1
|
The Membrane-Anchoring Region of the AcMNPV P74 Protein Is Expendable or Interchangeable with Homologs from Other Species. Viruses 2021; 13:v13122416. [PMID: 34960685 PMCID: PMC8704774 DOI: 10.3390/v13122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
Baculoviruses are insect pathogens that are characterized by assembling the viral dsDNA into two different enveloped virions during an infective cycle: occluded virions (ODVs; immersed in a protein matrix known as occlusion body) and budded virions (BVs). ODVs are responsible for the primary infection in midgut cells of susceptible larvae thanks to the per os infectivity factor (PIF) complex, composed of at least nine essential viral proteins. Among them, P74 is a crucial factor whose activity has been identified as virus-specific. In this work, the p74 gene from AcMNPV was pseudogenized using CRISPR/Cas9 technology and then complemented with wild-type alleles from SeMNPV and HearSNPV species, as well as chimeras combining the P74 amino and carboxyl domains. The results on Spodoptera exigua and Rachiplusia nu larvae showed that an amino terminal sector of P74 (lacking two potential transmembrane regions but possessing a putative nuclear export signal) is sufficient to restore the virus infectivity whether alone or fused to the P74 transmembrane regions of the other evaluated viral species. These results provide novel information about the functional role of P74 and delimit the region on which mutagenesis could be applied to enhance viral activity and, thus, produce better biopesticides.
Collapse
|
2
|
Per os infectivity factors: a complicated and evolutionarily conserved entry machinery of baculovirus. SCIENCE CHINA-LIFE SCIENCES 2017; 60:806-815. [PMID: 28755302 DOI: 10.1007/s11427-017-9127-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/06/2017] [Indexed: 01/12/2023]
Abstract
Baculoviruses are a family of arthropod-specific large DNA viruses that infect insect species belonging to the orders Lepidoptera, Hymenoptera and Diptera. In nature, occlusion-derived viruses (ODVs) initiate baculovirus primary infection in the midgut epithelium of insect hosts, and this process is largely dependent on a number of ODV envelope proteins designated as per os infectivity factors (PIFs). Interestingly, PIF homologs are also present in other invertebrate large DNA viruses, which is indicative that per os infection is an ancient and phylogenetically conserved entry mechanism shared by these viruses. Here, we review the advances in the knowledge of the functions of individual PIFs and recent discoveries about the PIF complex, and discuss the evolutionary implications of PIF homologs in invertebrate DNA viruses. Furthermore, future research highlights on the per os infection mechanism are also prospected.
Collapse
|
3
|
Diversity of large DNA viruses of invertebrates. J Invertebr Pathol 2017; 147:4-22. [DOI: 10.1016/j.jip.2016.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 11/17/2022]
|
4
|
Li XF, Yu H, Zhang CX, Chen H, Wang D. Helicoverpa armigera nucleopolyhedrovirus orf81 is a late gene involved in budded virus production. Arch Virol 2014; 159:2011-22. [PMID: 24623087 DOI: 10.1007/s00705-014-2034-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 02/22/2014] [Indexed: 10/25/2022]
Abstract
Helicoverpa armigera nucleopolyhedrovirus (HearNPV) orf81 (ha81) is a core gene that is highly conserved in all lepidopteran baculoviruses. Its homolog in the group I baculoviruses, ac93, has been shown to be essential for the nuclear egress of nucleocapsids, but its role in the group II HearNPV life cycle remains unknown. In this study, an ha81 mutant bacmid was constructed by homologous recombination to investigate the role of HA81 in the viral life cycle. Quantitative PCR analysis showed that viral DNA replication was unaffected in the absence of ha81. However, the budded virus production of the ha81-null virus was completely blocked. Transmission electron microscopic analysis showed that ha81 is required for the egress of nucleocapsids from the nucleus. Analysis of the time course of transcription and expression revealed that ha81 is a late gene. An immunofluorescence analysis showed that the protein mainly localizes in the cytoplasm. To understand whether the transcription of other genes is affected by the deletion of ha81, the transcription of several well-characterized viral genes was investigated in the ha81-knockout HearNPV mutant. No obvious changes were observed at the transcription level, except for the odv-e25 gene downstream from ha81. In conclusion, these data indicate that ha81 is a late gene that is critical for budded virus production but is involved in neither viral DNA replication nor gene transcription.
