperant
- Department of Virology, Erasmus Medical Centre, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
19
|
Ge MQ, Ho AWS, Tang Y, Wong KHS, Chua BYL, Gasser S, Kemeny DM. NK cells regulate CD8+ T cell priming and dendritic cell migration during influenza A infection by IFN-γ and perforin-dependent mechanisms. THE JOURNAL OF IMMUNOLOGY 2012; 189:2099-109. [PMID: 22869906 DOI: 10.4049/jimmunol.1103474] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An effective immune response against influenza A infection depends on the generation of virus-specific T cells. NK cells are one of the first-line defenses against influenza A infection. We set out to delineate the role of NK cells in T cell immunity using a murine model of influenza A infection with A/PR/8/34. We show that early T cell recruitment mainly occurs in the posterior mediastinal lymph node (pMLN). Depletion of NK cells significantly impaired both dendritic cell (DC) and T cell recruitment into the pMLN. A similar reduction of T cell recruitment was observed when migration was blocked by pertussis toxin, suggesting that migration of pulmonary NK cells and DCs regulates cell recruitment to the pMLN. T cell recruitment was dependent on IFN-γ, and transfer of IFN-γ-competent naive NK cells into IFN-γ-/- mice restored T cell recruitment, whereas IFN-γ-deficient NK cells failed to do so. In addition, NK cell depletion reduced the uptake and transport of influenza A virus by DCs, and significantly impaired the virus-specific T cell response. Both IFN-γ-/- and perforin-/- mice showed reduced viral Ag transport by DCs, suggesting that the ability of NK cells to influence virus transport depends on IFN-γ and perforin. In summary, our data suggest that NK cells play a critical role in the initiation and shaping of the T cell response after influenza A infection.
Collapse
Affiliation(s)
- Moyar Qing Ge
- Immunology Program, Centre for Life Sciences, National University of Singapore, Singapore 117456
| | | | | | | | | | | | | |
Collapse
|
20
|
Uchide N, Ohyama K, Bessho T, Takeichi M, Toyoda H. Possible roles of proinflammatory and chemoattractive cytokines produced by human fetal membrane cells in the pathology of adverse pregnancy outcomes associated with influenza virus infection. Mediators Inflamm 2012; 2012:270670. [PMID: 22899878 PMCID: PMC3415106 DOI: 10.1155/2012/270670] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/27/2012] [Indexed: 12/12/2022] Open
Abstract
Pregnant women are at an increased risk of influenza-associated adverse outcomes, such as premature delivery, based on data from the latest pandemic with a novel influenza A (H1N1) virus in 2009-2010. It has been suggested that the transplacental transmission of influenza viruses is rarely detected in humans. A series of our study has demonstrated that influenza virus infection induced apoptosis in primary cultured human fetal membrane chorion cells, from which a factor with monocyte differentiation-inducing (MDI) activity was secreted. Proinflammatory cytokines, such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-β, were identified as a member of the MDI factor. Influenza virus infection induced the mRNA expression of not only the proinflammatory cytokines but also chemoattractive cytokines, such as monocyte chemoattractant protein (MCP)-1, regulated on activation, normal T-cell expressed and secreted (RANTES), macrophage inflammatory protein (MIP)-1β, IL-8, growth-regulated oncogene (GRO)-α, GRO-β, epithelial cell-derived neutrophil-activating protein (ENA)-78, and interferon inducible protein (IP)-10 in cultured chorion cells. These cytokines are postulated to associate with human parturition. This paper, therefore, reviews (1) lessons from pandemic H1N1 2009 in pregnancy, (2) production of proinflammatory and chemoattractive cytokines by human fetal membranes and their functions in gestational tissues, and (3) possible roles of cytokines produced by human fetal membranes in the pathology of adverse pregnancy outcomes associated with influenza virus infection.
Collapse
Affiliation(s)
- Noboru Uchide
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | | | | | | | | |
Collapse
|
21
|
Müller L, Jaspers I. Epithelial cells, the "switchboard" of respiratory immune defense responses: effects of air pollutants. Swiss Med Wkly 2012; 142:w13653. [PMID: 22851042 DOI: 10.4414/smw.2012.13653] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
"Epimmunome", a term introduced recently by Swamy and colleagues, describes all molecules and pathways used by epithelial cells (ECs) to instruct immune cells. Today, we know that ECs are among the first sites within the human body to be exposed to pathogens (such as influenza viruses) and that the release of chemokine and cytokines by ECs is influenced by inhaled agents. The role of the ECs as a switchboard to initiate and regulate immune responses is altered through air pollutant exposure, such as ozone, tobacco smoke and diesel exhaust emissions. The details of the interplay between ECs and immune cells are not yet fully understood and need to be investigated further. Co-culture models, cell specific genetically-modified mice and the analysis of human biopsies provide great tools to gain knowledge about potential mechanisms. Increasing our understanding about the role of ECs in respiratory immunity may yield novel therapeutic targets to modulate downstream diseases.
Collapse
Affiliation(s)
- Loretta Müller
- Center for Environmental Medicine, Asthma and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7310, USA.
