1
|
Sakai A, Singh G, Khoshbakht M, Bittner S, Löhr CV, Diaz-Tapia R, Warang P, White K, Luo LL, Tolbert B, Blanco M, Chow A, Guttman M, Li C, Bao Y, Ho J, Maurer-Stroh S, Chatterjee A, Chanda S, García-Sastre A, Schotsaert M, Teijaro JR, Moulton HM, Stein DA. Inhibition of SARS-CoV-2 growth in the lungs of mice by a peptide-conjugated morpholino oligomer targeting viral RNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102331. [PMID: 39376996 PMCID: PMC11456799 DOI: 10.1016/j.omtn.2024.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Further development of direct-acting antiviral agents against human SARS-CoV-2 infections remains a public health priority. Here, we report that an antisense peptide-conjugated morpholino oligomer (PPMO) named 5'END-2, targeting a highly conserved sequence in the 5' UTR of SARS-CoV-2 genomic RNA, potently suppressed SARS-CoV-2 growth in vitro and in vivo. In HeLa-ACE 2 cells, 5'END-2 produced IC50 values of between 40 nM and 1.15 μM in challenges using six genetically disparate strains of SARS-CoV-2, including JN.1. In vivo, using K18-hACE2 mice and the WA-1/2020 virus isolate, two doses of 5'END-2 at 10 mg/kg, administered intranasally on the day before and the day after infection, produced approximately 1.4 log10 virus titer reduction in lung tissue at 3 days post-infection. Under a similar dosing schedule, intratracheal administration of 1.0-2.0 mg/kg 5'END-2 produced over 3.5 log10 virus growth suppression in mouse lungs. Electrophoretic mobility shift assays characterized specific binding of 5'END-2 to its complementary target RNA. Furthermore, using reporter constructs containing SARS-CoV-2 5' UTR leader sequence, in an in-cell system, we observed that 5'END-2 could interfere with translation in a sequence-specific manner. The results demonstrate that direct pulmonary delivery of 5'END-2 PPMO is a promising antiviral strategy against SARS-CoV-2 infections and warrants further development.
Collapse
Affiliation(s)
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahsa Khoshbakht
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Scott Bittner
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Christiane V. Löhr
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Randy Diaz-Tapia
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kris White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luke Le Luo
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Blanton Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mario Blanco
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amy Chow
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cuiping Li
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
| | - Yiming Bao
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joses Ho
- GISAID @ A∗STAR Bioinformatics Institute, Singapore 138632, Singapore
| | | | | | - Sumit Chanda
- Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Hong M. Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - David A. Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
2
|
Khairkhah N, Namvar A, Bolhassani A. Application of Cell Penetrating Peptides as a Promising Drug Carrier to Combat Viral Infections. Mol Biotechnol 2023; 65:1387-1402. [PMID: 36719639 PMCID: PMC9888354 DOI: 10.1007/s12033-023-00679-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023]
Abstract
Novel effective drugs or therapeutic vaccines have been already developed to eradicate viral infections. Some non-viral carriers have been used for effective drug delivery to a target cell or tissue. Among them, cell penetrating peptides (CPPs) attracted a special interest to enhance drug delivery into the cells with low toxicity. They were also applied to transfer peptide/protein-based and nucleic acids-based therapeutic vaccines against viral infections. CPPs-conjugated drugs or vaccines were investigated in several viral infections including poliovirus, Ebola, coronavirus, herpes simplex virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, Japanese encephalitis virus, and influenza A virus. Some studies showed that the uptake of CPPs or CPPs-conjugated drugs can be performed through both non-endocytic and endocytic pathways. Despite high potential of CPPs for cargo delivery, there are some serious drawbacks such as non-tissue-specificity, instability, and suboptimal pharmacokinetics features that limit their clinical applications. At present, some solutions are utilized to improve the CPPs properties such as conjugation of CPPs with targeting moieties, the use of fusogenic lipids, generation of the proton sponge effect, etc. Up to now, no CPP or composition containing CPPs has been approved by the Food and Drug Administration (FDA) due to the lack of sufficient in vivo studies on stability, immunological assays, toxicity, and endosomal escape of CPPs. In this review, we briefly describe the properties, uptake mechanisms, advantages and disadvantages, and improvement of intracellular delivery, and bioavailability of cell penetrating peptides. Moreover, we focus on their application as an effective drug carrier to combat viral infections.
Collapse
Affiliation(s)
- Niloofar Khairkhah
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Namvar
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Tekintaş Y, Temel A. Antisense oligonucleotides: a promising therapeutic option against infectious diseases. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:1-39. [PMID: 37395450 DOI: 10.1080/15257770.2023.2228841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
Infectious diseases have been one of the biggest health problems of humanity for centuries. Nucleic acid-based therapeutics have received attention in recent years with their effectiveness in the treatment of various infectious diseases and vaccine development studies. This review aims to provide a comprehensive understanding of the basic properties underlying the mechanism of antisense oligonucleotides (ASOs), their applications, and their challenges. The efficient delivery of ASOs is the greatest challenge for their therapeutic success, but this problem is overcome with new-generation antisense molecules developed with chemical modifications. The types, carrier molecules, and gene regions targeted by sequences have been summarized in detail. Research and development of antisense therapy is still in its infancy; however, gene silencing therapies appear to have the potential for faster and longer-lasting activity than conventional treatment strategies. On the other hand, realizing the potential of antisense therapy will require a large initial economic investment to ascertain the pharmacological properties and learn how to optimize them. The ability of ASOs to be rapidly designed and synthesized to target different microbes can reduce drug discovery time from 6 years to 1 year. Since ASOs are not particularly affected by resistance mechanisms, they come to the fore in the fight against antimicrobial resistance. The design-based flexibility of ASOs has enabled it to be used for different types of microorganisms/genes and successful in vitro and in vivo results have been revealed. The current review summarized a comprehensive understanding of ASO therapy in combating bacterial and viral infections.
Collapse
Affiliation(s)
- Yamaç Tekintaş
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Türkiye
| | - Aybala Temel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Türkiye
| |
Collapse
|
4
|
Antiviral Peptide-Based Conjugates: State of the Art and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15020357. [PMID: 36839679 PMCID: PMC9958607 DOI: 10.3390/pharmaceutics15020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Infectious diseases caused by microbial pathogens (bacteria, virus, fungi, parasites) claim millions of deaths per year worldwide and have become a serious challenge to global human health in our century. Viral infections are particularly notable in this regard, not only because humankind is facing some of the deadliest viral pandemics in recent history, but also because the arsenal of drugs to combat the high levels of mutation, and hence the antigenic variability of (mostly RNA) viruses, is disturbingly scarce. Therefore, the search for new antivirals able to successfully fight infection with minimal or no adverse effects on the host is a pressing task. Traditionally, antiviral therapies have relied on relatively small-sized drugs acting as proteases, polymerases, integrase inhibitors, etc. In recent decades, novel approaches involving targeted delivery such as that achieved by peptide-drug conjugates (PDCs) have gained attention as alternative (pro)drugs for tackling viral diseases. Antiviral PDC therapeutics typically involve one or more small drug molecules conjugated to a cell-penetrating peptide (CPP) carrier either directly or through a linker. Such integration of two bioactive elements into a single molecular entity is primarily aimed at achieving improved bioavailability in conditions where conventional drugs are challenged, but may also turn up novel unexpected functionalities and applications. Advances in peptide medicinal chemistry have eased the way to antiviral PDCs, but challenges remain on the way to therapeutic success. In this paper, we review current antiviral CPP-drug conjugates (antiviral PDCs), with emphasis on the types of CPP and antiviral cargo. We integrate the conjugate and the chemical approaches most often applied to combine both entities. Additionally, we comment on various obstacles faced in the design of antiviral PDCs and on the future outlooks for this class of antiviral therapeutics.
Collapse
|
5
|
Quemener AM, Galibert M. Antisense oligonucleotide: A promising therapeutic option to beat COVID-19. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1703. [PMID: 34842345 PMCID: PMC9011570 DOI: 10.1002/wrna.1703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 crisis and the development of the first approved mRNA vaccine have highlighted the power of RNA-based therapeutic strategies for the development of new medicines. Aside from RNA-vaccines, antisense oligonucleotides (ASOs) represent a new and very promising class of RNA-targeted therapy. Few drugs have already received approval from the Food and Drug Administration. Here, we underscored why and how ASOs hold the potential to change the therapeutic landscape to beat SARS-CoV-2 viral infections. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions.
Collapse
Affiliation(s)
- Anaïs M. Quemener
- Univ Rennes, CNRSIGDR (Institute of Genetics and Development of Rennes) ‐ UMR 6290RennesFrance
| | - Marie‐Dominique Galibert
- Univ Rennes, CNRSIGDR (Institute of Genetics and Development of Rennes) ‐ UMR 6290RennesFrance
- Department of Molecular Genetics and GenomicsUniversity Hospital of Rennes (CHU Rennes)RennesFrance
| |
Collapse
|
6
|
Repkova M, Levina A, Ismagilov Z, Mazurkova N, Mazurkov O, Zarytova V. Effective Inhibition of Newly Emerged A/H7N9 Virus with Oligonucleotides Targeted to Conserved Regions of the Virus Genome. Nucleic Acid Ther 2021; 31:436-442. [PMID: 34665651 DOI: 10.1089/nat.2021.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Newly emerged highly pathogenic A/H7N9 viruses with pandemic potential are effectively transmitted from birds to humans and require the development of novel antiviral drugs. For the first time, we studied the in vitro and in vivo antiviral activity against A/H7N9 of oligodeoxyribonucleotides (ODNs), which were delivered into the cells in the proposed TiO2-based nanocomposites (TiO2∼ODN). The highest inhibition of A/H7N9 in vitro (∼400-fold) and efficient, sequence-specific, and dose-dependent protection (up to 100%) of A/H7N9-infected mice was revealed when ODN was targeted to the conserved terminal 3'-noncoding region of viral (-)RNA. After the treatment with ODN, the virus titer values in the lungs of mice decreased by several orders of magnitude. The TiO2∼ODN nanocomposite did not show toxicity in mice under the treatment conditions. The proposed approach for effective inhibition of the A/H7N9 can be tested against other viruses, for example, new emerging influenza viruses and coronaviruses with pandemic potential.