Collapse
Affiliation(s)
- Xiao-Feng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | | | | | | | | |
Collapse
|
5
|
Ferreira BC, Melo FL, Souza ML, Moscardi F, Báo SN, Ribeiro BM. High genetic stability of peroral infection factors from Anticarsia gemmatalis MNPV over 20years of sampling. J Invertebr Pathol 2014; 118:66-70. [PMID: 24590109 DOI: 10.1016/j.jip.2014.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 02/15/2014] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
Abstract
The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) has been used as a biopesticide since the early 1980s in Brazil to control the major pest of soybean crops, the velvetbean caterpillar, Anticarsia gemmatalis. To monitor the genetic diversity over space and time we sequenced four pif genes (pif1, pif2, pif3 and pif4) from AgMNPV isolates collected from different regions of South America, as well as of seasonal isolates, sampled during a two-decade field experiment. Although all genes presented low levels of polymorphism, the pif-2 carries a slightly higher number of polymorphic sites. Overall, this study reveals that pif genes have remained stable after 20 years of repeated field application.
Collapse
Affiliation(s)
- Briana C Ferreira
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília (UnB), Asa Norte, 70910-900 Brasília, DF, Brazil; Embrapa Recursos Genéticos e Biotecnologia (Cenargen), Parque Estação Biológica, W5 Norte Final, 70770-917 Brasília, DF, Brazil
| | - Fernando L Melo
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília (UnB), Asa Norte, 70910-900 Brasília, DF, Brazil
| | - Marlinda L Souza
- Embrapa Recursos Genéticos e Biotecnologia (Cenargen), Parque Estação Biológica, W5 Norte Final, 70770-917 Brasília, DF, Brazil
| | - Flávio Moscardi
- Centro de Ciências Agrárias, Universidade Estadual de Londrina (UEL), 86051-990 Londrina, PR, Brazil
| | - Sônia N Báo
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília (UnB), Asa Norte, 70910-900 Brasília, DF, Brazil
| | - Bergmann M Ribeiro
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília (UnB), Asa Norte, 70910-900 Brasília, DF, Brazil.
| |
Collapse
|
6
|
Simón O, Williams T, Cerutti M, Caballero P, López-Ferber M. Expression of a peroral infection factor determines pathogenicity and population structure in an insect virus. PLoS One 2013; 8:e78834. [PMID: 24223853 PMCID: PMC3818493 DOI: 10.1371/journal.pone.0078834] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 09/16/2013] [Indexed: 12/02/2022] Open
Abstract
A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus is being studied as a possible biological insecticide. This virus exists as a mixture of complete and deletion genotypes; the latter depend on the former for the production of an essential per os transmission factor (pif1) in coinfected cells. We hypothesized that the virus population was structured to account for the prevalence of pif1 defector genotypes, so that increasing the abundance of pif1 produced by a cooperator genotype in infected cells would favor an increased prevalence of the defector genotype. We tested this hypothesis using recombinant viruses with pif1 expression reprogrammed at its native locus using two exogenous promoters (egt, p10) in the pif2/pif1 intergenic region. Reprogrammed viruses killed their hosts markedly faster than the wild-type and rescue viruses, possibly due to an earlier onset of systemic infection. Group success (transmission) depended on expression of pif1, but overexpression was prejudicial to group-specific transmissibility, both in terms of reduced pathogenicity and reduced production of virus progeny from each infected insect. The presence of pif1-overproducing genotypes in the population was predicted to favor a shift in the prevalence of defector genotypes lacking pif1-expressing capabilities, to compensate for the modification in pif1 availability at the population level. As a result, defectors increased the overall pathogenicity of the virus population by diluting pif1 produced by overexpressing genotypes. These results offer a new and unexpected perspective on cooperative behavior between viral genomes in response to the abundance of an essential public good that is detrimental in excess.
