1
|
Hofstadter WA, Park JW, Lum KK, Chen S, Cristea IM. HCMV strain- and cell type-specific alterations in membrane contact sites point to the convergent regulation of organelle remodeling. J Virol 2024; 98:e0109924. [PMID: 39480111 PMCID: PMC11575408 DOI: 10.1128/jvi.01099-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Viruses are ubiquitous entities that infect organisms across the kingdoms of life. While viruses can infect a range of cells, tissues, and organisms, this aspect is often not explored in cell culture analyses. There is limited information about which infection-induced changes are shared or distinct in different cellular environments. The prevalent pathogen human cytomegalovirus (HCMV) remodels the structure and function of subcellular organelles and their interconnected networks formed by membrane contact sites (MCSs). A large portion of this knowledge has been derived from fibroblasts infected with a lab-adapted HCMV strain. Here, we assess strain- and cell type-specific alterations in MCSs and organelle remodeling induced by HCMV. Integrating quantitative mass spectrometry, super-resolution microscopy, and molecular virology assays, we compare infections with lab-adapted and low-passage HCMV strains in fibroblast and epithelial cells. We determine that, despite baseline proteome disparities between uninfected fibroblast and epithelial cells, infection induces convergent changes and is remarkably similar. We show that hallmarks of HCMV infection in fibroblasts, mitochondria-endoplasmic reticulum (ER) encapsulations and peroxisome proliferation, are also conserved in infected epithelial and macrophage-like cells. Exploring cell type-specific differences, we demonstrate that fibroblasts rely on endosomal cholesterol transport while epithelial cells rely on cholesterol from the Golgi. Despite these mechanistic differences, infections in both cell types result in phenotypically similar cholesterol accumulation at the viral assembly complex. Our findings highlight the adaptability of HCMV, in that infections can be tailored to the initial cell state by inducing both shared and unique proteome alterations, ultimately promoting a unified pro-viral environment.IMPORTANCEHuman cytomegalovirus (HCMV) establishes infections in diverse cell types throughout the body and is connected to a litany of diseases associated with each of these tissues. However, it is still not fully understood how HCMV replication varies in distinct cell types. Here, we compare HCMV replication with lab-adapted and low-passage strains in two primary sites of infection, lung fibroblasts and retinal epithelial cells. We discover that, despite displaying disparate protein compositions prior to infection, these cell types undergo convergent alterations upon HCMV infection, reaching a more similar cellular state late in infection. We find that remodeling of the subcellular landscape is a pervasive feature of HCMV infection, through alterations to both organelle structure-function and the interconnected networks they form via membrane contact sites. Our findings show how HCMV infection in different cell types induces both shared and divergent changes to cellular processes, ultimately leading to a more unified state.
Collapse
Affiliation(s)
- William A Hofstadter
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ji Woo Park
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Krystal K Lum
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Sophia Chen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
2
|
Mollik M, Rohorzka A, Chen X, Kropff B, Eisler L, Külekci B, Puchhammer-Stöckl E, Thomas M, Görzer I. Growth defect of domain III glycoprotein B mutants of human cytomegalovirus reverted by compensatory mutations co-localizing in post-fusion conformation. mBio 2024; 15:e0181224. [PMID: 39315800 PMCID: PMC11481916 DOI: 10.1128/mbio.01812-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Cell entry is a crucial step for a virus to infect a host cell. Human cytomegalovirus utilizes glycoprotein B (gB) to fuse the viral and host cell membranes upon receptor binding of gH/gL-containing complexes. Fusion is mediated by major conformational changes of gB from a metastable pre-fusion to a stable post-fusion state whereby the central trimeric coiled-coils, formed by domain (Dom)III α helices, remain structurally nearly unchanged. To better understand the role of the stable core, we individually introduced three potentially helix-breaking or one disulfide bond-breaking mutation in the DIII α3 to study different aspects of the viral behavior upon long-term culturing. Two of the three helix-breaking mutations, gB_Y494P and gB_I495P, were lethal for the virus in either fibroblasts or epithelial cells. The third substitution, gB_G493P, on the other hand, displayed a delayed replication and spread, which was more pronounced in epithelial cells, hinting at an impaired fusion. Interestingly, the disulfide bond-breaker mutation, gB_C507S, performed strikingly differently in the two cell types - lethal in epithelial cells and an atypical phenotype in fibroblasts, respectively. Replication curve analyses paired with the infection efficiency, the spread morphology, and the cell-cell fusogenicity suggest a dysregulated fusion process, which could be reverted by second-site mutations mapping predominantly to gB DomV. Our findings underline the functional importance of a stable DomIII core for a well-regulated DomV rearrangement during fusion.IMPORTANCEHuman cytomegalovirus (HCMV) can establish a lifelong infection. In most people, the infection follows an asymptomatic course; however, it is a major cause of morbidity and mortality in immunocompromised patients or neonates. HCMV has a very broad cell tropism, ranging from fibroblasts to epi- and endothelial cells. The virus uses different entry pathways utilizing the core fusion machinery consisting of glycoprotein complexes gH/gL and glycoprotein B (gB). The fusion protein gB undergoes fundamental rearrangements from a metastable pre-fusion to a stable post-fusion conformation. Here, we characterized the viral behavior after the introduction of four single-point mutations in the gB central core. These led to various cell type-specific atypical phenotypes and the emergence of compensatory mutations, demonstrating an important interaction between domains III and V. We provide a new basis for the development of a structurally and functionally altered gB, which can further serve as a tool for drug and vaccine development.
Collapse
Affiliation(s)
- Madlen Mollik
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Andreas Rohorzka
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Xiaohan Chen
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Kropff
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Eisler
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Büsra Külekci
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Marco Thomas
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Irene Görzer
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Ohman MS, Albright ER, Gelbmann CB, Kalejta RF. The Pentamer glycoprotein complex inhibits viral Immediate Early transcription during Human Cytomegalovirus infections. Proc Natl Acad Sci U S A 2024; 121:e2408078121. [PMID: 39292744 PMCID: PMC11441559 DOI: 10.1073/pnas.2408078121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024] Open
Abstract
The Pentamer complex of Human Cytomegalovirus (HCMV) consists of the viral glycoproteins gH, gL, UL128, UL130, and UL131 and is incorporated into infectious virions. HCMV strains propagated extensively in vitro in fibroblasts carry UL128, UL130, or UL131 alleles that do not make a functional complex and thus lack Pentamer function. Adding functional Pentamer to such strains decreases virus growth in fibroblasts. Here, we show that the Pentamer inhibits productive HCMV replication in fibroblasts by repressing viral Immediate Early (IE) transcription. We show that ectopic expression of the viral IE1 protein, a target of Pentamer-mediated transcriptional repression, complements the growth defect of a Pentamer-positive virus. Furthermore, we show that the Pentamer also represses viral IE transcription in cell types where HCMV in vitro latency is studied. Finally, we identify UL130 as a functional subunit of the Pentamer for IE transcriptional repression and demonstrate that cyclic AMP Response Element (CRE) and NFkB sites within the Major Immediate Early Promoter that drives IE1 transcription contribute to this repression. We conclude that the HCMV Pentamer represses viral IE transcription.
Collapse
Affiliation(s)
- Michael S Ohman
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Emily R Albright
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Christopher B Gelbmann
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Robert F Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
4
|
Sponholtz MR, Byrne PO, Lee AG, Ramamohan AR, Goldsmith JA, McCool RS, Zhou L, Johnson NV, Hsieh CL, Connors M, Karthigeyan KP, Crooks CM, Fuller AS, Campbell JD, Permar SR, Maynard JA, Yu D, Bottomley MJ, McLellan JS. Structure-based design of a soluble human cytomegalovirus glycoprotein B antigen stabilized in a prefusion-like conformation. Proc Natl Acad Sci U S A 2024; 121:e2404250121. [PMID: 39231203 PMCID: PMC11406251 DOI: 10.1073/pnas.2404250121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Human cytomegalovirus (HCMV) glycoprotein B (gB) is a class III membrane fusion protein required for viral entry. HCMV vaccine candidates containing gB have demonstrated moderate clinical efficacy, but no HCMV vaccine has been approved. Here, we used structure-based design to identify and characterize amino acid substitutions that stabilize gB in its metastable prefusion conformation. One variant containing two engineered interprotomer disulfide bonds and two cavity-filling substitutions (gB-C7), displayed increased expression and thermostability. A 2.8 Å resolution cryoelectron microscopy structure shows that gB-C7 adopts a prefusion-like conformation, revealing additional structural elements at the membrane-distal apex. Unlike previous observations for several class I viral fusion proteins, mice immunized with postfusion or prefusion-stabilized forms of soluble gB protein displayed similar neutralizing antibody titers, here specifically against an HCMV laboratory strain on fibroblasts. Collectively, these results identify initial strategies to stabilize class III viral fusion proteins and provide tools to probe gB-directed antibody responses.
Collapse
Affiliation(s)
- Madeline R. Sponholtz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Patrick O. Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Alison G. Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Ajit R. Ramamohan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Jory A. Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Ryan S. McCool
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Ling Zhou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Nicole V. Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Megan Connors
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | - Krithika P. Karthigeyan
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | - Chelsea M. Crooks
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | - Adelaide S. Fuller
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | | | - Sallie R. Permar
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | - Jennifer A. Maynard
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Dong Yu
- Dynavax Technologies Corporation, Emeryville, CA94608
| | | | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
5
|
Eletreby M, Thiessen L, Prager A, Brizic I, Materljan J, Kubic L, Jäger K, Jurinović K, Jerak J, Krey K, Adler B. Dissecting the cytomegalovirus CC chemokine: Chemokine activity and gHgLchemokine-dependent cell tropism are independent players in CMV infection. PLoS Pathog 2023; 19:e1011793. [PMID: 38064525 PMCID: PMC10732436 DOI: 10.1371/journal.ppat.1011793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/20/2023] [Accepted: 11/01/2023] [Indexed: 12/21/2023] Open
Abstract
Like all herpesviruses, cytomegaloviruses (CMVs) code for many immunomodulatory proteins including chemokines. The human cytomegalovirus (HCMV) CC chemokine pUL128 has a dual role in the infection cycle. On one hand, it forms the pentameric receptor-binding complex gHgLpUL(128,130,131A), which is crucial for the broad cell tropism of HCMV. On the other hand, it is an active chemokine that attracts leukocytes and shapes their activation. All animal CMVs studied so far have functionally homologous CC chemokines. In murine cytomegalovirus (MCMV), the CC chemokine is encoded by the m131/m129 reading frames. The MCMV CC chemokine is called MCK2 and forms a trimeric gHgLMCK2 entry complex. Here, we have generated MCK2 mutant viruses either unable to form gHgLMCK2 complexes, lacking the chemokine function or lacking both functions. By using these viruses, we could demonstrate that gHgLMCK2-dependent entry and MCK2 chemokine activity are independent functions of MCK2 in vitro and in vivo. The gHgLMCK2 complex promotes the tropism for leukocytes like macrophages and dendritic cells and secures high titers in salivary glands in MCMV-infected mice independent of the chemokine activity of MCK2. In contrast, reduced early antiviral T cell responses in MCMV-infected mice are dependent on MCK2 being an active chemokine and do not require the formation of gHgLMCK2 complexes. High levels of CCL2 and IFN-γ in spleens of infected mice and MCMV virulence depend on both, the formation of gHgLMCK2 complexes and the MCK2 chemokine activity. Thus, independent and concerted functions of MCK2 serving as chemokine and part of a gHgL entry complex shape antiviral immunity and virus dissemination.
Collapse
Affiliation(s)
- Marwa Eletreby
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| | - Lena Thiessen
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| | - Adrian Prager
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| | - Ilija Brizic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Materljan
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Lucie Kubic
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| | - Katharina Jäger
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| | - Križan Jurinović
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| | - Josipa Jerak
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| | - Karsten Krey
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| | - Barbara Adler
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| |
Collapse
|
6
|
Weiler N, Sampaio KL, Scherer M, Sinzger C. Generation of UL128-shRNA transduced fibroblasts for the release of cell-free virus from clinical human cytomegalovirus isolates. Biotechniques 2023; 75:183-194. [PMID: 37846844 DOI: 10.2144/btn-2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Working with recent isolates of human cytomegalovirus (HCMV) is complicated by their strictly cell-associated growth with lack of infectivity in the supernatant. Adaptation to cell-free growth is associated with disruption of the viral UL128 gene locus. The authors transduced fibroblasts with a lentiviral vector encoding UL128-specific-shRNA to allow the release of cell-free infectivity without genetic alteration. Transduced cells were cocultured with fibroblasts containing cell-associated isolates, and knockdown of the UL128 protein was validated by immunoblotting. Cell-free infectivity increased 1000-fold in isolate cocultures with UL128-shRNA compared with controls, and virions could be purified by density gradients. Transduced fibroblasts also allowed direct isolation of HCMV from a clinical specimen and cell-free transfer to other cell types. In conclusion, UL128-shRNA-transduced fibroblasts allow applications previously unsuitable for recent isolates.