Collapse
Affiliation(s)
- Marina Repkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Asya Levina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Zinfer Ismagilov
- Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia Mazurkova
- FBRI State Research Center of Virology and Biotechnology "Vector", Novosibirsk, Russia
| | - Oleg Mazurkov
- FBRI State Research Center of Virology and Biotechnology "Vector", Novosibirsk, Russia
| | - Valentina Zarytova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
7
|
Levina A, Repkova M, Shikina N, Ismagilov Z, Kupryushkin M, Pavlova A, Mazurkova N, Pyshnyi D, Zarytova V. Pronounced therapeutic potential of oligonucleotides fixed on inorganic nanoparticles against highly pathogenic H5N1 influenza A virus in vivo. Eur J Pharm Biopharm 2021; 162:92-98. [PMID: 33753212 DOI: 10.1016/j.ejpb.2021.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/20/2020] [Accepted: 03/14/2021] [Indexed: 11/26/2022]
Abstract
This study describes the effective attack of oligonucleotides on the viral genome of highly pathogenic H5N1 influenza A virus (IAV) in vivo using for the first time the new delivery system consisting of biocompatible low-toxic titanium dioxide nanoparticles and immobilized polylysine-containing oligonucleotides with the native (ODN) and partially modified (ODNm) internucleotide bonds. Intraperitoneal injection of the TiO2•PL-ODN nanocomposite provided 65-70% survival of mice, while intraperitoneal or oral administration of TiO2•PL-ODNm was somewhat more efficient (~80% survival). The virus titer in the lung was reduced by two-three orders of magnitude. The nanocomposites are nontoxic to mice under the used conditions. TiO2 nanoparticles, unbound ODN, and the nanocomposite bearing the random oligonucleotide showed an insignificant protective effect, which indicates the ability of targeted oligonucleotides delivered in mice in the nanocomposites to site-specifically interact with complementary RNAs. The protection of oligonucleotides in nanocomposites by TiO2 nanoparticles and partial modification of the internucleotide bonds provides a continued presence of oligonucleotides in the body for the effective and specific action on the viral RNA. The proposed oligonucleotide delivery system can claim not only to effectively inhibit IAV genes but also to turn off other genes responsible for diseases caused by nucleic acids.
Collapse
Affiliation(s)
- Asya Levina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, 630090 Novosibirsk, Russia
| | - Marina Repkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, 630090 Novosibirsk, Russia
| | - Nadezhda Shikina
- Boreskov Institute of Catalysis, Siberian Branch of RAS, pr. Lavrent'eva 5, 630090 Novosibirsk, Russia
| | - Zinfer Ismagilov
- Boreskov Institute of Catalysis, Siberian Branch of RAS, pr. Lavrent'eva 5, 630090 Novosibirsk, Russia
| | - Maxim Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, 630090 Novosibirsk, Russia
| | - Anna Pavlova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, 630090 Novosibirsk, Russia
| | - Natalia Mazurkova
- FBRI State Research Centre of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, Russia
| | - Dmitrii Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, 630090 Novosibirsk, Russia
| | - Valentina Zarytova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, 630090 Novosibirsk, Russia.
| |
Collapse
|
8
|
Rosenke K, Leventhal S, Moulton HM, Hatlevig S, Hawman D, Feldmann H, Stein DA. Inhibition of SARS-CoV-2 in Vero cell cultures by peptide-conjugated morpholino oligomers. J Antimicrob Chemother 2021; 76:413-417. [PMID: 33164048 PMCID: PMC7717290 DOI: 10.1093/jac/dkaa460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background As the causative agent of COVID-19, SARS-CoV-2 is a pathogen of immense importance to global public health. Development of innovative direct-acting antiviral agents is sorely needed to address this virus. Peptide-conjugated morpholino oligomers (PPMO) are antisense compounds composed of a phosphorodiamidate morpholino oligomer covalently conjugated to a cell-penetrating peptide. PPMO require no delivery assistance to enter cells and are able to reduce expression of targeted RNA through sequence-specific steric blocking. Methods Five PPMO designed against sequences of genomic RNA in the SARS-CoV-2 5′-untranslated region and a negative control PPMO of random sequence were synthesized. Each PPMO was evaluated for its effect on the viability of uninfected cells and its inhibitory effect on the replication of SARS-CoV-2 in Vero-E6 cell cultures. Cell viability was evaluated with an ATP-based method using a 48 h PPMO treatment time. Viral growth was measured with quantitative RT–PCR and TCID50 infectivity assays from experiments where cells received a 5 h PPMO treatment time. Results PPMO designed to base-pair with sequence in the 5′ terminal region or the leader transcription regulatory sequence region of SARS-CoV-2 genomic RNA were highly efficacious, reducing viral titres by up to 4–6 log10 in cell cultures at 48–72 h post-infection, in a non-toxic and dose-responsive manner. Conclusions The data indicate that PPMO have the ability to potently and specifically suppress SARS-CoV-2 growth and are promising candidates for further preclinical development.
Collapse
Affiliation(s)
- Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Shanna Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Hong M Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Susan Hatlevig
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - David Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - David A Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
9
|
Rosenke K, Leventhal S, Moulton HM, Hatlevig S, Hawman D, Feldmann H, Stein DA. Inhibition of SARS-CoV-2 in Vero cell cultures by peptide-conjugated morpholino-oligomers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33024974 DOI: 10.1101/2020.09.29.319731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background SARS-CoV-2 is the causative agent of COVID-19 and a pathogen of immense global public health importance. Development of innovative direct-acting antiviral agents is sorely needed to address this virus. Peptide-conjugated morpholino oligomers (PPMO) are antisense agents composed of a phosphordiamidate morpholino oligomer covalently conjugated to a cell-penetrating peptide. PPMO require no delivery assistance to enter cells and are able to reduce expression of targeted RNA through sequence-specific steric blocking. Objectives and Methods Five PPMO designed against sequences of genomic RNA in the SARS-CoV-2 5'-untranslated region and a negative control PPMO of random sequence were synthesized. Each PPMO was evaluated for its effect on the viability of uninfected cells and its inhibitory effect on the replication of SARS-CoV-2 in Vero-E6 cell cultures. Cell viability was evaluated with an ATP-based method and viral growth was measured with quantitative RT-PCR and TCID 50 infectivity assays. Results PPMO designed to base-pair with sequence in the 5'-terminal region or the leader transcription regulatory sequence-region of SARS-CoV-2 genomic RNA were highly efficacious, reducing viral titers by up to 4-6 log10 in cell cultures at 48-72 hours post-infection, in a non-toxic and dose-responsive manner. Conclusion The data indicate that PPMO have the ability to potently and specifically suppress SARS-CoV-2 growth and are promising candidates for further pre-clinical development.
Collapse
|
10
|
Robson F, Khan KS, Le TK, Paris C, Demirbag S, Barfuss P, Rocchi P, Ng WL. Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting. Mol Cell 2020; 79:710-727. [PMID: 32853546 PMCID: PMC7402271 DOI: 10.1016/j.molcel.2020.07.027] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) that is wreaking havoc on worldwide public health and economies has heightened awareness about the lack of effective antiviral treatments for human coronaviruses (CoVs). Many current antivirals, notably nucleoside analogs (NAs), exert their effect by incorporation into viral genomes and subsequent disruption of viral replication and fidelity. The development of anti-CoV drugs has long been hindered by the capacity of CoVs to proofread and remove mismatched nucleotides during genome replication and transcription. Here, we review the molecular basis of the CoV proofreading complex and evaluate its potential as a drug target. We also consider existing nucleoside analogs and novel genomic techniques as potential anti-CoV therapeutics that could be used individually or in combination to target the proofreading mechanism.