Collapse
Affiliation(s)
- Oihane Simón
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Mutilva Baja, Navarra, Spain
| | | | - Martine Cerutti
- Laboratoire Baculovirus et Thérapie, Centre national de la recherche scientifique, Saint Christol-Les-Alés, France
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Mutilva Baja, Navarra, Spain
- Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona, Spain
| | - Miguel López-Ferber
- Laboratoire de Génie de l'Environnement Industriel, Ecole des mines d'Alès, Alès, France
- * E-mail:
| |
Collapse
|
7
|
Wang Y, Bininda-Emonds ORP, van Oers MM, Vlak JM, Jehle JA. The genome of Oryctes rhinoceros nudivirus provides novel insight into the evolution of nuclear arthropod-specific large circular double-stranded DNA viruses. Virus Genes 2011; 42:444-56. [DOI: 10.1007/s11262-011-0589-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 02/21/2011] [Indexed: 11/29/2022]
|
8
|
Xu F, Ince IA, Boeren S, Vlak JM, van Oers MM. Protein composition of the occlusion derived virus of Chrysodeixis chalcites nucleopolyhedrovirus. Virus Res 2011; 158:1-7. [PMID: 21354223 DOI: 10.1016/j.virusres.2011.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 11/27/2022]
Abstract
Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) is a group II NPV and its genome has 151 predicted open reading frames. In this study, the protein composition of ChchNPV occlusion derived virus (ODV) was determined by LC-MS/MS. Fifty-three proteins were identified in ChchNPV ODV particles. One ODV-protein is encoded by a gene so far unique to ChchNPV (Chch105). The two DNA photolyases PHR1 and PHR2, which are characteristic for ChchNPV and thought to be involved in repairing UV damage in viral DNA, were not detected in the ODVs. Comparison of the ODV proteins identified in ChchNPV and in three other baculoviruses enabled the identification of ten conserved ODV proteins (ODV-E18, ODV-E56, ODV-EC27, ODV-EC43, P6.9, P33, P49, P74, GP41, and VP39). In addition, the baculovirus per os infectivity factors PIF1, PIF2 and PIF3 were all detected in ChchNPV and these should be considered as conserved ODV proteins as well as they are absolutely required for oral infection. With the LC-MS/MS method used 22 viral proteins were detected, which were not identified as ODV proteins in previous studies.
Collapse
Affiliation(s)
- Fang Xu
- Laboratory of Virology, Wageningen University, P.O. Box 629, 6700 AP Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Autographa californica multiple nucleopolyhedrovirus ac76 is involved in intranuclear microvesicle formation. J Virol 2010; 84:7437-47. [PMID: 20484514 DOI: 10.1128/jvi.02103-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we characterized Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf76 (ac76), which is a highly conserved gene of unknown function in lepidopteran baculoviruses. Transcriptional analysis of ac76 revealed that transcription of multiple overlapping multicistronic transcripts initiates from a canonical TAAG late-transcription start motif but terminates at different 3' ends at 24 h postinfection in AcMNPV-infected Sf9 cells. To investigate the role of ac76 in the baculovirus life cycle, an ac76-knockout virus was constructed using an AcMNPV bacmid system. Microscopy, titration assays, and Western blot analysis demonstrated that the resulting ac76-knockout virus was unable to produce budded viruses. Quantitative real-time PCR analysis demonstrated that ac76 deletion did not affect viral DNA synthesis. Electron microscopy showed that virus-induced intranuclear microvesicles as well as occlusion-derived virions were never observed in cells transfected with the ac76-knockout virus. Confocal microscopy analysis revealed that Ac76 was predominantly localized to the ring zone of nuclei during the late phase of infection. This suggests that ac76 plays a role in intranuclear microvesicle formation. To the best of our knowledge, this is the first baculovirus gene identified to be involved in intranuclear microvesicle formation.