| | | |
Collapse
|
22
|
Lai YH, Li ZC, Chen LL, Dai Z, Zou XY. Identification of potential host proteins for influenza A virus based on topological and biological characteristics by proteome-wide network approach. J Proteomics 2012; 75:2500-13. [DOI: 10.1016/j.jprot.2012.02.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/21/2012] [Accepted: 02/26/2012] [Indexed: 12/31/2022]
|
23
|
Lam WY, Yeung ACM, Chan PKS. Apoptosis, cytokine and chemokine induction by non-structural 1 (NS1) proteins encoded by different influenza subtypes. Virol J 2011; 8:554. [PMID: 22185562 PMCID: PMC3274490 DOI: 10.1186/1743-422x-8-554] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 12/21/2011] [Indexed: 12/23/2022] Open
Abstract
Background Influenza pandemic remains a serious threat to human health. Viruses of avian origin, H5N1, H7N7 and H9N2, have repeatedly crossed the species barrier to infect humans. Recently, a novel strain originated from swine has evolved to a pandemic. This study aims at improving our understanding on the pathogenic mechanism of influenza viruses, in particular the role of non-structural (NS1) protein in inducing pro-inflammatory and apoptotic responses. Methods Human lung epithelial cells (NCI-H292) was used as an in-vitro model to study cytokine/chemokine production and apoptosis induced by transfection of NS1 mRNA encoded by seven infleunza subtypes (seasonal and pandemic H1, H2, H3, H5, H7, and H9), respectively. Results The results showed that CXCL-10/IP10 was most prominently induced (> 1000 folds) and IL-6 was slightly induced (< 10 folds) by all subtypes. A subtype-dependent pattern was observed for CCL-2/MCP-1, CCL3/MIP-1α, CCL-5/RANTES and CXCL-9/MIG; where induction by H5N1 was much higher than all other subtypes examined. All subtypes induced a similar temporal profile of apoptosis following transfection. The level of apoptosis induced by H5N1 was remarkably higher than all others. The cytokine/chemokine and apoptosis inducing ability of the 2009 pandemic H1N1 was similar to previous seasonal strains. Conclusions In conclusion, the NS1 protein encoded by H5N1 carries a remarkably different property as compared to other avian and human subtypes, and is one of the keys to its high pathogenicity. NCI-H292 cells system proves to be a good in-vitro model to delineate the property of NS1 proteins.
Collapse
Affiliation(s)
- W Y Lam
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong Special Administration Region, People's Republic of China
| | | | | |
Collapse
|
24
|
Abstract
The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases.
Collapse
|
25
|
Manicone AM, Harju-Baker S, Johnston LK, Chen AJ, Parks WC. Epilysin (matrix metalloproteinase-28) contributes to airway epithelial cell survival. Respir Res 2011; 12:144. [PMID: 22040290 PMCID: PMC3225336 DOI: 10.1186/1465-9921-12-144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/31/2011] [Indexed: 11/10/2022] Open
Abstract
MMP28 is constitutively expressed by epithelial cells in many tissues, including the respiratory epithelium in the lung and keratinocytes in the skin. This constitutive expression suggests that MMP28 may serve a role in epithelial cell homeostasis. In an effort to determine its function in epithelial cell biology, we generated cell lines expressing wild-type or catalytically-inactive mutant MMP28 in two pulmonary epithelial cell lines, A549 and BEAS-2B. We observed that over-expression of MMP28 provided protection against apoptosis induced by either serum-deprivation or treatment with a protein kinase inhibitor, staurosporine. Furthermore, we observed increased caspase-3/7 activity in influenza-infected lungs from Mmp28-/- mice compared to wild-type mice, and this activity localized to the airway epithelium but was not associated with a change in viral load. Thus, we have identified a novel role of MMP28 in promoting epithelial cell survival in the lung.
Collapse
Affiliation(s)
- Anne M Manicone
- Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | | | |
Collapse
|
26
|
Host regulatory network response to infection with highly pathogenic H5N1 avian influenza virus. J Virol 2011; 85:10955-67. [PMID: 21865398 DOI: 10.1128/jvi.05792-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During the last decade, more than half of humans infected with highly pathogenic avian influenza (HPAI) H5N1 viruses have died, yet virus-induced host signaling has yet to be clearly elucidated. Airway epithelia are known to produce inflammatory mediators that contribute to HPAI H5N1-mediated pathogenicity, but a comprehensive analysis of the host response in this cell type is lacking. Here, we leveraged a system approach to identify and statistically validate signaling subnetworks that define the dynamic transcriptional response of human bronchial epithelial cells after infection with influenza A/Vietnam/1203/2004 (H5N1, VN1203). Importantly, we validated a subset of transcripts from one subnetwork in both Calu-3 cells and mice. A more detailed examination of two subnetworks involved in the immune response and keratinization processes revealed potential novel mediators of HPAI H5N1 pathogenesis and host response signaling. Finally, we show how these results compare to those for a less virulent strain of influenza virus. Using emergent network properties, we provide fresh insight into the host response to HPAI H5N1 virus infection and identify novel avenues for perturbation studies and potential therapeutic interventions for fatal HPAI H5N1 disease.
Collapse
|
27
|
Roberson EC, Tully JE, Guala AS, Reiss JN, Godburn KE, Pociask DA, Alcorn JF, Riches DWH, Dienz O, Janssen-Heininger YMW, Anathy V. Influenza induces endoplasmic reticulum stress, caspase-12-dependent apoptosis, and c-Jun N-terminal kinase-mediated transforming growth factor-β release in lung epithelial cells. Am J Respir Cell Mol Biol 2011; 46:573-81. [PMID: 21799120 DOI: 10.1165/rcmb.2010-0460oc] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Influenza A virus (IAV) infection is known to induce endoplasmic reticulum (ER) stress, Fas-dependent apoptosis, and TGF-β production in a variety of cells. However, the relationship between these events in murine primary tracheal epithelial cells (MTECS), which are considered one of the primary sites of IAV infection and replication, is unclear. We show that IAV infection induced ER stress marker activating transcription factor-6 and endoplasmic reticulum protein 57-kD (ERp57), but not C/EBP homologous protein (CHOP). In contrast, the ER stress inducer thapsigargin (THP) increased CHOP. IAV infection activated caspases and apoptosis, independently of Fas and caspase-8, in MTECs. Instead, apoptosis was mediated by caspase-12. A decrease in ERp57 attenuated the IAV burden and decreased caspase-12 activation and apoptosis in epithelial cells. TGF-β production was enhanced in IAV-infected MTECs, compared with THP or staurosporine. IAV infection caused the activation of c-Jun N-terminal kinase (JNK). Furthermore, IAV-induced TGF-β production required the presence of JNK1, a finding that suggests a role for JNK1 in IAV-induced epithelial injury and subsequent TGF-β production. These novel findings suggest a potential mechanistic role for a distinct ER stress response induced by IAV, and a profibrogenic/repair response in contrast to other pharmacological inducers of ER stress. These responses may also have a potential role in acute lung injury, fibroproliferative acute respiratory distress syndrome, and the recently identified H1N1 influenza-induced exacerbations of chronic obstructive pulmonary disease (Wedzicha JA. Proc Am Thorac Soc 2004;1:115-120) and idiopathic pulmonary fibrosis (Umeda Y, et al. Int Med 2010;49:2333-2336).