Collapse
Affiliation(s)
- Nina Weiler
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Myriam Scherer
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | | |
Collapse
|
7
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
8
|
Wang HY, Taher H, Kreklywich CN, Schmidt KA, Scheef EA, Barfield R, Otero CE, Valencia SM, Crooks CM, Mirza A, Woods K, Burgt NV, Kowalik TF, Barry PA, Hansen SG, Tarantal AF, Chan C, Streblow DN, Picker LJ, Kaur A, Früh K, Permar SR, Malouli D. The pentameric complex is not required for vertical transmission of cytomegalovirus in seronegative pregnant rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545169. [PMID: 37398229 PMCID: PMC10312687 DOI: 10.1101/2023.06.15.545169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Congenital cytomegalovirus (cCMV) infection is the leading infectious cause of neonatal neurological impairment but essential virological determinants of transplacental CMV transmission remain unclear. The pentameric complex (PC), composed of five subunits, glycoproteins H (gH), gL, UL128, UL130, and UL131A, is essential for efficient entry into non-fibroblast cells in vitro . Based on this role in cell tropism, the PC is considered a possible target for CMV vaccines and immunotherapies to prevent cCMV. To determine the role of the PC in transplacental CMV transmission in a non-human primate model of cCMV, we constructed a PC-deficient rhesus CMV (RhCMV) by deleting the homologues of the HCMV PC subunits UL128 and UL130 and compared congenital transmission to PC-intact RhCMV in CD4+ T cell-depleted or immunocompetent RhCMV-seronegative, pregnant rhesus macaques (RM). Surprisingly, we found that the transplacental transmission rate was similar for PC-intact and PC-deleted RhCMV based on viral genomic DNA detection in amniotic fluid. Moreover, PC-deleted and PC-intact RhCMV acute infection led to similar peak maternal plasma viremia. However, there was less viral shedding in maternal urine and saliva and less viral dissemination in fetal tissues in the PC-deleted group. As expected, dams inoculated with PC-deleted RhCMV demonstrated lower plasma IgG binding to PC-intact RhCMV virions and soluble PC, as well as reduced neutralization of PC-dependent entry of the PC-intact RhCMV isolate UCD52 into epithelial cells. In contrast, binding to gH expressed on the cell surface and neutralization of entry into fibroblasts by the PC-intact RhCMV was higher for dams infected with PC-deleted RhCMV compared to those infected with PC-intact RhCMV. Our data demonstrates that the PC is dispensable for transplacental CMV infection in our non-human primate model. One Sentence Summary Congenital CMV transmission frequency in seronegative rhesus macaques is not affected by the deletion of the viral pentameric complex.
Collapse
|
9
|
Dong XD, Li Y, Li Y, Sun C, Liu SX, Duan H, Cui R, Zhong Q, Mou YG, Wen L, Yang B, Zeng MS, Luo MH, Zhang H. EphA2 is a functional entry receptor for HCMV infection of glioblastoma cells. PLoS Pathog 2023; 19:e1011304. [PMID: 37146061 DOI: 10.1371/journal.ppat.1011304] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/17/2023] [Accepted: 03/20/2023] [Indexed: 05/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection is associated with human glioblastoma, the most common and aggressive primary brain tumor, but the underlying infection mechanism has not been fully demonstrated. Here, we show that EphA2 was upregulated in glioblastoma and correlated with the poor prognosis of the patients. EphA2 silencing inhibits, whereas overexpression promotes HCMV infection, establishing EphA2 as a crucial cell factor for HCMV infection of glioblastoma cells. Mechanistically, EphA2 binds to HCMV gH/gL complex to mediate membrane fusion. Importantly, the HCMV infection was inhibited by the treatment of inhibitor or antibody targeting EphA2 in glioblastoma cells. Furthermore, HCMV infection was also impaired in optimal glioblastoma organoids by EphA2 inhibitor. Taken together, we propose EphA2 as a crucial cell factor for HCMV infection in glioblastoma cells and a potential target for intervention.
Collapse
Affiliation(s)
- Xiao-Dong Dong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Li
- MOE Key Laboratory of Tropical Disease Control, Shenzhen Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shang-Xin Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Run Cui
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Gao Mou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Le Wen
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center; Wuhan Institute of Virology, Chinese Academy of Sciences, China
| | - Bo Yang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- MOE Key Laboratory of Tropical Disease Control, Shenzhen Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Turner DL, Mathias RA. The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction. Front Cell Dev Biol 2022; 10:1053139. [PMID: 36506089 PMCID: PMC9732275 DOI: 10.3389/fcell.2022.1053139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that can cause severe disease in immunocompromised individuals, transplant recipients, and to the developing foetus during pregnancy. There is no protective vaccine currently available, and with only a limited number of antiviral drug options, resistant strains are constantly emerging. Successful completion of HCMV replication is an elegant feat from a molecular perspective, with both host and viral processes required at various stages. Remarkably, HCMV and other herpesviruses have protracted replication cycles, large genomes, complex virion structure and complicated nuclear and cytoplasmic replication events. In this review, we outline the 10 essential stages the virus must navigate to successfully complete replication. As each individual event along the replication continuum poses as a potential barrier for restriction, these essential checkpoints represent potential targets for antiviral development.
Collapse
Affiliation(s)
- Declan L. Turner
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Rommel A. Mathias
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Hu X, Wang HY, Otero CE, Jenks JA, Permar SR. Lessons from Acquired Natural Immunity and Clinical Trials to Inform Next-Generation Human Cytomegalovirus Vaccine Development. Annu Rev Virol 2022; 9:491-520. [PMID: 35704747 PMCID: PMC10154983 DOI: 10.1146/annurev-virology-100220-010653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human cytomegalovirus (HCMV) infection, the most common cause of congenital disease globally, affecting an estimated 1 million newborns annually, can result in lifelong sequelae in infants, such as sensorineural hearing loss and brain damage. HCMV infection also leads to a significant disease burden in immunocompromised individuals. Hence, an effective HCMV vaccine is urgently needed to prevent infection and HCMV-associated diseases. Unfortunately, despite more than five decades of vaccine development, no successful HCMV vaccine is available. This review summarizes what we have learned from acquired natural immunity, including innate and adaptive immunity; the successes and failures of HCMV vaccine human clinical trials; the progress in related animal models; and the analysis of protective immune responses during natural infection and vaccination settings. Finally, we propose novel vaccine strategies that will harness the knowledge of protective immunity and employ new technology and vaccine concepts to inform next-generation HCMV vaccine development.
Collapse
Affiliation(s)
- Xintao Hu
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Claire E Otero
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
| |
Collapse
|
12
|
Flomm FJ, Soh TK, Schneider C, Wedemann L, Britt HM, Thalassinos K, Pfitzner S, Reimer R, Grünewald K, Bosse JB. Intermittent bulk release of human cytomegalovirus. PLoS Pathog 2022; 18:e1010575. [PMID: 35925870 PMCID: PMC9352052 DOI: 10.1371/journal.ppat.1010575] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/06/2022] [Indexed: 01/24/2023] Open
Abstract
Human Cytomegalovirus (HCMV) can infect a variety of cell types by using virions of varying glycoprotein compositions. It is still unclear how this diversity is generated, but spatio-temporally separated envelopment and egress pathways might play a role. So far, one egress pathway has been described in which HCMV particles are individually enveloped into small vesicles and are subsequently exocytosed continuously. However, some studies have also found enveloped virus particles inside multivesicular structures but could not link them to productive egress or degradation pathways. We used a novel 3D-CLEM workflow allowing us to investigate these structures in HCMV morphogenesis and egress at high spatio-temporal resolution. We found that multiple envelopment events occurred at individual vesicles leading to multiviral bodies (MViBs), which subsequently traversed the cytoplasm to release virions as intermittent bulk pulses at the plasma membrane to form extracellular virus accumulations (EVAs). Our data support the existence of a novel bona fide HCMV egress pathway, which opens the gate to evaluate divergent egress pathways in generating virion diversity.
Collapse
Affiliation(s)
- Felix J. Flomm
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
| | - Timothy K. Soh
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
| | | | - Linda Wedemann
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
| | - Hannah M. Britt
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | | | | | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
- University of Hamburg, Department of Chemistry, Hamburg, Germany
| | - Jens B. Bosse
- Centre for Structural Systems Biology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Leibniz-Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
13
|
Braun B, Laib Sampaio K, Kuderna AK, Widmann M, Sinzger C. Viral and Cellular Factors Contributing to the Hematogenous Dissemination of Human Cytomegalovirus via Polymorphonuclear Leukocytes. Viruses 2022; 14:v14071561. [PMID: 35891541 PMCID: PMC9323586 DOI: 10.3390/v14071561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Polymorphonuclear leukocytes (PMNs) presumably transmit human cytomegalovirus (HCMV) between endothelial cells in blood vessels and thereby facilitate spread to peripheral organs. We aimed to identify viral components that contribute to PMN-mediated transmission and test the hypothesis that cellular adhesion molecules shield transmission sites from entry inhibitors. Stop codons were introduced into the genome of HCMV strain Merlin to delete pUL74 of the trimeric and pUL128 of the pentameric glycoprotein complex and the tegument proteins pp65 and pp71. Mutants were analyzed regarding virus uptake by PMNs and transfer of infection to endothelial cells. Cellular adhesion molecules were evaluated for their contribution to virus transmission using function-blocking antibodies, and hits were further analyzed regarding shielding against inhibitors of virus entry. The viral proteins pUL128, pp65, and pp71 were required for efficient PMN-mediated transmission, whereas pUL74 was dispensable. On the cellular side, the blocking of the αLβ2-integrin LFA-1 reduced virus transfer by 50% and allowed entry inhibitors to reduce it further by 30%. In conclusion, these data show that PMN-mediated transmission depends on the pentameric complex and an intact tegument and supports the idea of a virological synapse that promotes this dissemination mode both directly and via immune evasion.
Collapse
|
14
|
Combined knockdown of RL13 and UL128 for release of cell-free infectivity from recent HCMV isolates. J Virol Methods 2022; 305:114537. [PMID: 35526667 DOI: 10.1016/j.jviromet.2022.114537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022]
Abstract
Due to strictly cell-associated growth, experiments requiring cell-free virus are not applicable to recent clinical HCMV isolates to date. On the other hand, adaptation to cell-free growth is associated with undesirable changes in the viral gene regions RL13 and UL128. We had previously found that siRNA-mediated reduction of UL128 expression allowed transient release of cell-free virus by clinical isolates, and now hypothesized that virus yield could be further increased by additional knockdown of RL13. Despite the extensive polymorphism of RL13, effective RL13-specific siRNAs could be designed for three recent isolates and the Merlin strain. Knockdown efficiency was demonstrated at the protein level with a Merlin variant expressing V5-tagged pRL13. Knockdown of RL13 alone did not result in measurable release of cell-free virus, but combined knockdown of RL13 and UL128 increased infectivity in cell-free supernatants by a factor of 10-2000 compared to knockdown of UL128 alone. These supernatants could be used in dose-response assays to compare the effect of a neutralizing antibody on the various HCMV isolates. In summary, combined knockdown of RL13 and UL128 by specific siRNAs allows reliable release of cell-free infectivity from otherwise strictly cell-associated HCMV isolates without the need to modify the viral genome.
Collapse
|
15
|
Wrapp D, Ye X, Ku Z, Su H, Jones HG, Wang N, Mishra AK, Freed DC, Li F, Tang A, Li L, Jaijyan DK, Zhu H, Wang D, Fu TM, Zhang N, An Z, McLellan JS. Structural basis for HCMV Pentamer recognition by neuropilin 2 and neutralizing antibodies. SCIENCE ADVANCES 2022; 8:eabm2546. [PMID: 35275718 PMCID: PMC8916728 DOI: 10.1126/sciadv.abm2546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Human cytomegalovirus (HCMV) encodes multiple surface glycoprotein complexes to infect a variety of cell types. The HCMV Pentamer, composed of gH, gL, UL128, UL130, and UL131A, enhances entry into epithelial, endothelial, and myeloid cells by interacting with the cell surface receptor neuropilin 2 (NRP2). Despite the critical nature of this interaction, the molecular determinants that govern NRP2 recognition remain unclear. Here, we describe the cryo-EM structure of NRP2 bound to Pentamer. The high-affinity interaction between these proteins is calcium dependent and differs from the canonical carboxyl-terminal arginine (CendR) binding that NRP2 typically uses. We also determine the structures of four neutralizing human antibodies bound to the HCMV Pentamer to define susceptible epitopes. Two of these antibodies compete with NRP2 binding, but the two most potent antibodies recognize a previously unidentified epitope that does not overlap the NRP2-binding site. Collectively, these findings provide a structural basis for HCMV tropism and antibody-mediated neutralization.