Collapse
|
10
|
Clavijo G, Williams T, Muñoz D, López-Ferber M, Caballero P. Entry into midgut epithelial cells is a key step in the selection of genotypes in a nucleopolyhedrovirus. Virol Sin 2009. [DOI: 10.1007/s12250-009-3048-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Mixtures of complete and pif1- and pif2-deficient genotypes are required for increased potency of an insect nucleopolyhedrovirus. J Virol 2009; 83:5127-36. [PMID: 19264787 DOI: 10.1128/jvi.02020-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The insecticidal potency of a nucleopolyhedrovirus population (SfNIC) that infects Spodoptera frugiperda (Lepidoptera) is greater than the potency of any of the component genotypes alone. Occlusion bodies (OBs) produced in mixed infections comprising the complete genotype and a deletion genotype are as pathogenic as the natural population of genotypes from the field. To test whether this increased potency was due to the deletion or to some other characteristic of the deletion variant genome, we used the SfNIC-B genome to construct a recombinant virus (SfNIC-B Delta 16K) with the same 16.4-kb deletion as that observed in SfNIC-C and another recombinant (SfNIC-B Delta pifs) with a deletion encompassing two adjacent genes (pif1 and pif2) that are essential for transmission per os. Mixtures comprising SfNIC-B and SfNIC-B Delta 16K in OB ratios that varied between 10:90 and 90:10 were injected into insects, and the progeny OBs were fed to larvae in an insecticidal potency assay. A densitometric analysis of PCR products indicated that SfNIC-B was generally more abundant than expected in mixtures based on the proportions of OBs used to produce the inocula. Mixtures derived from OB ratios of 10, 25, or 50% of SfNIC-B Delta 16K and the corresponding SfNIC-B proportions showed a significant increase in potency compared to SfNIC-B alone. The results of potency assays with mixtures comprising various proportions of SfNIC-B plus SfNIC-B Delta pifs were almost identical to the results observed with SfNIC-B Delta 16K, indicating that deletion of the pif gene region was responsible for the increased potency observed in mixtures of SfNIC-B and each deletion recombinant virus. Subsequently, mixtures produced from OB ratios involving 10 or 90% of SfNIC-B Delta 16K with the corresponding proportions of SfNIC-B were subjected to four rounds of per os transmission in larvae. The composition of each experimental mixture rapidly converged to a common equilibrium with a genotypic composition of approximately 85% SfNIC-B plus approximately 15% SfNIC-B Delta 16K. Nearly identical results were observed in peroral-passage experiments involving mixtures of SfNIC-B plus SfNIC-B Delta pifs. We conclude that (i) the deletion of the pif1 and pif2 region is necessary and sufficient to explain the increased potency observed in mixtures of complete and deletion genotypes and (ii) viral populations with decreased ratios of pif1- and pif2-deficient genotypes in the virus population increase the potency of genotypic mixtures and are likely to positively influence the transmission of this pathogen.
Collapse
|
12
|
Garcia-Maruniak A, Maruniak JE, Farmerie W, Boucias DG. Sequence analysis of a non-classified, non-occluded DNA virus that causes salivary gland hypertrophy of Musca domestica, MdSGHV. Virology 2008; 377:184-96. [PMID: 18495197 DOI: 10.1016/j.virol.2008.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 03/25/2008] [Accepted: 04/14/2008] [Indexed: 11/30/2022]
Abstract
The genome of the virus that causes salivary gland hypertrophy in Musca domestica (MdSGHV) was sequenced. This non-classified, enveloped, double stranded, circular DNA virus had a 124,279bp genome. The G + C content was 43.5% with 108 putative methionine-initiated open reading frames (ORFs). Thirty ORFs had homology to database proteins: eleven to proteins coded by both baculoviruses and nudiviruses (p74, pif-1, pif-2, pif-3, odv-e66, rr1, rr2, iap, dUTPase, MMP, and Ac81-like), seven to nudiviruses (mcp, dhfr, ts, tk and three unknown proteins), one to baculovirus (Ac150-like), one to herpesvirus (dna pol), and ten to cellular proteins. Mass spectrum analysis of the viral particles' protein components identified 29 structural ORFs, with only p74 and odv-e66 previously characterized as baculovirus structural proteins. Although most of the homology observed was to nudiviruses, phylogenetic analysis showed that MdSGHV was not closely related to them or to the baculoviruses.