Collapse
Affiliation(s)
- Elle C Roberson
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Patel JR, Vora KP, Tripathi S, Zeng H, Tumpey TM, Katz JM, Sambhara S, Gangappa S. Infection of lung epithelial cells with pandemic 2009 A(H1N1) influenza viruses reveals isolate-specific differences in infectivity and host cellular responses. Viral Immunol 2011; 24:89-99. [PMID: 21449719 DOI: 10.1089/vim.2010.0122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To better understand the early virus-host interactions of the pandemic 2009 A(H1N1) viruses in humans, we examined early host responses following infection of human epithelial cell cultures with three 2009 A(H1N1) viruses (A/California/08/2009, A/Mexico/4108/2009, and A/Texas/15/2009), or a seasonal H1N1 vaccine strain (A/Solomon Islands/3/2006). We report here that infection with pandemic A/California/08/2009 and A/Mexico/4108/2009 viruses resulted in differences in virus infectivity compared to either pandemic A/Texas/15/2009 or the seasonal H1N1 vaccine strain. In addition, IFN-β levels were decreased in cell cultures infected with either the A/California/08/2009 or the A/Mexico/4108/2009 virus. Furthermore, infection with A/California/08/2009 and A/Mexico/4108/2009 viruses resulted in lower expression of four key proinflammatory markers (IL-6, RANTES, IP-10, and MIP-1β) compared with infection with either A/Texas/15/2009 or A/Solomon Islands/3/2006. Taken together, our results demonstrate that 2009 A(H1N1) viruses isolated during the Spring wave induced varying degrees of early host antiviral and inflammatory responses in human respiratory epithelial cells, highlighting the strain-specific nature of these responses, which play a role in clinical disease.
Collapse
Affiliation(s)
- Jenish R Patel
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Beauchemin CAA, Handel A. A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead. BMC Public Health 2011; 11 Suppl 1:S7. [PMID: 21356136 PMCID: PMC3317582 DOI: 10.1186/1471-2458-11-s1-s7] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Most mathematical models used to study the dynamics of influenza A have thus far focused on the between-host population level, with the aim to inform public health decisions regarding issues such as drug and social distancing intervention strategies, antiviral stockpiling or vaccine distribution. Here, we investigate mathematical modeling of influenza infection spread at a different scale; namely that occurring within an individual host or a cell culture. We review the models that have been developed in the last decades and discuss their contributions to our understanding of the dynamics of influenza infections. We review kinetic parameters (e.g., viral clearance rate, lifespan of infected cells) and values obtained through fitting mathematical models, and contrast them with values obtained directly from experiments. We explore the symbiotic role of mathematical models and experimental assays in improving our quantitative understanding of influenza infection dynamics. We also discuss the challenges in developing better, more comprehensive models for the course of influenza infections within a host or cell culture. Finally, we explain the contributions of such modeling efforts to important public health issues, and suggest future modeling studies that can help to address additional questions relevant to public health.
Collapse
|
30
|
Bassaganya-Riera J, Song R, Roberts PC, Hontecillas R. PPAR-gamma activation as an anti-inflammatory therapy for respiratory virus infections. Viral Immunol 2011; 23:343-52. [PMID: 20712478 DOI: 10.1089/vim.2010.0016] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Newly emerged influenza viruses have attracted extensive attention due to their high infectivity, proinflammatory actions, and potential to induce worldwide pandemics. Frequent mutations and gene reassortments between viruses complicate the development of protective vaccines and antiviral therapeutics. In contrast, targeting the host response for the development of novel cost-effective, broad-based prophylactic or therapeutic agents holds greater promise. Since inflammation often parallels the development of productive immune responses, virus-induced pulmonary inflammation and injury represents an additional challenge to the development of broad-based immunotherapeutics. Excessive inflammatory responses to respiratory viruses, also known as "cytokine storm," are largely due to immune dysregulation that manifests as proinflammatory cytokine secretion. In addition to modulating lipid and glucose metabolism, peroxisome proliferator-activated receptors (PPAR) play important roles in antagonizing core inflammatory pathways such as NF-kappaB, AP1, and STAT. Their role in regulating inflammatory responses caused by pulmonary pathogens is receiving increasing attention, setting the stage for the discovery of novel applications for anti-diabetic and lipid-lowering drugs. This review focuses on the potential use of PPAR-gamma agonists to downregulate the inflammatory responses to respiratory virus-related pulmonary inflammation.
Collapse
Affiliation(s)
- Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
31
|
Lam WY, Yeung ACM, Chu IMT, Chan PKS. Profiles of cytokine and chemokine gene expression in human pulmonary epithelial cells induced by human and avian influenza viruses. Virol J 2010; 7:344. [PMID: 21108843 PMCID: PMC3002310 DOI: 10.1186/1743-422x-7-344] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/26/2010] [Indexed: 02/03/2023] Open
Abstract
Influenza pandemic remains a serious threat to human health. In this study, the repertoire of host cellular cytokine and chemokine responses to infections with highly pathogenic avian influenza H5N1, low pathogenicity avian influenza H9N2 and seasonal human influenza H1N1 were compared using an in vitro system based on human pulmonary epithelial cells. The results showed that H5N1 was more potent than H9N2 and H1N1 in inducing CXCL-10/IP-10, TNF-alpha and CCL-5/RANTES. The cytokine/chemokine profiles for H9N2, in general, resembled those of H1N1. Of interest, only H1N1, but none of the avian subtypes examined could induce a persistent elevation of the immune-regulatory cytokine - TGF-β2. The differential expression of cytokines/chemokines following infection with different influenza viruses could be a key determinant for clinical outcome. The potential of using these cytokines/chemokines as prognostic markers or targets of therapy is worth exploring.