Collapse
Affiliation(s)
- Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xiaohua Ye
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hang Su
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Harrison G. Jones
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nianshuang Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Akaash K. Mishra
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel C. Freed
- Merck Research Laboratories, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Fengsheng Li
- Merck Research Laboratories, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Aimin Tang
- Merck Research Laboratories, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dabbu Kumar Jaijyan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Hua Zhu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Dai Wang
- Merck Research Laboratories, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Tong-Ming Fu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Corresponding author. (Z.A.); (J.S.M.)
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Corresponding author. (Z.A.); (J.S.M.)
| |
Collapse
|
16
|
Abstract
While many viral infections are limited and eventually resolved by the host immune response or by death of the host, other viruses establish long-term relationships with the host by way of a persistent infection, that range from chronic viruses that may be eventually cleared to those that establish life-long persistent or latent infection. Viruses infecting hosts from bacteria to humans establish quiescent infections that must be reactivated to produce progeny. For mammalian viruses, most notably herpesviruses, this quiescent maintenance of viral genomes in the absence of virus replication is referred to as latency. The latent strategy allows the virus to persist quiescently within a single host until conditions indicate a need to reactivate to reach a new host or, to re-seed a reservoir within the host. Here, I review common themes in viral strategies to regulate the latent cycle and reactivate from it ranging from bacteriophage to herpesviruses with a focus on human cytomegalovirus (HCMV). Themes central to herpesvirus latency include, epigenetic repression of viral gene expression and mechanisms to regulate host signaling and survival. Critical to the success of a latent program are mechanisms by which the virus can "sense" fluctuations in host biology (within the host) or environment (outside the host) and make appropriate "decisions" to maintain latency or re-initiate the replicative program. The signals or environments that indicate the establishment of a latent state, the very nature of the latent state, as well as the signals driving reactivation have been topics of intense study from bacteriophage to human viruses, as these questions encompass the height of complexity in virus-host interactions-where the host and the virus coexist.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
17
|
Neutralizing Antibodies Limit Cell-Associated Spread of Human Cytomegalovirus in Epithelial Cells and Fibroblasts. Viruses 2022; 14:v14020284. [PMID: 35215877 PMCID: PMC8875165 DOI: 10.3390/v14020284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Human cytomegalovirus (HCMV) can cause severe clinical disease in immunocompromised individuals, such as allograft recipients and infants infected in utero. Neutralizing activity of antibodies, measured as the ability to prevent the entry of cell-free virus, has been correlated with the reduction in HCMV transmission and the severity of HCMV-associated disease. However, in vivo HCMV amplification may occur mainly via cell-to-cell spread. Thus, quantifying the inhibition of cell-to-cell transmission could be important in the evaluation of therapeutic antibodies and/or humoral responses to infection or immunization. Here, we established a quantitative plaque reduction assay, which allowed for the measurement of the capacity of antibodies to limit HCMV spread in vitro. Using an automated fluorescence spot reader, infection progression was assayed by the expansion of viral plaques during the course of infection with various GFP-expressing viruses. We found that in contrast to non-neutralizing monoclonal antibodies (mAbs), neutralizing mAbs against both glycoprotein B and H (gB and gH) could significantly inhibit viral plaque expansion of different HCMV strains and was equally efficient in fibroblasts as in epithelial cells. In contrast, an anti-pentamer mAb was active only in epithelial cells. Taken together, our data demonstrate that specific anti-HCMV mAbs can significantly limit cell-associated virus spread in vitro.
Collapse
|
18
|
Smith NA, Chan GC, O’Connor CM. Modulation of host cell signaling during cytomegalovirus latency and reactivation. Virol J 2021. [DOI: 10.1186/s12985-021-01674-1
expr 947873540 + 978833141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
AbstractBackgroundHuman cytomegalovirus (HCMV) resides latently in cells of the myeloid compartment, including CD34+hematopoietic progenitor cells and circulating monocytes. Healthy hosts maintain the virus latently, and this infection is, for the most part, asymptomatic. However, given the proper external cues, HCMV reactivates from latency, at which point the virus disseminates, causing disease. The viral and cellular factors dictating the balance between these phases of infection are incompletely understood, though a large body of literature support a role for viral-mediated manipulation of host cell signaling.Main bodyTo establish and maintain latency, HCMV has evolved various means by which it usurps host cell factors to alter the cellular environment to its own advantage, including altering host cell signaling cascades. As early as virus entry into myeloid cells, HCMV usurps cellular signaling to change the cellular milieu, and this regulation includes upregulation, as well as downregulation, of different signaling cascades. Indeed, given proper reactivation cues, this signaling is again altered to allow for transactivation of viral lytic genes.ConclusionsHCMV modulation of host cell signaling is not binary, and many of the cellular pathways altered are finely regulated, wherein the slightest modification imparts profound changes to the cellular milieu. It is also evident that viral-mediated cell signaling differs not only between these phases of infection, but also is myeloid cell type specific. Nonetheless, understanding the exact pathways and the means by which HCMV mediates them will undoubtedly provide novel targets for therapeutic intervention.
Collapse
|
19
|
Modulation of host cell signaling during cytomegalovirus latency and reactivation. Virol J 2021; 18:207. [PMID: 34663377 PMCID: PMC8524946 DOI: 10.1186/s12985-021-01674-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) resides latently in cells of the myeloid compartment, including CD34+ hematopoietic progenitor cells and circulating monocytes. Healthy hosts maintain the virus latently, and this infection is, for the most part, asymptomatic. However, given the proper external cues, HCMV reactivates from latency, at which point the virus disseminates, causing disease. The viral and cellular factors dictating the balance between these phases of infection are incompletely understood, though a large body of literature support a role for viral-mediated manipulation of host cell signaling. Main body To establish and maintain latency, HCMV has evolved various means by which it usurps host cell factors to alter the cellular environment to its own advantage, including altering host cell signaling cascades. As early as virus entry into myeloid cells, HCMV usurps cellular signaling to change the cellular milieu, and this regulation includes upregulation, as well as downregulation, of different signaling cascades. Indeed, given proper reactivation cues, this signaling is again altered to allow for transactivation of viral lytic genes. Conclusions HCMV modulation of host cell signaling is not binary, and many of the cellular pathways altered are finely regulated, wherein the slightest modification imparts profound changes to the cellular milieu. It is also evident that viral-mediated cell signaling differs not only between these phases of infection, but also is myeloid cell type specific. Nonetheless, understanding the exact pathways and the means by which HCMV mediates them will undoubtedly provide novel targets for therapeutic intervention.
Collapse
|
20
|
Tang J, Frascaroli G, Zhou X, Knickmann J, Brune W. Cell Fusion and Syncytium Formation in Betaherpesvirus Infection. Viruses 2021; 13:v13101973. [PMID: 34696402 PMCID: PMC8537622 DOI: 10.3390/v13101973] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Cell–cell fusion is a fundamental and complex process that occurs during reproduction, organ and tissue growth, cancer metastasis, immune response, and infection. All enveloped viruses express one or more proteins that drive the fusion of the viral envelope with cellular membranes. The same proteins can mediate the fusion of the plasma membranes of adjacent cells, leading to the formation of multinucleated syncytia. While cell–cell fusion triggered by alpha- and gammaherpesviruses is well-studied, much less is known about the fusogenic potential of betaherpesviruses such as human cytomegalovirus (HCMV) and human herpesviruses 6 and 7 (HHV-6 and HHV-7). These are slow-growing viruses that are highly prevalent in the human population and associated with several diseases, particularly in individuals with an immature or impaired immune system such as fetuses and transplant recipients. While HHV-6 and HHV-7 are strictly lymphotropic, HCMV infects a very broad range of cell types including epithelial, endothelial, mesenchymal, and myeloid cells. Syncytia have been observed occasionally for all three betaherpesviruses, both during in vitro and in vivo infection. Since cell–cell fusion may allow efficient spread to neighboring cells without exposure to neutralizing antibodies and other host immune factors, viral-induced syncytia may be important for viral dissemination, long-term persistence, and pathogenicity. In this review, we provide an overview of the viral and cellular factors and mechanisms identified so far in the process of cell–cell fusion induced by betaherpesviruses and discuss the possible consequences for cellular dysfunction and pathogenesis.
Collapse
Affiliation(s)
- Jiajia Tang
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
- Center for Single-Cell Omics, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Giada Frascaroli
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
| | - Xuan Zhou
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
| | - Jan Knickmann
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
| | - Wolfram Brune
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
- Correspondence:
| |
Collapse
|
21
|
Schultz EP, Yu Q, Stegmann C, Day LZ, Lanchy JM, Ryckman BJ. Mutagenesis of Human Cytomegalovirus Glycoprotein L Disproportionately Disrupts gH/gL/gO over gH/gL/pUL128-131. J Virol 2021; 95:e0061221. [PMID: 34132577 PMCID: PMC8354327 DOI: 10.1128/jvi.00612-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Cell-free and cell-to-cell spread of herpesviruses involves a core fusion apparatus comprised of the fusion protein glycoprotein B (gB) and the regulatory factor gH/gL. The human cytomegalovirus (HCMV) gH/gL/gO and gH/gL/pUL128-131 facilitate spread in different cell types. The gO and pUL128-131 components bind distinct receptors, but how the gH/gL portions of the complexes functionally compare is not understood. We previously characterized a panel of gL mutants by transient expression and showed that many were impaired for gH/gL-gB-dependent cell-cell fusion but were still able to form gH/gL/pUL128-131 and induce receptor interference. Here, the gL mutants were engineered into the HCMV BAC clones TB40/e-BAC4 (TB), TR, and Merlin (ME), which differ in their utilization of the two complexes for entry and spread. Several of the gL mutations disproportionately impacted gH/gL/gO-dependent entry and spread over gH/gL/pUL128-131 processes. The effects of some mutants could be explained by impaired gH/gL/gO assembly, but other mutants impacted gH/gL/gO function. Soluble gH/gL/gO containing the L201 mutant failed to block HCMV infection despite unimpaired binding to PDGFRα, indicating the existence of other important gH/gL/gO receptors. Another mutant (L139) enhanced the gH/gL/gO-dependent cell-free spread of TR, suggesting a "hyperactive" gH/gL/gO. Recently published crystallography and cryo-electron microscopy studies suggest structural conservation of the gH/gL underlying gH/gL/gO and gH/gL/pUL128-131. However, our data suggest important differences in the gH/gL of the two complexes and support a model in which gH/gL/gO can provide an activation signal for gB. IMPORTANCE The endemic betaherpesvirus HCMV circulates in human populations as a complex mixture of genetically distinct variants, establishes lifelong persistent infections, and causes significant disease in neonates and immunocompromised adults. This study capitalizes on our recent characterizations of three genetically distinct HCMV BAC clones to discern the functions of the envelope glycoprotein complexes gH/gL/gO and gH/gL/pUL128-13, which are promising vaccine targets that share the herpesvirus core fusion apparatus component, gH/gL. Mutations in the shared gL subunit disproportionally affected gH/gL/gO, demonstrating mechanistic differences between the two complexes, and may provide a basis for more refined evaluations of neutralizing antibodies.
Collapse
Affiliation(s)
- Eric P. Schultz
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, USA
| | - Qin Yu
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Cora Stegmann
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Le Zhang Day
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Biochemistry and Biophysics Program, University of Montana, Missoula, Montana, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Brent J. Ryckman
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, USA
- Biochemistry and Biophysics Program, University of Montana, Missoula, Montana, USA
| |
Collapse
|
22
|
Long X, Qiu Y, Zhang Z, Wu M. Insight for Immunotherapy of HCMV Infection. Int J Biol Sci 2021; 17:2899-2911. [PMID: 34345215 PMCID: PMC8326118 DOI: 10.7150/ijbs.58127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous in humans, has a high prevalence rate. Young people are susceptible to HCMV infection in developing countries, while older individuals are more susceptible in developed countries. Most patients have no obvious symptoms from the primary infection. Studies have indicated that the virus has gradually adapted to the host immune system. Therefore, the control of HCMV infection requires strong immune modulation. With the recent advances in immunotherapy, its application to HCMV infections is receiving increasing attention. Here, we discuss the immune response to HCMV infection, the immune escape mechanism, and the different roles that HCMV plays in various types of immunotherapy, including vaccines, adoptive cell therapy, checkpoint blockade therapy, and targeted antibodies.