Collapse
Affiliation(s)
- Alejandra Garcia-Maruniak
- Department of Entomology and Nematology, PO Box 110620, University of Florida, Gainesville, Florida 32611-0620, USA.
| | | | | | | |
Collapse
|
13
|
Li X, Song J, Jiang T, Liang C, Chen X. The N-terminal hydrophobic sequence of Autographa californica nucleopolyhedrovirus PIF-3 is essential for oral infection. Arch Virol 2007; 152:1851-8. [PMID: 17585368 DOI: 10.1007/s00705-007-1012-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
The Autographa californica nucleopolyhedrovirus (AcMNPV) open reading frame 115 has been identified as a per os infection factor (pif-3) and is essential for oral infection. Here, we have characterized the pif-3 of AcMNPV in more detail. The pif-3 transcripts were detected from 12 to 96 h post-infection (hpi) in Sf9 cells infected with AcMNPV. Polyclonal antiserum first recognized a 25-kDa protein at 36 hpi. Western blot analysis indicated that PIF-3 is a component of occlusion-derived virus but not of budded virus. The subcellular localization demonstrated that the 21-amino-acid (aa) N-terminal hydrophobic domain of PIF-3, which is conserved in PIF-1, PIF2 and PIF-3, acts as a nuclear location signal and is essential for trafficking the protein to the nucleus. Deletion of either pif-3 or the 21-aa N-terminal hydrophobic domain of pif-3 from AcMNPV abolished per os infectivity but had no effect on the infectivity of the budded virus phenotype.
Collapse
Affiliation(s)
- X Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, The Chinese Academy of Sciences, Wuhan, PR China
| | | | | | | | | |
Collapse
|
14
|
Wang Y, Kleespies RG, Huger AM, Jehle JA. The genome of Gryllus bimaculatus nudivirus indicates an ancient diversification of baculovirus-related nonoccluded nudiviruses of insects. J Virol 2007; 81:5395-406. [PMID: 17360757 PMCID: PMC1900193 DOI: 10.1128/jvi.02781-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2006] [Accepted: 02/23/2007] [Indexed: 11/20/2022] Open
Abstract
The Gryllus bimaculatus nudivirus (GbNV) infects nymphs and adults of the cricket Gryllus bimaculatus (Orthoptera: Gryllidae). GbNV and other nudiviruses such as Heliothis zea nudivirus 1 (HzNV-1) and Oryctes rhinoceros nudivirus (OrNV) were previously called "nonoccluded baculoviruses" as they share some similar structural, genomic, and replication aspects with members of the family Baculoviridae. Their relationships to each other and to baculoviruses are elucidated by the sequence of the complete genome of GbNV, which is 96,944 bp, has an AT content of 72%, and potentially contains 98 predicted protein-coding open reading frames (ORFs). Forty-one ORFs of GbNV share sequence similarities with ORFs found in OrNV, HzNV-1, baculoviruses, and bacteria. Most notably, 15 GbNV ORFs are homologous to the baculovirus core genes, which are associated with transcription (lef-8, lef-9, lef-4, vlf-1, and lef-5), replication (dnapol), structural proteins (p74, pif-1, pif-2, pif-3, vp91, and odv-e56), and proteins of unknown function (38K, ac81, and 19kda). Homologues to these baculovirus core genes have been predicted in HzNV-1 as well. Six GbNV ORFs are homologous to nonconserved baculovirus genes dnaligase, helicase 2, rr1, rr2, iap-3, and desmoplakin. However, the remaining 57 ORFs revealed no homology or poor similarities to the current gene databases. No homologous repeat (hr) sequences but fourteen short direct repeat (dr) regions were detected in the GbNV genome. Gene content and sequence similarity suggest that the nudiviruses GbNV, HzNV-1, and OrNV form a monophyletic group of nonoccluded double-stranded DNA viruses, which separated from the baculovirus lineage before this radiated into dipteran-, hymenopteran-, and lepidopteran-specific clades of occluded nucleopolyhedroviruses and granuloviruses. The accumulated information on the GbNV genome suggests that nudiviruses form a highly diverse and phylogenetically ancient sister group of the baculoviruses, which have evolved in a variety of highly divergent host orders.