Collapse
Affiliation(s)
- W Y Lam
- Department of Microbiology, The Chinese University of Hong Kong, New Territories, Hong Kong Special Administration Region, People's Republic of China
| | | | | | | |
Collapse
|
32
|
Hagau N, Slavcovici A, Gonganau DN, Oltean S, Dirzu DS, Brezoszki ES, Maxim M, Ciuce C, Mlesnite M, Gavrus RL, Laslo C, Hagau R, Petrescu M, Studnicska DM. Clinical aspects and cytokine response in severe H1N1 influenza A virus infection. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R203. [PMID: 21062445 PMCID: PMC3220006 DOI: 10.1186/cc9324] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/30/2010] [Accepted: 11/09/2010] [Indexed: 12/11/2022]
Abstract
Introduction The immune responses in patients with novel A(H1N1) virus infection (nvA(H1N1)) are incompletely characterized. We investigated the profile of Th1 and Th17 mediators and interferon-inducible protein-10 (IP-10) in groups with severe and mild nvA(H1N1) disease and correlated them with clinical aspects. Methods Thirty-two patients hospitalized with confirmed nvA(H1N1) infection were enrolled in the study: 21 patients with nvA(H1N1)-acute respiratory distress syndrome (ARDS) and 11 patients with mild disease. One group of 20 patients with bacterial sepsis-ARDS and another group of 15 healthy volunteers were added to compare their cytokine levels with pandemic influenza groups. In the nvA(H1N1)-ARDS group, the serum cytokine samples were obtained on admission and 3 days later. The clinical aspects were recorded prospectively. Results In the nvA(H1N1)-ARDS group, obesity and lymphocytopenia were more common and IP-10, interleukin (IL)-12, IL-15, tumor necrosis factor (TNF)α, IL-6, IL-8 and IL-9 were significantly increased versus control. When comparing mild with severe nvA(H1N1) groups, IL-6, IL-8, IL-15 and TNFα were significantly higher in the severe group. In nonsurvivors versus survivors, IL-6 and IL-15 were increased on admission and remained higher 3 days later. A positive correlation of IL-6, IL-8 and IL-15 levels with C-reactive protein and with > 5-day interval between symptom onset and admission, and a negative correlation with the PaO2:FiO2 ratio, were found in nvA(H1N1) groups. In obese patients with influenza disease, a significant increased level of IL-8 was found. When comparing viral ARDS with bacterial ARDS, the level of IL-8, IL-17 and TNFα was significantly higher in bacterial ARDS and IL-12 was increased only in viral ARDS. Conclusions In our critically ill patients with novel influenza A(H1N1) virus infection, the hallmarks of the severity of disease were IL-6, IL-15, IL-8 and TNFα. These cytokines, except TNFα, had a positive correlation with the admission delay and C-reactive protein, and a negative correlation with the PaO2:FiO2 ratio. Obese patients with nvA(H1N1) disease have a significant level of IL-8. There are significant differences in the level of cytokines when comparing viral ARDS with bacterial ARDS.
Collapse
Affiliation(s)
- Natalia Hagau
- University Emergency County Hospital of Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sanders CJ, Doherty PC, Thomas PG. Respiratory epithelial cells in innate immunity to influenza virus infection. Cell Tissue Res 2010; 343:13-21. [PMID: 20848130 DOI: 10.1007/s00441-010-1043-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 08/14/2010] [Indexed: 11/24/2022]
Abstract
Infection by influenza virus leads to respiratory failure characterized by acute lung injury associated with alveolar edema, necrotizing bronchiolitis, and excessive bleeding. Severe reactions to infection that lead to hospitalizations and/or death are frequently attributed to an exuberant host response, with excessive inflammation and damage to the epithelial cells that mediate respiratory gas exchange. The respiratory mucosa serves as a physical and chemical barrier to infection, producing mucus and surfactants, anti-viral mediators, and inflammatory cytokines. The airway epithelial cell layer also serves as the first and overwhelmingly primary target for virus infection and growth. This review details immune events during influenza infection from the viewpoint of the epithelial cells, secretory host defense mechanisms, cell death, and recovery.
Collapse
Affiliation(s)
- Catherine J Sanders
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | |
Collapse
|
34
|
Loss of transforming growth factor-beta signaling in mammary fibroblasts enhances CCL2 secretion to promote mammary tumor progression through macrophage-dependent and -independent mechanisms. Neoplasia 2010; 12:425-33. [PMID: 20454514 DOI: 10.1593/neo.10200] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 02/25/2010] [Accepted: 03/01/2010] [Indexed: 01/22/2023] Open
Abstract
Whereas the accumulation of fibroblasts and macrophages in breast cancer is a well-documented phenomenon and correlates with metastatic disease, the functional contributions of these stromal cells on breast cancer progression still remain largely unclear. Previous studies have uncovered a potentially important role for CCL2 inflammatory chemokine signaling in regulating metastatic disease through a macrophage-dependent mechanism. In these studies, we demonstrate a significant regulatory mechanism for CCL2 expression in fibroblasts in mediating mammary tumor progression and characterize multiple functions for CCL2 in regulating stromal-epithelial interactions. Targeted ablation of the transforming growth factor-beta (TGF-beta) type 2 receptor in fibroblasts (Tgfbr2(FspKO)) results in a high level of secretion of CCL2, and cografts of Tgfbr2(FspKO) fibroblasts with 4T1 mammary carcinoma cells enhanced tumor progression associated with recruitment of tumor-associated macrophages (TAMs). Antibody neutralization of CCL2 in tumor-bearing mice inhibits primary tumor growth and liver metastases as evidenced by reduced cell proliferation, survival, and TAM recruitment. Both high and low stable expressions of small interfering RNA to CCL2 in Tgfbr2(FspKO) fibroblasts significantly reduce liver metastases without significantly affecting primary tumor growth, cell proliferation, or TAM recruitment. High but not low knockdown of CCL2 enhances tumor cell apoptosis. These data indicate that CCL2 enhances primary tumor growth, survival, and metastases in a dose-dependent manner, through TAM-dependent and -independent mechanisms, with important implications on the potential effects of targeting CCL2 chemokine signaling in the metastatic disease.