Collapse
Affiliation(s)
- Xinmiao Long
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008 , Hunan, China
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Yi Qiu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008 , Hunan, China
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Zuping Zhang
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Minghua Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008 , Hunan, China
| |
Collapse
|
23
|
Wang HY, Valencia SM, Pfeifer SP, Jensen JD, Kowalik TF, Permar SR. Common Polymorphisms in the Glycoproteins of Human Cytomegalovirus and Associated Strain-Specific Immunity. Viruses 2021; 13:v13061106. [PMID: 34207868 PMCID: PMC8227702 DOI: 10.3390/v13061106] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
Human cytomegalovirus (HCMV), one of the most prevalent viruses across the globe, is a common cause of morbidity and mortality for immunocompromised individuals. Recent clinical observations have demonstrated that mixed strain infections are common and may lead to more severe disease progression. This clinical observation illustrates the complexity of the HCMV genome and emphasizes the importance of taking a population-level view of genotypic evolution. Here we review frequently sampled polymorphisms in the glycoproteins of HCMV, comparing the variable regions, and summarizing their corresponding geographic distributions observed to date. The related strain-specific immunity, including neutralization activity and antigen-specific cellular immunity, is also discussed. Given that these glycoproteins are common targets for vaccine design and anti-viral therapies, this observed genetic variation represents an important resource for future efforts to combat HCMV infections.
Collapse
Affiliation(s)
- Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA;
| | - Sarah M. Valencia
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA;
| | - Susanne P. Pfeifer
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (S.P.P.); (J.D.J.)
| | - Jeffrey D. Jensen
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (S.P.P.); (J.D.J.)
| | - Timothy F. Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA;
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA;
- Correspondence: ; Tel.: +1-212-746-4111
| |
Collapse
|
24
|
Genome sequences of human cytomegalovirus strain TB40/E variants propagated in fibroblasts and epithelial cells. Virol J 2021; 18:112. [PMID: 34082757 PMCID: PMC8173854 DOI: 10.1186/s12985-021-01583-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022] Open
Abstract
The advent of whole genome sequencing has revealed that common laboratory strains of human cytomegalovirus (HCMV) have major genetic deficiencies resulting from serial passage in fibroblasts. In particular, tropism for epithelial and endothelial cells is lost due to mutations disrupting genes UL128, UL130, or UL131A, which encode subunits of a virion-associated pentameric complex (PC) important for viral entry into these cells but not for entry into fibroblasts. The endothelial cell-adapted strain TB40/E has a relatively intact genome and has emerged as a laboratory strain that closely resembles wild-type virus. However, several heterogeneous TB40/E stocks and cloned variants exist that display a range of sequence and tropism properties. Here, we report the use of PacBio sequencing to elucidate the genetic changes that occurred, both at the consensus level and within subpopulations, upon passaging a TB40/E stock on ARPE-19 epithelial cells. The long-read data also facilitated examination of the linkage between mutations. Consistent with inefficient ARPE-19 cell entry, at least 83% of viral genomes present before adaptation contained changes impacting PC subunits. In contrast, and consistent with the importance of the PC for entry into endothelial and epithelial cells, genomes after adaptation lacked these or additional mutations impacting PC subunits. The sequence data also revealed six single noncoding substitutions in the inverted repeat regions, single nonsynonymous substitutions in genes UL26, UL69, US28, and UL122, and a frameshift truncating gene UL141. Among the changes affecting protein-coding regions, only the one in UL122 was strongly selected. This change, resulting in a D390H substitution in the encoded protein IE2, has been previously implicated in rendering another viral protein, UL84, essential for viral replication in fibroblasts. This finding suggests that IE2, and perhaps its interactions with UL84, have important functions unique to HCMV replication in epithelial cells.
Collapse
|
25
|
Cell type-specific biogenesis of novel vesicles containing viral products in human cytomegalovirus infection. J Virol 2021; 95:JVI.02358-20. [PMID: 33762413 PMCID: PMC8139684 DOI: 10.1128/jvi.02358-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV), while highly restricted for the human species, infects an diverse array of cell types in the host. Patterns of infection are dictated by the cell type infected, but cell type-specific factors and how they impact tropism for specific cell types is poorly understood. Previous studies in primary endothelial cells showed that HCMV infection induces large multivesicular-like bodies (MVBs) that incorporate viral products, including dense bodies (DBs) and virions. Here we define the nature of these large vesicles using a recombinant virus where UL32, encoding the pp150 tegument protein, is fused in frame with green fluorescent protein (GFP, TB40/E-UL32-GFP). In fibroblasts, UL32-GFP-positive vesicles were marked with classical markers of MVBs, including CD63 and lysobisphosphatidic acid (LBPA), both classical MVB markers, as well as the clathrin and LAMP1. Unexpectedly, UL32-GFP-positive vesicles in primary human microvascular endothelial cells (HMVECs) were not labeled by CD63, and LBPA was completely lost from infected cells. We defined these UL32-positive vesicles in endothelial cells using markers for the cis-Golgi (GM130), lysosome (LAMP1), and autophagy (LC3B). These findings suggest that UL32-GFP containing MVBs in fibroblasts are derived from the canonical endocytic pathway and takeover classical exosomal release pathway. However, UL32-GFP containing MVBs in HMVECs are derived from the early biosynthetic pathway and exploit a less characterized early Golgi-LAMP1-associated non- canonical secretory autophagy pathway. These results reveal striking cell-type specific membrane trafficking differences in host pathways that are exploited by HCMV, which may reflect distinct pathways for virus egress.ImportanceHuman cytomegalovirus (HCMV) is a herpesvirus that, like all herpesvirus, that establishes a life-long infection. HCMV remains a significant cause of morbidity and mortality in the immunocompromised and HCMV seropositivity is associated with age-related pathology. HCMV infects many cells in the human host and the biology underlying the different patterns of infection in different cell types is poorly understood. Endothelial cells are important target of infection that contribute to hematogenous spread of the virus to tissues. Here we define striking differences in the biogenesis of large vesicles that incorporate virions in fibroblasts and endothelial cells. In fibroblasts, HCMV is incorporated into canonical MVBs derived from an endocytic pathway, whereas HCMV matures through vesicles derived from the biosynthetic pathway in endothelial cells. This work defines basic biological differences between these cell types that may impact how progeny virus is trafficked out of infected cells.
Collapse
|
26
|
Gatault P, Jones IKA, Meyer C, Kreklywich C, Alexander T, Smith PP, Denton M, Powell J, Orloff SL, Streblow DN. Rat and human cytomegalovirus ORF116 encodes a virion envelope glycoprotein required for infectivity. Virology 2021; 557:23-33. [PMID: 33601113 PMCID: PMC8019331 DOI: 10.1016/j.virol.2020.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022]
Abstract
Herpesviruses encode multiple glycoproteins required for different stages of viral attachment, fusion, and envelopment. The protein encoded by the human cytomegalovirus (HCMV) open reading frame UL116 forms a stable complex with glycoprotein H that is incorporated into virions. However, the function of this complex remains unknown. Herein, we characterize R116, the rat CMV (RCMV) putative homolog of UL116. Two R116 transcripts were identified in fibroblasts with three proteins expressed with molecular weights of 42, 58, and 82 kDa. R116 is N-glycosylated, expressed with late viral gene kinetics, and is incorporated into the virion envelope. RCMV lacking R116 failed to result in productive infection of fibroblasts and siRNA knockdown of R116 substantially reduced RCMV infectivity. Complementation in trans of an R116-deficient virus restored ability of the virus to infect fibroblasts. Finally, UL116 knockdown also decreased HCMV infectivity indicating that R116 and UL116 both contribute to viral infectivity.
Collapse
Affiliation(s)
- Philippe Gatault
- Renal Transplant Unit, 10 Boulevard Tonnellé, University Hospital of Tours, France
| | - Iris K A Jones
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Christine Meyer
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Craig Kreklywich
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Timothy Alexander
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Patricia P Smith
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Michael Denton
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Josh Powell
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Susan L Orloff
- Department of Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Daniel N Streblow
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
27
|
Weiler N, Paal C, Adams K, Calcaterra C, Fischer D, Stanton RJ, Stöhr D, Laib Sampaio K, Sinzger C. Role of Envelope Glycoprotein Complexes in Cell-Associated Spread of Human Cytomegalovirus. Viruses 2021; 13:614. [PMID: 33918406 PMCID: PMC8066785 DOI: 10.3390/v13040614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
The role of viral envelope glycoproteins, particularly the accessory proteins of trimeric and pentameric gH/gL-complexes, in cell-associated spread of human cytomegalovirus (HCMV) is unclear. We aimed to investigate their contribution in the context of HCMV variants that grow in a strictly cell-associated manner. In the genome of Merlin pAL1502, the glycoproteins gB, gH, gL, gM, and gN were deleted by introducing stop codons, and the mutants were analyzed for viral growth. Merlin and recent HCMV isolates were compared by quantitative immunoblotting for expression of accessory proteins of the trimeric and pentameric gH/gL-complexes, gO and pUL128. Isolates were treated with siRNAs against gO and pUL128 and analyzed regarding focal growth and release of infectious virus. All five tested glycoproteins were essential for growth of Merlin pAL1502. Compared with this model virus, higher gO levels were measured in recent isolates of HCMV, and its knockdown decreased viral growth. Knockdown of pUL128 abrogated the strict cell-association and led to release of infectivity, which allowed cell-free transfer to epithelial cells where the virus grew again strictly cell-associated. We conclude that both trimer and pentamer contribute to cell-associated spread of recent clinical HCMV isolates and downregulation of pentamer can release infectious virus into the supernatant.
Collapse
Affiliation(s)
- Nina Weiler
- Institute for Virology, Ulm University Medical Center, 89089 Ulm, Germany; (N.W.); (C.P.); (K.A.); (C.C.); (D.F.); (D.S.); (K.L.S.)
| | - Caroline Paal
- Institute for Virology, Ulm University Medical Center, 89089 Ulm, Germany; (N.W.); (C.P.); (K.A.); (C.C.); (D.F.); (D.S.); (K.L.S.)
| | - Kerstin Adams
- Institute for Virology, Ulm University Medical Center, 89089 Ulm, Germany; (N.W.); (C.P.); (K.A.); (C.C.); (D.F.); (D.S.); (K.L.S.)
| | - Christopher Calcaterra
- Institute for Virology, Ulm University Medical Center, 89089 Ulm, Germany; (N.W.); (C.P.); (K.A.); (C.C.); (D.F.); (D.S.); (K.L.S.)
| | - Dina Fischer
- Institute for Virology, Ulm University Medical Center, 89089 Ulm, Germany; (N.W.); (C.P.); (K.A.); (C.C.); (D.F.); (D.S.); (K.L.S.)
| | - Richard James Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| | - Dagmar Stöhr
- Institute for Virology, Ulm University Medical Center, 89089 Ulm, Germany; (N.W.); (C.P.); (K.A.); (C.C.); (D.F.); (D.S.); (K.L.S.)
| | - Kerstin Laib Sampaio
- Institute for Virology, Ulm University Medical Center, 89089 Ulm, Germany; (N.W.); (C.P.); (K.A.); (C.C.); (D.F.); (D.S.); (K.L.S.)
| | - Christian Sinzger
- Institute for Virology, Ulm University Medical Center, 89089 Ulm, Germany; (N.W.); (C.P.); (K.A.); (C.C.); (D.F.); (D.S.); (K.L.S.)
| |
Collapse
|
28
|
Feldmann S, Grimm I, Stöhr D, Antonini C, Lischka P, Sinzger C, Stegmann C. Targeted mutagenesis on PDGFRα-Fc identifies amino acid modifications that allow efficient inhibition of HCMV infection while abolishing PDGF sequestration. PLoS Pathog 2021; 17:e1009471. [PMID: 33780515 PMCID: PMC8031885 DOI: 10.1371/journal.ppat.1009471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/08/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Platelet-derived growth factor receptor alpha (PDGFRα) serves as an entry receptor for the human cytomegalovirus (HCMV), and soluble PDGFRα-Fc can neutralize HCMV at a half-maximal effective concentration (EC50) of about 10 ng/ml. While this indicates a potential for usage as an HCMV entry inhibitor PDGFRα-Fc can also bind the physiological ligands of PDGFRα (PDGFs), which likely interferes with the respective signaling pathways and represents a potential source of side effects. Therefore, we tested the hypothesis that interference with PDGF signaling can be prevented by mutations in PDGFRα-Fc or combinations thereof, without losing the inhibitory potential for HCMV. To this aim, a targeted mutagenesis approach was chosen. The mutations were quantitatively tested in biological assays for interference with PDGF-dependent signaling as well as inhibition of HCMV infection and biochemically for reduced affinity to PDGF-BB, facilitating quantification of PDGFRα-Fc selectivity for HCMV inhibition. Mutation of Ile 139 to Glu and Tyr 206 to Ser strongly reduced the affinity for PDGF-BB and hence interference with PDGF-dependent signaling. Inhibition of HCMV infection was less affected, thus increasing the selectivity by factor 4 and 8, respectively. Surprisingly, the combination of these mutations had an additive effect on binding of PDGF-BB but not on inhibition of HCMV, resulting in a synergistic 260fold increase of selectivity. In addition, a recently reported mutation, Val 242 to Lys, was included in the analysis. PDGFRα-Fc with this mutation was fully effective at blocking HCMV entry and had a drastically reduced affinity for PDGF-BB. Combining Val 242 to Lys with Ile 139 to Glu and/or Tyr 206 to Ser further reduced PDGF ligand binding beyond detection. In conclusion, this targeted mutagenesis approach identified combinations of mutations in PDGFRα-Fc that prevent interference with PDGF-BB but maintain inhibition of HCMV, which qualifies such mutants as candidates for the development of HCMV entry inhibitors.