Collapse
Affiliation(s)
- Fran Robson
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Khadija Shahed Khan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Thi Khanh Le
- Life Science Department, University of Science and Technology of Hanoi (USTH), Hanoi, Vietnam; Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, Marseille, France
| | - Clément Paris
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, Marseille, France
| | - Sinem Demirbag
- Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Turkey
| | - Peter Barfuss
- Université Paris-Est, Cermics (ENPC), INRIA, 77455 Marne-la-Vallée, France
| | - Palma Rocchi
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, Marseille, France
| | - Wai-Lung Ng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
11
|
Sandoval-Mojica AF, Altman S, Hunter WB, Pelz-Stelinski KS. Peptide conjugated morpholinos for management of the huanglongbing pathosystem. PEST MANAGEMENT SCIENCE 2020; 76:3217-3224. [PMID: 32358830 DOI: 10.1002/ps.5877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND 'Candidatus Liberibacter asiaticus' (CLas) is the causal agent of the devastating citrus disease Huanglongbing (HLB) and is transmitted by the insect vector Diaphorina citri (Hemiptera: Liviidae). A potential approach for treating CLas infection is the use of synthetic nucleic acid-like oligomers to silence bacterial gene expression. Peptide conjugated morpholinos (PPMOs) targeting essential genes in CLas and the psyllid vector's endosymbiotic bacteria, Wolbachia (-Diaphorina, wDi), were evaluated using in vitro and in vivo assays. RESULTS Expression of the wDi gyrA gene was significantly reduced following incubation of wDi cells with PPMOs. In addition, the viability of isolated wDi cells was greatly reduced when treated with PPMOs as compared to untreated cells. Feeding D. citri adults with a complementary PPMO (CLgyrA-14) showed significantly reduced (70% lower) expression of the CLas gyrA gene. CLas relative density was significantly lower in the psyllids fed with CLgyrA-14, when compared to untreated insects. Psyllids that were treated with CLgyrA-14 were less successful in transmitting the pathogen into uninfected plants, compared to untreated insects. CONCLUSION The expression of essential genes in the D. citri symbiont, wDi and the HLB pathogen were suppressed in response to PPMO treatments. This study demonstrates the potential of PPMOs as a novel strategy for management of bacterial pathogens of fruit trees, such as HLB. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrés F Sandoval-Mojica
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Sidney Altman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT,, USA
| | - Wayne B Hunter
- U.S Department of Agriculture, Agricultural Research Service, Fort Pierce, FL, USA
| | - Kirsten S Pelz-Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
12
|
Bestle D, Heindl MR, Limburg H, Van Lam van T, Pilgram O, Moulton H, Stein DA, Hardes K, Eickmann M, Dolnik O, Rohde C, Klenk HD, Garten W, Steinmetzer T, Böttcher-Friebertshäuser E. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance 2020; 3:3/9/e202000786. [PMID: 32703818 PMCID: PMC7383062 DOI: 10.26508/lsa.202000786] [Citation(s) in RCA: 550] [Impact Index Per Article: 137.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
The novel emerged SARS-CoV-2 has rapidly spread around the world causing acute infection of the respiratory tract (COVID-19) that can result in severe disease and lethality. For SARS-CoV-2 to enter cells, its surface glycoprotein spike (S) must be cleaved at two different sites by host cell proteases, which therefore represent potential drug targets. In the present study, we show that S can be cleaved by the proprotein convertase furin at the S1/S2 site and the transmembrane serine protease 2 (TMPRSS2) at the S2' site. We demonstrate that TMPRSS2 is essential for activation of SARS-CoV-2 S in Calu-3 human airway epithelial cells through antisense-mediated knockdown of TMPRSS2 expression. Furthermore, SARS-CoV-2 replication was also strongly inhibited by the synthetic furin inhibitor MI-1851 in human airway cells. In contrast, inhibition of endosomal cathepsins by E64d did not affect virus replication. Combining various TMPRSS2 inhibitors with furin inhibitor MI-1851 produced more potent antiviral activity against SARS-CoV-2 than an equimolar amount of any single serine protease inhibitor. Therefore, this approach has considerable therapeutic potential for treatment of COVID-19.
Collapse
Affiliation(s)
- Dorothea Bestle
- Institute of Virology, Philipps-University, Marburg, Germany
| | | | - Hannah Limburg
- Institute of Virology, Philipps-University, Marburg, Germany
| | - Thuy Van Lam van
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Oliver Pilgram
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Hong Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - David A Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Kornelia Hardes
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
| | - Markus Eickmann
- Institute of Virology, Philipps-University, Marburg, Germany.,German Center for Infection Research (DZIF), Marburg-Gießen-Langen Site, Emerging Infections Unit, Philipps-University, Marburg, Germany
| | - Olga Dolnik
- Institute of Virology, Philipps-University, Marburg, Germany.,German Center for Infection Research (DZIF), Marburg-Gießen-Langen Site, Emerging Infections Unit, Philipps-University, Marburg, Germany
| | - Cornelius Rohde
- Institute of Virology, Philipps-University, Marburg, Germany.,German Center for Infection Research (DZIF), Marburg-Gießen-Langen Site, Emerging Infections Unit, Philipps-University, Marburg, Germany
| | | | - Wolfgang Garten
- Institute of Virology, Philipps-University, Marburg, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | | |
Collapse
|
13
|
Markov AV, Kupryushkin MS, Goncharova EP, Amirkhanov RN, Vasilyeva SV, Pyshnyi DV, Zenkova MA, Logashenko EB. Antiviral Activity of a New Class of Chemically Modified Antisense Oligonucleotides against Influenza А Virus. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Nile SH, Kim DH, Nile A, Park GS, Gansukh E, Kai G. Probing the effect of quercetin 3-glucoside from Dianthus superbus L against influenza virus infection- In vitro and in silico biochemical and toxicological screening. Food Chem Toxicol 2019; 135:110985. [PMID: 31765700 DOI: 10.1016/j.fct.2019.110985] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
Abstract
Investigation of antiviral and cytotoxic effect of quercetin 3-glucoside (Q3G) from Dianthus superbus L over influenza virus infection and replication were studied. Moreover, anti-influenza mechanism was screened by time-dependent antiviral assay, virus-induced symptoms and related gene expressions. The blockade of cap-binding domain of polymerase basic protein subunit were analysed by molecular docking study. The Q3G demonstrated potent antiviral activity showing 4.93, 6.43, 9.94, 8.3, and 7.1 μg/mL of IC50 for A/PR/8/34, A/Victoria/3/75, A/WS/33, B/Maryland/1/59, and B/Lee/40, respectively. The cellular toxicity of Q3G and oseltamivir (control) were tested and >100 μg/mL of CC50 value considered as nontoxic. Influenza A virus infection induced a higher ROS production, however potentially reduced by Q3G treatment and significantly blocked virus infection induced acidic vesicular organelles (AVO). Moreover, Q3G has no inhibitory effect for neuraminidase activity but blocked virus replication through time dependent assay and showed more competitive binding affinity (-8.0 kcal/mal) than GTP (-7.0 kcal/mol) to block polymerase basic protein-2 subunit of influenza virus. Q3G from D. superbus showed potent antiviral activity against influenza A and B viruses with suppressive effect on virus-induced cellular ROS generation and AVO formation. Thus, this study provided a new line of research for Q3G to develop possible natural anti-influenza drug.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Doo Hwan Kim
- Department of Bio-resources and Food Science, Konkuk University, Seoul, 143701, South Korea
| | - Arti Nile
- Department of Bio-resources and Food Science, Konkuk University, Seoul, 143701, South Korea
| | - Gyun Seok Park
- Department of Bio-resources and Food Science, Konkuk University, Seoul, 143701, South Korea
| | - Enkhtaivan Gansukh
- Department of Bio-resources and Food Science, Konkuk University, Seoul, 143701, South Korea; Department of Life Science and Biotechnology, Huree University, Ulaanbaatar, Mongolia.
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| |
Collapse
|
15
|
TMPRSS2 Is the Major Activating Protease of Influenza A Virus in Primary Human Airway Cells and Influenza B Virus in Human Type II Pneumocytes. J Virol 2019; 93:JVI.00649-19. [PMID: 31391268 DOI: 10.1128/jvi.00649-19] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/17/2019] [Indexed: 11/20/2022] Open
Abstract
Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is essential for virus infectivity and spread. We previously demonstrated in vitro that the transmembrane protease TMPRSS2 cleaves influenza A virus (IAV) and influenza B virus (IBV) HA possessing a monobasic cleavage site. Subsequent studies revealed that TMPRSS2 is crucial for the activation and pathogenesis of H1N1pdm and H7N9 IAV in mice. In contrast, activation of H3N2 IAV and IBV was found to be independent of TMPRSS2 expression and supported by an as-yet-undetermined protease(s). Here, we investigated the role of TMPRSS2 in proteolytic activation of IAV and IBV in three human airway cell culture systems: primary human bronchial epithelial cells (HBEC), primary type II alveolar epithelial cells (AECII), and Calu-3 cells. Knockdown of TMPRSS2 expression was performed using a previously described antisense peptide-conjugated phosphorodiamidate morpholino oligomer, T-ex5, that interferes with splicing of TMPRSS2 pre-mRNA, resulting in the expression of enzymatically inactive TMPRSS2. T-ex5 treatment produced efficient knockdown of active TMPRSS2 in all three airway cell culture models and prevented proteolytic activation and multiplication of H7N9 IAV in Calu-3 cells and H1N1pdm, H7N9, and H3N2 IAV in HBEC and AECII. T-ex5 treatment also inhibited the activation and spread of IBV in AECII but did not affect IBV activation in HBEC and Calu-3 cells. This study identifies TMPRSS2 as the major HA-activating protease of IAV in human airway cells and IBV in type II pneumocytes and as a potential target for the development of novel drugs to treat influenza infections.IMPORTANCE Influenza A viruses (IAV) and influenza B viruses (IBV) cause significant morbidity and mortality during seasonal outbreaks. Cleavage of the viral surface glycoprotein hemagglutinin (HA) by host proteases is a prerequisite for membrane fusion and essential for virus infectivity. Inhibition of relevant proteases provides a promising therapeutic approach that may avoid the development of drug resistance. HA of most influenza viruses is cleaved at a monobasic cleavage site, and a number of proteases have been shown to cleave HA in vitro This study demonstrates that the transmembrane protease TMPRSS2 is the major HA-activating protease of IAV in primary human bronchial cells and of both IAV and IBV in primary human type II pneumocytes. It further reveals that human and murine airway cells can differ in their HA-cleaving protease repertoires. Our data will help drive the development of potent and selective protease inhibitors as novel drugs for influenza treatment.