Collapse
|
35
|
van der Sluijs KF, van der Poll T, Lutter R, Juffermans NP, Schultz MJ. Bench-to-bedside review: bacterial pneumonia with influenza - pathogenesis and clinical implications. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:219. [PMID: 20459593 PMCID: PMC2887122 DOI: 10.1186/cc8893] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Seasonal and pandemic influenza are frequently complicated by bacterial infections, causing additional hospitalization and mortality. Secondary bacterial respiratory infection can be subdivided into combined viral/bacterial pneumonia and post-influenza pneumonia, which differ in their pathogenesis. During combined viral/bacterial infection, the virus, the bacterium and the host interact with each other. Post-influenza pneumonia may, at least in part, be due to resolution of inflammation caused by the primary viral infection. These mechanisms restore tissue homeostasis but greatly impair the host response against unrelated bacterial pathogens. In this review we summarize the underlying mechanisms leading to combined viral/bacterial infection or post-influenza pneumonia and highlight important considerations for effective treatment of bacterial pneumonia during and shortly after influenza.
Collapse
Affiliation(s)
- Koenraad F van der Sluijs
- Departments of Pulmonology and Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
Hussain AI, Cordeiro M, Sevilla E, Liu J. Comparison of egg and high yielding MDCK cell-derived live attenuated influenza virus for commercial production of trivalent influenza vaccine: in vitro cell susceptibility and influenza virus replication kinetics in permissive and semi-permissive cells. Vaccine 2010; 28:3848-55. [PMID: 20307595 PMCID: PMC7172923 DOI: 10.1016/j.vaccine.2010.03.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 02/21/2010] [Accepted: 03/05/2010] [Indexed: 11/18/2022]
Abstract
Currently MedImmune manufactures cold-adapted (ca) live, attenuated influenza vaccine (LAIV) from specific-pathogen free (SPF) chicken eggs. Difficulties in production scale-up and potential exposure of chicken flocks to avian influenza viruses especially in the event of a pandemic influenza outbreak have prompted evaluation and development of alternative non-egg based influenza vaccine manufacturing technologies. As part of MedImmune's effort to develop the live attenuated influenza vaccine (LAIV) using cell culture production technologies we have investigated the use of high yielding, cloned MDCK cells as a substrate for vaccine production by assessing host range and virus replication of influenza virus produced from both SPF egg and MDCK cell production technologies. In addition to cloned MDCK cells the indicator cell lines used to evaluate the impact of producing LAIV in cells on host range and replication included two human cell lines: human lung carcinoma (A549) cells and human muco-epidermoid bronchiolar carcinoma (NCI H292) cells. The influenza viruses used to infect the indicators cell lines represented both the egg and cell culture manufacturing processes and included virus strains that composed the 2006–2007 influenza seasonal trivalent vaccine (A/New Caledonia/20/99 (H1N1), A/Wisconsin/67/05 (H3N2) and B/Malaysia/2506/04). Results from this study demonstrate remarkable similarity between influenza viruses representing the current commercial egg produced and developmental MDCK cell produced vaccine production platforms. MedImmune's high yielding cloned MDCK cells used for the cell culture based vaccine production were highly permissive to both egg and cell produced ca attenuated influenza viruses. Both the A549 and NCI H292 cells regardless of production system were less permissive to influenza A and B viruses than the MDCK cells. Irrespective of the indicator cell line used the replication properties were similar between egg and the cell produced influenza viruses. Based on these study results we conclude that the MDCK cell produced and egg produced vaccine strains are highly comparable.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Chickens
- Dogs
- Eggs/virology
- Hemagglutination Inhibition Tests
- Humans
- Influenza A Virus, H1N1 Subtype/growth & development
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H3N2 Subtype/growth & development
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza Vaccines/biosynthesis
- Influenza Vaccines/immunology
- RNA, Viral/analysis
- Vaccines, Attenuated/biosynthesis
- Vaccines, Attenuated/immunology
- Virus Replication
Collapse
Affiliation(s)
- Althaf I Hussain
- Cell Culture Process Development, MedImmune, LLC 3055 Patrick Henry Dr., Santa Clara, CA 95054, USA.