Collapse
Affiliation(s)
- Svenja Feldmann
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Dagmar Stöhr
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Chiara Antonini
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Peter Lischka
- AiCuris Anti-infective Cures GmbH, Wuppertal, Germany
| | - Christian Sinzger
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
- * E-mail: (CSi); (CSt)
| | - Cora Stegmann
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
- * E-mail: (CSi); (CSt)
| |
Collapse
|
29
|
Abstract
Human cytomegalovirus (HCMV) entry into host cells is a complex process involving interactions between an array of viral glycoproteins with multiple host cell surface receptors. A significant amount of research has been devoted toward identifying these glycoprotein and cellular receptor interactions as the broad cellular tropism of HCMV suggests a highly regulated yet adaptable process that controls viral binding and penetration. However, deciphering the initial binding and cellular receptor activation events by viral glycoproteins remains challenging. The relatively low abundance of receptors and/or interactions with glycoproteins during viral entry, the hydrophobicity of membrane receptors, and the rapid degradation and recycling of activated receptors have complicated the analysis of HCMV entry and the cellular signaling pathways initiated by HCMV engagement to the host membrane. Here, we describe the different methodologies used in our laboratory and others to analyze the interactions between HCMV glycoproteins and host cellular receptors during the entry stage of the viral life cycle.
Collapse
|
30
|
Jones IKA, Haese NN, Gatault P, Streblow ZJ, Andoh TF, Denton M, Streblow CE, Bonin K, Kreklywich CN, Burg JM, Orloff SL, Streblow DN. Rat Cytomegalovirus Virion-Associated Proteins R131 and R129 Are Necessary for Infection of Macrophages and Dendritic Cells. Pathogens 2020; 9:E963. [PMID: 33228102 PMCID: PMC7699341 DOI: 10.3390/pathogens9110963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Cytomegalovirus (CMV) establishes persistent, latent infection in hosts, causing diseases in immunocompromised patients, transplant recipients, and neonates. CMV infection modifies the host chemokine axis by modulating chemokine and chemokine receptor expression and by encoding putative chemokine and chemokine receptor homologues. The viral proteins have roles in cellular signaling, migration, and transformation, as well as viral dissemination, tropism, latency and reactivation. Herein, we review the contribution of CMV-encoded chemokines and chemokine receptors to these processes, and further elucidate the viral tropism role of rat CMV (RCMV) R129 and R131. These homologues of the human CMV (HCMV)-encoded chemokines UL128 and UL130 are of particular interest because of their dual role as chemokines and members of the pentameric entry complex, which is required for entry into cell types that are essential for viral transmission and dissemination. The contributions of UL128 and UL130 to acceleration of solid organ transplant chronic rejection are poorly understood, and are in need of an effective in vivo model system to elucidate the phenomenon. We demonstrated similar molecular entry requirements for R129 and R131 in the rat cells, as observed for HCMV, and provided evidence that R129 and R131 are part of the viral entry complex required for entry into macrophages, dendritic cells, and bone marrow cells.
Collapse
Affiliation(s)
- Iris K. A. Jones
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA; (I.K.A.J.); (N.N.H.); (Z.J.S.); (T.F.A.); (M.D.); (C.E.S.); (K.B.); (C.N.K.)
| | - Nicole N. Haese
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA; (I.K.A.J.); (N.N.H.); (Z.J.S.); (T.F.A.); (M.D.); (C.E.S.); (K.B.); (C.N.K.)
| | - Philippe Gatault
- Renal Transplant Unit, 10 Boulevard Tonnellé, University Hospital of Tours, 37032 Tours, France;
| | - Zachary J. Streblow
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA; (I.K.A.J.); (N.N.H.); (Z.J.S.); (T.F.A.); (M.D.); (C.E.S.); (K.B.); (C.N.K.)
| | - Takeshi F. Andoh
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA; (I.K.A.J.); (N.N.H.); (Z.J.S.); (T.F.A.); (M.D.); (C.E.S.); (K.B.); (C.N.K.)
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA; (J.M.B.); (S.L.O.)
| | - Michael Denton
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA; (I.K.A.J.); (N.N.H.); (Z.J.S.); (T.F.A.); (M.D.); (C.E.S.); (K.B.); (C.N.K.)
| | - Cassilyn E. Streblow
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA; (I.K.A.J.); (N.N.H.); (Z.J.S.); (T.F.A.); (M.D.); (C.E.S.); (K.B.); (C.N.K.)
| | - Kiley Bonin
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA; (I.K.A.J.); (N.N.H.); (Z.J.S.); (T.F.A.); (M.D.); (C.E.S.); (K.B.); (C.N.K.)
| | - Craig N. Kreklywich
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA; (I.K.A.J.); (N.N.H.); (Z.J.S.); (T.F.A.); (M.D.); (C.E.S.); (K.B.); (C.N.K.)
| | - Jennifer M. Burg
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA; (J.M.B.); (S.L.O.)
| | - Susan L. Orloff
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA; (J.M.B.); (S.L.O.)
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Daniel N. Streblow
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA; (I.K.A.J.); (N.N.H.); (Z.J.S.); (T.F.A.); (M.D.); (C.E.S.); (K.B.); (C.N.K.)
| |
Collapse
|
31
|
Repair of an Attenuated Low-Passage Murine Cytomegalovirus Bacterial Artificial Chromosome Identifies a Novel Spliced Gene Essential for Salivary Gland Tropism. J Virol 2020; 94:JVI.01456-20. [PMID: 32847854 DOI: 10.1128/jvi.01456-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/23/2020] [Indexed: 01/22/2023] Open
Abstract
The cloning of herpesviruses as bacterial artificial chromosomes (BACs) has revolutionized the study of herpesvirus biology, allowing rapid and precise manipulation of viral genomes. Several clinical strains of human cytomegalovirus (HCMV) have been cloned as BACs; however, no low-passage strains of murine CMV (MCMV), which provide a model mimicking these isolates, have been cloned. Here, the low-passage G4 strain of was BAC cloned. G4 carries an m157 gene that does not ligate the natural killer (NK) cell-activating receptor, Ly49H, meaning that unlike laboratory strains of MCMV, this virus replicates well in C57BL/6 mice. This BAC clone exhibited normal replication during acute infection in the spleen and liver but was attenuated for salivary gland tropism. Next-generation sequencing revealed a C-to-A mutation at nucleotide position 188422, located in the 3' untranslated region of sgg1, a spliced gene critical for salivary gland tropism. Repair of this mutation restored tropism for the salivary glands. Transcriptional analysis revealed a novel spliced gene within the sgg1 locus. This small open reading frame (ORF), sgg1.1, starts at the 3' end of the first exon of sgg1 and extends exon 2 of sgg1. This shorter spliced gene is prematurely terminated by the nonsense mutation at nt 188422. Sequence analysis of tissue culture-passaged virus demonstrated that sgg1.1 was stable, although other mutational hot spots were identified. The G4 BAC will allow in vivo studies in a broader range of mice, avoiding the strong NK cell responses seen in B6 mice with other MCMV BAC-derived MCMVs.IMPORTANCE Murine cytomegalovirus (MCMV) is widely used as a model of human CMV (HCMV) infection. However, this model relies on strains of MCMV that have been serially passaged in the laboratory for over four decades. These laboratory strains have been cloned as bacterial artificial chromosomes (BACs), which permits rapid and precise manipulation. Low-passage strains of MCMV add to the utility of the mouse model of HCMV infection but do not exist as cloned BACs. This study describes the first such low-passage MCMV BAC. This BAC-derived G4 was initially attenuated in vivo, with subsequent full genomic sequencing revealing a novel spliced transcript required for salivary gland tropism. These data suggest that MCMV, like HCMV, undergoes tissue culture adaptation that can limit in vivo growth and supports the use of BAC clones as a way of standardizing viral strains and minimizing interlaboratory strain variation.
Collapse
|
32
|
Human Cytomegalovirus Envelope Protein gpUL132 Regulates Infectious Virus Production through Formation of the Viral Assembly Compartment. mBio 2020; 11:mBio.02044-20. [PMID: 32994323 PMCID: PMC7527726 DOI: 10.1128/mbio.02044-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Following infection of permissive cells, human cytomegalovirus (HCMV) induces the reorganization of intracellular membranes resulting in the formation of a distinctive membranous compartment in the cytoplasm of infected cells. This compartment has been designated the viral assembly compartment (AC) and is thought to be a site for cytoplasmic virion assembly and envelopment. In this study, we have demonstrated that a single virion envelope glycoprotein is essential for AC formation in infected cells, and in its absence, there is a significant decrease in the production of infectious virions. These findings are consistent with those from other studies that have demonstrated the importance of host cell proteins in the formation of the AC and demonstrate a critical role of a single virion protein in AC formation and the efficient assembly of infectious virus. The human cytomegalovirus (HCMV) UL132 open reading frame encodes a 270-amino-acid type I envelope glycoprotein, gpUL132. The deletion of UL132 (ΔUL132) from the HCMV genome results in a pronounced deficit in virus yield, with an approximately 2-log decrease in the production of infectious virus compared to the wild-type (WT) virus. Characterization of the ΔUL132 mutant virus indicated that it was less infectious with a high particle-to-infectious unit ratio and an altered composition of virion proteins compared to the WT virus. In addition, the viral assembly compartment (AC) failed to form in cells infected with the ΔUL132 mutant virus. The expression of gpUL132 in trans rescued the defects in the morphogenesis of the AC in cells infected with the ΔUL132 mutant virus and in infectious virus production. Furthermore, using cell lines expressing chimeric proteins, we demonstrated that the cytosolic domain of gpUL132 was sufficient to rescue AC formation and WT levels of virus production. Progeny virions from ΔUL132-infected cells expressing the cytosolic domain of gpUL132 exhibited particle-to-infectious unit ratios similar to those of the WT virus. Together, our findings argue that gpUL132 is essential for HCMV AC formation and the efficient production of infectious particles, thus highlighting the importance of this envelope protein for the virus-induced reorganization of intracellular membranes and AC formation in the assembly of infectious virus.
