1
|
Stitz J. Development of HIV-1 vectors pseudotyped with envelope proteins of other retroviruses. Virology 2025; 602:110300. [PMID: 39577275 DOI: 10.1016/j.virol.2024.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
In the past three decades, human immunodeficiency virus type 1 (HIV-1)-derived vectors were evolved and became indispensable to transduce therapeutic genes into a range of different target cell types to facilitate a variety of gene therapeutic strategies. To achieve this, i) the biosafety profile of the vectors was incrementally enhanced and ii) the CD4-restricted tropism mediated by the envelope proteins (Env) of the parental virus needed to be directed towards recruitment of other receptors expressed on the desired target cells. Here, a closer look is first taken at the development of vector components and the mechanisms of Env incorporation into particles. While envelope proteins originating from a broad range of very diverse virus species were successfully utilized, members of the Retroviridae family most frequently provided Env or further engineered variants thereof to form transduction-competent HIV-1 pseudotype vector particles. The development of these vectors is reviewed and anticipated to further contribute to the future progression of somatic gene therapy.
Collapse
Affiliation(s)
- Jörn Stitz
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Campusplatz 1, 51379, Leverkusen, Germany.
| |
Collapse
|
2
|
Abajorga M, Yurkovetskiy L, Luban J. piRNA Defense Against Endogenous Retroviruses. Viruses 2024; 16:1756. [PMID: 39599869 PMCID: PMC11599104 DOI: 10.3390/v16111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Infection by retroviruses and the mobilization of transposable elements cause DNA damage that can be catastrophic for a cell. If the cell survives, the mutations generated by retrotransposition may confer a selective advantage, although, more commonly, the effect of new integrants is neutral or detrimental. If retrotransposition occurs in gametes or in the early embryo, it introduces genetic modifications that can be transmitted to the progeny and may become fixed in the germline of that species. PIWI-interacting RNAs (piRNAs) are single-stranded, 21-35 nucleotide RNAs generated by the PIWI clade of Argonaute proteins that maintain the integrity of the animal germline by silencing transposons. The sequence specific manner by which piRNAs and germline-encoded PIWI proteins repress transposons is reminiscent of CRISPR, which retains memory for invading pathogen sequences. piRNAs are processed preferentially from the unspliced transcripts of piRNA clusters. Via complementary base pairing, mature antisense piRNAs guide the PIWI clade of Argonaute proteins to transposon RNAs for degradation. Moreover, these piRNA-loaded PIWI proteins are imported into the nucleus to modulate the co-transcriptional repression of transposons by initiating histone and DNA methylation. How retroviruses that invade germ cells are first recognized as foreign by the piRNA machinery, as well as how endogenous piRNA clusters targeting the sequences of invasive genetic elements are acquired, is not known. Currently, koalas (Phascolarctos cinereus) are going through an epidemic due to the horizontal and vertical transmission of the KoRV-A gammaretrovirus. This provides an unprecedented opportunity to study how an exogenous retrovirus becomes fixed in the genome of its host, and how piRNAs targeting this retrovirus are generated in germ cells of the infected animal. Initial experiments have shown that the unspliced transcript from KoRV-A proviruses in koala testes, but not the spliced KoRV-A transcript, is directly processed into sense-strand piRNAs. The cleavage of unspliced sense-strand transcripts is thought to serve as an initial innate defense until antisense piRNAs are generated and an adaptive KoRV-A-specific genome immune response is established. Further research is expected to determine how the piRNA machinery recognizes a new foreign genetic invader, how it distinguishes between spliced and unspliced transcripts, and how a mature genome immune response is established, with both sense and antisense piRNAs and the methylation of histones and DNA at the provirus promoter.
Collapse
Affiliation(s)
- Milky Abajorga
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Leonid Yurkovetskiy
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| |
Collapse
|
3
|
Young ET, Phalen D, Greenville AC, Donkers K, Carver S. A retrospective epidemiological study of sarcoptic mange in koalas ( Phascolarctos cinereus) using wildlife carer admission records. Int J Parasitol Parasites Wildl 2024; 24:100955. [PMID: 39006892 PMCID: PMC11239712 DOI: 10.1016/j.ijppaw.2024.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024]
Abstract
Outbreaks of sarcoptic mange are sporadically reported in koala populations across Australia, but disease characteristics (e.g., distribution across the body) remain poorly understood. In an area of Northern Victoria regular cases coming into care suggest mange may have become enzootic, and here we characterise those koala mange admission records. In 18% (n = 10) of mange affected koala reports that had a recorded outcome (n = 55), the animals died before the carers could locate them, and of the remaining 45 koalas that were alive upon carer arrival, 80% (n = 36) had to be euthanised due to severe mange. The number of admissions varied among years (highest observed in 2019), and over 60% of affected koala admissions were male. Male admissions peaked in austral spring and again in late austral summer-autumn (mating and birthing seasons), with female admissions only exhibiting the latter peak (birthing season). Fissures of the epidermis of the front paws occurred in 100% of admitted koalas, with 70% also showing these signs elsewhere on ventral surfaces or limbs. Only male koalas had signs of mange on the chest and face, and only female koalas had signs of mange on their back. Collectively, this study suggests sarcoptic mange can be a severe disease in koalas, and that male koalas may play an important role in seasonal transmission dynamics. We discuss how these findings may help inform intervention strategies.
Collapse
Affiliation(s)
- Ellyssia T Young
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2050, Australia
| | - David Phalen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2050, Australia
| | - Aaron C Greenville
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2050, Australia
| | - Kylie Donkers
- Dutch Thunder Wildlife Shelter, Victoria, 3644, Australia
| | - Scott Carver
- Department of Biological Sciences, University of Tasmania, Hobart, Tasmania, 7005, Australia
| |
Collapse
|
4
|
Tarlinton R, Greenwood AD. Koala retrovirus and neoplasia: correlation and underlying mechanisms. Curr Opin Virol 2024; 67:101427. [PMID: 39047314 DOI: 10.1016/j.coviro.2024.101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
The koala retrovirus, KoRV, is one of the few models for understanding the health consequences of retroviral colonization of the germline. Such colonization events transition exogenous infectious retroviruses to Mendelian traits or endogenous retroviruses (ERVs). KoRV is currently in a transitional state from exogenous retrovirus to ERV, which in koalas (Phascolarctos cinereus) has been associated with strongly elevated levels of neoplasia. In this review, we describe what is currently known about the associations and underlying mechanisms of KoRV-induced neoplasia.
Collapse
Affiliation(s)
- Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Johnston SD, Hulse L, Keeley T, Mucci A, Seddon J, Maynard S. The Utility of the Koala Scat: A Scoping Review. BIOLOGY 2024; 13:523. [PMID: 39056716 PMCID: PMC11273466 DOI: 10.3390/biology13070523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
The use of samples or scats to provide important ecological, genetic, disease and physiology details on free-range populations is gaining popularity as an alternative non-invasive methodology. Koala populations in SE Queensland and NSW have recently been listed as endangered and continue to face anthropomorphic and stochastic environmental impacts that could potentially lead to their extinction. This scoping review examines the current and potential utility of the koala scat to contribute data relevant to the assessment of koala conservation status and decision making. Although we demonstrate that there is great potential for this methodology in providing details for both individual wild animal and population biology (distribution, abundance, sex ratio, immigration/emigration, genetic diversity, evolutionary significant unit, disease epidemiology, nutrition, reproductive status and stress physiology), the calibre of this information is likely to be a function of the quality of the scat that is sampled.
Collapse
Affiliation(s)
- Stephen D. Johnston
- School of Environment, The University of Queensland, Gatton 4343, Australia; (L.H.); (T.K.); (A.M.)
- School of Veterinary Science, The University of Queensland, Gatton 4343, Australia;
| | - Lyndal Hulse
- School of Environment, The University of Queensland, Gatton 4343, Australia; (L.H.); (T.K.); (A.M.)
- School of Veterinary Science, The University of Queensland, Gatton 4343, Australia;
| | - Tamara Keeley
- School of Environment, The University of Queensland, Gatton 4343, Australia; (L.H.); (T.K.); (A.M.)
| | - Albano Mucci
- School of Environment, The University of Queensland, Gatton 4343, Australia; (L.H.); (T.K.); (A.M.)
| | - Jennifer Seddon
- School of Veterinary Science, The University of Queensland, Gatton 4343, Australia;
- Research Division, James Cook University, Townsville 4811, Australia
| | - Sam Maynard
- Saunders Havill Group, Bowen Hills 4006, Australia;
| |
Collapse
|
6
|
Wright BR, Casteriano A, Muir YSS, Hulse L, Simpson SJ, Legione AR, Vaz PK, Devlin JM, Krockenberger MB, Higgins DP. Expanding the known distribution of phascolartid gammaherpesvirus 1 in koalas to populations across Queensland and New South Wales. Sci Rep 2024; 14:1223. [PMID: 38216613 PMCID: PMC10786818 DOI: 10.1038/s41598-023-50496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024] Open
Abstract
Koala populations across the east coast of Australia are under threat of extinction with little known about the presence or distribution of a potential pathogen, phascolartid gammaherpesvirus 1 (PhaHV-1) across these threatened populations. Co-infections with PhaHV-1 and Chlamydia pecorum may be common and there is currently a limited understanding of the impact of these co-infections on koala health. To address these knowledge gaps, archived clinical and field-collected koala samples were examined by quantitative polymerase chain reaction to determine the distribution of PhaHV-1 in previously untested populations across New South Wales and Queensland. We detected PhaHV-1 in all regions surveyed with differences in detection rate between clinical samples from rescued koalas (26%) and field-collected samples from free-living koalas (8%). This may reflect increased viral shedding in koalas that have been admitted into care. We have corroborated previous work indicating greater detection of PhaHV-1 with increasing age in koalas and an association between PhaHV-1 and C. pecorum detection. Our work highlights the need for continued surveillance of PhaHV-1 in koala populations to inform management interventions, and targeted research to understand the pathogenesis of PhaHV-1 and determine the impact of infection and co-infection with C. pecorum.
Collapse
Affiliation(s)
- Belinda R Wright
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Andrea Casteriano
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Yasmine S S Muir
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Lyndal Hulse
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sarah J Simpson
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Alistair R Legione
- Melbourne Veterinary School, Faculty of Science, Asia Pacific Centre for Animal Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paola K Vaz
- Melbourne Veterinary School, Faculty of Science, Asia Pacific Centre for Animal Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joanne M Devlin
- Melbourne Veterinary School, Faculty of Science, Asia Pacific Centre for Animal Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mark B Krockenberger
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Damien P Higgins
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
7
|
Akter L, Hashem MA, Rakib TM, Rashid MHO, Hossain KA, Akhter R, Utsunomiya M, Kitab B, Hifumi T, Miyoshi N, Maetani F, Tsukiyama-Kohara K. Investigation of koala retrovirus in captive koalas with pneumonia and comparative analysis of subtype distribution. Arch Virol 2023; 168:298. [PMID: 38010495 DOI: 10.1007/s00705-023-05928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
This study focused on the involvement of koala retrovirus (KoRV) in pneumonia in koalas. Three deceased pneumonic koalas from a Japanese zoo were examined in this study. Hematological and histopathological findings were assessed, and KoRV proviral DNA loads in the blood and tissues were compared with those of eight other KoRV-infected koalas from different zoos. Demographic data and routine blood profiles were collected, and blood and tissue samples were analyzed to rule out concurrent infections in pneumonic koalas. KoRV subtyping and measurement of the KoRV proviral DNA load were performed by polymerase chain reaction (PCR) using specific primers targeting the pol and env genes. The results showed that the koalas had histopathologically suppurative and fibrinous pneumonia. Chlamydiosis was not detected in any of the animals. PCR analysis revealed KoRV-A, -B, and -C infections in all koalas, except for animals K10-11, which lacked KoRV-B. Significant variations in the proviral DNA loads of these KoRV subtypes were observed in all tissues and disease groups. Most tissues showed reduced KoRV loads in koalas with pneumonia, except in the spleen, which had significantly higher loads of total KoRV (2.54 × 107/µg DNA) and KoRV-A (4.74 × 107/µg DNA), suggesting potential immunosuppression. This study revealed the intricate dynamics of KoRV in various tissues, indicating its potential role in koala pneumonia via immunosuppression and opportunistic infections. Analysis of the levels of KoRV proviral DNA in different tissues will shed light on viral replication and the resulting pathogenesis in future studies.