Collapse
Affiliation(s)
- Yongjie Wang
- Laboratory for Biotechnological Crop Protection, Department of Phytopathology, Agricultural Service Center Palatinate (DLR Rheinpfalz), Breitenweg 71, 67435 Neustadt an der Weinstrasse, Germany
| | | | | | | |
Collapse
|
15
|
Abstract
Baculoviruses play an important ecological role regulating the size of insect populations. For many years, baculoviruses have been applied as targeted biocontrol agents against forestry and agriculture pests. Baculovirus insecticides are effective against insect pests such as velvetbean caterpillar (Anticarsia gemmatalis ), cotton bollworm (Helicoverpa zea ), and gypsy moth (Lymantria dispar ). Baculoviruses are transmitted to insects by the oral route mediated by the occlusion-derived virus (ODV). The ODV is also specialized to exploit the insect midgut that is one of the most extreme biological environments where the viruses are subject to caustic pH and digestive proteases. The molecular biology of the ODV reveals new frontiers in protein chemistry. Finally, ODVs establishes infection in insect gut tissues that are virtually nonsupportive to virus replication and which are continuously sloughed away. ODVs carry with them a battery of proteins that enable them to rapidly exploit and harness these unstable cells for virus replication.
Collapse
Affiliation(s)
- Jeffery Slack
- Laboratory for Molecular Virology, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | | |
Collapse
|
16
|
Duffy SP, Young AM, Morin B, Lucarotti CJ, Koop BF, Levin DB. Sequence analysis and organization of the Neodiprion abietis nucleopolyhedrovirus genome. J Virol 2006; 80:6952-63. [PMID: 16809301 PMCID: PMC1489044 DOI: 10.1128/jvi.00187-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Of 30 baculovirus genomes that have been sequenced to date, the only nonlepidopteran baculoviruses include the dipteran Culex nigripalpus nucleopolyhedrovirus and two hymenopteran nucleopolyhedroviruses that infect the sawflies Neodiprion lecontei (NeleNPV) and Neodiprion sertifer (NeseNPV). This study provides a complete sequence and genome analysis of the nucleopolyhedrovirus that infects the balsam fir sawfly Neodiprion abietis (Hymenoptera, Symphyta, Diprionidae). The N. abietis nucleopolyhedrovirus (NeabNPV) is 84,264 bp in size, with a G+C content of 33.5%, and contains 93 predicted open reading frames (ORFs). Eleven predicted ORFs are unique to this baculovirus, 10 ORFs have a putative sequence homologue in the NeleNPV genome but not the NeseNPV genome, and 1 ORF (neab53) has a putative sequence homologue in the NeseNPV genome but not the NeleNPV genome. Specific repeat sequences are coincident with major genome rearrangements that distinguish NeabNPV and NeleNPV. Genes associated with these repeat regions encode a common amino acid motif, suggesting that they are a family of repeated contiguous gene clusters. Lepidopteran baculoviruses, similarly, have a family of repeated genes called the bro gene family. However, there is no significant sequence similarity between the NeabNPV and bro genes. Homologues of early-expressed genes such as ie-1 and lef-3 were absent in NeabNPV, as they are in the previously sequenced hymenopteran baculoviruses. Analyses of ORF upstream sequences identified potential temporally distinct genes on the basis of putative promoter elements.
Collapse
Affiliation(s)
- Simon P Duffy
- Department of Biology, University of Victoria, Victoria, BC, Canada V8W 2Y2
| | | | | | | | | | | |
Collapse
|
17
|
Belaich MN, Rodríguez VA, Bilen MF, Pilloff MG, Romanowski V, Sciocco-Cap A, Ghiringhelli PD. Sequencing and characterisation of p74 gene in two isolates of Anticarsia gemmatalis MNPV. Virus Genes 2006; 32:59-70. [PMID: 16525736 DOI: 10.1007/s11262-005-5846-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 06/26/2005] [Indexed: 10/24/2022]
Abstract
P74 is a protein encoded in the genome of baculoviruses, associated with the envelopes of occluded virus. Its presence proved to be essential for per os infection. In first place, in this work we designed two universal primers to amplify a sequence region of the p74 ORF in baculoviruses from different classification groups. Then, by the use of these amplicons we obtained the complete sequence of the p74 locus from two isolates of AgMNPV, 2D (Brazil) and SF (Argentina). In the flanking regions we determined the complete sequence of p10 gene and a portion of p26 gene. Comparing both p74 sequence data (ORFs of 1935 bp) we found fifteen nucleotide changes that result in six amino acid changes. Comparisons of AgMNPV p74s with other baculovirus homologous genes indicate a close relationship with other group I Nucleopolyhedrovirus, in particular CfDEFNPV. These results were based on ORF sequence, amino acid sequence and gene order. The predictive studies about secondary structure and hydrophobic index point at six regions potentially associated to its function or native conformation. Finally, the detection of p74 mRNA after virus DNA replication confirms a late expression pattern.