Collapse
|
33
|
Human Cytomegalovirus Glycoprotein-Initiated Signaling Mediates the Aberrant Activation of Akt. J Virol 2020; 94:JVI.00167-20. [PMID: 32493823 DOI: 10.1128/jvi.00167-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/27/2020] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a major cause of morbidity and mortality among immunocompromised and immunonaive individuals. HCMV-induced signaling initiated during viral entry stimulates a rapid noncanonical activation of Akt to drive the differentiation of short-lived monocytes into long-lived macrophages, which is essential for viral dissemination and persistence. We found that HCMV glycoproteins gB and gH directly bind and activate cellular epidermal growth factor receptor (EGFR) and integrin β1, respectively, to reshape canonical Akt signaling within monocytes. The remodeling of the Akt signaling network was due to the recruitment of nontraditional Akt activators to either the gB- or gH-generated receptor signaling complexes. Phosphoinositide 3-kinase (PI3K) comprised of the p110β catalytic subunit was recruited to the gB/EGFR complex despite p110δ being the primary PI3K isoform found within monocytes. Concomitantly, SH2 domain-containing inositol 5-phosphatase 1 (SHIP1) was recruited to the gH/integrin β1 complex, which is critical to aberrant Akt activation, as SHIP1 diverts PI3K signaling toward a noncanonical pathway. Although integrin β1 was required for SHIP1 recruitment, gB-activated EGFR mediated SHIP1 activation, underscoring the importance of the interplay between gB- and gH-mediated signaling to the unique activation of Akt during HCMV infection. Indeed, SHIP1 activation mediated the increased expression of Mcl-1 and HSP27, two Akt-dependent antiapoptotic proteins specifically upregulated during HCMV infection but not during growth factor treatment. Overall, our data indicate that HCMV glycoproteins gB and gH work in concert to initiate an HCMV-specific signalosome responsible for the atypical activation of Akt required for infected monocyte survival and ultimately viral persistence.IMPORTANCE Human cytomegalovirus (HCMV) infection is endemic throughout the world regardless of socioeconomic conditions and geographic locations with a seroprevalence reaching up to 100% in some developing countries. Although asymptomatic in healthy individuals, HCMV can cause severe multiorgan disease in immunocompromised or immunonaive patients. HCMV disease is a direct consequence of monocyte-mediated systematic spread of the virus following infection. Because monocytes are short-lived cells, HCMV must subvert the natural short life-span of these blood cells by inducing a distinct activation of Akt, a serine/theonine protein kinase. In this work, we demonstrate that HCMV glycoproteins gB and gH work in tandem to reroute classical host cellular receptor signaling to aberrantly activate Akt and drive survival of infected monocytes. Deciphering how HCMV modulates the cellular pathway to induce monocyte survival is important to develop a new class of anti-HCMV drugs that could target and prevent spread of the virus by eliminating infected monocytes.
Collapse
|
34
|
Wang YQ, Zhao XY. Human Cytomegalovirus Primary Infection and Reactivation: Insights From Virion-Carried Molecules. Front Microbiol 2020; 11:1511. [PMID: 32765441 PMCID: PMC7378892 DOI: 10.3389/fmicb.2020.01511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous beta-herpesvirus, is able to establish lifelong latency after initial infection. Periodical reactivation occurs after immunosuppression, remaining a major cause of death in immunocompromised patients. HCMV has to reach a structural and functional balance with the host at its earliest entry. Virion-carried mediators are considered to play pivotal roles in viral adaptation into a new cellular environment upon entry. Additionally, one clear difference between primary infection and reactivation is the idea that virion-packaged factors are already formed such that those molecules can be used swiftly by the virus. In contrast, virion-carried mediators have to be transcribed and translated; thus, they are not readily available during reactivation. Hence, understanding virion-carried molecules helps to elucidate HCMV reactivation. In this article, the impact of virion-packaged molecules on viral structure, biological behavior, and viral life cycle will be reviewed.
Collapse
Affiliation(s)
- Yu-Qing Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,PKU-THU Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
35
|
Park J, Gill KS, Aghajani AA, Heredia JD, Choi H, Oberstein A, Procko E. Engineered receptors for human cytomegalovirus that are orthogonal to normal human biology. PLoS Pathog 2020; 16:e1008647. [PMID: 32559251 PMCID: PMC7329128 DOI: 10.1371/journal.ppat.1008647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/01/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
A trimeric glycoprotein complex on the surface of human cytomegalovirus (HCMV) binds to platelet-derived growth factor (PDGF) receptor α (PDGFRα) to mediate host cell recognition and fusion of the viral and cellular membranes. Soluble PDGFRα potently neutralizes HCMV in tissue culture, and its potential use as an antiviral therapeutic has the benefit that any escape mutants will likely be attenuated. However, PDGFRα binds multiple PDGF ligands in the human body as part of developmental programs in embryogenesis and continuing through adulthood. Any therapies with soluble receptor therefore come with serious efficacy and safety concerns, especially for the treatment of congenital HCMV. Soluble virus receptors that are orthogonal to human biology might resolve these concerns. This engineering problem is solved by deep mutational scanning on the D2-D3 domains of PDGFRα to identify variants that maintain interactions with the HCMV glycoprotein trimer in the presence of competing PDGF ligands. Competition by PDGFs is conformation-dependent, whereas HCMV trimer binding is independent of proper D2-D3 conformation, and many mutations at the receptor-PDGF interface are suitable for functionally separating trimer from PDGF interactions. Purified soluble PDGFRα carrying a targeted mutation succeeded in displaying wild type affinity for HCMV trimer with a simultaneous loss of PDGF binding, and neutralizes trimer-only and trimer/pentamer-expressing HCMV strains infecting fibroblasts or epithelial cells. Overall, this work makes important progress in the realization of soluble HCMV receptors for clinical application. Human cytomegalovirus (HCMV) causes severe disease in transplant recipients and immunocompromised patients, and infections in a fetus or neonate are responsible for life-long neurological defects. Cell entry is in part mediated by a trimeric glycoprotein complex on the viral surface, which binds tightly to the host receptor PDGFRα. The soluble extracellular region of PDGFRα can be used as an antiviral agent to potently neutralize the virus in vitro. However, PDGFRα ordinarily binds growth factors in the human body to regulate developmental programs, which will limit the in vivo efficacy and safety of soluble PDGFRα. Using saturation mutagenesis and selections in human cell culture, mutations in PDGFRα are identified that eliminate off-target growth factor interactions while preserving HCMV binding and neutralization.
Collapse
Affiliation(s)
- Jihye Park
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Kevin Sean Gill
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Ali Asghar Aghajani
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Jeremiah Dallas Heredia
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Hannah Choi
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Adam Oberstein
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
- Cancer Center at Illinois (CCIL), University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
36
|
Specialization for Cell-Free or Cell-to-Cell Spread of BAC-Cloned Human Cytomegalovirus Strains Is Determined by Factors beyond the UL128-131 and RL13 Loci. J Virol 2020; 94:JVI.00034-20. [PMID: 32321807 DOI: 10.1128/jvi.00034-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022] Open
Abstract
It is widely held that clinical isolates of human cytomegalovirus (HCMV) are highly cell associated, and mutations affecting the UL128-131 and RL13 loci that arise in culture lead to the appearance of a cell-free spread phenotype. The bacterial artificial chromosome (BAC) clone Merlin (ME) expresses abundant UL128-131, is RL13 impaired, and produces low infectivity virions in fibroblasts, whereas TB40/e (TB) and TR are low in UL128-131, are RL13 intact, and produce virions of much higher infectivity. Despite these differences, quantification of spread by flow cytometry revealed remarkably similar spread efficiencies in fibroblasts. In epithelial cells, ME spread more efficiently, consistent with robust UL128-131 expression. Strikingly, ME spread far better than did TB or TR in the presence of neutralizing antibodies on both cell types, indicating that ME is not simply deficient at cell-free spread but is particularly efficient at cell-to-cell spread, whereas TB and TR cell-to-cell spread is poor. Sonically disrupted ME-infected cells contained scant infectivity, suggesting that the efficient cell-to-cell spread mechanism of ME depends on features of the intact cells such as junctions or intracellular trafficking processes. Even when UL128-131 was transcriptionally repressed, cell-to-cell spread of ME was still more efficient than that of TB or TR. Moreover, RL13 expression comparably reduced both cell-free and cell-to-cell spread of all three strains, suggesting that it acts at a stage of assembly and/or egress common to both routes of spread. Thus, HCMV strains can be highly specialized for either for cell-free or cell-to-cell spread, and these phenotypes are determined by factors beyond the UL128-131 or RL13 loci.IMPORTANCE Both cell-free and cell-to-cell spread are likely important for the natural biology of HCMV. In culture, strains clearly differ in their capacity for cell-free spread as a result of differences in the quantity and infectivity of extracellular released progeny. However, it has been unclear whether "cell-associated" phenotypes are simply the result of poor cell-free spread or are indicative of particularly efficient cell-to-cell spread mechanisms. By measuring the kinetics of spread at early time points, we were able to show that HCMV strains can be highly specialized to either cell-free or cell-to-cell mechanisms, and this was not strictly linked the efficiency of cell-free spread. Our results provide a conceptual approach to evaluating intervention strategies for their ability to limit cell-free or cell-to-cell spread as independent processes.
Collapse
|
37
|
Okumura M, Matsuura-Miura M, Makino R, Miura T, Noguchi K, Majima R, Koshizuka T, Inoue N. Enhancement of guinea pig cytomegalovirus infection by two endogenously expressed components of the pentameric glycoprotein complex in epithelial cells. Sci Rep 2020; 10:8530. [PMID: 32444790 PMCID: PMC7244513 DOI: 10.1038/s41598-020-65545-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
A better understanding of the mechanisms underlying cell tropisms and the efficiency of viral infection is critical for the development of vaccines and antiviral drugs for viral diseases. In this study, we worked on the entry mechanisms of guinea pig cytomegalovirus and found that endogenous expression of a combination of two components (GP131 and GP133) of the pentameric glycoprotein complex, which is required for non-fibroblast cell tropisms, enhanced viral infection more than 10-fold. In addition, D138A alteration in GP131 increased this enhancement by an additional 10-fold. Although differences in the efficiency of viral infection among various cell types are usually explained by differences in viral entry or traffic processes, our experimental evidences dismissed such possibilities. Instead, our findings that i) endogenous expression of GP131 and GP133 after nuclear delivery of viral DNA still enhanced infection and ii) an HDAC inhibitor overcame the need of the endogenous expression led us to hypothesize a novel mechanism that controls the efficiency of viral infection through the activation of gene expression from viral DNA delivered to the nuclei. Further studies of this unexpected phenomena warrant to understand novel but also general mechanisms for cell tropisms of viral infection and determinants that control infection efficiency.
Collapse
Affiliation(s)
- Misaki Okumura
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Miku Matsuura-Miura
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan.,Akashi City Hall, Hyogo, Japan
| | - Reina Makino
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Takuya Miura
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan.,JCR Pharmaceuticals Co., Ltd., Hyogo, Japan
| | - Kazuma Noguchi
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Ryuichi Majima
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuo Koshizuka
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Naoki Inoue
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
38
|
Vo M, Aguiar A, McVoy MA, Hertel L. Cytomegalovirus Strain TB40/E Restrictions and Adaptations to Growth in ARPE-19 Epithelial Cells. Microorganisms 2020; 8:microorganisms8040615. [PMID: 32344555 PMCID: PMC7232150 DOI: 10.3390/microorganisms8040615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/02/2022] Open
Abstract
Despite displaying broad tropism in vivo, human cytomegalovirus (CMV) contained in bodily fluids replicates inefficiently in most cultured cell types except fibroblasts. As propagation in fibroblasts leads to the accumulation of genomic changes, a number of strains were generated by serial passaging on endothelial cells. One of these, TB40/E, was shown to contain a mixture of genetically distinct virus variants, and to retain tropism for fibroblasts, endothelial and epithelial cells. Cloning of an endotheliotropic subpopulation produced the TB40-BAC4 variant, extensively used in CMV tropism studies. Because TB40-BAC4 represents only one of the different variants comprising TB40/E, we generated a series of epithelial-cell adapted stocks derived from a TB40/E mixed stock, rather than from TB40-BAC4. Within two passages on ARPE-19 cells, virus populations were produced with the ability to enter and initiate replication with similar efficiencies in both epithelial cells and fibroblasts. Although the ability to release progeny also increased, cell-free virus yields from ARPE-19 cells remained consistently two to three-logs lower than from fibroblasts, hinting at the existence of a post-entry and post-genome synthesis block in epithelial cells. Multinucleated syncytia also rapidly appeared exclusively in ARPE-19 cell cultures, where their numbers and dimensions increased with virus passage. Irrespective of the number of infected nuclei comprising each syncytium, however, only one cytoplasmic virion assembly compartment was consistently observed, leading us to speculate that improvements in entry efficiency associated with ARPE-19 cell adaptation lead to the development of syncytia, which may negatively affect progeny release by limiting the amount of resources available to maturing virions.
Collapse
Affiliation(s)
- Mai Vo
- Department of Pediatrics, University of California San Francisco, Oakland, CA 94611, USA; (M.V.); (A.A.)
| | - Alexis Aguiar
- Department of Pediatrics, University of California San Francisco, Oakland, CA 94611, USA; (M.V.); (A.A.)
| | - Michael A. McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23229, USA;
| | - Laura Hertel
- Department of Pediatrics, University of California San Francisco, Oakland, CA 94611, USA; (M.V.); (A.A.)