Collapse
Affiliation(s)
- Lipi Akter
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, 8900065, Japan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Abul Hashem
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, 8900065, Japan
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Tofazzal Md Rakib
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Haroon Or Rashid
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, 8900065, Japan
| | - Kazi Anowar Hossain
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, 8900065, Japan
| | - Rupaly Akhter
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, 8900065, Japan
| | - Masashi Utsunomiya
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, 8900065, Japan
| | - Bouchra Kitab
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, 8900065, Japan
| | - Tatsuro Hifumi
- Department of Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Noriaki Miyoshi
- Department of Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Fumie Maetani
- Hirakawa Zoological Park, Kagoshima, Japan
- Awaji Farm England Hill Zoo, Hyogo, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, 8900065, Japan.
| |
Collapse
|
8
|
Wright BR, Jelocnik M, Casteriano A, Muir YSS, Legione AR, Vaz PK, Devlin JM, Higgins DP. Development of diagnostic and point of care assays for a gammaherpesvirus infecting koalas. PLoS One 2023; 18:e0286407. [PMID: 37262062 DOI: 10.1371/journal.pone.0286407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/14/2023] [Indexed: 06/03/2023] Open
Abstract
The recent listing of koala populations as endangered across much of their range has highlighted the need for better management interventions. Disease is a key threat to koala populations but currently there is no information across the threatened populations on the distribution or impact of a gammaherpesvirus, phascolarctid gammaherpesvirus 1 (PhaHV-1). PhaHV-1 is known to infect koalas in southern populations which are, at present, not threatened. Current testing for PhaHV-1 involves lengthy laboratory techniques that do not permit quantification of viral load. In order to better understand distribution, prevalence and impacts of PhaHV-1 infections across koala populations, diagnostic and rapid point of care tests are required. We have developed two novel assays, a qPCR assay and an isothermal assay, that will enable researchers, clinicians and wildlife managers to reliably and rapidly test for PhaHV-1 in koalas. The ability to rapidly diagnose and quantify viral load will aid quarantine practices, inform translocation management and guide research into the clinical significance and impacts of PhaHV-1 infection in koalas.
Collapse
Affiliation(s)
- Belinda R Wright
- Koala Health Hub, Sydney School of Veterinary Science, University of Sydney, Camperdown, New South Wales, Australia
| | - Martina Jelocnik
- Centre for Bioinnovation, University of The Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Andrea Casteriano
- Koala Health Hub, Sydney School of Veterinary Science, University of Sydney, Camperdown, New South Wales, Australia
| | - Yasmine S S Muir
- Koala Health Hub, Sydney School of Veterinary Science, University of Sydney, Camperdown, New South Wales, Australia
| | - Alistair R Legione
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Paola K Vaz
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Joanne M Devlin
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Damien P Higgins
- Koala Health Hub, Sydney School of Veterinary Science, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
9
|
Diversity and transmission of koala retrovirus: a case study in three captive koala populations. Sci Rep 2022; 12:15787. [PMID: 36138048 PMCID: PMC9499970 DOI: 10.1038/s41598-022-18939-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Koala retrovirus is a recently endogenized retrovirus associated with the onset of neoplasia and infectious disease in koalas. There are currently twelve described KoRV subtypes (KoRV-A to I, K–M), most of which were identified through recently implemented deep sequencing methods which reveal an animals’ overall KoRV profile. This approach has primarily been carried out on wild koala populations around Australia, with few investigations into the whole-population KoRV profile of captive koala colonies to date. This study conducted deep sequencing on 64 captive koalas of known pedigree, housed in three institutions from New South Wales and South-East Queensland, to provide a detailed analysis of KoRV genetic diversity and transmission. The final dataset included 93 unique KoRV sequences and the first detection of KoRV-E within Australian koala populations. Our analysis suggests that exogenous transmission of KoRV-A, B, D, I and K primarily occurs between dam and joey. Detection of KoRV-D in a neonate sample raises the possibility of this transmission occurring in utero. Overall, the prevalence and abundance of KoRV subtypes was found to vary considerably between captive populations, likely due to their different histories of animal acquisition. Together these findings highlight the importance of KoRV profiling for captive koalas, in particular females, who play a primary role in KoRV exogenous transmission.
Collapse
|
10
|
Kayesh MEH, Hashem MA, Maetani F, Goto A, Nagata N, Kasori A, Imanishi T, Tsukiyama-Kohara K. Molecular Insights into Innate Immune Response in Captive Koala Peripheral Blood Mononuclear Cells Co-Infected with Multiple Koala Retrovirus Subtypes. Pathogens 2022; 11:pathogens11080911. [PMID: 36015032 PMCID: PMC9414840 DOI: 10.3390/pathogens11080911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Koala retrovirus (KoRV) exists in both endogenous and exogenous forms and has appeared as a major threat to koala health and conservation. Currently, there are twelve identified KoRV subtypes: an endogenous subtype (KoRV-A) and eleven exogenous subtypes (KoRV-B to -I, KoRV-K, -L, and -M). However, information about subtype-related immune responses in koalas against multiple KoRV infections is limited. In this study, we investigated KoRV-subtype (A, B, C, D, and F)-related immunophenotypic changes, including CD4, CD8b, IFN-γ, IL-6, and IL-10 mRNA expression, in peripheral blood mononuclear cells (PBMCs) obtained from captive koalas (n = 37) infected with multiple KoRV subtypes (KoRV-A to F) reared in seven Japanese zoos. Based on KoRV subtype infection profiles, no significant difference in CD4 and CD8b mRNA expression was observed in the study populations. Based on the different KoRV subtype infections, we found that the IFN-γ mRNA expression in koala PMBCs differs insignificantly (p = 0.0534). In addition, IL-6 and IL-10 mRNA expression also did not vary significantly in koala PBMCs based on KoRV subtype differences. We also investigated the Toll-like receptors (TLRs) response, including TLR2–10, and TLR13 mRNA in koala PBMCs infected with multiple KoRV subtypes. Significant differential expression of TLR5, 7, 9, 10, and 13 mRNA was observed in the PBMCs from koalas infected with different KoRV subtypes. Therefore, based on the findings of this study, it is assumed that co-infection of multiple KoRV subtypes might modify the host innate immune response, including IFN-γ and TLRs responses. However, to have a more clear understanding regarding the effect of multiple KoRV subtypes on host cytokines and TLR response and pathogenesis, further large-scale studies including the koalas negative for KoRV and koalas infected with other KoRV subtypes (KoRV-A to -I, KoRV-K, -L and -M) are required.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | | | - Atsushi Goto
- Awaji Farm Park England Hill Zoo, Minamiawaji 665-0443, Japan
| | | | | | | | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Correspondence: ; Tel.: +81-99-285-3589
| |
Collapse
|
11
|
Hashem MA, Kayesh MEH, Maetani F, Goto A, Nagata N, Kasori A, Imanishi T, Tsukiyama-Kohara K. Subtype distribution and expression of the koala retrovirus in the Japanese zoo koala population. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105297. [PMID: 35533919 DOI: 10.1016/j.meegid.2022.105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
Abstract
We investigated the proviral copies and RNA expression in koala retrovirus (KoRV)-infected koalas. To ascertain any variation in viral load by institution, age, sex, or body condition score, we quantified KoRV proviral DNA and RNA loads in captive koalas (n = 37) reared in Japanese zoos. All koalas were positive for KoRV genes (pol, LTRs, and env of KoRV-A) in genomic DNA (gDNA), and 91.89% were positive for the pol gene in RNA. In contrast, the distribution rates of KoRV-B, KoRV-C, KoRV-D, and KoRV-F env genes in gDNA were 94.59%, 27.03%, 67.57%, and 54.05%, respectively. A wide inter-individual variation and/or a significant inter-institutional difference in proviral DNA (p < 0.0001) and RNA (p < 0.001) amounts (copies/103 koala β-actin copies) were observed in Awaji Farm England Hill Zoo koalas, which were obtained from southern koala populations, suggesting exogenous incorporation of KoRV in these koalas. Significant (p < 0.05) age differences were noted in KoRV RNA load (p < 0.05) and median total RNA load (p < 0.001), with loads higher in younger koalas (joeys and juveniles). Thus, the current study provides the distribution of KoRV subtypes in Japanese zoo koala populations and identifies several additional risk factors (sex, age, and body condition) associated with KoRV expression.
Collapse
Affiliation(s)
- Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Department of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Department of Health Chattogram City Corporation, Chattogram 4000, Bangladesh
| | - Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Department of Microbiology and Public Health, Patuakhali Science and Technology University, Babuganj, Barishal 8210, Bangladesh
| | | | | | | | | | | | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Department of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
12
|
Tarlinton RE, Legione AR, Sarker N, Fabijan J, Meers J, McMichael L, Simmons G, Owen H, Seddon JM, Dick G, Ryder JS, Hemmatzedah F, Trott DJ, Speight N, Holmes N, Loose M, Emes RD. Differential and defective transcription of koala retrovirus indicates the complexity of host and virus evolution. J Gen Virol 2022; 103. [PMID: 35762858 DOI: 10.1099/jgv.0.001749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Koala retrovirus (KoRV) is unique amongst endogenous (inherited) retroviruses in that its incorporation to the host genome is still active, providing an opportunity to study what drives this fundamental process in vertebrate genome evolution. Animals in the southern part of the natural range of koalas were previously thought to be either virus-free or to have only exogenous variants of KoRV with low rates of KoRV-induced disease. In contrast, animals in the northern part of their range universally have both endogenous and exogenous KoRV with very high rates of KoRV-induced disease such as lymphoma. In this study we use a combination of sequencing technologies, Illumina RNA sequencing of 'southern' (south Australian) and 'northern' (SE QLD) koalas and CRISPR enrichment and nanopore sequencing of DNA of 'southern' (South Australian and Victorian animals) to retrieve full-length loci and intregration sites of KoRV variants. We demonstrate that koalas that tested negative to the KoRV pol gene qPCR, used to detect replication-competent KoRV, are not in fact KoRV-free but harbour defective, presumably endogenous, 'RecKoRV' variants that are not fixed between animals. This indicates that these populations have historically been exposed to KoRV and raises questions as to whether these variants have arisen by chance or whether they provide a protective effect from the infectious forms of KoRV. This latter explanation would offer the intriguing prospect of being able to monitor and selectively breed for disease resistance to protect the wild koala population from KoRV-induced disease.
Collapse
Affiliation(s)
- R E Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - A R Legione
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Australia
| | - N Sarker
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - J Fabijan
- Longleat Safari Park, Durrel Wildlife Conservation Trust, UK
| | - J Meers
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - L McMichael
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - G Simmons
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - H Owen
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - J M Seddon
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - G Dick
- Longleat Safari Park, Durrel Wildlife Conservation Trust, UK
| | - J S Ryder
- Garston Veterinary Group, Somerset, UK
| | - F Hemmatzedah
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - D J Trott
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - N Speight
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - N Holmes
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - M Loose
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - R D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| |
Collapse
|
13
|
Blyton MDJ, Pyne M, Young P, Chappell K. Koala retrovirus load and non-A subtypes are associated with secondary disease among wild northern koalas. PLoS Pathog 2022; 18:e1010513. [PMID: 35588407 PMCID: PMC9119473 DOI: 10.1371/journal.ppat.1010513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/08/2022] [Indexed: 01/17/2023] Open
Abstract
Koala Retrovirus (KoRV) has been associated with neoplasia in the vulnerable koala (Phascolarctos cinereus). However, there are conflicting findings regarding its association with secondary disease. We undertook a large-scale assessment of how the different KoRV subtypes and viral load are associated with Chlamydia pecorum infection and a range of disease pathologies in 151 wild koalas admitted for care to Currumbin Wildlife Hospital, Australia. Viral load (KoRV pol copies per ml of plasma) was the best predictor of more disease pathologies than any other KoRV variable. The predicted probability of a koala having disease symptoms increased from 25% to over 85% across the observed range of KoRV load, while the predicted probability of C. pecorum infection increased from 40% to over 80%. We found a negative correlation between the proportion of env deep sequencing reads that were endogenous KoRV-A and total KoRV load. This is consistent with suppression of endogenous KoRV-A, while the exogenous KoRV subtypes obtain high infection levels. Additionally, we reveal evidence that the exogenous subtypes are directly associated with secondary disease, with the proportion of reads that were the endogenous KoRV-A sequence a negative predictor of overall disease probability after the effect of KoRV load was accounted for. Further, koalas that were positive for KoRV-D or KoRV-D/F were more likely to have urogenital C. pecorum infection or low body condition score, respectively, irrespective of KoRV load. By contrast, our findings do not support previous findings that KoRV-B in particular is associated with Chlamydial disease. Based on these findings we suggest that koala research and conservation programs should target understanding what drives individual differences in KoRV load and limiting exogenous subtype diversity within populations, rather than seeking to eliminate any particular subtype.