| | | | | | | |
Collapse
|
37
|
Xing Z, Harper R, Anunciacion J, Yang Z, Gao W, Qu B, Guan Y, Cardona CJ. Host immune and apoptotic responses to avian influenza virus H9N2 in human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol 2010; 44:24-33. [PMID: 20118223 DOI: 10.1165/rcmb.2009-0120oc] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The avian influenza virus H9N2 subtype has circulated in wild birds, is prevalent in domestic poultry, and has successfully crossed the species boundary to infect humans. Phylogenetic analyses showed that viruses of this subtype appear to have contributed to the generation of highly pathogenic H5N1 viruses. Little is known about the host responses to H9N2 viruses in human airway respiratory epithelium, the primary portal for viral infection. Using an apically differentiated primary human tracheobronchial epithelial (TBE) culture, we examined host immune responses to infection by an avian H9N2 virus, in comparison with a human H9N2 isolate. We found that IFN-β was the prominent antiviral component, whereas interferon gamma-induced protein 10 kDa (IP-10), chemokine (C-C motif) ligand (CCL)-5 and TNF-α may be critical in proinflammatory responses to H9N2 viruses. In contrast, proinflammatory IL-1β, IL-8, and even IL-6 may only play a minor role in pathogenicity. Apparently Toll-like receptor (TLR)-3, TLR-7, and melanoma differentiation-associated gene 5 (MDA-5) contributed to the innate immunity against the H9N2 viruses, and MDA-5 was important in the induction of IFN-β. We showed that the avian H9N2 virus induced apoptosis through the mitochondria/cytochrome c-mediated intrinsic pathway, in addition to the caspase 8-mediated extrinsic pathway, as evidenced by the cytosolic presence of active caspase 9 and cytochrome c, independent of truncated BH3 interacting domain death agonist (Bid) activation. Further, we demonstrated that FLICE-like inhibitory protein (FLIP), an apoptotic dual regulator, and the p53-dependent Bcl-2 family members, Bax and Bcl-x(s), appeared to be involved in the regulation of extrinsic and intrinsic apoptotic pathways, respectively. The findings in this study will further our understanding of host defense mechanisms and the pathogenesis of H9N2 influenza viruses in human respiratory epithelium.
Collapse
Affiliation(s)
- Zheng Xing
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California at Davis, Davis, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe 2009; 6:367-80. [PMID: 19837376 DOI: 10.1016/j.chom.2009.09.005] [Citation(s) in RCA: 429] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/29/2009] [Accepted: 09/14/2009] [Indexed: 02/02/2023]
Abstract
Influenza A virus is an important human pathogen causing significant morbidity and mortality every year and threatening the human population with epidemics and pandemics. Therefore, it is important to understand the biology of this virus to develop strategies to control its pathogenicity. Here, we demonstrate that influenza A virus inhibits macroautophagy, a cellular process known to be manipulated by diverse pathogens. Influenza A virus infection causes accumulation of autophagosomes by blocking their fusion with lysosomes, and one viral protein, matrix protein 2, is necessary and sufficient for this inhibition of autophagosome degradation. Macroautophagy inhibition by matrix protein 2 compromises survival of influenza virus-infected cells but does not influence viral replication. We propose that influenza A virus, which also encodes proapoptotic proteins, is able to determine the death of its host cell by inducing apoptosis and also by blocking macroautophagy.
Collapse
|
39
|
H1N1 Influenza A Virus Induced Apoptosis of Peripheral Blood Mononuclear Cell*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
McGill J, Heusel JW, Legge KL. Innate immune control and regulation of influenza virus infections. J Leukoc Biol 2009; 86:803-12. [PMID: 19643736 DOI: 10.1189/jlb.0509368] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Adaptive immune responses are critical for the control and clearance of influenza A virus (IAV) infection. However, in recent years, it has become increasingly apparent that innate immune cells, including natural killer cells, alveolar macrophages (aMphi), and dendritic cells (DC) are essential following IAV infection in the direct control of viral replication or in the induction and regulation of virus-specific adaptive immune responses. This review will discuss the role of these innate immune cells following IAV infection, with a particular focus on DC and their ability to induce and regulate the adaptive IAV-specific immune response.
Collapse
Affiliation(s)
- Jodi McGill
- Department of Pathology and Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
41
|
Lack of Bax prevents influenza A virus-induced apoptosis and causes diminished viral replication. J Virol 2009; 83:8233-46. [PMID: 19494020 DOI: 10.1128/jvi.02672-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ectopic overexpression of Bcl-2 restricts both influenza A virus-induced apoptosis and influenza A virus replication in MDCK cells, thus suggesting a role for Bcl-2 family members during infection. Here we report that influenza A virus cannot establish an apoptotic response without functional Bax, a downstream target of Bcl-2, and that both Bax and Bak are directly involved in influenza A virus replication and virus-induced cell death. Bak is substantially downregulated during influenza A virus infection in MDCK cells, and the knockout of Bak in mouse embryonic fibroblasts yields a dramatic rise in the rate of apoptotic death and a corresponding increase in levels of virus replication, suggesting that Bak suppresses both apoptosis and the replication of virus and that the virus suppresses Bak. Bax, however, is activated and translocates from the cytosol to the mitochondria; this activation is required for the efficient induction of apoptosis and virus replication. The knockout of Bax in mouse embryonic fibroblasts blocks the induction of apoptosis, restricts the infection-mediated activation of executioner caspases, and inhibits virus propagation. Bax knockout cells still die but by an alternative death pathway displaying characteristics of autophagy, similarly to our previous observation that influenza A virus infection in the presence of a pancaspase inhibitor leads to an increase in levels of autophagy. The knockout of Bax causes a retention of influenza A virus NP within the nucleus. We conclude that the cell and virus struggle to control apoptosis and autophagy, as appropriately timed apoptosis is important for the replication of influenza A virus.
Collapse
|
42
|
Handel A, Longini IM, Antia R. Towards a quantitative understanding of the within-host dynamics of influenza A infections. J R Soc Interface 2009; 7:35-47. [PMID: 19474085 DOI: 10.1098/rsif.2009.0067] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although the influenza A virus has been extensively studied, a quantitative understanding of the infection dynamics is still lacking. To make progress in this direction, we designed several mathematical models and compared them with data from influenza A infections of mice. We find that the immune response (IR) plays an important part in the infection dynamics. Both an innate and an adaptive IR are required to provide adequate explanation of the data. In contrast, regrowth of epithelial cells did not seem to be an important mechanism on the time scale of the infection. We also find that different model variants for both innate and adaptive responses fit the data well, indicating the need for additional data to allow further model discrimination.