- Correspondence:
| |
Collapse
|
39
|
Al Qaffas A, Camiolo S, Nichols J, Davison AJ, Ourahmane A, Cui X, Schleiss MR, Hertel L, Dittmer DP, McVoy MA. Genome Sequence of Human Cytomegalovirus Ig-KG-H2, a Variant of Strain KG Propagated in the Presence of Neutralizing Antibodies. Microbiol Resour Announc 2020; 9:e00063-20. [PMID: 32327516 PMCID: PMC7180270 DOI: 10.1128/mra.00063-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus shed in infant urine was isolated and serially passaged in fibroblasts in the presence or absence of neutralizing antibodies. Comparison of the genome sequences of representative viruses Ig-KG-H2 (passed with antibody) and ϕ-KG-B5 (passed without antibody) revealed the presence of several mutations in each virus.
Collapse
Affiliation(s)
- Ahmed Al Qaffas
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Salvatore Camiolo
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Amine Ourahmane
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xiaohong Cui
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, Division of Pediatric Infectious Diseases, Minneapolis, Minnesota, USA
| | - Laura Hertel
- Department of Pediatrics, School of Medicine, University of California, San Francisco, Oakland, California, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center Program in Global Oncology, Department of Microbiology and Immunology, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
40
|
Qi Y, He L, Cui X, Hertel L, Freed DC, Fu TM, Kauvar LM, McVoy MA, Ruan Q. Comparative neutralizing potencies of antibodies suggest conservation as well as mechanistic differences in human cytomegalovirus entry into epithelial and endothelial cells. Virol J 2020; 17:50. [PMID: 32268919 PMCID: PMC7144056 DOI: 10.1186/s12985-020-01320-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/20/2020] [Indexed: 11/20/2022] Open
Abstract
Antibody neutralization of cytomegalovirus (CMV) entry into diverse cell types is a key consideration for development of vaccines and immunotherapeutics. CMV entry into fibroblasts differs significantly from entry into epithelial or endothelial cells: fibroblast entry is mediated by gB and gH/gL/gO, whereas both epithelial and endothelial cell entry require an additional pentameric complex (PC) comprised of gH/gL/UL128/UL130/UL131A. Because PC-specific antibodies in CMV-seropositive human sera do not affect fibroblast entry but potently block entry into epithelial or endothelial cells, substantially higher neutralizing potencies for CMV-positive sera are observed when assayed using epithelial cells as targets than when using fibroblasts. That certain sera exhibit similar discordances between neutralizing potencies measured using epithelial vs. endothelial cells (Gerna G. et al.J Gen Virol, 89:853–865, 2008) suggested that additional mechanistic differences may also exist between epithelial and endothelial cell entry. To further explore this issue, neutralizing potencies using epithelial and endothelial cells were simultaneously determined for eight CMV-positive human sera, CMV-hyperimmune globulin, and a panel of monoclonal or anti-peptide antibodies targeting specific epitopes in gB, gH, gH/gL, or the PC. No significant differences were observed between epithelial and endothelial neutralizing potencies of epitope-specific antibodies, CMV-hyperimmune globulin, or seven of the eight human sera. However, one human serum exhibited a six-fold higher potency for neutralizing entry into epithelial cells vs. endothelial cells. These results suggest that epitopes exist that are important for epithelial entry but are less critical, or perhaps dispensable, for endothelial cell entry. Their existence should be considered when developing monoclonal antibody therapies or subunit vaccines representing limited epitopes.
Collapse
Affiliation(s)
- Ying Qi
- Virology laboratory, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Li He
- Virginia Commonwealth University, Richmond, VA, USA
| | - Xiaohong Cui
- Virginia Commonwealth University, Richmond, VA, USA
| | - Laura Hertel
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | | | - Tong-Ming Fu
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | - Qiang Ruan
- Virology laboratory, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
41
|
Paradowska E, Jabłońska A, Studzińska M, Kasztelewicz B, Wiśniewska-Ligier M, Dzierżanowska-Fangrat K, Woźniakowska-Gęsicka T, Czech-Kowalska J. Distribution of the CMV glycoprotein gH/gL/gO and gH/gL/pUL128/pUL130/pUL131A complex variants and associated clinical manifestations in infants infected congenitally or postnatally. Sci Rep 2019; 9:16352. [PMID: 31705022 PMCID: PMC6841705 DOI: 10.1038/s41598-019-52906-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/22/2019] [Indexed: 11/09/2022] Open
Abstract
Human cytomegalovirus (CMV) is a major cause of morbidity in fetuses following intrauterine infection. The glycoprotein (g) envelope trimeric gH/gL/gO and pentameric gH/gL/pUL128/pUL130/pUL131A complexes are required for CMV entry into fibroblasts and endothelial/epithelial cells, respectively, and both are targets for neutralizing antibodies. The role of sequence variability among viral strains in the outcome of congenital CMV infection is controversial. Variation in the CMV UL75 gene encoding glycoprotein H (gH), the UL115 (gL), the UL74 (gO), and the UL128 locus (UL128L) encoding three structural proteins (pUL128, pUL130, and pUL131A) was determined in 82 newborns with congenital CMV infection and 113 infants with postnatal or unproven congenital CMV infection. Genotyping was performed by sequencing analysis of PCR-amplified fragments and the PCR-restriction fragment length polymorphism (RFLP) method, and the viral load was measured by quantitative real-time PCR. The obtained results demonstrated that (1) different CMV variants and mixed CMV infections can be detected in newborns infected congenitally; (2) the gH1 genotype, UL130 variant 6, and UL131A variant 1 were associated with some signs/symptoms within cohort of pediatric patients, mainly consisting of infants with symptomatic CMV infection. The results revealed that pUL130, pUL131A, and gH polymorphisms seemed to be associated with the outcome of CMV infection in infants.
Collapse
Affiliation(s)
- Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| | - Agnieszka Jabłońska
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Mirosława Studzińska
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Beata Kasztelewicz
- Department of Clinical Microbiology and Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Małgorzata Wiśniewska-Ligier
- Department of Pediatrics, Immunology, and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
- 3rd Department of Pediatrics, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | | | | | - Justyna Czech-Kowalska
- Department of Neonatology and Neonatal Intensive Care, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
42
|
Ye X, Gui X, Freed DC, Ku Z, Li L, Chen Y, Xiong W, Fan X, Su H, He X, Rustandi RR, Loughney JW, Ma N, Espeseth AS, Liu J, Zhu H, Wang D, Zhang N, Fu TM, An Z. Identification of adipocyte plasma membrane-associated protein as a novel modulator of human cytomegalovirus infection. PLoS Pathog 2019; 15:e1007914. [PMID: 31356650 PMCID: PMC6687193 DOI: 10.1371/journal.ppat.1007914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/08/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that can cause disability in newborns and serious clinical diseases in immunocompromised patients. HCMV has a large genome with enormous coding potential; its viral particles are equipped with complicated glycoprotein complexes and can infect a wide range of human cells. Although multiple host cellular receptors interacting with viral glycoproteins have been reported, the mechanism of HCMV infection remains a mystery. Here we report identification of adipocyte plasma membrane-associated protein (APMAP) as a novel modulator active in the early stage of HCMV infection. APMAP is necessary for HCMV infection in both epithelial cells and fibroblasts; knockdown of APMAP expression significantly reduced HCMV infection of these cells. Interestingly, ectopic expression of human APMAP in cells refractory to HCMV infection, such as canine MDCK and murine NIH/3T3 cells, promoted HCMV infection. Furthermore, reduction in viral immediate early (IE) gene transcription at 6 h post infection and delayed nucleus translocation of tegument delivered pp65 at 4 h post infection were detected in APMAP-deficient cells but not in the wildtype cells. These results suggest that APMAP plays a role in the early stage of HCMV infection. Results from biochemical studies of APMAP and HCMV proteins suggest that APMAP could participate in HCMV infection through interaction with gH/gL containing glycoprotein complexes at low pH and mediate nucleus translocation of tegument pp65. Taken together, our results suggest that APMAP functions as a modulator promoting HCMV infection in multiple cell types and is an important player in the complex HCMV infection mechanism.
Collapse
Affiliation(s)
- Xiaohua Ye
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Texas, United States of America
| | - Xun Gui
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Texas, United States of America
| | - Daniel C. Freed
- MRL, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Texas, United States of America
| | - Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Texas, United States of America
| | - Yuanzhi Chen
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Texas, United States of America
| | - Wei Xiong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Texas, United States of America
| | - Xuejun Fan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Texas, United States of America
| | - Hang Su
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Texas, United States of America
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xi He
- MRL, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | | | - John W. Loughney
- MRL, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Ningning Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Amy S. Espeseth
- MRL, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Jian Liu
- Rutgers Medical School of New Jersey, Newark, NJ, United States of America
| | - Hua Zhu
- Rutgers Medical School of New Jersey, Newark, NJ, United States of America
| | - Dai Wang
- MRL, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Texas, United States of America
- * E-mail: (NZ); (TMF); (ZN)
| | - Tong-Ming Fu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Texas, United States of America
- MRL, Merck & Co., Inc., Kenilworth, NJ, United States of America
- * E-mail: (NZ); (TMF); (ZN)
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Texas, United States of America
- * E-mail: (NZ); (TMF); (ZN)
| |
Collapse
|
43
|
Human Cytomegalovirus Cell Tropism and Host Cell Receptors. Vaccines (Basel) 2019; 7:vaccines7030070. [PMID: 31336680 PMCID: PMC6789482 DOI: 10.3390/vaccines7030070] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
In the 1970s–1980s, a striking increase in the number of disseminated human cytomegalovirus (HCMV) infections occurred in immunosuppressed patient populations. Autopsy findings documented the in vivo disseminated infection (besides fibroblasts) of epithelial cells, endothelial cells, and polymorphonuclear leukocytes. As a result, multiple diagnostic assays, such as quantification of HCMV antigenemia (pp65), viremia (infectious virus), and DNAemia (HCMV DNA) in patient blood, were developed. In vitro experiments showed that only low passage or endothelial cell-passaged clinical isolates, and not laboratory-adapted strains, could reproduce both HCMV leuko- and endothelial cell-tropism, which were found through genetic analysis to require the three viral genes UL128, UL130, and UL131 of the HCMV UL128 locus (UL128L). Products of this locus, together with gH/gL, were shown to form the gH/gL/pUL128L pentamer complex (PC) required for infection of epithelial cells/endothelial cells, whereas gH/gL and gO form the gH/gL/gO trimer complex (TC) required for infection of all cell types. In 2016, following previous work, a receptor for the TC that mediates entry into fibroblasts was identified as PDGFRα, while in 2018, a receptor for the PC that mediates entry into endothelial/epithelial cells was identified as neuropilin2 (Nrp2). Furthermore, the olfactory receptor family member OR14I1 was recently identified as a possible additional receptor for the PC in epithelial cells. Thus, current data support two models of viral entry: (i) in fibroblasts, following interaction of PDGFRα with TC, the latter activates gB to fuse the virus envelope with the cell membrane, whereas (ii) in epithelial cells/endothelial cells, interaction of Nrp2 (and OR14I1) with PC promotes endocytosis of virus particles, followed by gB activation by gH/gL/gO (or gH/gL) and final low-pH entry into the cell.
Collapse
|
44
|
Abstract
In this chapter, we present an overview on betaherpesvirus entry, with a focus on human cytomegalovirus, human herpesvirus 6A and human herpesvirus 6B. Human cytomegalovirus (HCMV) is a complex human pathogen with a genome of 235kb encoding more than 200 genes. It infects a broad range of cell types by switching its viral ligand on the virion, using the trimer gH/gL/gO for infection of fibroblasts and the pentamer gH/gL/UL128/UL130/UL131 for infection of other cells such as epithelial and endothelial cells, leading to membrane fusion mediated by the fusion protein gB. Adding to this scenario, however, accumulating data reveal the actual complexity in the viral entry process of HCMV with an intricate interplay among viral and host factors. Key novel findings include the identification of entry receptors platelet-derived growth factor-α receptor (PDGFRα) and Netropilin-2 (Nrp2) for trimer and pentamer, respectively, the determination of atomic structures of the fusion protein gB and the pentamer, and the in situ visualization of the state and arrangement of functional glycoproteins on virion. This is covered in the first part of this review. The second part focusses on HHV-6 which is a T lymphotropic virus categorized as two distinct virus species, HHV-6A and HHV-6B based on differences in epidemiological, biological, and immunological aspects, although homology of their entire genome sequences is nearly 90%. HHV-6B is a causative agent of exanthema subitum (ES), but the role of HHV-6A is unknown. HHV-6B reactivation occasionally causes encephalitis in patients with hematopoietic stem cell transplant. The HHV-6 specific envelope glycoprotein complex, gH/gL/gQ1/gQ2 is a viral ligand for the entry receptor. Recently, each virus has been found to recognize a different cellular receptor, CD46 for HHV 6A amd CD134 for HHV 6B. These findings show that distinct receptor recognition differing between both viruses could explain their different pathogenesis.