Collapse
Affiliation(s)
- Mariano Nicolás Belaich
- LIGBCM (Laboratorio de Ingeniería Genética y Biología Celular y Molecular), Departamento Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 180, Bernal (1876), Argentina
| | | | | | | | | | | | | |
Collapse
|
18
|
Simón O, Gutiérrez S, Williams T, Caballero P, López-Ferber M. Nucleotide sequence and transcriptional analysis of the pif gene of Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV). Virus Res 2005; 108:213-20. [PMID: 15681073 DOI: 10.1016/j.virusres.2004.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 07/20/2004] [Accepted: 07/26/2004] [Indexed: 11/16/2022]
Abstract
Defective viruses, not transmissible alone, increase the transmissibility of complete genotypes in natural populations of Spodoptera frugiperda multicapsid nucleopolyhedrovirus (SfMNPV). The defective phenotype is associated with a 15 kb deletion, which includes the pif (per os infectivity factor) gene. The sequence of a 2.4 kb fragment that includes pif was determined. Multiple transcripts encompassing pif were detected by Northern blot analysis. RT-PCR and nuclease protection analysis demonstrated the presence of run-through transcripts starting upstream of pif. A 2.0 kb messenger started from a CTAAG promoter motif located 11 nt upstream of the pif start codon, and ended 450 nt downstream from the pif stop codon. This pif mRNA included a small downstream ORF (homologous to Se37). A transcript of 0.8 kb was detected that may correspond to a specific transcript from this small ORF. This transcript would start at a late consensus motif internal to pif coding sequences, ending at the same polyadenylation signal as the pif transcript. These transcription features resemble those of pif transcription in Spodoptera littoralis NPV, although the genomic location of pif is not equivalent in the two viruses. SfMNPV pif can encode a protein of 529 amino acids, closely related to Spodoptera exigua MNPV PIF.
Collapse
Affiliation(s)
- Oihane Simón
- Depto. de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | | | | | | | | |
Collapse
|
19
|
Zhou W, Yao L, Xu H, Yan F, Qi Y. The Function of Envelope Protein P74 from Autographa californica Multiple Nucleopolyhedrovirus in Primary Infection to Host. Virus Genes 2005; 30:139-50. [PMID: 15744572 DOI: 10.1007/s11262-004-5623-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 08/08/2004] [Indexed: 11/27/2022]
Abstract
This research investigated the function of envelope protein P74 of Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) in primary infection to host. A p74-inactivation recombinant baculovirus, rAc-gfp(Delta) p74, was constructed by inserting gfp driven by AcMNPV polyhedrin promoter into the p74 locus of AcMNPV genome. Bioassays showed that the P74-null occlusion bodies (OBs) failed to infect its natural host larvae, Spodoptera exigua, per os, while the p74-null budded virus (BVs) could infect host larvae by injection. However, its inability for oral infectivity was rescued by a mixed infection with wild-type OBs or with the purified P74 protein expressed in Spodoptera frugiperda Sf-9 cells, and the P74 protein rescue was in a dosage-dependent manner. The 50% lethal dosage (LD50) value of a P74 overexpression recombinant virus, rAc-p74(++)-polh+, which contained two copies of p74 gene, was not significantly different from that of wild-type virus. One-step growth curve assays of viruses suggested that BV production from cells infected with p74-null virus was similar to that from cells infected with wild-type virus or the P74 overexpression virus. ELISA analysis indicated that P74 protein could bind its host brush border membrane vesicles (BBMV) efficiently with saturation, but it could only bind its sensitive midgut BBMV specifically. In vitro pull-down assay showed that a protein of approximately 35 kDa in the BBMV was involved in the specific binding. These results demonstrated that the P74 protein is essential for oral infectivity of occlusion-derived virus (ODV) and plays a role in midgut attachment and fusion.