Collapse
|
16
|
Asha K, Kumar P, Sanicas M, Meseko CA, Khanna M, Kumar B. Advancements in Nucleic Acid Based Therapeutics against Respiratory Viral Infections. J Clin Med 2018; 8:jcm8010006. [PMID: 30577479 PMCID: PMC6351902 DOI: 10.3390/jcm8010006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Several viruses cause pulmonary infections due to their shared tropism with cells of the respiratory tract. These respiratory problems due to viral infection become a public health concern due to rapid transmission through air/aerosols or via direct-indirect contact with infected persons. In addition, the cross-species transmission causes alterations to viral genetic makeup thereby increasing the risk of emergence of pathogens with new and more potent infectivity. With the introduction of effective nucleic acid-based technologies, post translational gene silencing (PTGS) is being increasingly used to silence viral gene targets and has shown promising approach towards management of many viral infections. Since several host factors are also utilized by these viruses during various stages of infection, silencing these host factors can also serve as promising therapeutic tool. Several nucleic acid-based technologies such as short interfering RNAs (siRNA), antisense oligonucleotides, aptamers, deoxyribozymes (DNAzymes), and ribozymes have been studied and used against management of respiratory viruses. These therapeutic nucleic acids can be efficiently delivered through the airways. Studies have also shown efficacy of gene therapy in clinical trials against respiratory syncytial virus (RSV) as well as models of respiratory diseases including severe acute respiratory syndrome (SARS), measles and influenza. In this review, we have summarized some of the recent advancements made in the area of nucleic acid based therapeutics and highlighted the emerging roles of nucleic acids in the management of some of the severe respiratory viral infections. We have also focused on the methods of their delivery and associated challenges.
Collapse
Affiliation(s)
- Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University, Noida 201303, India.
| | - Melvin Sanicas
- Sanofi Pasteur, Asia and JPAC Region, Singapore 257856, Singapore.
| | - Clement A Meseko
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom 930010, Nigeria.
| | - Madhu Khanna
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India.
| | - Binod Kumar
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
17
|
Abstract
Infectious disease represent the most significant threat to human health. Significant geologic cataclysmic events have caused the extinction of countless species, but these “Wrath of God” events predate the emergence of Homo sapiens. Pandemic infections have accompanied the rise of human civilization frequently re-occurring leaving a lasting imprint on human history punctuated by profound loss of life. Emerging infections become endemic and are here to stay marking their presence with an annual death toll. Each decade brings a new onslaught of emerging infectious agents. We are surprised again and again but are never prepared. The long-term consequences often remain unrecognized and are always inconvenient including cancer, cardiovascular disease and immune associated diseases that threaten our health. Reliance on clusters of clinical symptoms in the face of diverse and non-descriptive viral infection symptoms is a foolhardy form of crisis management. Viral success is based on rapid replication resulting in large numbers. Single-stranded RNA viruses with their high replication error rate represent a paradigm for resilience.
Collapse
|
18
|
Nan Y, Zhang YJ. Antisense Phosphorodiamidate Morpholino Oligomers as Novel Antiviral Compounds. Front Microbiol 2018; 9:750. [PMID: 29731743 PMCID: PMC5920040 DOI: 10.3389/fmicb.2018.00750] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/03/2018] [Indexed: 01/23/2023] Open
Abstract
Phosphorodiamidate morpholino oligomers (PMO) are short single-stranded DNA analogs that are built upon a backbone of morpholine rings connected by phosphorodiamidate linkages. As uncharged nucleic acid analogs, PMO bind to complementary sequences of target mRNA by Watson–Crick base pairing to block protein translation through steric blockade. PMO interference of viral protein translation operates independently of RNase H. Meanwhile, PMO are resistant to a variety of enzymes present in biologic fluids, a characteristic that makes them highly suitable for in vivo applications. Notably, PMO-based therapy for Duchenne muscular dystrophy (DMD) has been approved by the United States Food and Drug Administration which is now a hallmark for PMO-based antisense therapy. In this review, the development history of PMO, delivery methods for improving cellular uptake of neutrally charged PMO molecules, past studies of PMO antagonism against RNA and DNA viruses, PMO target selection, and remaining questions of PMO antiviral strategies are discussed in detail and new insights are provided.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| | - Yan-Jin Zhang
- Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| |
Collapse
|
19
|
Rajsbaum R. Intranasal Delivery of Peptide-Morpholinos to Knockdown Influenza Host Factors in Mice. Methods Mol Biol 2018; 1565:191-199. [PMID: 28364244 DOI: 10.1007/978-1-4939-6817-6_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Influenza viruses replicate primarily in the lung tissue of different host species. For efficient replication the virus utilizes host factors that are expressed in target cells. Cell-penetrating peptide-conjugated Morpholino oligomers (PPMOs) designed to target viral proteins have shown promising results as potential antiviral drugs in tissue culture and animal models. However, since viruses tend to have high rates of mutations, targeting viral proteins may result in viral escape mutants. An alternative approach to inhibit virus replication with PPMOs is to target host factors that are required for virus replication. Delivery of PPMO through the intranasal route has been shown to be effective in knockdown of host factors or microbial genes leading to protection against respiratory pathogens and reduced microbial burden. In addition, protective host innate antiviral immune responses in the lung can be studied by knockdown of immune signaling factors using PPMOs. Here we describe a successful approach using PPMOs to knockdown either proviral or antiviral host factors leading to changes in influenza virus replication in the lungs of mice, providing a tool to investigate immune responses and host-virus interactions in vivo.
Collapse
Affiliation(s)
- Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
20
|
Lin J, Lee JHJ, Paramasivam K, Pathak E, Wang Z, Pramono ZAD, Lim B, Wee KB, Surana U. Induced-Decay of Glycine Decarboxylase Transcripts as an Anticancer Therapeutic Strategy for Non-Small-Cell Lung Carcinoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:263-273. [PMID: 29246305 PMCID: PMC5675722 DOI: 10.1016/j.omtn.2017.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 01/04/2023]
Abstract
Self-renewing tumor-initiating cells (TICs) are thought to be responsible for tumor recurrence and chemo-resistance. Glycine decarboxylase, encoded by the GLDC gene, is reported to be overexpressed in TIC-enriched primary non-small-cell lung carcinoma (NSCLC). GLDC is a component of the mitochondrial glycine cleavage system, and its high expression is required for growth and tumorigenic capacity. Currently, there are no therapeutic agents against GLDC. As a therapeutic strategy, we have designed and tested splicing-modulating steric hindrance antisense oligonucleotides (shAONs) that efficiently induce exon skipping (half maximal inhibitory concentration [IC50] at 3.5–7 nM), disrupt the open reading frame (ORF) of GLDC transcript (predisposing it for nonsense-mediated decay), halt cell proliferation, and prevent colony formation in both A549 cells and TIC-enriched NSCLC tumor sphere cells (TS32). One candidate shAON causes 60% inhibition of tumor growth in mice transplanted with TS32. Thus, our shAONs candidates can effectively inhibit the expression of NSCLC-associated metabolic enzyme GLDC and may have promising therapeutic implications.
Collapse
Affiliation(s)
- Jing Lin
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Singapore 138671, Singapore; Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore 138632, Singapore
| | - Jia Hui Jane Lee
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore 138672, Singapore
| | - Kathirvel Paramasivam
- Department of Pharmacology, National University of Singapore, 16 Medical Drive, Singapore 117660, Singapore
| | - Elina Pathak
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore 138672, Singapore
| | - Zhenxun Wang
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore 138672, Singapore
| | | | - Bing Lim
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Singapore 138672, Singapore
| | - Keng Boon Wee
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Singapore 138671, Singapore; Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore 138632, Singapore.
| | - Uttam Surana
- Department of Pharmacology, National University of Singapore, 16 Medical Drive, Singapore 117660, Singapore; Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, Singapore 138668, Singapore; Institute of Molecular and Cellular Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore.
| |
Collapse
|
21
|
Beigel JH, Voell J, Muñoz P, Kumar P, Brooks KM, Zhang J, Iversen P, Heald A, Wong M, Davey RT. Safety, tolerability, and pharmacokinetics of radavirsen (AVI-7100), an antisense oligonucleotide targeting influenza a M1/M2 translation. Br J Clin Pharmacol 2017; 84:25-34. [PMID: 28929521 DOI: 10.1111/bcp.13405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/27/2017] [Accepted: 08/12/2017] [Indexed: 01/16/2023] Open
Abstract
AIMS The aims of the present study were to assess the safety, tolerability and pharmacokinetics of radavirsen following single ascending doses and multiple doses given as intravenous infusions in healthy adults. METHODS A phase I safety and pharmacokinetic study of radavirsen was performed in healthy volunteers. The study was divided into two parts. The first was a single-ascending-dose study of five cohorts of eight subjects each, randomized 6:2 to receive single intravenous doses of radavirsen ranging from 0.5 mg kg-1 to 8 mg kg-1 or placebo. The second was a multiple-dose study of 16 subjects randomized 12:4 to receive 8 mg kg-1 or placebo once daily for 5 days. RESULTS A total of 66 subjects were screened, and 56 subjects were dosed between 2013 and 2015. At least one adverse event occurred in 31/42 (74%) who received radavirsen, and 13/14 (93%) receiving placebo. The most common adverse events were headache and proteinuria, and were similar in incidence and severity among those receiving radavirsen or placebo. Single-dose pharmacokinetics demonstrated relatively linear and dose-proportional increases in maximal concentration and in area under the concentration-time curve from zero to 24 h (AUC0-24 ). At 8 mg kg-1 in the multiple-dose cohort, the day 4 geometric mean AUC0-24 was 57.9 μg*h ml-1 . CONCLUSION Single infusions of radavirsen up to 8 mg kg-1 , and multi-dosing at 8 mg kg-1 once daily for 5 days, appear to be safe and well tolerated in healthy subjects. The multi-dose day 4 AUC0-24 in the present study was comparable with that associated with protection from viral infection in a preclinical ferret influenza model. Further evaluation of radavirsen for the treatment of influenza infections is warranted.