Collapse
Affiliation(s)
- Mitsuhiro Nishimura
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
45
|
The N Terminus of Human Cytomegalovirus Glycoprotein O Is Important for Binding to the Cellular Receptor PDGFRα. J Virol 2019; 93:JVI.00138-19. [PMID: 30894468 DOI: 10.1128/jvi.00138-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
The human cytomegalovirus (HCMV) glycoprotein complex gH/gL/gO is required for the infection of cells by cell-free virions. It was recently shown that entry into fibroblasts depends on the interaction of gO with the platelet-derived growth factor receptor alpha (PDGFRα). This interaction can be blocked with soluble PDGFRα-Fc, which binds to HCMV virions and inhibits entry. The aim of this study was to identify parts of gO that contribute to PDGFRα binding. In a systematic mutational approach, we targeted potential interaction sites by exchanging conserved clusters of charged amino acids of gO with alanines. To screen for impaired interaction with PDGFRα, virus mutants were tested for sensitivity to inhibition by soluble PDGFRα-Fc. Two mutants with mutations within the N terminus of gO (amino acids 56 to 61 and 117 to 121) were partially resistant to neutralization. To validate whether these mutations impair interaction with PDGFRα-Fc, we compared binding of PDGFRα-Fc to mutant and wild-type virions via quantitative immunofluorescence analysis. PDGFRα-Fc staining intensities were reduced by 30% to 60% with mutant virus particles compared to wild-type particles. In concordance with the reduced binding to the soluble receptor, virus penetration into fibroblasts, which relies on binding to the cellular PDGFRα, was also reduced. In contrast, PDGFRα-independent penetration into endothelial cells was unaltered, demonstrating that the phenotypes of the gO mutant viruses were specific for the interaction with PDGFRα. In conclusion, the mutational screening of gO revealed that the N terminus of gO contributes to efficient spread in fibroblasts by promoting the interaction of virions with its cellular receptor.IMPORTANCE The human cytomegalovirus is a highly prevalent pathogen that can cause severe disease in immunocompromised hosts. Currently used drugs successfully target the viral replication within the host cell, but their use is restricted due to side effects and the development of resistance. An alternative approach is the inhibition of virus entry, for which understanding the details of the initial virus-cell interaction is desirable. As binding of the viral gH/gL/gO complex to the cellular PDGFRα drives infection of fibroblasts, this is a potential target for inhibition of infection. Our mutational mapping approach suggests the N terminus as the receptor binding portion of the protein. The respective mutants were partially resistant to inhibition by PDGFRα-Fc but also attenuated for infection of fibroblasts, indicating that such mutations have little if any benefit for the virus. These findings highlight the potential of targeting the interaction of gH/gL/gO with PDGFRα for therapeutic inhibition of HCMV.
Collapse
|
46
|
Natural Inhibitor of Human Cytomegalovirus in Human Seminal Plasma. J Virol 2019; 93:JVI.01855-18. [PMID: 30626669 DOI: 10.1128/jvi.01855-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/15/2018] [Indexed: 01/20/2023] Open
Abstract
Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital infections that can lead to severe birth defects. Although HCMV is frequently detected in semen and thus is potentially sexually transmitted, the role of semen in HCMV transmission is largely unclear. Here we describe that human seminal plasma (SP; the cell-free supernatant of semen) inhibits HCMV infection. The inhibition of HCMV infection was dose dependent and effective for different cell types, virus strains, and semen donors. This inhibitory effect was specific for HCMV, as herpes simplex virus 2 (HSV-2) and human immunodeficiency virus type 1 (HIV-1) infections were enhanced by SP. Mechanistically, SP inhibited infection by interfering with the attachment of virions to cells most likely via an interaction with the trimeric glycoprotein complex gH/gL/gO. Together, our findings suggest that semen contains a factor that potentially limits sexual transmission of HCMV.IMPORTANCE The role of semen in sexual transmission of human cytomegalovirus (HCMV) is currently unclear. This is surprising, as HCMV is frequently detected in this body fluid and infection is of high danger for neonates and pregnant women. In this study, we found that seminal plasma (SP) dose dependently inhibited HCMV infection. The infection inhibition was specific for HCMV, as other viruses, such as human immunodeficiency virus type 1 (HIV-1) and herpes simplex virus 2 (HSV-2), were not inhibited by SP. SP must contain a soluble, heat-resistant factor that limits attachment of HCMV particles to cells, probably by interaction with the trimeric glycoprotein complex gH/gL/gO. This novel virus-host interaction could possibly limit transmission of HCMV via semen during sexual intercourse.
Collapse
|
47
|
Ourahmane A, Cui X, He L, Catron M, Dittmer DP, Al Qaffasaa A, Schleiss MR, Hertel L, McVoy MA. Inclusion of Antibodies to Cell Culture Media Preserves the Integrity of Genes Encoding RL13 and the Pentameric Complex Components During Fibroblast Passage of Human Cytomegalovirus. Viruses 2019; 11:E221. [PMID: 30841507 PMCID: PMC6466449 DOI: 10.3390/v11030221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/16/2019] [Indexed: 12/11/2022] Open
Abstract
Propagation of human cytomegalovirus (CMV) in cultured cells results in genetic adaptations that confer improved growth in vitro and significant attenuation in vivo. Mutations in RL13 arise quickly, while mutations in the UL128-131A locus emerge later during fibroblast passage and disrupt formation of a glycoprotein complex that is important for entry into epithelial and endothelial cells. As CMV replicates in the context of host antibodies in vivo, we reasoned that antibodies might mitigate the accumulation of adaptive mutations during cell culture passage. To test this, CMV in infant urine was used to infect replicate fibroblast cultures. One lineage was passaged in the absence of CMV-hyperimmuneglobulin (HIG) while the other was passaged with HIG in the culture medium. The former lost epithelial tropism and acquired mutations disrupting RL13 and UL131A expression, whereas the latter retained epithelial tropism and both gene loci remained intact after 22 passages. Additional mutations resulting in single amino acid changes also occurred in UL100 encoding glycoprotein M, UL102 encoding a subunit of the helicase/primase complex, and UL122 encoding the Immediate Early 2 protein. An epitheliotropic RL13+/UL131A+ virus was isolated by limiting dilution in the presence of HIG and expanded to produce a working stock sufficient to conduct cell tropism experiments. Thus, production of virus stocks by culture in the presence of antibodies may facilitate in vitro experiments using viruses that are genetically more authentic than previously available.
Collapse
Affiliation(s)
| | - Xiaohong Cui
- Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Li He
- Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Meaghan Catron
- Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Dirk P Dittmer
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center Program in Global Oncology, Center for AIDS Research (CfAR), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | - Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, Division of Pediatric Infectious Diseases, Minneapolis, MN 55455, USA.
| | - Laura Hertel
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| | | |
Collapse
|
48
|
Altman AM, Mahmud J, Nikolovska-Coleska Z, Chan G. HCMV modulation of cellular PI3K/AKT/mTOR signaling: New opportunities for therapeutic intervention? Antiviral Res 2019; 163:82-90. [PMID: 30668978 PMCID: PMC6391997 DOI: 10.1016/j.antiviral.2019.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
Abstract
Human cytomegalovirus (HCMV) remains a major public health burden domestically and abroad. Current approved therapies, including ganciclovir, are only moderately efficacious, with many transplant patients suffering from a variety of side effects. A major impediment to the efficacy of current anti-HCMV drugs is their antiviral effects are restricted to the lytic stage of viral replication. Consequently, the non-lytic stages of the viral lifecycle remain major sources of HCMV infection associated with transplant recipients and ultimately the cause of morbidity and mortality. While work continues on new antivirals that block lytic replication, the dormant stages of HCMV's unique lifecycle need to be concurrently assessed for new therapeutic interventions. In this review, we will examine the role that the PI3K/Akt/mTOR signaling axis plays during the different stages of HCMV's lifecycle, and describe the advantages of targeting this cellular pathway as an antiviral strategy. In particular, we focus on the potential of exploiting the unique modifications HCMV imparts on the PI3K/Akt/mTOR pathway during quiescent infection of monocytes, which serve an essential role in the dissemination strategy of the virus.
Collapse
Affiliation(s)
- Aaron M Altman
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jamil Mahmud
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Gary Chan
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
49
|
Pathogen at the Gates: Human Cytomegalovirus Entry and Cell Tropism. Viruses 2018; 10:v10120704. [PMID: 30544948 PMCID: PMC6316194 DOI: 10.3390/v10120704] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/24/2022] Open
Abstract
The past few years have brought substantial progress toward understanding how human cytomegalovirus (HCMV) enters the remarkably wide spectrum of cell types and tissues that it infects. Neuropilin-2 and platelet-derived growth factor receptor alpha (PDGFRα) were identified as receptors, respectively, for the trimeric and pentameric glycoprotein H/glycoprotein L (gH/gL) complexes that in large part govern HCMV cell tropism, while CD90 and CD147 were also found to play roles during entry. X-ray crystal structures for the proximal viral fusogen, glycoprotein B (gB), and for the pentameric gH/gL complex (pentamer) have been solved. A novel virion gH complex consisting of gH bound to UL116 instead of gL was described, and findings supporting the existence of a stable complex between gH/gL and gB were reported. Additional work indicates that the pentamer promotes a mode of cell-associated spread that resists antibody neutralization, as opposed to the trimeric gH/gL complex (trimer), which appears to be broadly required for the infectivity of cell-free virions. Finally, viral factors such as UL148 and US16 were identified that can influence the incorporation of the alternative gH/gL complexes into virions. We will review these advances and their implications for understanding HCMV entry and cell tropism.
Collapse
|
50
|
Liu J, Jardetzky TS, Chin AL, Johnson DC, Vanarsdall AL. The Human Cytomegalovirus Trimer and Pentamer Promote Sequential Steps in Entry into Epithelial and Endothelial Cells at Cell Surfaces and Endosomes. J Virol 2018; 92:e01336-18. [PMID: 30111564 PMCID: PMC6189492 DOI: 10.1128/jvi.01336-18] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/23/2022] Open
Abstract
Human cytomegalovirus (HCMV) infects a wide variety of human cell types by different entry pathways that involve distinct envelope glycoprotein complexes that include gH/gL, a trimer complex consisting of gHgL/gO, and a pentamer complex consisting of gH/gL/UL128/UL130/UL131. We characterized the effects of soluble forms of these proteins on HCMV entry. Soluble trimer and pentamer blocked entry of HCMV into epithelial and endothelial cells, whereas soluble gH/gL did not. Trimer inhibited HCMV entry into fibroblast cells, but pentamer and gH/gL did not. Both trimer and pentamer bound to the surfaces of fibroblasts and epithelial cells, whereas gH/gL did not bind to either cell type. Cell surface binding of trimer and pentamer did not involve heparin sulfate moieties. The ability of soluble trimer to block entry of HCMV into epithelial cells did not involve platelet-derived growth factor PDGFRα, which has been reported as a trimer receptor for fibroblasts. Soluble trimer reduced the amount of virus particles that could be adsorbed onto the surface of epithelial cells, whereas soluble pentamer had no effect on virus adsorption. However, soluble pentamer reduced the ability of virus particles to exit from early endosomes into the cytoplasm and then travel to the nucleus. These studies support a model in which both the trimer and pentamer are required for HCMV entry into epithelial and endothelial cells, with trimer interacting with cell surface receptors other than PDGFR and pentamer acting later in the entry pathway to promote egress from endosomes.IMPORTANCE HCMV infects nearly 80% of the world's population and causes significant morbidity and mortality. The current antiviral agents used to treat HCMV infections are prone to resistance and can be toxic to patients, and there is no current vaccine against HCMV available. The data in this report will lead to a better understanding of how essential HCMV envelope glycoproteins function during infection of biologically important cell types and will have significant implications for understanding HCMV pathogenesis for developing new therapeutics.
Collapse
Affiliation(s)
- Jing Liu
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Ted S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Andrea L Chin
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - David C Johnson
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Adam L Vanarsdall
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|