Collapse
Affiliation(s)
- Wenke Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei, PR China
| | | | | | | | | |
Collapse
|
20
|
Gutiérrez S, Mutuel D, Grard N, Cerutti M, López-Ferber M. The deletion of the pif gene improves the biosafety of the baculovirus-based technologies. J Biotechnol 2004; 116:135-43. [PMID: 15664077 DOI: 10.1016/j.jbiotec.2004.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Revised: 10/07/2004] [Accepted: 10/13/2004] [Indexed: 11/25/2022]
Abstract
Our goal was to improve the biosafety of baculovirus-based technologies by deleting the pif (per os infectivity factor) gene from baculovirus expression vectors. Such a deletion would block transmission in nature without disturbing protein production. A pif deletion mutant of Autographa californica multiplecapsid nucleopolyhedrovirus (AcMNPV) was constructed and its infectivity to two host species was tested by oral or intrahemocoelic inoculation. Virus replication after oral inoculation was monitored using PCR. Oral inoculations with a mixture of the wild type and the pif deletion viruses were carried out. The pif deletion blocked oral infection but it did not hamper infectivity in cell culture. The blockage took place early after inoculation and could not be overcome by mixed inoculations with the wild type. The cat gene was inserted under the control of the polyhedrin promoter in the deletion mutant and the wild type CAT yield was measured in Spodoptera frugiperda insect cells (Sf9) infected with either recombinant. The pif deletion did not hamper CAT production. This deletion significantly improved CAT yields early in the infection. Hence, expression vectors lacking pif may produce higher quality protein. The pif deletion is a simple measure that dramatically reduces the chances of virus spread or gene transfer in nature.
Collapse
Affiliation(s)
- Serafín Gutiérrez
- Laboratoire de Pathologie Comparée, INRA UMR1234, CNRS FRE2689 - Université de Montpellier II, 30380 Saint-Christol-les-Alès, France
| | | | | | | | | |
Collapse
|
21
|
Simón O, Williams T, López-Ferber M, Caballero P. Genetic structure of a Spodoptera frugiperda nucleopolyhedrovirus population: high prevalence of deletion genotypes. Appl Environ Microbiol 2004; 70:5579-88. [PMID: 15345446 PMCID: PMC520846 DOI: 10.1128/aem.70.9.5579-5588.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Nicaraguan field isolate (SfNIC) of Spodoptera frugiperda nucleopolyhedrovirus was purified by plaque assay on Sf9 cells. Nine distinct genotypes, A to I, were identified by their restriction endonuclease profiles. Variant SfNIC-B was selected as the standard because its restriction profile corresponded to that of the wild-type isolate. Physical maps were generated for each of the variants. The differences between variants and the SfNIC-B standard were confined to the region between map units 9 and 32.5. This region included PstI-G, PstI-F, PstI-L, PstI-K and EcoRI-L fragments. Eight genotypes presented a deletion in their genome compared with SfNIC-B. Occlusion body-derived virions of SfNIC-C, -D and -G accounted for 41% of plaque-purified clones. These variants were not infectious per os but retained infectivity by injection into S. frugiperda larvae. Median 50% lethal concentration values for the other cloned genotypes were significantly higher than that of the wild type. The variants also differed in their speed of kill. Noninfectious variants SfNIC-C and -D lacked the pif and pif-2 genes. Infectivity was restored to these variants by plasmid rescue with a plasmid comprising both pif and pif-2. Transcription of an SfNIC-G gene was detected by reverse transcription-PCR in insects, but no fatal disease developed. Transcription was not detected in SfNIC-C or -D-inoculated larvae. We conclude that the SfNIC population presents high levels of genetic diversity, localized to a 17-kb region containing pif and pif-2, and that interactions among complete and deleted genotypic variants will likely influence the capacity of this virus to control insect pests.
Collapse
Affiliation(s)
- Oihane Simón
- Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain.
| | | | | | | |
Collapse
|