Collapse
Affiliation(s)
- Michaela D. J. Blyton
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, Australia
| | - Michael Pyne
- Currumbin Wildlife Hospital and Foundation, Currumbin, Queensland, Australia
| | - Paul Young
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, Australia
| | - Keith Chappell
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, Australia
- The University of Queensland, Australian Institute of Bioengineering and Nanotechnology, St Lucia, Queensland, Australia
| |
Collapse
|
14
|
Denner J. Vaccination against the Koala Retrovirus (KoRV): Problems and Strategies. Animals (Basel) 2021; 11:ani11123555. [PMID: 34944329 PMCID: PMC8697897 DOI: 10.3390/ani11123555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The koala retrovirus (KoRV) is spreading in the koala population from the north to the south of Australia and is also in the process of endogenization into the koala genome. Virus infection is associated with tumorigenesis and immunodeficiency and is contributing to the decline of the animal population. Antibody production is an excellent marker of retrovirus infection; however, animals carrying endogenous KoRV are tolerant. Therefore, the therapeutic immunization of animals carrying endogenous KoRV seems to be ineffective. Using the recombinant transmembrane (TM) envelope protein of the KoRV, we immunized goats, rats and mice, obtaining in all cases neutralizing antibodies which recognize epitopes in the fusion peptide proximal region (FPPR), and in the membrane-proximal external region (MPER). Immunizing several animal species with the corresponding TM envelope protein of the closely related porcine endogenous retrovirus (PERV), as well as the feline leukemia virus (FeLV), we also induced neutralizing antibodies with similar epitopes. Immunizing with the TM envelope protein in addition to the surface envelope proteins of all three viruses resulted in higher titers of neutralizing antibodies. Immunizing KoRV-negative koalas with our vaccine (which is composed of both envelope proteins) may protect these animals from infection, and these may be the starting points of a virus-free population.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, Robert von Ostertag-Str. 7-13, 14163 Berlin, Germany
| |
Collapse
|
15
|
Wang P, Yue C, Liu K, Lu D, Liu S, Yao S, Li X, Su X, Ren K, Chai Y, Qi J, Zhao Y, Lou Y, Sun Z, Gao GF, Liu WJ. Peptide Presentations of Marsupial MHC Class I Visualize Immune Features of Lower Mammals Paralleled with Bats. THE JOURNAL OF IMMUNOLOGY 2021; 207:2167-2178. [PMID: 34535575 DOI: 10.4049/jimmunol.2100350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/03/2021] [Indexed: 12/29/2022]
Abstract
Marsupials are one of three major mammalian lineages that include the placental eutherians and the egg-laying monotremes. The marsupial brushtail possum is an important protected species in the Australian forest ecosystem. Molecules encoded by the MHC genes are essential mediators of adaptive immune responses in virus-host interactions. Yet, nothing is known about the peptide presentation features of any marsupial MHC class I (MHC I). This study identified a series of possum MHC I Trvu-UB*01:01 binding peptides derived from wobbly possum disease virus (WPDV), a lethal virus of both captive and feral possum populations, and unveiled the structure of marsupial peptide/MHC I complex. Notably, we found the two brushtail possum-specific insertions, the 3-aa Ile52Glu53Arg54 and 1-aa Arg154 insertions are located in the Trvu-UB*01:01 peptide binding groove (PBG). The 3-aa insertion plays a pivotal role in maintaining the stability of the N terminus of Trvu-UB*01:01 PBG. This aspect of marsupial PBG is unexpectedly similar to the bat MHC I Ptal-N*01:01 and is shared with lower vertebrates from elasmobranch to monotreme, indicating an evolution hotspot that may have emerged from the pathogen-host interactions. Residue Arg154 insertion, located in the α2 helix, is available for TCR recognition, and it has a particular influence on promoting the anchoring of peptide WPDV-12. These findings add significantly to our understanding of adaptive immunity in marsupials and its evolution in vertebrates. Our findings have the potential to impact the conservation of the protected species brushtail possum and other marsupial species.
Collapse
Affiliation(s)
- Pengyan Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Can Yue
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - Dan Lu
- Savaid Medical School, University of Chinese Academy of Science, Beijing, China
| | - Sai Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sijia Yao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Keyi Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - George F Gao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; .,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; and
| | - William J Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China; .,NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
16
|
Koala retrovirus genetic diversity and transmission dynamics within captive koala populations. Proc Natl Acad Sci U S A 2021; 118:2024021118. [PMID: 34493581 DOI: 10.1073/pnas.2024021118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 05/18/2021] [Indexed: 12/27/2022] Open
Abstract
Koala populations are currently in rapid decline across Australia, with infectious diseases being a contributing cause. The koala retrovirus (KoRV) is a gammaretrovirus present in both captive and wild koala colonies that presents an additional challenge for koala conservation in addition to habitat loss, climate change, and other factors. Currently, nine different subtypes (A to I) have been identified; however, KoRV genetic diversity analyses have been limited. KoRV is thought to be exogenously transmitted between individuals, with KoRV-A also being endogenous and transmitted through the germline. The mechanisms of exogenous KoRV transmission are yet to be extensively investigated. Here, deep sequencing was employed on 109 captive koalas of known pedigree, housed in two institutions from Southeast Queensland, to provide a detailed analysis of KoRV transmission dynamics and genetic diversity. The final dataset included 421 unique KoRV sequences, along with the finding of an additional subtype (KoRV-K). Our analysis suggests that exogenous transmission of KoRV occurs primarily between dam and joey, with evidence provided for multiple subtypes, including nonendogenized KoRV-A. No evidence of sexual transmission was observed, with mating partners found to share a similar number of sequences as unrelated koala pairs. Importantly, both distinct captive colonies showed similar trends. These findings indicate that breeding strategies or antiretroviral treatment of females could be employed as effective management approaches in combating KoRV transmission.
Collapse
|
17
|
Multiple Infiltration and Cross-Species Transmission of Foamy Viruses across the Paleozoic to the Cenozoic Era. J Virol 2021; 95:e0048421. [PMID: 33910951 DOI: 10.1128/jvi.00484-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Foamy viruses (FVs) are complex retroviruses that can infect humans and other animals. In this study, by integrating transcriptomic and genomic data, we discovered 412 FVs from 6 lineages in amphibians, which significantly increased the known set of FVs in amphibians. Among these lineages, salamander FVs maintained a coevolutionary pattern with their hosts that could be dated back to the Paleozoic era, while in contrast, frog FVs were much more likely acquired from cross-species (class-level) transmission in the Cenozoic era. In addition, we found that three distinct FV lineages had integrated into the genome of a salamander. Unexpectedly, we identified a lineage of endogenous FVs in caecilians that expressed all complete major genes, demonstrating the potential existence of an exogenous form of FV outside of mammals. Our discovery of rare phenomena in amphibian FVs has significantly increased our understanding of the macroevolution of the complex retrovirus. IMPORTANCE Foamy viruses (FVs) represent, more so than other viruses, the best model of coevolution between a virus and a host. This study represents the largest investigation so far of amphibian FVs and reveals 412 FVs of 6 distinct lineages from three major orders of amphibians. Besides a coevolutionary pattern, cross-species and repeated infections were also observed during the evolution of amphibian FVs. Remarkably, expressed FVs including a potential exogenous form were discovered, suggesting that active FVs might be underestimated in nature. These findings revealed that the multiple origins and complex evolution of amphibian FVs started from the Paleozoic era.
Collapse
|
18
|
Stephenson T, Speight N, Low WY, Woolford L, Tearle R, Hemmatzadeh F. Molecular Diagnosis of Koala Retrovirus (KoRV) in South Australian Koalas ( Phascolarctos cinereus). Animals (Basel) 2021; 11:ani11051477. [PMID: 34065572 PMCID: PMC8161083 DOI: 10.3390/ani11051477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Koala retrovirus (KoRV) is a significant threat to koalas across Australia. Koalas in northern koala populations (from New South Wales and Queensland) have KoRV inserted into their DNA and inherited to their offspring. Southern koala populations (from Victoria and South Australia) have KoRV infection spread through close contact of koalas. As such, there are koalas within South Australia that are not infected with KoRV. Accurate diagnosis of the infection of each koala is therefore fundamental for disease studies. Previous studies have shown differences in prevalence of different KoRV genes in the Mount Lofty Ranges Koala population; therefore, clarification is necessary. This study uses a large cohort (n = 216) and defines the diagnostic regions of the KoRV genome within the South Australian population. Using multiple molecular techniques, it demonstrates strong evidence for two clear groupings of koalas: KoRV positive and KoRV negative. Within this study, a population of 41% were shown to be KoRV positive and 57% were KoRV negative, with 2% inconclusive. This differentiation is of great importance when examining the clinical importance of KoRV infection within southern koalas. Abstract Koala retrovirus, a recent discovery in Australian koalas, is endogenised in 100% of northern koalas but has lower prevalence in southern populations, with lower proviral and viral loads, and an undetermined level of endogenisation. KoRV has been associated with lymphoid neoplasia, e.g., lymphoma. Recent studies have revealed high complexity in southern koala retroviral infections, with a need to clarify what constitutes positive and negative cases. This study aimed to define KoRV infection status in Mount Lofty Ranges koalas in South Australia using RNA-seq and proviral analysis (n = 216). The basis for positivity of KoRV was deemed the presence of central regions of the KoRV genome (gag 2, pol, env 1, and env 2) and based on this, 41% (89/216) koalas were positive, 57% (124/216) negative, and 2% inconclusive. These genes showed higher expression in lymph node tissue from KoRV positive koalas with lymphoma compared with other KoRV positive koalas, which showed lower, fragmented expression. Terminal regions (LTRs, partial gag, and partial env) were present in SA koalas regardless of KoRV status, with almost all (99.5%, 215/216) koalas positive for gag 1 by proviral PCR. Further investigation is needed to understand the differences in KoRV infection in southern koala populations.
Collapse
Affiliation(s)
- Tamsyn Stephenson
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
- Correspondence:
| | - Natasha Speight
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
| | - Wai Yee Low
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (W.Y.L.); (R.T.)
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
- Veterinary Diagnostics Laboratory, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia
| | - Rick Tearle
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (W.Y.L.); (R.T.)
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
| |
Collapse
|
19
|
Kayesh MEH, Hashem MA, Tsukiyama-Kohara K. Toll-Like Receptor and Cytokine Responses to Infection with Endogenous and Exogenous Koala Retrovirus, and Vaccination as a Control Strategy. Curr Issues Mol Biol 2021; 43:52-64. [PMID: 33946297 PMCID: PMC8928999 DOI: 10.3390/cimb43010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Koala populations are currently declining and under threat from koala retrovirus (KoRV) infection both in the wild and in captivity. KoRV is assumed to cause immunosuppression and neoplastic diseases, favoring chlamydiosis in koalas. Currently, 10 KoRV subtypes have been identified, including an endogenous subtype (KoRV-A) and nine exogenous subtypes (KoRV-B to KoRV-J). The host’s immune response acts as a safeguard against pathogens. Therefore, a proper understanding of the immune response mechanisms against infection is of great importance for the host’s survival, as well as for the development of therapeutic and prophylactic interventions. A vaccine is an important protective as well as being a therapeutic tool against infectious disease, and several studies have shown promise for the development of an effective vaccine against KoRV. Moreover, CRISPR/Cas9-based genome editing has opened a new window for gene therapy, and it appears to be a potential therapeutic tool in many viral infections, which could also be investigated for the treatment of KoRV infection. Here, we discuss the recent advances made in the understanding of the immune response in KoRV infection, as well as the progress towards vaccine development against KoRV infection in koalas.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Health, Chattogram City Corporation, Chattogram 4000, Bangladesh
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Correspondence: ; Tel.: +81-99-285-3589
| |
Collapse
|
20
|
Hashem MA, Kayesh MEH, Maetani F, Eiei T, Mochizuki K, Ochiai S, Ito A, Ito N, Sakurai H, Asai T, Tsukiyama-Kohara K. Koala retrovirus (KoRV) subtypes and their impact on captive koala (Phascolarctos cinereus) health. Arch Virol 2021; 166:1893-1901. [PMID: 33900468 DOI: 10.1007/s00705-021-05078-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/07/2021] [Indexed: 01/20/2023]
Abstract
Koala retrovirus (KoRV), a major pathogen of koalas, exists in both endogenous (KoRV-A) and exogenous forms (KoRV-B to J). However, the impact of infection with multiple subtypes is not well understood. Accordingly, in this study, we surveyed a representative sample from a Japanese zoo population to determine the infection status for three KoRV subtypes (KoRV-A, B, and C) and to investigate the proviral and RNA load profiles in animals with single- and multiple-subtype infections, using peripheral blood mononuclear cells (PBMCs) and plasma. Six koalas were evaluated in the study; all were infected with KoRV-A, and two koalas were coinfected with non-A subtypes (KoRV-B and/or KoRV-C). The highest KoRV total RNA and viral loads in PBMCs and plasma were found in a koala infected with multiple subtypes (KoRV-A, -B and -C). The other koala infected with multiple subtypes (KoRV-A and B) showed the highest proviral PBMC load but the lowest RNA copy number in PBMC and plasma. PBMCs from this animal were cultured for further investigation, and KoRV RNA was detected in the cells and culture supernatant after 7 and/or 14 days. The koalas harboring multiple subtypes had a higher white blood cell count than those harboring only KoRV-A and were judged to be leukemic, and they subsequently died due to lymphoma. Accordingly, we conclude that coinfection with multiple KoRV subtypes may be linked to more-severe disease. In a sequence alignment, the detected KoRV-A env gene showed 100% sequence identity to the reference gene, whereas the KoRV-B and -C env genes varied from their reference sequences.