Collapse
Affiliation(s)
| | - Jocelyn Voell
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paula Muñoz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Parag Kumar
- National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Kristina M Brooks
- National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Richard T Davey
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Lenartowicz E, Nogales A, Kierzek E, Kierzek R, Martínez-Sobrido L, Turner DH. Antisense Oligonucleotides Targeting Influenza A Segment 8 Genomic RNA Inhibit Viral Replication. Nucleic Acid Ther 2016; 26:277-285. [PMID: 27463680 PMCID: PMC5067832 DOI: 10.1089/nat.2016.0619] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Influenza A virus (IAV) affects 5%–10% of the world's population every year. Through genome changes, many IAV strains develop resistance to currently available anti-influenza therapeutics. Therefore, there is an urgent need to find new targets for therapeutics against this important human respiratory pathogen. In this study, 2′-O-methyl and locked nucleic acid antisense oligonucleotides (ASOs) were designed to target internal regions of influenza A/California/04/2009 (H1N1) genomic viral RNA segment 8 (vRNA8) based on a base-pairing model of vRNA8. Ten of 14 tested ASOs showed inhibition of viral replication in Madin-Darby canine kidney cells. The best five ASOs were 11–15 nucleotides long and showed inhibition ranging from 5- to 25-fold. In a cell viability assay they showed no cytotoxicity. The same five ASOs also showed no inhibition of influenza B/Brisbane/60/2008 (Victoria lineage), indicating that they are sequence specific for IAV. Moreover, combinations of ASOs slightly improved anti-influenza activity. These studies establish the accessibility of IAV vRNA for ASOs in regions other than the panhandle formed between the 5′ and 3′ ends. Thus, these regions can provide targets for the development of novel IAV antiviral approaches.
Collapse
Affiliation(s)
| | - Aitor Nogales
- 2 Department of Microbiology and Immunology, University of Rochester , Rochester, New York
| | - Elzbieta Kierzek
- 3 Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan, Poland
| | - Ryszard Kierzek
- 3 Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan, Poland
| | - Luis Martínez-Sobrido
- 2 Department of Microbiology and Immunology, University of Rochester , Rochester, New York
| | - Douglas H Turner
- 1 Department of Chemistry, University of Rochester , Rochester, New York
| |
Collapse
|
23
|
Delayed Time-to-Treatment of an Antisense Morpholino Oligomer Is Effective against Lethal Marburg Virus Infection in Cynomolgus Macaques. PLoS Negl Trop Dis 2016; 10:e0004456. [PMID: 26901785 PMCID: PMC4764691 DOI: 10.1371/journal.pntd.0004456] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/22/2016] [Indexed: 11/19/2022] Open
Abstract
Marburg virus (MARV) is an Ebola-like virus in the family Filovirdae that causes sporadic outbreaks of severe hemorrhagic fever with a case fatality rate as high as 90%. AVI-7288, a positively charged antisense phosphorodiamidate morpholino oligomer (PMOplus) targeting the viral nucleoprotein gene, was evaluated as a potential therapeutic intervention for MARV infection following delayed treatment of 1, 24, 48, and 96 h post-infection (PI) in a nonhuman primate lethal challenge model. A total of 30 cynomolgus macaques were divided into 5 groups of 6 and infected with 1,830 plaque forming units of MARV subcutaneously. AVI-7288 was administered by bolus infusion daily for 14 days at 15 mg/kg body weight. Survival was the primary endpoint of the study. While none (0 of 6) of the saline group survived, 83–100% of infected monkeys survived when treatment was initiated 1, 24, 48, or 96 h post-infection (PI). The antisense treatment also reduced serum viremia and inflammatory cytokines in all treatment groups compared to vehicle controls. The antibody immune response to virus was preserved and tissue viral antigen was cleared in AVI-7288 treated animals. These data show that AVI-7288 protects NHPs against an otherwise lethal MARV infection when treatment is initiated up to 96 h PI. Marburg virus (MARV) is a filovirus closely related to Ebola virus and similarly causes hemorrhagic fever in humans. MARV is endemic throughout parts of tropical Africa. Severe outbreaks of Marburg virus disease (MVD) have occurred involving hundreds of human cases. No effective MARV antiviral therapies are available. In this study, we used a positive charged phosphorodiamidate morpholino oligomer (PMOplus) targeting the mRNA of the MARV nucleoprotein gene as a medical countermeasure to treat disease in a lethal nonhuman primate model of MVD. The intravenous treatment regimen was well tolerated with no treatment related adverse effects. We showed that when using this antisense treatment, serum virus levels decreased and 83–100% of the animals survived, even when the treatment was delayed as much as 96 hours after infection. None of the untreated animals survived the viral challenge in this model. Our results suggest that antisense therapies, such as PMOs, hold great promise for the treatment of severe viral diseases such as MVD.
Collapse
|
24
|
Discovery of Influenza A Virus Sequence Pairs and Their Combinations for Simultaneous Heterosubtypic Targeting that Hedge against Antiviral Resistance. PLoS Comput Biol 2016; 12:e1004663. [PMID: 26771381 PMCID: PMC4714944 DOI: 10.1371/journal.pcbi.1004663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 11/17/2015] [Indexed: 12/27/2022] Open
Abstract
The multiple circulating human influenza A virus subtypes coupled with the perpetual genomic mutations and segment reassortment events challenge the development of effective therapeutics. The capacity to drug most RNAs motivates the investigation on viral RNA targets. 123,060 segment sequences from 35,938 strains of the most prevalent subtypes also infecting humans-H1N1, 2009 pandemic H1N1, H3N2, H5N1 and H7N9, were used to identify 1,183 conserved RNA target sequences (≥15-mer) in the internal segments. 100% theoretical coverage in simultaneous heterosubtypic targeting is achieved by pairing specific sequences from the same segment ("Duals") or from two segments ("Doubles"); 1,662 Duals and 28,463 Doubles identified. By combining specific Duals and/or Doubles to form a target graph wherein an edge connecting two vertices (target sequences) represents a Dual or Double, it is possible to hedge against antiviral resistance besides maintaining 100% heterosubtypic coverage. To evaluate the hedging potential, we define the hedge-factor as the minimum number of resistant target sequences that will render the graph to become resistant i.e. eliminate all the edges therein; a target sequence or a graph is considered resistant when it cannot achieve 100% heterosubtypic coverage. In an n-vertices graph (n ≥ 3), the hedge-factor is maximal (= n- 1) when it is a complete graph i.e. every distinct pair in a graph is either a Dual or Double. Computational analyses uncover an extensive number of complete graphs of different sizes. Monte Carlo simulations show that the mutation counts and time elapsed for a target graph to become resistant increase with the hedge-factor. Incidentally, target sequences which were reported to reduce virus titre in experiments are included in our target graphs. The identity of target sequence pairs for heterosubtypic targeting and their combinations for hedging antiviral resistance are useful toolkits to construct target graphs for different therapeutic objectives.
Collapse
|
25
|
Levina AS, Repkova MN, Bessudnova EV, Filippova EI, Mazurkova NA, Zarytova VF. High antiviral effect of TiO 2·PL-DNA nanocomposites targeted to conservative regions of (-)RNA and (+)RNA of influenza A virus in cell culture. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1166-1173. [PMID: 27826491 PMCID: PMC5082348 DOI: 10.3762/bjnano.7.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
Background: The development of new antiviral drugs based on nucleic acids is under scrutiny. An important problem in this aspect is to find the most vulnerable conservative regions in the viral genome as targets for the action of these agents. Another challenge is the development of an efficient system for their delivery into cells. To solve this problem, we proposed a TiO2·PL-DNA nanocomposite consisting of titanium dioxide nanoparticles and polylysine (PL)-containing oligonucleotides. Results: The TiO2·PL-DNA nanocomposites bearing the DNA fragments targeted to different conservative regions of (-)RNA and (+)RNA of segment 5 of influenza A virus (IAV) were studied for their antiviral activity in MDCK cells infected with the H1N1, H5N1, and H3N2 virus subtypes. Within the negative strand of each of the studied strains, the efficiency of DNA fragments increased in the direction of its 3'-end. Thus, the DNA fragment aimed at the 3'-noncoding region of (-)RNA was the most efficient and inhibited the reproduction of different IAV subtypes by 3-4 orders of magnitude. Although to a lesser extent, the DNA fragments targeted at the AUG region of (+)RNA and the corresponding region of (-)RNA were also active. For all studied viral subtypes, the nanocomposites bearing the DNA fragments targeted to (-)RNA appeared to be more efficient than those containing fragments aimed at the corresponding (+)RNA regions. Conclusion: The proposed TiO2·PL-DNA nanocomposites can be successfully used for highly efficient and site-specific inhibition of influenza A virus of different subtypes. Some patterns of localization of the most vulnerable regions in IAV segment 5 for the action of DNA-based drugs were found. The (-)RNA strand of IAV segment 5 appeared to be more sensitive as compared to (+)RNA.