Collapse
Affiliation(s)
- Andreas Handel
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
43
|
Xing Z, Cardona CJ, Adams S, Yang Z, Li J, Perez D, Woolcock PR. Differential regulation of antiviral and proinflammatory cytokines and suppression of Fas-mediated apoptosis by NS1 of H9N2 avian influenza virus in chicken macrophages. J Gen Virol 2009; 90:1109-1118. [DOI: 10.1099/vir.0.007518-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The NS1 protein is known to suppress immune responses in influenza virus-infected hosts. However, the role of NS1 in apoptosis in infected cells is disputed. In this study, through the use of a mutant A/pheasant/California/2373/1998 (H9N2) avian influenza virus (AIV) with a truncated NS1, we have demonstrated that a functional NS1 protein suppresses the induction of interferons in chicken macrophages. However, NS1 appeared to be irrelevant to the regulation of cytokines interleukin (IL)-1β and IL-6, indicating that distinct mechanisms may be employed in the regulation of antiviral and proinflammatory cytokines in chicken immune cells. Our study also showed that this H9N2 AIV induced apoptosis extrinsically through the Fas/Fas ligand (FasL)-mediated pathway. We found that NS1 suppressed the apoptotic process through suppression of the induction of FasL, but not tumour necrosis factor-α or TNF-related apoptosis-inducing ligand. Furthermore, our data indicated that the disruption of a potential binding site for the p85β subunit of phosphoinositide 3-kinase in the carboxyl terminus of NS1, while having no effect on the regulation of IFN induction, may contribute to the suppression of Fas/FasL-mediated apoptosis. Therefore, suppression of Fas/FasL-mediated apoptosis by NS1 is one of the critical mechanisms necessary to increase infectivity in AIV-infected chicken macrophages.
Collapse
Affiliation(s)
- Zheng Xing
- Veterinary Medicine Extension, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Carol J. Cardona
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Veterinary Medicine Extension, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Sean Adams
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, PR China
| | - Jinling Li
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Daniel Perez
- Department of Veterinary Medicine, University of Maryland at College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA
| | - Peter R. Woolcock
- California Animal Health and Food Safety Laboratory System-Fresno Branch, University of California, Davis, CA 95616, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
44
|
Handel A, Yates A, Pilyugin SS, Antia R. Sharing the burden: antigen transport and firebreaks in immune responses. J R Soc Interface 2008; 6:447-54. [PMID: 18708323 DOI: 10.1098/rsif.2008.0258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Communication between cells is crucial for immune responses. An important means of communication during viral infections is the presentation of viral antigen on the surface of an infected cell. Recently, it has been shown that antigen can be shared between infected and uninfected cells through gap junctions, connexin-based channels, that allow the transport of small molecules. The uninfected cell receiving antigen can present it on its surface. Cells presenting viral antigen are detected and killed by cytotoxic T lymphocytes. The killing of uninfected cells can lead to increased immunopathology. However, the immune response might also profit from killing those uninfected bystander cells. One benefit might be the removal of future 'virus factories'. Another benefit might be through the creation of 'firebreaks', areas void of target cells, which increase the diffusion time of free virions, making their clearance more likely. Here, we use theoretical models and simulations to explore how the mechanism of gap junction-mediated antigen transport (GMAT) affects the dynamics of the virus and immune response. We show that under the assumption of a well-mixed system, GMAT leads to increased immunopathology, which always outweighs the benefit of reduced virus production due to the removal of future virus factories. By contrast, a spatially explicit model leads to quite different results. Here we find that the firebreak mechanism reduces both viral load and immunopathology. Our study thus shows the potential benefits of GMAT and illustrates how spatial effects may be crucial for the quantitative understanding of infection dynamics and immune responses.
Collapse
Affiliation(s)
- Andreas Handel
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
45
|
Mazur I, Anhlan D, Mitzner D, Wixler L, Schubert U, Ludwig S. The proapoptotic influenza A virus protein PB1-F2 regulates viral polymerase activity by interaction with the PB1 protein. Cell Microbiol 2008; 10:1140-52. [PMID: 18182088 DOI: 10.1111/j.1462-5822.2008.01116.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The 11th influenza A virus protein PB1-F2 was previously shown to enhance apoptosis in response to cytotoxic stimuli. The 87 amino acid protein that is encoded by an alternative reading frame of the PB1 polymerase gene was described to localize to mitochondria consistent with its proapoptotic function. However, PB1-F2 is also found diffusely distributed in the cytoplasm and in the nucleus suggesting additional functions of the protein. Here we show that PB1-F2 colocalizes and directly interacts with the viral PB1 polymerase protein. Lack of PB1-F2 during infection resulted in an altered localization of PB1 and decreased viral polymerase activity. Consequently, mutant viruses devoid of a functional PB1-F2 reading frame exhibited a small plaque phenotype. Thus, we have identified a novel function of PB1-F2 as an indirect regulator of the influenza virus polymerase activity via its interaction with PB1.
Collapse
Affiliation(s)
- Igor Mazur
- Institute of Molecular Virology (IMV), Centre of Molecular Biology of Inflammation (ZMBE), Westfaelische-Wilhelms-University, 48161 Muenster, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Langlois RA, Legge KL. Respiratory dendritic cells: mediators of tolerance and immunity. Immunol Res 2008; 39:128-45. [PMID: 17917061 DOI: 10.1007/s12026-007-0077-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/26/2022]
Abstract
The respiratory tract is under constant bombardment from both innocuous and pathogenic material. The decision of how to respond to these challenges is mediated by a specialized set of antigen presenting cells within the lungs called dendritic cells (DC). Proper respiratory homeostasis requires that these respiratory DC (rDC) utilize both the local lung inflammatory environment as well as recognition of pathogen-specific patterns to determine whether to maintain homeostasis by either driving tolerance or immunity to the inhaled material. This review will focus on rDC and highlight how rDC regulate tolerance and immunity.