Collapse
Affiliation(s)
- Md Abul Hashem
- Transboundary Animal Diseases Center, Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.,Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Department of Health, Chattogram City Corporation, Chattogram, 4000, Bangladesh
| | - Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Center, Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.,Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Department of Microbiology and Public Health, Patuakhali Science and Technology University, Babugonj, Barishal, 8210, Bangladesh
| | - Fumie Maetani
- Hirakawa Zoological Park, Kagoshima, 891-0133, Japan
| | - Taiki Eiei
- Hirakawa Zoological Park, Kagoshima, 891-0133, Japan
| | | | | | - Ayaka Ito
- Hirakawa Zoological Park, Kagoshima, 891-0133, Japan
| | - Nanao Ito
- Hirakawa Zoological Park, Kagoshima, 891-0133, Japan
| | | | - Takayuki Asai
- Hirakawa Zoological Park, Kagoshima, 891-0133, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan. .,Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
21
|
Kayesh MEH, Hashem MA, Tsukiyama-Kohara K. Toll-Like Receptor Expression Profiles in Koala ( Phascolarctos cinereus) Peripheral Blood Mononuclear Cells Infected with Multiple KoRV Subtypes. Animals (Basel) 2021; 11:ani11040983. [PMID: 33915914 PMCID: PMC8065587 DOI: 10.3390/ani11040983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Koala retrovirus (KoRV) is a major pathogen of koala. Toll-like receptors (TLRs) are important innate immune component that are evolutionary conserved and play a crucial role in the early defense against invading pathogens. The expression profile of TLRs in KoRV infection in koalas is not characterized yet. Therefore, in this study, we characterized TLR expression patterns in koalas infected with KoRV-A only vs. KoRV-A with KoRV-B and/or -C. Using qRT-PCR, we measured TLR2–10 and TLR13 mRNA expression in peripheral blood mononuclear cells (PBMCs) and/or tissues from captive koalas in Japanese zoos. We observed variations in TLR expression in koalas with a range of subtype infection profiles (KoRV-A only vs. KoRV-A with KoRV-B and/or -C). The findings of this study might improve our current understanding of koala’s immune response to KoRV infection. Abstract Toll-like receptors (TLRs), evolutionarily conserved pattern recognition receptors, play an important role in innate immunity by recognizing microbial pathogen-associated molecular patterns. Koala retrovirus (KoRV), a major koala pathogen, exists in both endogenous (KoRV-A) and exogenous forms (KoRV-B to J). However, the expression profile of TLRs in koalas infected with KoRV-A and other subtypes is yet to characterize. Here, we investigated TLR expression profiles in koalas with a range of subtype infection profiles (KoRV-A only vs. KoRV-A with KoRV-B and/or -C). To this end, we cloned partial sequences for TLRs (TLR2–10 and TLR13), developed real-time PCR assays, and determined TLRs mRNA expression patterns in koala PBMCs and/or tissues. All the reported TLRs for koala were expressed in PBMCs, and variations in TLR expression were observed in koalas infected with exogenous subtypes (KoRV-B and KoRV-C) compared to the endogenous subtype (KoRV-A) only, which indicates the implications of TLRs in KoRV infection. TLRs were also found to be differentially expressed in koala tissues. This is the first report of TLR expression profiles in koala, which provides insights into koala’s immune response to KoRV infection that could be utilized for the future exploitation of TLR modulators in the maintenance of koala health.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Health, Chattogram City Corporation, Chattogram 4000, Bangladesh
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Correspondence: ; Tel.: +81-99-285-3589
| |
Collapse
|
22
|
Ong OTW, Skinner EB, Johnson BJ, Old JM. Mosquito-Borne Viruses and Non-Human Vertebrates in Australia: A Review. Viruses 2021; 13:265. [PMID: 33572234 PMCID: PMC7915788 DOI: 10.3390/v13020265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/02/2023] Open
Abstract
Mosquito-borne viruses are well recognized as a global public health burden amongst humans, but the effects on non-human vertebrates is rarely reported. Australia, houses a number of endemic mosquito-borne viruses, such as Ross River virus, Barmah Forest virus, and Murray Valley encephalitis virus. In this review, we synthesize the current state of mosquito-borne viruses impacting non-human vertebrates in Australia, including diseases that could be introduced due to local mosquito distribution. Given the unique island biogeography of Australia and the endemism of vertebrate species (including macropods and monotremes), Australia is highly susceptible to foreign mosquito species becoming established, and mosquito-borne viruses becoming endemic alongside novel reservoirs. For each virus, we summarize the known geographic distribution, mosquito vectors, vertebrate hosts, clinical signs and treatments, and highlight the importance of including non-human vertebrates in the assessment of future disease outbreaks. The mosquito-borne viruses discussed can impact wildlife, livestock, and companion animals, causing significant changes to Australian ecology and economy. The complex nature of mosquito-borne disease, and challenges in assessing the impacts to non-human vertebrate species, makes this an important topic to periodically review.
Collapse
Affiliation(s)
- Oselyne T. W. Ong
- Children’s Medical Research Institute, Westmead, NSW 2145, Australia;
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Eloise B. Skinner
- Environmental Futures Research Institute, Griffith University, Gold Coast, QLD 4222, Australia;
- Biology Department, Stanford University, Stanford, CA 94305, USA
| | - Brian J. Johnson
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Julie M. Old
- School of Science, Western Sydney University, Hawkesbury, Locked bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
23
|
Kayesh MEH, Hashem MA, Maetani F, Eiei T, Mochizuki K, Ochiai S, Ito A, Ito N, Sakurai H, Asai T, Tsukiyama-Kohara K. CD4, CD8b, and Cytokines Expression Profiles in Peripheral Blood Mononuclear Cells Infected with Different Subtypes of KoRV from Koalas ( Phascolarctos cinereus) in a Japanese Zoo. Viruses 2020; 12:v12121415. [PMID: 33316950 PMCID: PMC7764738 DOI: 10.3390/v12121415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Koala retrovirus (KoRV) poses a major threat to koala health and conservation, and currently has 10 identified subtypes: an endogenous subtype (KoRV-A) and nine exogenous subtypes (KoRV-B to KoRV-J). However, subtype-related variations in koala immune response to KoRV are uncharacterized. In this study, we investigated KoRV-related immunophenotypic changes in a captive koala population (Hirakawa zoo, Japan) with a range of subtype infection profiles (KoRV-A only vs. KoRV-A with KoRV-B and/or -C), based on qPCR measurements of CD4, CD8b, IL-6, IL-10 and IL-17A mRNA expression in unstimulated and concanavalin (Con)-A-stimulated peripheral blood mononuclear cells (PBMCs). Although CD4, CD8b, and IL-17A expression did not differ between KoRV subtype infection profiles, IL-6 expression was higher in koalas with exogenous infections (both KoRV-B and KoRV-C) than those with the endogenous subtype only. IL-10 expression did not significantly differ between subtype infection profiles but did show a marked increase—accompanying decreased CD4:CD8b ratio—in a koala with lymphoma and co-infected with KoRV-A and -B, thus suggesting immunosuppression. Taken together, the findings of this study provide insights into koala immune response to multiple KoRV subtypes, which can be exploited for the development of prophylactic and therapeutic interventions for this iconic marsupial species.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Health, Chattogram City Corporation, Chattogram 4000, Bangladesh
| | - Fumie Maetani
- Hirakawa Zoological Park, Kagoshima 891-0133, Japan; (F.M.); (T.E.); (K.M.); (S.O.); (A.I.); (N.I.); (H.S.); (T.A.)
| | - Taiki Eiei
- Hirakawa Zoological Park, Kagoshima 891-0133, Japan; (F.M.); (T.E.); (K.M.); (S.O.); (A.I.); (N.I.); (H.S.); (T.A.)
| | - Kyoya Mochizuki
- Hirakawa Zoological Park, Kagoshima 891-0133, Japan; (F.M.); (T.E.); (K.M.); (S.O.); (A.I.); (N.I.); (H.S.); (T.A.)
| | - Shinsaku Ochiai
- Hirakawa Zoological Park, Kagoshima 891-0133, Japan; (F.M.); (T.E.); (K.M.); (S.O.); (A.I.); (N.I.); (H.S.); (T.A.)
| | - Ayaka Ito
- Hirakawa Zoological Park, Kagoshima 891-0133, Japan; (F.M.); (T.E.); (K.M.); (S.O.); (A.I.); (N.I.); (H.S.); (T.A.)
| | - Nanao Ito
- Hirakawa Zoological Park, Kagoshima 891-0133, Japan; (F.M.); (T.E.); (K.M.); (S.O.); (A.I.); (N.I.); (H.S.); (T.A.)
| | - Hiroko Sakurai
- Hirakawa Zoological Park, Kagoshima 891-0133, Japan; (F.M.); (T.E.); (K.M.); (S.O.); (A.I.); (N.I.); (H.S.); (T.A.)
| | - Takayuki Asai
- Hirakawa Zoological Park, Kagoshima 891-0133, Japan; (F.M.); (T.E.); (K.M.); (S.O.); (A.I.); (N.I.); (H.S.); (T.A.)
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Correspondence: ; Tel.: +81-99-285-3589
| |
Collapse
|
24
|
Kayesh MEH, Hashem MA, Tsukiyama-Kohara K. Koala retrovirus epidemiology, transmission mode, pathogenesis, and host immune response in koalas (Phascolarctos cinereus): a review. Arch Virol 2020; 165:2409-2417. [PMID: 32770481 PMCID: PMC7413838 DOI: 10.1007/s00705-020-04770-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022]
Abstract
Koala retrovirus (KoRV) is a major threat to koala health and conservation. It also represents a series of challenges across the fields of virology, immunology, and epidemiology that are of great potential interest to any researcher in the field of retroviral diseases. KoRV is a gammaretrovirus that is present in both endogenous and exogenous forms in koala populations, with a still-active endogenization process. KoRV may induce immunosuppression and neoplastic conditions such as lymphoma and leukemia and play a role in chlamydiosis and other diseases in koalas. KoRV transmission modes, pathogenesis, and host immune response still remain unclear, and a clear understanding of these areas is critical for devising effective preventative and therapeutic strategies. Research on KoRV is clearly critical for koala conservation. In this review, we provide an overview of the current understanding and future challenges related to KoRV epidemiology, transmission mode, pathogenesis, and host immune response and discuss prospects for therapeutic and preventive vaccines.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Department of Health, Chattogram City Corporation, Chattogram, 4000, Bangladesh
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
25
|
Zheng H, Pan Y, Tang S, Pye GW, Stadler CK, Vogelnest L, Herrin KV, Rideout BA, Switzer WM. Koala retrovirus diversity, transmissibility, and disease associations. Retrovirology 2020; 17:34. [PMID: 33008414 PMCID: PMC7530975 DOI: 10.1186/s12977-020-00541-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 11/12/2022] Open
Abstract
Background Koalas are infected with the koala retrovirus (KoRV) that exists as exogenous or endogenous viruses. KoRV is genetically diverse with co-infection with up to ten envelope subtypes (A-J) possible; KoRV-A is the prototype endogenous form. KoRV-B, first found in a small number of koalas with an increased leukemia prevalence at one US zoo, has been associated with other cancers and increased chlamydial disease. To better understand the molecular epidemiology of KoRV variants and the effect of increased viral loads (VLs) on transmissibility and pathogenicity we developed subtype-specific quantitative PCR (qPCR) assays and tested blood and tissue samples from koalas at US zoos (n = 78), two Australian zoos (n = 27) and wild-caught (n = 21) in Australia. We analyzed PCR results with available clinical, demographic, and pedigree data. Results All koalas were KoRV-A-infected. A small number of koalas (10.3%) at one US zoo were also infected with non-A subtypes, while a higher non-A subtype prevalence (59.3%) was found in koalas at Australian zoos. Wild koalas from one location were only infected with KoRV-A. We observed a significant association of infection and plasma VLs of non-A subtypes in koalas that died of leukemia/lymphoma and other neoplasias and report cancer diagnoses in KoRV-A-positive animals. Infection and VLs of non-A subtypes was not associated with age or sex. Transmission of non-A subtypes occurred from dam-to-offspring and likely following adult-to-adult contact, but associations with contact type were not evaluated. Brief antiretroviral treatment of one leukemic koala infected with high plasma levels of KoRV-A, -B, and -F did not affect VL or disease progression. Conclusions Our results show a significant association of non-A KoRV infection and plasma VLs with leukemia and other cancers. Although we confirm dam-to-offspring transmission of these variants, we also show other routes are possible. Our validated qPCR assays will be useful to further understand KoRV epidemiology and its zoonotic transmission potential for humans exposed to koalas because KoRV can infect human cells.