Collapse
Affiliation(s)
- Asya S Levina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, pr. Lavrent’eva 8, Novosibirsk, 630090, Russia
| | - Marina N Repkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, pr. Lavrent’eva 8, Novosibirsk, 630090, Russia
| | - Elena V Bessudnova
- Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, pr. Lavrent’eva 5, Novosibirsk, 630090, Russia
| | - Ekaterina I Filippova
- FBRI State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, 630559, Russia
| | - Natalia A Mazurkova
- FBRI State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, 630559, Russia
| | - Valentina F Zarytova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, pr. Lavrent’eva 8, Novosibirsk, 630090, Russia
| |
Collapse
|
26
|
Hashimoto M, Nara T, Mita T, Mikoshiba K. Morpholino antisense oligo inhibits trans-splicing of pre-inositol 1,4,5-trisphosphate receptor mRNA of Trypanosoma cruzi and suppresses parasite growth and infectivity. Parasitol Int 2015; 65:175-9. [PMID: 26680159 DOI: 10.1016/j.parint.2015.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/15/2015] [Accepted: 12/06/2015] [Indexed: 11/25/2022]
Abstract
Morpholino antisense oligos (MAOs) are used to investigate physiological gene function by inhibiting gene translation or construction of specific alternative splicing variants by blocking cis-splicing. MAOs are attractive drug candidates for viral- and bacterial-infectious disease therapy because of properties such as in vivo stability and specificity to target genes. Recently, we showed that phosphorothioate antisense oligos against Trypanosoma cruzi inositol 1,4,5-trisphosphate receptor (TcIP(3)R) mRNA inhibit the parasite host cell infection. In the present study, we identified the spliced leader (SL) acceptor of pre-TcIP(3)R mRNA and synthesized MAO, which inhibited trans-splicing of the transcript (MAO-1). MAO-1 was found to inhibit the addition of SL-RNA to pre-TcIP(3)R mRNA by real-time RT-PCR analysis. Treatment of the parasites with MAO-1 significantly impaired the growth and infectivity into host cells. These results indicate that MAO-1 is a potential novel drug for Chagas disease and that MAOs inhibiting trans-splicing can be used to investigate the physiology of trypanosomal genes leading to the development of novel drugs.
Collapse
Affiliation(s)
- Muneaki Hashimoto
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Toshihiro Mita
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama 351-0198, Japan; Calcium Oscillation Project, International Cooperative Research Project and Solution-Oriented Research for Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
27
|
Lam S, Chen H, Chen CK, Min N, Chu JJH. Antiviral Phosphorodiamidate Morpholino Oligomers are Protective against Chikungunya Virus Infection on Cell-based and Murine Models. Sci Rep 2015. [PMID: 26224141 PMCID: PMC4649900 DOI: 10.1038/srep12727] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Chikungunya virus (CHIKV) infection in human is associated with debilitating and persistent arthralgia and arthritis. Currently, there is no specific vaccine or effective antiviral available. Anti-CHIKV Phosphorodiamidate Morpholino Oligomer (CPMO) was evaluated for its antiviral efficacy and cytotoxcity in human cells and neonate murine model. Two CPMOs were designed to block translation initiation of a highly conserved sequence in CHIKV non-structural and structural polyprotein, respectively. Pre-treatment of HeLa cells with CPMO1 significantly suppressed CHIKV titre, CHIKV E2 protein expression and prevented CHIKV-induced CPE. CPMO1 activity was also CHIKV-specific as shown by the lack of cross-reactivity against SINV or DENV replication. When administered prophylactically in neonate mice, 15 μg/g CPMO1v conferred 100% survival against CHIKV disease. In parallel, these mice demonstrated significant reduction in viremia and viral load in various tissues. Immunohistological examination of skeletal muscles and liver of CPMO1v-treated mice also showed healthy tissue morphology, in contrast to evident manifestation of CHIKV pathogenesis in PBS- or scrambled sCPMO1v-treated groups. Taken together, our findings highlight for the first time that CPMO1v has strong protective effect against CHIKV infection. This warrants future development of morpholino as an alternative antiviral agent to address CHIKV infection in clinical applications.
Collapse
Affiliation(s)
- Shirley Lam
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Huixin Chen
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Caiyun Karen Chen
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Nyo Min
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| |
Collapse
|
28
|
Belser JA, Tumpey TM. Mammalian models for the study of H7 virus pathogenesis and transmission. Curr Top Microbiol Immunol 2014; 385:275-305. [PMID: 24996862 DOI: 10.1007/82_2014_383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammalian models, most notably the mouse and ferret, have been instrumental in the assessment of avian influenza virus pathogenicity and transmissibility, and have been used widely to characterize the molecular determinants that confer H5N1 virulence in mammals. However, while H7 influenza viruses have typically been associated with conjunctivitis and/or mild respiratory disease in humans, severe disease and death is also possible, as underscored by the recent emergence of H7N9 viruses in China. Despite the public health need to understand the pandemic potential of this virus subtype, H7 virus pathogenesis and transmission has not been as extensively studied. In this review, we discuss the heterogeneity of H7 subtype viruses isolated from humans, and the characterization of mammalian models to study the virulence of H7 subtype viruses associated with human infection, including viruses of both high and low pathogenicity and following multiple inoculation routes. The use of the ferret transmission model to assess the influence of receptor binding preference among contemporary H7 influenza viruses is described. These models have enabled the study of preventative and therapeutic agents, including vaccines and antivirals, to reduce disease burden, and have permitted a greater appreciation that not all highly pathogenic influenza viruses are created equal.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, MS G-16, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30333, USA
| | | |
Collapse
|
29
|
Iversen PL, Warren TK, Wells JB, Garza NL, Mourich DV, Welch LS, Panchal RG, Bavari S. Discovery and early development of AVI-7537 and AVI-7288 for the treatment of Ebola virus and Marburg virus infections. Viruses 2012; 4:2806-30. [PMID: 23202506 PMCID: PMC3509674 DOI: 10.3390/v4112806] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/02/2012] [Accepted: 10/02/2012] [Indexed: 11/28/2022] Open
Abstract
There are no currently approved treatments for filovirus infections. In this study we report the discovery process which led to the development of antisense Phosphorodiamidate Morpholino Oligomers (PMOs) AVI-6002 (composed of AVI-7357 and AVI-7539) and AVI-6003 (composed of AVI-7287 and AVI-7288) targeting Ebola virus and Marburg virus respectively. The discovery process involved identification of optimal transcript binding sites for PMO based RNA-therapeutics followed by screening for effective viral gene target in mouse and guinea pig models utilizing adapted viral isolates. An evolution of chemical modifications were tested, beginning with simple Phosphorodiamidate Morpholino Oligomers (PMO) transitioning to cell penetrating peptide conjugated PMOs (PPMO) and ending with PMOplus containing a limited number of positively charged linkages in the PMO structure. The initial lead compounds were combinations of two agents targeting separate genes. In the final analysis, a single agent for treatment of each virus was selected, AVI-7537 targeting the VP24 gene of Ebola virus and AVI-7288 targeting NP of Marburg virus, and are now progressing into late stage clinical development as the optimal therapeutic candidates.
Collapse
MESH Headings
- Animals
- Antiviral Agents/administration & dosage
- Antiviral Agents/chemistry
- Base Sequence
- Ebolavirus/genetics
- Ebolavirus/metabolism
- Genes, Viral
- Guinea Pigs
- Hemorrhagic Fever, Ebola/mortality
- Hemorrhagic Fever, Ebola/therapy
- Hemorrhagic Fever, Ebola/virology
- Marburg Virus Disease/mortality
- Marburg Virus Disease/therapy
- Marburg Virus Disease/virology
- Marburgvirus/genetics
- Marburgvirus/metabolism
- Mice
- Morpholinos/administration & dosage
- Morpholinos/chemistry
- Oligodeoxyribonucleotides, Antisense/administration & dosage
- Oligodeoxyribonucleotides, Antisense/chemistry
- Primates
- Protein Biosynthesis/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
Collapse
Affiliation(s)
| | - Travis K. Warren
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA; (T.K.W.); (J.B.W.); (N.L.G.); (L.S.W.); (S.B.); (R.P.)
| | - Jay B. Wells
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA; (T.K.W.); (J.B.W.); (N.L.G.); (L.S.W.); (S.B.); (R.P.)
| | - Nicole L. Garza
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA; (T.K.W.); (J.B.W.); (N.L.G.); (L.S.W.); (S.B.); (R.P.)
| | - Dan V. Mourich
- Sarepta Therapeutics, Bothell, Washington 98021, USA; (P.L.I.); (D.V.M)
| | - Lisa S. Welch
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA; (T.K.W.); (J.B.W.); (N.L.G.); (L.S.W.); (S.B.); (R.P.)
| | - Rekha G. Panchal
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA; (T.K.W.); (J.B.W.); (N.L.G.); (L.S.W.); (S.B.); (R.P.)
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA; (T.K.W.); (J.B.W.); (N.L.G.); (L.S.W.); (S.B.); (R.P.)
| |
Collapse
|
30
|
Therapeutic delivery opportunities, obstacles and applications for cell-penetrating peptides. Ther Deliv 2012; 2:71-82. [PMID: 22833926 DOI: 10.4155/tde.10.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Advancements in the development of large bioactive molecules as therapeutic agents have made drug delivery an active and important field of research. Cell-penetrating peptides (CPPs) have the ability to deliver an array of molecules and even nano-size particles into cells in an efficient and non-toxic manner, both in vitro and in vivo. This review aims to give a perspective on the obstacles that CPP-mediated drug delivery is currently facing as well as the great opportunities for improvements that lie ahead. Strategies for delivery of novel gene-modulating agents and enhancing efficacy of classical drugs will be discussed, as well as methods for increasing bioavailability and tissue specificity of CPPs. The usefulness and potential of CPPs as therapeutic drug-delivery vectors will be exemplified by their use in the treatment of cancer, viral infection and muscular dystrophy.