Collapse
Affiliation(s)
- Ryan A Langlois
- Department of Pathology, Immunology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
47
|
Zhirnov OP, Klenk HD. Control of apoptosis in influenza virus-infected cells by up-regulation of Akt and p53 signaling. Apoptosis 2007; 12:1419-32. [PMID: 17468837 DOI: 10.1007/s10495-007-0071-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PI3k-Akt and p53 pathways are known to play anti- and pro-apoptotic roles in cell death, respectively. Whether these pathways are recruited in influenza virus infection in highly productive monkey (CV-1) and canine (MDCK) kidney cells was studied here. Phosphorylation of Akt (Akt-pho) was found to occur only early after infection (5-9 h.p.i). Nuclear accumulation and phosphorylation of p53 (p53-pho), and expression of its natural target p21/waf showed low constitutive levels at this period, whereas all three parameters were markedly elevated at the late apoptotic stage (17-20 h.p.i.). Up-regulation of Akt-pho and p53-pho was not induced by UV-inactivated virus suggesting that it required virus replication. Also, mRNAs of p53 and its natural antagonist mdm2 were not increased throughout infection indicating that p53-pho was up-regulated by posttranslational mechanisms. However, p53 activation did not seem to play a leading role in influenza-induced cell death: (i) infection of CV1 and MDCK cells with recombinant NS1-deficient virus provoked accelerated apoptotic death characterized by the lack of p53 activation; (ii) mixed apoptosis-necrosis death developed in influenza-infected human bronchial H1299 cells carrying a tetracycline-regulated p53 gene did not depend on p53 gene activation by tetracycline. Virus-induced apoptosis and signaling of Akt and p53 developed in IFN-deficient VERO cells with similar kinetics as in IFN-competent CV1-infected cells indicating that these processes were endocrine IFN-independent. Apoptosis in influenza-infected CV-1 and MDCK cells was Akt-dependent and was accelerated by Ly294002, a specific inhibitor of PI3k-Akt signaling, and down-regulated by the viral protein NS1, an inducer of host Akt. The obtained data suggest that influenza virus (i) initiates anti-apoptotic PI3k-Akt signaling at early and middle phases of infection to protect cells from fast apoptotic death and (ii) provokes both p53-dependent and alternative p53-independent apoptotic and/or necrotic (in some host systems) cell death at the late stage of infection.
Collapse
Affiliation(s)
- Oleg P Zhirnov
- D.I. Ivanovsky Institute of Virology, Moscow 123098, Russia.
| | | |
Collapse
|
48
|
Cinatl J, Michaelis M, Doerr HW. The threat of avian influenza a (H5N1): part II: Clues to pathogenicity and pathology. Med Microbiol Immunol 2007; 196:191-201. [PMID: 17406895 DOI: 10.1007/s00430-007-0045-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Indexed: 12/21/2022]
Abstract
Among emerging and re-emerging infectious diseases, influenza constitutes one of the major threats to mankind. In this review series epidemiologic, virologic and pathologic concerns raised by infections of humans with avian influenza virus A/H5N1 are discussed. The second part focuses on experimental and clinical results, which give insights in the pathogenic mechanisms of H5N1 infection in humans. H5N1 is poorly transmitted to humans. However, H5N1-induced disease is very severe. More information on the role entry barriers, H5N1 target cells and on H5N1-induced modulation of the host immune response is needed to learn more about the determinants of H5N1 pathogenicity.
Collapse
Affiliation(s)
- Jindrich Cinatl
- Institute for Medical Virology, Hospital of the Johann Wolfgang Goethe University, Paul-Ehrlich-Str. 40, 60596, Frankfurt/M, Germany.
| | | | | |
Collapse
|
49
|
Lee DCW, Lau ASY. Avian influenza virus signaling: implications for the disease severity of H5N1 infection. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200600117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
50
|
Tesfaigzi Y. Roles of apoptosis in airway epithelia. Am J Respir Cell Mol Biol 2006; 34:537-47. [PMID: 16439804 PMCID: PMC2644219 DOI: 10.1165/rcmb.2006-0014oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 01/29/2006] [Indexed: 12/12/2022] Open
Abstract
The airway epithelium functions primarily as a barrier to foreign particles and as a modulator of inflammation. Apoptosis is induced in airway epithelial cells (AECs) by viral and bacterial infections, destruction of the cytoskeleton, or by exposure to toxins such as high oxygen and polycyclic hydrocarbons. Various growth factors and cytokines including TGF-beta, IFN-gamma, or the activators of the death receptors, TNF-alpha and FasL, also induce apoptosis in AECs. However, cell death is observed in maximally 15% of AECs after 24 h of treatment. Preincubation with IFN-gamma or a zinc deficiency increases the percentage of apoptotic AECs in response to TNF-alpha or FasL, suggesting that AECs have mechanisms to protect them from cell death. Apoptosis of AECs is a major mechanism in reducing cell numbers after hyperplastic changes in airway epithelia that may arise due to major injuries in response to LPS or allergen exposures. Resolution of hyperplastic changes or changes during prolonged exposure to an allergen is primarily regulated by the Bcl-2 family of proteins. Fas and FasL are both expressed in AECs, and their main function may be to control inflammation by inducing Fas-induced death in inflammatory cells without inducing apoptosis in neighboring cells. Furthermore, AECs engulf dying eosinophils to clear them by phagocytosis. Therefore, in the airway epithelium apoptosis serves three main roles: (1) to eliminate damaged cells; (2) to restore homeostasis following hyperplastic changes; and (3) to control inflammation, and thereby support the barrier and anti-inflammatory functions.
Collapse
Affiliation(s)
- Yohannes Tesfaigzi
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive, SE, Albuquerque, NM 87108, USA.
| |
Collapse
|