Collapse
Affiliation(s)
- HaoQiang Zheng
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, MS G4530329, USA
| | - Yi Pan
- Quantitative Sciences and Data Management Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Shaohua Tang
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, MS G4530329, USA
| | - Geoffrey W Pye
- San Diego Zoo Global, San Diego, CA, 92112, USA.,Disney's Animals, Science, and Environment, Bay Lake, FL, 32830, USA
| | | | - Larry Vogelnest
- Taronga Conservation Society Australia, Taronga Zoo, Mosman, NSW, 2088, Australia
| | | | | | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, MS G4530329, USA.
| |
Collapse
|
26
|
Abstract
Bats are the reservoir for a large number of zoonotic viruses, including members of Coronaviridae (severe acute respiratory syndrome coronavirus [SARS-CoV] and SARS-CoV-2), Paramyxoviridae (Hendra and Nipah viruses), Rhabdoviridae (rabies virus), and Filoviridae (Ebola virus) as exemplars. Many retroviruses, such as human immunodeficiency virus, are similarly zoonotic; however, only infectious exogenous gammaretroviruses have recently been identified in bats. Here, viral metagenomic sequencing of samples from bats submitted for rabies virus testing, largely due to human exposure, identified a novel, highly divergent exogenous Deltaretrovirus from a big brown bat (Eptesicus fuscus) in South Dakota. The virus sequence, corresponding to Eptesicus fuscus deltaretrovirus (EfDRV), comprised a nearly complete coding region comprised of canonical 5'-gag-pro-pol-env-3' genes with 37% to 51% identity to human T-lymphotropic virus (HTLV), an infectious retrovirus that causes T-cell lymphoma. A putative tax gene with 27% identity to HTLV was located downstream of the pol gene along with a gene harbored in an alternative reading frame which possessed a conserved domain for an Epstein-Barr virus nuclear antigen involved in gene transactivation, suggesting a regulatory function similar to that of the deltaretrovirus rex gene. A TaqMan reverse transcriptase PCR (RT-PCR) targeting the pol gene identified 4/60 (6.7%) bats as positive for EfDRV, which, combined with a search of the E. fuscus genome that failed to identify sequences with homology to EfDRV, suggests that EfDRV is an infectious exogenous virus. As all known members of Deltaretrovirus can cause malignancies and E. fuscus is widely distributed in the Americas, often with a colonial roosting behavior in human dwellings, further studies are needed to investigate potential zoonosis.IMPORTANCE Bats host a large numbers of viruses, many of which are zoonotic. In the United States, the big brown bat (Eptesicus fuscus) is widely distributed and lives in small colonies that roost in cavities, often in human dwellings, leading to frequent human interaction. Viral metagenomic sequencing of samples from an E. fuscus bat submitted for rabies testing identified the first exogenous bat Deltaretrovirus The E. fuscus deltaretrovirus (EfDRV) genome consists of the typical deltaretrovial 5'-gag-pro-pol-env-3' genes along with genes encoding two putative transcriptional transactivator proteins distantly related to the Tax protein of human T-cell lymphotrophic virus and nuclear antigen 3B of Epstein-Barr virus. Searches of the E. fuscus genome sequence failed to identify endogenous EfDRV. RT-PCR targeting the EfDRV pol gene identified 4/60 (6.7%) bats with positive results. Together, these results suggest that EfDRV is exogenous. As all members of Deltaretrovirus are associated with T- and B-cell malignancies or neurologic disease, further studies on possible zoonosis are warranted.
Collapse
|
27
|
Quigley BL, Timms P. Helping koalas battle disease - Recent advances in Chlamydia and koala retrovirus (KoRV) disease understanding and treatment in koalas. FEMS Microbiol Rev 2020; 44:583-605. [PMID: 32556174 PMCID: PMC8600735 DOI: 10.1093/femsre/fuaa024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/14/2020] [Indexed: 12/31/2022] Open
Abstract
The iconic Australian marsupial, the koala (Phascolarctos cinereus), has suffered dramatic population declines as a result of habitat loss and fragmentation, disease, vehicle collision mortality, dog attacks, bushfires and climate change. In 2012, koalas were officially declared vulnerable by the Australian government and listed as a threatened species. In response, research into diseases affecting koalas has expanded rapidly. The two major pathogens affecting koalas are Chlamydia pecorum, leading to chlamydial disease and koala retrovirus (KoRV). In the last eight years, these pathogens and their diseases have received focused study regarding their sources, genetics, prevalence, disease presentation and transmission. This has led to vast improvements in pathogen detection and treatment, including the ongoing development of vaccines for each as a management and control strategy. This review will summarize and highlight the important advances made in understanding and combating C. pecorum and KoRV in koalas, since they were declared a threatened species. With complementary advances having also been made from the koala genome sequence and in our understanding of the koala immune system, we are primed to make a significant positive impact on koala health into the future.
Collapse
Affiliation(s)
- Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast,
90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast,
90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| |
Collapse
|
28
|
Olagoke O, Quigley BL, Hemmatzadeh F, Tzipori G, Timms P. Therapeutic vaccination of koalas harbouring endogenous koala retrovirus (KoRV) improves antibody responses and reduces circulating viral load. NPJ Vaccines 2020; 5:60. [PMID: 32699650 PMCID: PMC7367292 DOI: 10.1038/s41541-020-0210-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
The long-term survival of the koala is under serious threat from multiple factors, including infectious disease agents such as Chlamydia and koala retrovirus (KoRV). KoRV is present in both exogenous and endogenous forms, depending on the geographical location of the population. In the northern half of Australia, it is present as an endogenous infection in all koalas, making a case for an urgent need to develop a therapeutic vaccine that might prevent KoRV-associated pathologies in these koalas. To this end, we determined the therapeutic effects of vaccinating koalas harbouring endogenous KoRV with a recombinant KoRV Env protein combined with a Tri-adjuvant. We found that vaccination led to a significant increase in circulating anti-KoRV IgG levels, as well as increase in neutralising antibodies. Our study also showed that post-vaccination antibodies were able to recognize epitopes on the Env protein that were unrecognised pre-vaccination, as well as resulting in an increase in the recognition of the previously recognised epitopes. The vaccine also induced antibodies that were cross-reactive against multiple KoRV-subtypes. Finally, we found a complete clearance of KoRV-A in plasma from koalas that had detectable levels of KoRV-A pre-vaccination. Similarly, there was a significant reduction in the expression of KoRV-B viral RNA levels post-vaccination. Collectively, this study showed that koalas harbouring endogenous KoRV can benefit from prophylactic vaccination against KoRV using a recombinant KoRV-A Env protein and that the mechanism of this protection might be through the boosting of natural anti-KoRV antibodies and expanding the breadth of the recognised epitopes.
Collapse
Affiliation(s)
- Olusola Olagoke
- Genecology Research Center, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556 Australia
| | - Bonnie L Quigley
- Genecology Research Center, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556 Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371 Australia
| | - Galit Tzipori
- Lone Pine Koala Sanctuary, Fig Tree Pocket, Queensland, Australia
| | - Peter Timms
- Genecology Research Center, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556 Australia
| |
Collapse
|
29
|
Abstract
Bats are reservoirs of emerging viruses that are highly pathogenic to other mammals, including humans. Despite the diversity and abundance of bat viruses, to date they have not been shown to harbor exogenous retroviruses. Here we report the discovery and characterization of a group of koala retrovirus-related (KoRV-related) gammaretroviruses in Australian and Asian bats. These include the Hervey pteropid gammaretrovirus (HPG), identified in the scat of the Australian black flying fox (Pteropus alecto), which is the first reproduction-competent retrovirus found in bats. HPG is a close relative of KoRV and the gibbon ape leukemia virus (GALV), with virion morphology and Mn2+-dependent virion-associated reverse transcriptase activity typical of a gammaretrovirus. In vitro, HPG is capable of infecting bat and human cells, but not mouse cells, and displays a similar pattern of cell tropism as KoRV-A and GALV. Population studies reveal the presence of HPG and KoRV-related sequences in several locations across northeast Australia, as well as serologic evidence for HPG in multiple pteropid bat species, while phylogenetic analysis places these bat viruses as the basal group within the KoRV-related retroviruses. Taken together, these results reveal bats to be important reservoirs of exogenous KoRV-related gammaretroviruses.
Collapse
|
30
|
Fabijan J, Sarker N, Speight N, Owen H, Meers J, Simmons G, Seddon J, Emes RD, Tarlinton R, Hemmatzadeh F, Woolford L, Trott DJ. Pathological Findings in Koala Retrovirus-positive Koalas (Phascolarctos cinereus) from Northern and Southern Australia. J Comp Pathol 2020; 176:50-66. [PMID: 32359636 DOI: 10.1016/j.jcpa.2020.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 01/05/2023]
Abstract
Koala retrovirus (KoRV) infection shows differences in prevalence and load between northern and southern Australian koala populations; however, the effect of this on diseases such as lymphoma and chlamydial disease is unclear. This study compared clinicopathological findings, haematology and splenic lymphoid area of KoRV-positive koalas from northern (Queensland [Qld], n = 67) and southern (South Australia [SA], n = 92) populations in order to provide further insight into KoRV pathogenesis. Blood was collected for routine haematology and for measurement of KoRV proviral load by quantitative polymerase chain reaction (qPCR). Plasma samples were assessed for KoRV viral load by reverse transcriptase qPCR and conjunctival and cloacal swabs were collected for measurement of the load of Chlamydia pecorum (qPCR). During necropsy examination, spleen was collected for lymphoid area analysis. Lymphoma was morphologically similar between the populations and occurred in koalas with the highest KoRV proviral and viral loads. Severe ocular chlamydial disease was observed in both populations, but urinary tract disease was more severe in Qld, despite similar C. pecorum loads. No associations between KoRV and chlamydial disease severity or load were observed, except in SA where viral load correlated positively with chlamydial disease severity. In both populations, proviral and viral loads correlated positively with lymphocyte and metarubricyte counts and correlated negatively with erythrocyte and neutrophil counts. Splenic lymphoid area was correlated positively with viral load. This study has shown further evidence for KoRV-induced oncogenesis and highlighted that lymphocytes and splenic lymphoid tissue may be key sites for KoRV replication. However, KoRV infection appears to be highly complex and continued investigation is required to fully understand its pathogenesis.
Collapse
Affiliation(s)
- J Fabijan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.
| | - N Sarker
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - N Speight
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - H Owen
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - J Meers
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - G Simmons
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - J Seddon
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - R D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - R Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - F Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - L Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - D J Trott
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| |
Collapse
|
31
|
Fabijan J, Speight N, Boardman W, Hemmatzadeh F, Trott DJ, Woolford L. Haematological reference intervals of wild southern Australian koalas (Phascolarctos cinereus). Aust Vet J 2020; 98:207-215. [PMID: 32037511 DOI: 10.1111/avj.12923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/21/2019] [Accepted: 01/06/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Current haematology reference intervals (RIs) for koalas were developed in northern Australian koalas, using low numbers and/or individuals of unknown Chlamydia pecorum and koala retrovirus (KoRV) status. This study developed haematological RIs for wild, clinically healthy southern Australian koalas of known C. pecorum and KoRV infection status and investigated the effects of population, age and sex. METHODS Haematological RIs were determined for 138 clinically healthy South Australian koalas (Mount Lofty Ranges [MLR], n = 68; Kangaroo Island, n = 70) examined in April 2016 and February 2017, respectively. C. pecorum and KoRV status were determined by PCR. RESULTS RIs for southern koala haematological parameters were established for all koalas based on the finding that there were limited differences in haematological values in koalas with subclinical C. pecorum or KoRV infections (P > 0.05), except KoRV-infected koalas had a lower haematocrit than noninfected koalas. MLR koalas had significantly lower erythrocyte mass and leucocyte counts than Kangaroo Island koalas. Young koalas had significantly lower haemoglobin, haematocrit and higher mean cellular haemoglobin concentration and lymphocyte counts than adult koalas. MLR male koalas had elevated erythrocyte, leucocyte and neutrophil counts compared with MLR females. CONCLUSION The haematological RIs developed in this study are based on a large number of clinically healthy koalas, where subclinical C. pecorum and KoRV infections had no effect on haematological values and will be a valuable tool during clinical examination and disease investigation by veterinarians and researchers Australia-wide.