Collapse
|
31
|
Warren TK, Shurtleff AC, Bavari S. Advanced morpholino oligomers: a novel approach to antiviral therapy. Antiviral Res 2012; 94:80-8. [PMID: 22353544 PMCID: PMC7114334 DOI: 10.1016/j.antiviral.2012.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 01/21/2023]
Abstract
Phosphorodiamidate morpholino oligomers (PMOs) are synthetic antisense oligonucleotide analogs that are designed to interfere with translational processes by forming base-pair duplexes with specific RNA sequences. Positively charged PMOs (PMOplus™) are effective for the postexposure protection of two fulminant viral diseases, Ebola and Marburg hemorrhagic fever in nonhuman primates, and this class of antisense agent may also have possibilities for treatment of other viral diseases. PMOs are highly stable, are effective by a variety of routes of administration, can be readily formulated in common isotonic delivery vehicles, and can be rapidly designed and synthesized. These are properties which may make PMOs good candidates for use during responses to emerging or reemerging viruses that may be insensitive to available therapies or for use during outbreaks, especially in regions that lack a modern medical infrastructure. While the efficacy of sequence-specific therapies can be limited by target-site sequence variations that occur between variants or by the emergence of resistant mutants during infections, various PMO design strategies can minimize these impacts. These strategies include the use of promiscuous bases such as inosine to compensate for predicted base-pair mismatches, the use of sequences that target conserved sites between viral strains, and the use of sequences that target host products that viruses utilize for infection.
Collapse
Affiliation(s)
| | | | - Sina Bavari
- Corresponding author. Tel.: +1 301 619 4246.
| |
Collapse
|
32
|
Kole R, Krainer AR, Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 2012; 11:125-40. [PMID: 22262036 PMCID: PMC4743652 DOI: 10.1038/nrd3625] [Citation(s) in RCA: 867] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we discuss three RNA-based therapeutic technologies exploiting various oligonucleotides that bind to RNA by base pairing in a sequence-specific manner yet have different mechanisms of action and effects. RNA interference and antisense oligonucleotides downregulate gene expression by inducing enzyme-dependent degradation of targeted mRNA. Steric-blocking oligonucleotides block the access of cellular machinery to pre-mRNA and mRNA without degrading the RNA. Through this mechanism, steric-blocking oligonucleotides can redirect alternative splicing, repair defective RNA, restore protein production or downregulate gene expression. Moreover, they can be extensively chemically modified to acquire more drug-like properties. The ability of RNA-blocking oligonucleotides to restore gene function makes them best suited for the treatment of genetic disorders. Positive results from clinical trials for the treatment of Duchenne muscular dystrophy show that this technology is close to achieving its clinical potential.
Collapse
Affiliation(s)
- Ryszard Kole
- AVI BioPharma, 3450 Monte Villa Parkway, Bothell, Washington 98021, USA.
| | | | | |
Collapse
|
33
|
Zhang S, Wang Q, Wang J, Mizumoto K, Toyoda T. Two mutations in the C-terminal domain of influenza virus RNA polymerase PB2 enhance transcription by enhancing cap-1 RNA binding activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:78-83. [PMID: 22146492 DOI: 10.1016/j.bbagrm.2011.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/14/2011] [Accepted: 11/17/2011] [Indexed: 11/27/2022]
Abstract
Influenza virus RNA polymerase (RdRp) PB2 is the cap-1 binding subunit and determines host range and pathogenicity. The mutant human influenza virus RdRp containing PB2 D701N and D701N/S714R demonstrated enhanced replicon activity in mammalian cells. We investigated the influence of these mutations on RdRp activity. Cap-1-dependent transcription activities of D701N/S714R, D701N, and S714R were 348.1±6.2%, 146.4±11%, and 250.1±0.8% of that of the wild type (wt), respectively. Replication activity of these mutants for complimentary RNA to viral RNA ranged from 44% to 53% of that of the wt. Cap-1 RNA-binding activities of D701N/S714R, D701N, and S714R were 262±25%, 257±34%, and 315±9.6% of that of the wt, respectively, and their cap-dependent endonuclease activities were similar to that of the wt. These mutations did not affect template RNA-binding activities. D701N and S714R mutations enhanced transcription by enhancing cap-1 RNA-binding activity, but they may exhibit decreased efficiency of priming by the cap-1 primer. These mutations at the C-terminal domain of PB2 may affect its cap-binding domain.
Collapse
Affiliation(s)
- Shijian Zhang
- Unit of Viral Genome Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 411 Hefei Road, 200025 Shanghai, PR China
| | | | | | | | | |
Collapse
|
34
|
Giannecchini S, Wise HM, Digard P, Clausi V, Del Poggetto E, Vesco L, Puzelli S, Donatelli I, Azzi A. Packaging signals in the 5'-ends of influenza virus PA, PB1, and PB2 genes as potential targets to develop nucleic-acid based antiviral molecules. Antiviral Res 2011; 92:64-72. [PMID: 21741410 DOI: 10.1016/j.antiviral.2011.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/10/2011] [Accepted: 06/21/2011] [Indexed: 11/16/2022]
Abstract
In a previous study a 15-mer phosphorothioate oligonucleotide (S-ON) derived from the packaging signal in the 5' end of segment 1 (PB2) of influenza A virus (designated 5-15b) proved markedly inhibitory to virus replication. Here we investigated whether analogous inhibitory S-ONs targeting the 5' end of segments 2 (PB1) and 3 (PA) could be identified and whether viral resistance to S-ONs can be developed. Similar to our earlier result, 20-mer S-ONs reproducing the 5' ends of segments 2 or 3 (complementary to the 3'-coding regions of PB1 and PA, respectively) exerted a powerful antiviral activity against a variety of influenza A virus subtypes in MDCK cells. Serial passage of the A/Taiwan/1/86 H1N1 strain in the presence of S-ON 5-15b or its antisense as5-15b analogue showed that mutant viruses with reduced susceptibility to the S-ON could indeed be generated, although the resistant viruses displayed reduced replicative fitness. Sequencing the resistant viruses identified mutations in the PB1, PB2, PA and M1 genes. Introduction of these changes into the A/PR/8/34 H1N1 strain by reverse genetics, suggested that alterations to RNA function in the packaging regions of segments 2 and 3 were important in developing resistance to S-ON inhibition. However, many of the other sequence changes induced by S-ON treatment were markedly deleterious to virus fitness. We conclude that packaging signals in the influenza A virus polymerase segments provide feasible targets for nucleic acid-based antivirals that may be difficult for the virus to evade through resistance mutations.
Collapse
Affiliation(s)
- Simone Giannecchini
- Virology Unit, Department of Public Health, University of Florence, Florence, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Opriessnig T, Patel D, Wang R, Halbur PG, Meng XJ, Stein DA, Zhang YJ. Inhibition of porcine reproductive and respiratory syndrome virus infection in piglets by a peptide-conjugated morpholino oligomer. Antiviral Res 2011; 91:36-42. [PMID: 21554902 DOI: 10.1016/j.antiviral.2011.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 04/14/2011] [Accepted: 04/22/2011] [Indexed: 01/07/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) causes substantial economic losses to the swine industry in many countries, and current control strategies are inadequate. Previously, we explored the strategy of using peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) to inhibit PRRS virus (PRRSV) replication. PPMOs are nuclease-resistant and single-stranded DNA analogs containing a modified backbone conjugated to a cell-penetrating peptide and can act as antisense agents through steric blockade of complementary messenger RNA. A PPMO (designated 5UP2) targeting highly conserved sequence in the 5'-terminal region of the PRRSV genome was found to produce multi-log10 inhibition of PRRSV replication in cultured cells. To evaluate 5UP2 in vivo, we here administrated the PPMO to 3-week-old piglets via intranasal instillation at 24h before, and 2 and 24h after infection with PRRSV (strain VR2385). Blood samples were collected at 6, 10 and 14 days post-infection (dpi) for detection of PRRSV RNA and antibodies. Necropsy was performed at 14 dpi. Monitoring weight gain in all piglet groups throughout the experiment indicated that PPMO was well tolerated at the doses used. PPMO 5UP2 treatment significantly reduced PRRSV viremia at 6 dpi. On day 14, piglets receiving 5UP2 had significantly less interstitial pneumonia and lower level of anti-PRRSV antibodies than untreated piglets. In alveolar macrophages isolated at the time of necropsy, the expression of antiviral genes in PPMO-treated piglets was elevated in comparison with untreated. This study provides further data indicating that the 5UP2 PPMO can be considered a candidate component for a novel PRRS control strategy.
Collapse
Affiliation(s)
- Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Inhibition of influenza virus infection in human airway cell cultures by an antisense peptide-conjugated morpholino oligomer targeting the hemagglutinin-activating protease TMPRSS2. J Virol 2010; 85:1554-62. [PMID: 21123387 DOI: 10.1128/jvi.01294-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Influenza A viruses constitute a major and ongoing global public health concern. Current antiviral strategies target viral gene products; however, the emergence of drug-resistant viruses highlights the need for novel antiviral approaches. Cleavage of the influenza virus hemagglutinin (HA) by host cell proteases is crucial for viral infectivity and therefore presents a potential drug target. Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMO) are single-stranded-DNA-like antisense agents that readily enter cells and can act as antisense agents by sterically blocking cRNA. Here, we evaluated the effect of PPMO targeted to regions of the pre-mRNA or mRNA of the HA-cleaving protease TMPRSS2 on proteolytic activation and spread of influenza viruses in human Calu-3 airway epithelial cells. We found that treatment of cells with a PPMO (T-ex5) designed to interfere with TMPRSS2 pre-mRNA splicing resulted in TMPRSS2 mRNA lacking exon 5 and consequently the expression of a truncated and enzymatically inactive form of TMPRSS2. Altered splicing of TMPRSS2 mRNA by the T-ex5 PPMO prevented HA cleavage in different human seasonal and pandemic influenza A viruses and suppressed viral titers by 2 to 3 log(10) units, strongly suggesting that TMPRSS2 is responsible for HA cleavage in Calu-3 airway cells. The data indicate that PPMO provide a useful reagent for investigating HA-activating proteases and may represent a promising strategy for the development of novel therapeutics to address influenza infections.