Collapse
Affiliation(s)
- J Fabijan
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, South Australia, Australia
| | - N Speight
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, South Australia, Australia
| | - Wsj Boardman
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, South Australia, Australia
| | - F Hemmatzadeh
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, South Australia, Australia
| | - D J Trott
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, South Australia, Australia
| | - L Woolford
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, South Australia, Australia
| |
Collapse
|
32
|
Butcher RG, Pettett LM, Fabijan J, Ebrahimie E, Mohammadi-Dehcheshmeh M, Speight KN, Boardman W, Bird PS, Trott DJ. Periodontal disease in free-ranging koalas (Phascolarctos cinereus) from the Mount Lofty Ranges, South Australia, and its association with koala retrovirus infection. Aust Vet J 2020; 98:200-206. [PMID: 31971256 DOI: 10.1111/avj.12919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND In northern Australian koala populations (Queensland and New South Wales), periodontal disease (gingivitis and periodontitis) is common while koala retrovirus subtype A is endogenous, with other subtypes transmitted exogenously. Koala retrovirus has been hypothesised to cause immune suppression and may predispose koalas to diseases caused by concurrent infections. In southern Australia populations (Victoria and South Australia) periodontal disease has not been investigated, and koala retrovirus is presumably exogenously transmitted. This study described oral health in South Australian koalas and investigated if an association between periodontal disease and koala retrovirus exists. METHODS Oral health was examined for wild-caught koalas from the Mount Lofty Ranges (n = 75). Koala retrovirus provirus was detected in whole blood using nested PCR and proviral load determined with qPCR. Periodontal disease severity was recorded and used to calculate the Final Oral Health Index (0-normal, 24-severe).Results Periodontal disease was observed in 84% (63/75) of koalas; 77% had gingivitis (58/75) and 65% (49/75) had periodontitis. The average Final Oral Health Index was 5.47 (s.d 3.13). Most cases of periodontal disease were associated with the incisors. Koala retrovirus-infected koalas were more likely to present with periodontitis (p = 0.042) and the Final Oral Health Index was negatively correlated with proviral load (ρ = -0.353, p = 0.017). CONCLUSION South Australian koalas had a high prevalence of gingivitis and periodontitis. Periodontal disease was more prevalent in the incisors. Exogenous koala retrovirus infection may also facilitate the development of periodontitis by modulation of the immune response to concurrent oral bacterial infections.
Collapse
Affiliation(s)
- R G Butcher
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - L M Pettett
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, 4343, Australia
| | - J Fabijan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - E Ebrahimie
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - M Mohammadi-Dehcheshmeh
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - K N Speight
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Wsj Boardman
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia.,Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - P S Bird
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, 4343, Australia
| | - D J Trott
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia.,Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
33
|
Sarker N, Tarlinton R, Owen H, David Emes R, Seddon J, Simmons G, Meers J. Novel insights into viral infection and oncogenesis from koala retrovirus (KoRV) infection of HEK293T cells. Gene 2020; 733:144366. [PMID: 31972306 DOI: 10.1016/j.gene.2020.144366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/22/2019] [Accepted: 01/12/2020] [Indexed: 01/11/2023]
Abstract
Koala retrovirus is thought to be an underlying cause of high levels of neoplasia and immunosuppression in koalas. While epidemiology studies suggest a strong link between KoRV and disease it has been difficult to prove causality because of the complex nature of the virus, which exists in both endogenous and exogenous forms. It has been difficult to identify koalas completely free of KoRV, and infection studies in koalas or koala cells are fraught with ethical and technical difficulties, respectively. This study uses KoRV infection of the susceptible human cell line HEK293T and RNAseq to demonstrate gene networks differentially regulated upon KoRV infection. Many of the pathways identified are those associated with viral infection, such as cytokine receptor interactions and interferon signalling pathways, as well as viral oncogenesis pathways. This study provides strong evidence that KoRV does indeed behave similarly to infectious retroviruses in stimulating antiviral and oncogenic cellular responses. In addition, it provides novel insights into KoRV oncogenesis with the identification of a group of histone family genes that are part of several oncogenic pathways as upregulated in KoRV infection.
Collapse
Affiliation(s)
- Nishat Sarker
- School of Veterinary Science, The University of Queensland, Australia; Laboratory of Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, United Kingdom
| | - Helen Owen
- School of Veterinary Science, The University of Queensland, Australia
| | - Richard David Emes
- School of Veterinary Medicine and Science, University of Nottingham, United Kingdom; Advanced Data Analysis Centre (ADAC), University of Nottingham, United Kingdom
| | - Jennifer Seddon
- School of Veterinary Science, The University of Queensland, Australia
| | - Greg Simmons
- School of Veterinary Science, The University of Queensland, Australia
| | - Joanne Meers
- School of Veterinary Science, The University of Queensland, Australia.
| |
Collapse
|
34
|
Koala retrovirus viral load and disease burden in distinct northern and southern koala populations. Sci Rep 2020; 10:263. [PMID: 31937823 PMCID: PMC6959342 DOI: 10.1038/s41598-019-56546-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/13/2019] [Indexed: 11/09/2022] Open
Abstract
Koala retrovirus (KoRV) displays features of both an endogenous and exogenous virus and is linked to neoplasia and immunosuppression in koalas. This study explores the apparent differences in the nature and impact of KoRV infection between geographically and genetically separated "northern" and "southern" koala populations, by investigating the disease status, completeness of the KoRV genome and the proviral (DNA) and viral (RNA) loads of 71 northern and 97 southern koalas. All northern animals were positive for all KoRV genes (gag, pro-pol and env) in both DNA and RNA forms, whereas many southern animals were missing one or more KoRV genes. There was a significant relationship between the completeness of the KoRV genome and clinical status in this population. The proviral and viral loads of the northern population were significantly higher than those of the southern population (P < 0.0001), and many provirus-positive southern animals failed to express any detectable KoRV RNA. Across both populations there was a positive association between proviral load and neoplasia (P = 0.009). Potential reasons for the differences in the nature of KoRV infection between the two populations are discussed.
Collapse
|
35
|
Tracking the Fate of Endogenous Retrovirus Segregation in Wild and Domestic Cats. J Virol 2019; 93:JVI.01324-19. [PMID: 31534037 DOI: 10.1128/jvi.01324-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022] Open
Abstract
Endogenous retroviruses (ERVs) of domestic cats (ERV-DCs) are one of the youngest feline ERV groups in domestic cats (Felis silvestris catus); some members are replication competent (ERV-DC10, ERV-DC18, and ERV-DC14), produce the antiretroviral soluble factor Refrex-1 (ERV-DC7 and ERV-DC16), or can generate recombinant feline leukemia virus (FeLV). Here, we investigated ERV-DC in European wildcats (Felis silvestris silvestris) and detected four loci: ERV-DC6, ERV-DC7, ERV-DC14, and ERV-DC16. ERV-DC14 was detected at a high frequency in European wildcats; however, it was replication defective due to a single G → A nucleotide substitution, resulting in an E148K substitution in the ERV-DC14 envelope (Env). This mutation results in a cleavage-defective Env that is not incorporated into viral particles. Introduction of the same mutation into feline and murine infectious gammaretroviruses resulted in a similar Env dysfunction. Interestingly, the same mutation was found in an FeLV isolate from naturally occurring thymic lymphoma and a mouse ERV, suggesting a common mechanism of virus inactivation. Refrex-1 was present in European wildcats; however, ERV-DC16, but not ERV-DC7, was unfixed in European wildcats. Thus, Refrex-1 has had an antiviral role throughout the evolution of the genus Felis, predating cat exposure to feline retroviruses. ERV-DC sequence diversity was present across wild and domestic cats but was locus dependent. In conclusion, ERVs have evolved species-specific phenotypes through the interplay between ERVs and their hosts. The mechanism of viral inactivation may be similar irrespective of the evolutionary history of retroviruses. The tracking of ancestral retroviruses can shed light on their roles in pathogenesis and host-virus evolution.IMPORTANCE Domestic cats (Felis silvestris catus) were domesticated from wildcats approximately 9,000 years ago via close interaction between humans and cats. During cat evolution, various exogenous retroviruses infected different cat lineages and generated numerous ERVs in the host genome, some of which remain replication competent. Here, we detected several ERV-DC loci in Felis silvestris silvestris Notably, a species-specific single nucleotide polymorphism in the ERV-DC14 env gene, which results in a replication-defective product, is highly prevalent in European wildcats, unlike the replication-competent ERV-DC14 that is commonly present in domestic cats. The presence of the same lethal mutation in the env genes of both FeLV and murine ERV provides a common mechanism shared by endogenous and exogenous retroviruses by which ERVs can be inactivated after endogenization. The antiviral role of Refrex-1 predates cat exposure to feline retroviruses. The existence of two ERV-DC14 phenotypes provides a unique model for understanding both ERV fate and cat domestication.
Collapse
|
36
|
Hashem MA, Kayesh MEH, Yamato O, Maetani F, Eiei T, Mochizuki K, Sakurai H, Ito A, Kannno H, Kasahara T, Amano Y, Tsukiyama-Kohara K. Coinfection with koala retrovirus subtypes A and B and its impact on captive koalas in Japanese zoos. Arch Virol 2019; 164:2735-2745. [PMID: 31486907 DOI: 10.1007/s00705-019-04392-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/04/2019] [Indexed: 01/25/2023]
Abstract
Koala retrovirus (KoRV) is unique among endogenous retroviruses because its endogenization is still active. Two major KoRV subtypes, KoRV-A and B, have been described, and KoRV-B is associated with disease and poses a health threat to koalas. Here, we investigated the co-prevalence of KoRV-A and KoRV-B, detected by type-specific PCR and sequencing, and their impact on the health of koalas in three Japanese zoos. We also investigated KoRV proviral loads and found varying amounts of genomic DNA (gDNA) in peripheral blood mononuclear cells (PBMCs). We found that 100% of the koalas examined were infected with KoRV-A and 60% (12/20) were coinfected with KoRV-B. The KoRV-A sequence was highly conserved, whereas the KoRV-B sequence varied among individuals. Interestingly, we observed possible vertical transmission of KoRV-B in one offspring in which the KoRV-B sequence was similar to that of the father but not the mother. Moreover, we characterized the KoRV growth patterns in concanavalin-A-stimulated PBMCs isolated from KoRV-B-coinfected or KoRV-B-uninfected koalas. We quantified the KoRV provirus in gDNA and the KoRV RNA copy numbers in cells and culture supernatants by real-time PCR at days 4, 7, and 14 post-seeding. As the study population is housed in captivity, a longitudinal study of these koalas may provide an opportunity to study the transmission mode of KoRV-B. In addition, we characterized KoRV isolates by infecting tupaia cells. The results suggested that tupaia may be used as an infection model for KoRV. Thus, this study may enhance our understanding of KoRV-B coinfection and transmission in the captive koalas.
Collapse
Affiliation(s)
- Md Abul Hashem
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Transboundary Animal Diseases Centre, Department of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.,Department of Health, Chittagong City Corporation, Chittagong, 4000, Bangladesh
| | - Mohammad Enamul Hoque Kayesh
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Transboundary Animal Diseases Centre, Department of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Microbiology and Public Health, Patuakhali Science and Technology University, Babugonj, Barishal, 8210, Bangladesh
| | - Osamu Yamato
- Department of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | | | - Taiki Eiei
- Hirakawa Zoological Park, Kagoshima, Japan
| | | | | | - Ayaka Ito
- Hirakawa Zoological Park, Kagoshima, Japan
| | | | | | | | - Kyoko Tsukiyama-Kohara
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan. .,Transboundary Animal Diseases Centre, Department of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan. .,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
37
|
Changes in Endogenous and Exogenous Koala Retrovirus Subtype Expression over Time Reflect Koala Health Outcomes. J Virol 2019; 93:JVI.00849-19. [PMID: 31243137 DOI: 10.1128/jvi.00849-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/13/2019] [Indexed: 01/23/2023] Open
Abstract
Koala retrovirus (KoRV) is unique in that it exists as both an exogenous and actively endogenizing gamma retrovirus of koalas. While nine subtypes of KoRV have been recognized, focused study of these subtypes in koalas over time and with different health outcomes has been lacking. Therefore, in this study, three wild koala cohorts were established and monitored to examine KoRV proviral and expression data from koalas that either remained healthy over time, began healthy before developing chlamydial cystitis, or presented with chlamydial cystitis and were treated with antibiotics. Deep sequencing of the proviral KoRV envelope gene revealed KoRV-A, -B, -D, and -F to be the major subtypes in this population and allowed for subtype-specific assays to be created. Quantification of KoRV transcripts revealed that KoRV-D expression mirrored the total KoRV expression levels (106 copies/ml of plasma), with KoRV-A and KoRV-F expression being ∼10-fold less and KoRV-B expression being ∼100-fold less, when detected. Strikingly, there was significantly higher expression of KoRV-D in healthy koalas than in koalas that developed chlamydial cystitis, with healthy koalas expressing a major KoRV-D/minor KoRV-A profile, whereas koalas that developed cystitis had variable KoRV expression profiles. Total anti-KoRV IgG antibody levels were found not to correlate with the expression of total KoRV or any individual KoRV subtype. Finally, KoRV expression was consistent between systemic and mucosal body sites and during antibiotic treatment. Collectively, this gives a comprehensive picture of KoRV dynamics during several important koala health states.IMPORTANCE The long-term survival of the koala is under serious threat, with this iconic marsupial being declared "vulnerable" by the Australian Government and officially listed as a threatened species. KoRV is clearly contributing to the overall health status of koalas, and research into this virus has been lacking detailed study of the multiple subtypes at both the proviral and expressed viral levels over time. By designing new subtype-specific assays and following well-defined koala cohorts over time, this study has generated a new more complete picture of KoRV and its relationship to koala health outcomes in the wild. Only by building a comprehensive picture of KoRV during both koala health and disease can we bring meaningful koala health interventions into better focus.
Collapse
|
38
|
Olagoke O, Quigley BL, Eiden MV, Timms P. Antibody response against koala retrovirus (KoRV) in koalas harboring KoRV-A in the presence or absence of KoRV-B. Sci Rep 2019; 9:12416. [PMID: 31455828 PMCID: PMC6711960 DOI: 10.1038/s41598-019-48880-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/13/2019] [Indexed: 01/13/2023] Open
Abstract
Koala retrovirus (KoRV) is in the process of endogenization into the koala (Phascolarctos cinereus) genome and is currently spreading through the Australian koala population. Understanding how the koala's immune system responds to KoRV infection is critical for developing an efficacious vaccine to protect koalas. To this end, we analyzed the antibody response of 235 wild koalas, sampled longitudinally over a four-year period, that harbored KoRV-A, and with or without KoRV-B. We found that the majority of the sampled koalas were able to make anti-KoRV antibodies, and that there was a linear increase in anti-KoRV IgG levels in koalas up to approximately seven years of age and then a gradual decrease thereafter. Koalas infected with both KoRV-A and KoRV-B were found to have slightly higher anti-KoRV IgG titers than koalas with KoRV-A alone and there was an inverse relationship between anti-KoRV IgG levels and circulating KoRV viral load. Finally, we identified distinct epitopes on the KoRV envelope protein that were recognized by antibodies. Together, these findings provide insight into the koala's immune response to KoRV and may be useful in the development of a therapeutic KoRV vaccine.
Collapse
Affiliation(s)
- O Olagoke
- Genecology Research Center, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, Queensland, Australia
| | - B L Quigley
- Genecology Research Center, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, Queensland, Australia
| | - M V Eiden
- Section on Directed Gene Transfer, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - P Timms
- Genecology Research Center, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, Queensland, Australia.
| |
Collapse
|
39
|
Altered immune parameters associated with Koala Retrovirus (KoRV) and Chlamydial infection in free ranging Victorian koalas (Phascolarctos cinereus). Sci Rep 2019; 9:11170. [PMID: 31371797 PMCID: PMC6673689 DOI: 10.1038/s41598-019-47666-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 07/18/2019] [Indexed: 01/29/2023] Open
Abstract
Koala Retrovirus (KoRV) has been widely speculated to cause immune suppression in koalas (Phascolarctos cinereus) and to underlie the koala's susceptibility to infectious disease, however evidence for immunomodulation is limited. The aim of this study is to determine whether immunophenotypic changes are associated with KoRV infection in free ranging Victorian koalas. qPCR was used to examine mRNA expression for Th1 (IFNγ), Th2-promoting (IL6, IL10) and Th17 (IL17A) cytokines, along with CD4 and CD8 in whole blood of koalas (n = 74) from Mt Eccles and Raymond Island in Victoria, Australia, with and without natural chlamydial infection. KoRV positive koalas had significantly lower levels of IL17A (p`0.023) and IFNγ (p = 0.044) gene expression along with a decreased CD4:CD8 gene expression ratio (p = 0.025) compared to negative koalas. No effect of chlamydial infection or combined effect of KoRV and chlamydial infection was detected in these populations. The decreased expression of IFNγ could make KoRV infected koalas more susceptible to persistent chlamydial infection, and a decrease in IL17A could make them more susceptible to gram negative bacterial, fungal and mycobacterial infection; but more tolerant of chlamydial infection.
Collapse
|
40
|
Sarker N, Fabijan J, Seddon J, Tarlinton R, Owen H, Simmons G, Thia J, Blanchard AM, Speight N, Kaler J, Emes RD, Woolford L, Trott D, Hemmatzadeh F, Meers J. Genetic diversity of Koala retrovirus env gene subtypes: insights into northern and southern koala populations. J Gen Virol 2019; 100:1328-1339. [PMID: 31329088 DOI: 10.1099/jgv.0.001304] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Koala retrovirus (KoRV) is a recently endogenized retrovirus associated with neoplasia and immunosuppression in koala populations. The virus is known to display sequence variability and to be present at varying prevalence in different populations, with animals in southern Australia displaying lower prevalence and viral loads than northern animals. This study used a PCR and next-generation sequencing strategy to examine the diversity of the KoRV env gene in both proviral DNA and viral RNA forms in two distinct populations representative of the 'northern' and 'southern' koala genotypes. The current study demonstrated that the full range of KoRV subtypes is present across both populations, and in both healthy and sick animals. KoRV-A was the predominant proviral subtype in both populations, but there was marked diversity of DNA and RNA subtypes within individuals. Many of the northern animals displayed a higher RNA viral diversity than evident in their proviral DNA, indicating relatively higher replication efficiency of non-KoRV-A subtypes. The southern animals displayed a lower absolute copy number of KoRV than the northern animals as reported previously and a higher preponderance of KoRV-A in individual animals. These discrepancies in viral replication and diversity remain unexplained but may indicate relative protection of the southern population from KoRV replication due to either viral or host factors and may represent an important protective effect for the host in KoRV's ongoing entry into the koala genome.
Collapse
Affiliation(s)
- Nishat Sarker
- Laboratory Sciences & Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh.,School of Veterinary Science, The University of Queensland, Queensland, Australia
| | - Jessica Fabijan
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Jennifer Seddon
- School of Veterinary Science, The University of Queensland, Queensland, Australia
| | - Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Helen Owen
- School of Veterinary Science, The University of Queensland, Queensland, Australia
| | - Greg Simmons
- School of Veterinary Science, The University of Queensland, Queensland, Australia
| | - Joshua Thia
- School of Biological Sciences, The University of Queensland, Queensland, Australia
| | - Adam Mark Blanchard
- School of Animal, Rural and. Environmental Sciences, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Natasha Speight
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Jasmeet Kaler
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Richard David Emes
- Advanced Data Analysis Centre (ADAC), University of Nottingham, Nottingham, UK.,School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Darren Trott
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Joanne Meers
- School of Veterinary Science, The University of Queensland, Queensland, Australia
| |
Collapse
|
41
|
Ito N, Yoshida T, Ichikawa R, Makino E, Akema S, Fukumori J, Takahashi N, Nakahara J, Yamashita R, Orihara K, Kobayashi M, Xiantao H, Watanabe Y, Mizukami S, Shibutani M. Clinical and pathological characteristics of acute myelogenous leukemia in a female koala with diabetes mellitus. J Vet Med Sci 2019; 81:1229-1233. [PMID: 31270282 PMCID: PMC6715919 DOI: 10.1292/jvms.19-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A female koala presented with hyperglycemia related to diabetes mellitus diagnosed at 9
years and treated with insulin. She presented with nasal hemorrhage, anemia, leukocytosis,
and tachypnea at 10 years. A blood smear examination revealed scattered, atypical large
myeloid cells and a clinical diagnosis of myelogenous leukemia was made. White blood cell
count reached a maximum of 295 × 102/µl, with evidence of
severe regenerative anemia and thrombocytopenia. Grossly, systemic lymph node enlargement,
fragile liver with hemorrhage, and bloody ascites were observed. Histopathologically,
atypical myeloid cells, including myelocytic and metamyelocytic cells, were scattered in
the vasculature and surrounding tissues throughout the organs. The patient was infected
with a koala retrovirus, which might have caused the myelogenous leukemia.
Collapse
Affiliation(s)
- Nanao Ito
- Hirakawa Zoological Park, 5669-1 Hirakawa-cho, Kagoshima-shi, Kagoshima 891-0133, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Rho Ichikawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Emi Makino
- The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Satoshi Akema
- The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Junko Fukumori
- The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Naofumi Takahashi
- The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Junta Nakahara
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Risako Yamashita
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Kai Orihara
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mio Kobayashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Hou Xiantao
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Department of Pet Science and Technology, Shandong Vocational Animal Science and Veterinary College, Weifang 261061, Shandong Province, China
| | - Yousuke Watanabe
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Sayaka Mizukami
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
42
|
Fabijan J, Miller D, Olagoke O, Woolford L, Boardman W, Timms P, Polkinghorne A, Simmons G, Hemmatzadeh F, Trott DJ, Speight KN. Prevalence and clinical significance of koala retrovirus in two South Australian koala (Phascolarctos cinereus) populations. J Med Microbiol 2019; 68:1072-1080. [PMID: 31162024 DOI: 10.1099/jmm.0.001009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Koala retrovirus (KoRV-A) is 100 % prevalent in northern Australian (Queensland and New South Wales) koala populations, where KoRV-B has been associated with Chlamydia pecorum disease and the development of lymphosarcoma. In southern populations (Victoria and South Australia), KoRV-A is less prevalent and KoRV-B has not been detected in Victoria, while the current prevalence in South Australian populations is unknown but is thought to be low. This study aimed to determine (i) the prevalence of KoRV in the two largest South Australian koala populations [Kangaroo Island (KI) and Mount Lofty Ranges (MLR)], (ii) KoRV subtype and (iii) if an association between KoRV and C. pecorum exists. METHODOLOGY Wild koalas were sampled in KI ( n =170) between 2014 and 2017 and in MLR ( n =75) in 2016. Clinical examinations were performed, with blood collected for KoRV detection and typing by PCR. RESULTS KoRV prevalence was 42.4 % [72/170, 95 % confidence interval (CI): 34.9-49.8 %] in KI and 65.3 % (49/75, 95 % CI: 54.6-76.1 %) in MLR. Only KoRV-A, and not KoRV-B, was detected in both populations. In MLR, there was no statistical association between KoRV and C. pecorum infection (P =0.740), or KoRV and C. pecorum disease status ( P=0.274), although KoRV-infected koalas were more likely to present with overt C. pecorum disease than subclinical infection (odds ratio: 3.15, 95 % CI: 0.91-5.39). CONCLUSION KoRV-A is a prevalent pathogen in wild South Australian koala populations. Future studies should continue to investigate KoRV and C. pecorum associations, as the relationship is likely to be complex and to differ between the northern and southern populations.
Collapse
Affiliation(s)
- Jessica Fabijan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Darren Miller
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Olusola Olagoke
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Wayne Boardman
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Peter Timms
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Adam Polkinghorne
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Greg Simmons
- School of Veterinary Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Darren J Trott
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - K Natasha Speight
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| |
Collapse
|
43
|
Fabijan J, Caraguel C, Jelocnik M, Polkinghorne A, Boardman WSJ, Nishimoto E, Johnsson G, Molsher R, Woolford L, Timms P, Simmons G, Hemmatzadeh F, Trott DJ, Speight N. Chlamydia pecorum prevalence in South Australian koala (Phascolarctos cinereus) populations: Identification and modelling of a population free from infection. Sci Rep 2019; 9:6261. [PMID: 31000763 PMCID: PMC6472425 DOI: 10.1038/s41598-019-42702-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/02/2019] [Indexed: 11/21/2022] Open
Abstract
Chlamydia pecorum is an established and prevalent infection that produces severe clinical disease in many koala populations, contributing to dramatic population declines. In wild South Australian koala populations, C. pecorum occurrence and distribution is unknown. Here, C. pecorum-specific real-time quantitative PCR (qPCR) was applied to ocular and urogenital swabs from targeted surveys of wild koalas from the mainland Mount Lofty Ranges (MLR) (n = 75) and Kangaroo Island (KI) (n = 170) populations. Historical data from 13,081 KI koalas (1997–2018) provided additional evidence for assessing the absence of C. pecorum infection. In the MLR population, 46.7% (CI: 35.1–58.6%) of koalas were C. pecorum positive by qPCR but only 4% had grade 3 clinical disease. MLR koala fertility was significantly reduced by C. pecorum infection; all reproductively active females (n = 16) were C. pecorum negative, whereas 85.2% of inactive females (n = 23) were positive (P < 0.001). KI koalas were C. pecorum negative and the population was demonstrated to be free of C. pecorum infection with 95% confidence. C. pecorum is a real threat for the sustainability of the koala and KI is possibly the last isolated, large C. pecorum-free population remaining in Australia. These koalas could provide a safeguard against this serious disease threat to an iconic Australian species.
Collapse
Affiliation(s)
- Jessica Fabijan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, South Australia, Australia.
| | - Charles Caraguel
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, South Australia, Australia
| | - Martina Jelocnik
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, 4558, Queensland, Australia
| | - Adam Polkinghorne
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, 4558, Queensland, Australia
| | - Wayne S J Boardman
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, South Australia, Australia
| | - Elisa Nishimoto
- Kangaroo Island Veterinary Clinic, Kingscote, 5223, South Australia, Australia
| | - Greg Johnsson
- Kangaroo Island Veterinary Clinic, Kingscote, 5223, South Australia, Australia
| | - Robyn Molsher
- Department for Environment and Water, Adelaide, 5000, South Australia, Australia
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, South Australia, Australia
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, 4558, Queensland, Australia
| | - Greg Simmons
- School of Veterinary Sciences, The University of Queensland, Gatton, 4343, Queensland, Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, South Australia, Australia
| | - Darren J Trott
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, South Australia, Australia
| | - Natasha Speight
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, South Australia, Australia
| |
Collapse
|
44
|
Boman J, Frankl-Vilches C, da Silva Dos Santos M, de Oliveira EHC, Gahr M, Suh A. The Genome of Blue-Capped Cordon-Bleu Uncovers Hidden Diversity of LTR Retrotransposons in Zebra Finch. Genes (Basel) 2019; 10:E301. [PMID: 31013951 PMCID: PMC6523648 DOI: 10.3390/genes10040301] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 02/02/2023] Open
Abstract
Avian genomes have perplexed researchers by being conservative in both size and rearrangements, while simultaneously holding the blueprints for a massive species radiation during the last 65 million years (My). Transposable elements (TEs) in bird genomes are relatively scarce but have been implicated as important hotspots for chromosomal inversions. In zebra finch (Taeniopygia guttata), long terminal repeat (LTR) retrotransposons have proliferated and are positively associated with chromosomal breakpoint regions. Here, we present the genome, karyotype and transposons of blue-capped cordon-bleu (Uraeginthus cyanocephalus), an African songbird that diverged from zebra finch at the root of estrildid finches 10 million years ago (Mya). This constitutes the third linked-read sequenced genome assembly and fourth in-depth curated TE library of any bird. Exploration of TE diversity on this brief evolutionary timescale constitutes a considerable increase in resolution for avian TE biology and allowed us to uncover 4.5 Mb more LTR retrotransposons in the zebra finch genome. In blue-capped cordon-bleu, we likewise observed a recent LTR accumulation indicating that this is a shared feature of Estrildidae. Curiously, we discovered 25 new endogenous retrovirus-like LTR retrotransposon families of which at least 21 are present in zebra finch but were previously undiscovered. This highlights the importance of studying close relatives of model organisms.
Collapse
Affiliation(s)
- Jesper Boman
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, SE-752 36 Uppsala, Sweden.
| | - Carolina Frankl-Vilches
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany.
| | - Michelly da Silva Dos Santos
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, and Faculdade de Ciências Naturais (ICEN), Universidade Federal do Pará, Belém 66075-110, Brazil.
| | - Edivaldo H C de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, and Faculdade de Ciências Naturais (ICEN), Universidade Federal do Pará, Belém 66075-110, Brazil.
| | - Manfred Gahr
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany.
| | - Alexander Suh
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, SE-752 36 Uppsala, Sweden.
| |
Collapse
|
45
|
Harvey E, Madden D, Polkinghorne A, Holmes EC. Identification of A Novel Picorna-Like Virus, Burpengary Virus, that is Negatively Associated with Chlamydial Disease in the Koala. Viruses 2019; 11:E211. [PMID: 30832350 PMCID: PMC6466430 DOI: 10.3390/v11030211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/05/2023] Open
Abstract
Koalas (Phascolarctos cinereus) are native Australian marsupials whose populations are in decline from a range of threats. Infectious diseases caused by the bacterium Chlamydia pecorum and other pathogens are of particular concern. We analysed 26 poly-A selected RNA-sequencing libraries from a data set designed to study the immune response of koalas to ocular chlamydial infection. Using virus discovery techniques, we identified the coding-complete genome sequence of a novel picorna-like virus, denoted Burpengary virus, that was most common in south-east Queensland. Notably, abundance measurements of the virus across all 26 libraries revealed an inverse relationship between abundance and ocular disease in koalas, suggesting that the co-infection of Burpengary virus and Chlamydia pecorum is inhibited.
Collapse
Affiliation(s)
- Erin Harvey
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Danielle Madden
- Animal Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.
| | - Adam Polkinghorne
- Animal Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
46
|
Detection and Differentiation of Two Koala Gammaherpesviruses by Use of High-Resolution Melt (HRM) Analysis Reveals Differences in Viral Prevalence and Clinical Associations in a Large Study of Free-Ranging Koalas. J Clin Microbiol 2019; 57:JCM.01478-18. [PMID: 30626662 DOI: 10.1128/jcm.01478-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/21/2018] [Indexed: 12/27/2022] Open
Abstract
The iconic koala (Phascolarctos cinereus) is host to two divergent gammaherpesviruses, phascolarctid gammaherpesviruses 1 and 2 (PhaHV-1 and -2), but the clinical significance of the individual viruses is unknown and current diagnostic methods are unsuitable for differentiating between the viruses in large-scale studies. To address this, we modified a pan-herpesvirus nested PCR to incorporate high-resolution melt analysis. We applied this assay in a molecular epidemiological study of 810 koalas from disparate populations across Victoria, Australia, including isolated island populations. Animal and clinical data recorded at sampling were analyzed and compared to infection status. Between populations, the prevalence of PhaHV-1 and -2 varied significantly, ranging from 1% to 55%. Adult and older animals were 5 to 13 times more likely to be positive for PhaHV-1 than juveniles (P < 0.001), whereas PhaHV-2 detection did not change with age, suggesting differences in how these two viruses are acquired over the life of the animal. PhaHV-1 detection was uniquely associated with the detection of koala retrovirus, particularly in females (P = 0.008). Both viruses were significantly associated (P < 0.05) with the presence of genital tract abnormalities (uterine/ovarian cysts and testicular malformation), reduced fertility in females, urinary incontinence, and detection of Chlamydia pecorum, although the strength of these associations varied by sex and virus. Understanding the clinical significance of these viruses and how they interact with other pathogens will inform future management of threatened koala populations.
Collapse
|
47
|
Molecular dynamics of koala retrovirus infection in captive koalas in Japan. Arch Virol 2019; 164:757-765. [DOI: 10.1007/s00705-019-04149-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
|
48
|
Nyari S, Booth R, Quigley BL, Waugh CA, Timms P. Therapeutic effect of a Chlamydia pecorum recombinant major outer membrane protein vaccine on ocular disease in koalas (Phascolarctos cinereus). PLoS One 2019; 14:e0210245. [PMID: 30615687 PMCID: PMC6322743 DOI: 10.1371/journal.pone.0210245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/19/2018] [Indexed: 12/29/2022] Open
Abstract
Chlamydia pecorum is responsible for causing ocular infection and disease which can lead to blindness in koalas (Phascolarctos cinereus). Antibiotics are the current treatment for chlamydial infection and disease in koalas, however, they can be detrimental for the koala’s gastrointestinal tract microbiota and in severe cases, can lead to dysbiosis and death. In this study, we evaluated the therapeutic effects provided by a recombinant chlamydial major outer membrane protein (MOMP) vaccine on ocular disease in koalas. Koalas with ocular disease (unilateral or bilateral) were vaccinated and assessed for six weeks, evaluating any changes to the conjunctival tissue and discharge. Samples were collected pre- and post-vaccination to evaluate both humoral and cell-mediated immune responses. We further assessed the infecting C. pecorum genotype, host MHC class II alleles and presence of koala retrovirus type (KoRV-B). Our results clearly showed an improvement in the clinical ocular disease state of all seven koalas, post-vaccination. We observed increases in ocular mucosal IgA antibodies to whole C. pecorum elementary bodies, post-vaccination. We found that systemic cell-mediated immune responses to interferon-γ, interleukin-6 and interleukin-17A were not significantly predictive of ocular disease in koalas. Interestingly, one koala did not have as positive a clinical response (in one eye primarily) and this koala was infected with a C. pecorum genotype (E’) that was not used as part of the vaccine formula (MOMP genotypes A, F and G). The predominant MHC class II alleles identified were DAb*19, DAb*21 and DBb*05, with no two koalas identified with the same genetic sequence. Additionally, KoRV-B, which is associated with chlamydial disease outcome, was identified in two (29%) ocular diseased koalas, which still produced vaccine-induced immune responses and clinical ocular improvements post-vaccination. Our findings show promise for the use of a recombinant chlamydial MOMP vaccine for the therapeutic treatment of ocular disease in koalas.
Collapse
Affiliation(s)
- Sharon Nyari
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Rosemary Booth
- Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia
| | - Bonnie L. Quigley
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Courtney A. Waugh
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Peter Timms
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| |
Collapse
|
49
|
Chiu ES, Kraberger S, Cunningham M, Cusack L, Roelke M, VandeWoude S. Multiple Introductions of Domestic Cat Feline Leukemia Virus in Endangered Florida Panthers. Emerg Infect Dis 2019; 25:92-101. [PMID: 30561312 PMCID: PMC6302599 DOI: 10.3201/eid2501.181347] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The endangered Florida panther (Puma concolor coryi) had an outbreak of infection with feline leukemia virus (FeLV) in the early 2000s that resulted in the deaths of 3 animals. A vaccination campaign was instituted during 2003-2007 and no additional cases were recorded until 2010. During 2010-2016, six additional FeLV cases were documented. We characterized FeLV genomes isolated from Florida panthers from both outbreaks and compared them with full-length genomes of FeLVs isolated from contemporary Florida domestic cats. Phylogenetic analyses identified at least 2 circulating FeLV strains in panthers, which represent separate introductions from domestic cats. The original FeLV virus outbreak strain is either still circulating or another domestic cat transmission event has occurred with a closely related variant. We also report a case of a cross-species transmission event of an oncogenic FeLV recombinant (FeLV-B). Evidence of multiple FeLV strains and detection of FeLV-B indicate Florida panthers are at high risk for FeLV infection.
Collapse
|
50
|
Degradation and remobilization of endogenous retroviruses by recombination during the earliest stages of a germ-line invasion. Proc Natl Acad Sci U S A 2018; 115:8609-8614. [PMID: 30082403 PMCID: PMC6112702 DOI: 10.1073/pnas.1807598115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endogenous retroviruses (ERVs) are proviral sequences that result from host germ-line invasion by exogenous retroviruses. The majority of ERVs are degraded. Using the koala retrovirus (KoRV) as a model system, we demonstrate that recombination with an ancient koala retroelement disables KoRV, and that recombination occurs frequently and early in the invasion process. Recombinant KoRVs (recKoRVs) are then able to proliferate in the koala germ line. This may in part explain the generally degraded nature of ERVs in vertebrate genomes and suggests that degradation via recombination is one of the earliest processes shaping retroviral genomic invasions. Endogenous retroviruses (ERVs) are proviral sequences that result from colonization of the host germ line by exogenous retroviruses. The majority of ERVs represent defective retroviral copies. However, for most ERVs, endogenization occurred millions of years ago, obscuring the stages by which ERVs become defective and the changes in both virus and host important to the process. The koala retrovirus, KoRV, only recently began invading the germ line of the koala (Phascolarctos cinereus), permitting analysis of retroviral endogenization on a prospective basis. Here, we report that recombination with host genomic elements disrupts retroviruses during the earliest stages of germ-line invasion. One type of recombinant, designated recKoRV1, was formed by recombination of KoRV with an older degraded retroelement. Many genomic copies of recKoRV1 were detected across koalas. The prevalence of recKoRV1 was higher in northern than in southern Australian koalas, as is the case for KoRV, with differences in recKoRV1 prevalence, but not KoRV prevalence, between inland and coastal New South Wales. At least 15 additional different recombination events between KoRV and the older endogenous retroelement generated distinct recKoRVs with different geographic distributions. All of the identified recombinant viruses appear to have arisen independently and have highly disrupted ORFs, which suggests that recombination with existing degraded endogenous retroelements may be a means by which replication-competent ERVs that enter the germ line are degraded.
Collapse
|