Collapse
|
37
|
Greenberg DE, Marshall-Batty KR, Brinster LR, Zarember KA, Shaw PA, Mellbye BL, Iversen PL, Holland SM, Geller BL. Antisense phosphorodiamidate morpholino oligomers targeted to an essential gene inhibit Burkholderia cepacia complex. J Infect Dis 2010; 201:1822-30. [PMID: 20438352 DOI: 10.1086/652807] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Members of the Burkholderia cepacia complex (Bcc) cause considerable morbidity and mortality in patients with chronic granulomatous disease and cystic fibrosis. Many Bcc strains are antibiotic resistant, which requires the exploration of novel antimicrobial approaches, including antisense technologies such as phosphorodiamidate morpholino oligomers (PMOs). METHODS Peptide-conjugated PMOs (PPMOs) were developed to target acpP, which encodes an acyl carrier protein (AcpP) that is thought to be essential for growth. Their antimicrobial activities were tested against different strains of Bcc in vitro and in infection models. RESULTS PPMOs targeting acpP were bactericidal against clinical isolates of Bcc (>4 log reduction), whereas a PPMO with a scrambled base sequence (scrambled PPMO) had no effect on growth. Human neutrophils were infected with Burkholderia multivorans and treated with AcpP PPMO. AcpP PPMO augmented killing, compared with neutrophils alone and compared with neutrophils alone plus scrambled PPMO. Mice with chronic granulomatous disease that were infected with B. multivorans were treated with AcpP PPMO, scrambled PPMO, or water at 0, 3, and 6 h after infection. Compared with water-treated control mice, the AcpP PPMO-treated mice showed an approximately 80% reduction in the risk of dying by day 30 of the experiment and relatively little pathology. CONCLUSION AcpP PPMO is active against Bcc infections in vitro and in vivo.
Collapse
Affiliation(s)
- David E Greenberg
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Office of Research Services, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rohayem J, Bergmann M, Gebhardt J, Gould E, Tucker P, Mattevi A, Unge T, Hilgenfeld R, Neyts J. Antiviral strategies to control calicivirus infections. Antiviral Res 2010; 87:162-78. [PMID: 20471996 PMCID: PMC7114105 DOI: 10.1016/j.antiviral.2010.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 05/01/2010] [Accepted: 05/04/2010] [Indexed: 11/29/2022]
Abstract
Caliciviridae are human or non-human pathogenic viruses with a high diversity. Some members of the Caliciviridae, i.e. human pathogenic norovirus or rabbit hemorrhagic disease virus (RHDV), are worldwide emerging pathogens. The norovirus is the major cause of viral gastroenteritis worldwide, accounting for about 85% of the outbreaks in Europe between 1995 and 2000. In the United States, 25 million cases of infection are reported each year. Since its emergence in 1984 as an agent of fatal hemorrhagic diseases in rabbits, RHDV has killed millions of rabbits and has been dispersed to all of the inhabitable continents. In view of their successful and apparently increasing emergence, the development of antiviral strategies to control infections due to these viral pathogens has now become an important issue in medicine and veterinary medicine. Antiviral strategies have to be based on an understanding of the epidemiology, transmission, clinical symptoms, viral replication and immunity to infection resulting from infection by these viruses. Here, we provide an overview of the mechanisms underlying calicivirus infection, focusing on the molecular aspects of replication in the host cell. Recent experimental data generated through an international collaboration on structural biology, virology and drug design within the European consortium VIZIER is also presented. Based on this analysis, we propose antiviral strategies that may significantly impact on the epidemiological characteristics of these highly successful viral pathogens.
Collapse
Affiliation(s)
- Jacques Rohayem
- The Calicilab, Institute of Virology, Dresden University of Technology, Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wunderlich K, Juozapaitis M, Mänz B, Mayer D, Götz V, Zöhner A, Wolff T, Schwemmle M, Martin A. Limited compatibility of polymerase subunit interactions in influenza A and B viruses. J Biol Chem 2010; 285:16704-12. [PMID: 20363752 DOI: 10.1074/jbc.m110.102533] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Despite their close phylogenetic relationship, natural intertypic reassortants between influenza A (FluA) and B (FluB) viruses have not been described. Inefficient polymerase assembly of the three polymerase subunits may contribute to this incompatibility, especially because the known protein-protein interaction domains, including the PA-binding domain of PB1, are highly conserved for each virus type. Here we show that substitution of the FluA PA-binding domain (PB1-A(1-25)) with that of FluB (PB1-B(1-25)) is accompanied by reduced polymerase activity and viral growth of FluA. Consistent with these findings, surface plasmon resonance spectroscopy measurements revealed that PA of FluA exhibits impaired affinity to biotinylated PB1-B(1-25) peptides. PA of FluB showed no detectable affinity to biotinylated PB1-A(1-25) peptides. Consequently, FluB PB1 harboring the PA-binding domain of FluA (PB1-AB) failed to assemble with PA and PB2 into an active polymerase complex. To regain functionality, we used a single amino acid substitution (T6Y) known to confer binding to PA of both virus types, which restored polymerase complex formation but surprisingly not polymerase activity for FluB. Taken together, our results demonstrate that the conserved virus type-specific PA-binding domains differ in their affinity to PA and thus might contribute to intertypic exclusion of reassortants between FluA and FluB viruses.
Collapse
|
40
|
Delcroix M, Riley LW. Cell-Penetrating Peptides for Antiviral Drug Development. Pharmaceuticals (Basel) 2010; 3:448-470. [PMID: 27713263 PMCID: PMC4033964 DOI: 10.3390/ph3030448] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/06/2010] [Accepted: 03/01/2010] [Indexed: 11/18/2022] Open
Abstract
Viral diseases affect hundreds of millions of people worldwide, and the few available drugs to treat these diseases often come with limitations. The key obstacle to the development of new antiviral agents is their delivery into infected cells in vivo. Cell-penetrating peptides (CPPs) are short peptides that can cross the cellular lipid bilayer with the remarkable capability to shuttle conjugated cargoes into cells. CPPs have been successfully utilized to enhance the cellular uptake and intracellular trafficking of antiviral molecules, and thereby increase the inhibitory activity of potential antiviral proteins and oligonucleotide analogues, both in cultured cells and in animal models. This review will address the notable findings of these studies, highlighting some promising results and discussing the challenges CPP technology has to overcome for further clinical applications.
Collapse
Affiliation(s)
- Melaine Delcroix
- School of Public Health, University of California, Berkeley, CA 94720, USA.
| | - Lee W Riley
- School of Public Health, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
41
|
Patel D, Stein DA, Zhang YJ. Morpholino oligomer-mediated protection of porcine pulmonary alveolar macrophages from arterivirus-induced cell death. Antivir Ther 2010; 14:899-909. [PMID: 19918094 DOI: 10.3851/imp1409] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) causes extensive economic losses in the swine industry. Current strategies and vaccines to control the disease are inadequate. We previously demonstrated that peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) could potently inhibit PRRS virus (PRRSV) replication in cell cultures. PPMOs are single-stranded DNA analogues containing a modified backbone and cell-penetrating peptide. PPMOs are nuclease-resistant, water-soluble, can enter cells readily and exhibit highly specific binding to complementary RNA. In this study, we examined PPMO-mediated inhibition of PRRSV replication in a primary culture of porcine pulmonary alveolar macrophages (PAMs). METHODS PAMs were collected from piglets, pre-incubated in culture and infected with PRRSV. Viability, cytopathic effects, virus yield and apoptosis of PAMs in the presence or absence of a PPMO (5UP2) were examined. The 5UP2 PPMO is complementary to a conserved sequence in the 5'-terminal region of the PRRSV genome. The level of several interferon-associated gene products and activity of caspases were monitored. RESULTS PRRSV infection induced the activity of caspases-3/7, -8 and -9 significantly. Treatment of PAMs with 5UP2 resulted in protection of the cells from PRRSV-induced cell death for at least 7 days and avoided the activation of the caspases evaluated. 5UP2 treatment of PRRSV-infected PAMs also prevented the vigorous induction of interferon-beta and chemokines observed in infected and mock-treated PAMs. CONCLUSIONS PPMO-mediated suppression of PRRSV replication in PAMs was associated with a reduction of apoptotic and inflammatory responses. These results provide further rationale for the development of PPMO 5UP2 as an antiviral to control PRRSV infection.
Collapse
|
42
|
Bell NM, Micklefield J. Chemical modification of oligonucleotides for therapeutic, bioanalytical and other applications. Chembiochem 2010; 10:2691-703. [PMID: 19739190 DOI: 10.1002/cbic.200900341] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Neil M Bell
- School of Chemistry, The University of Manchester, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, UK
| | | |
Collapse
|
43
|
Bouloy M, Flick R. Reverse genetics technology for Rift Valley fever virus: current and future applications for the development of therapeutics and vaccines. Antiviral Res 2009; 84:101-18. [PMID: 19682499 PMCID: PMC2801414 DOI: 10.1016/j.antiviral.2009.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/22/2009] [Accepted: 08/06/2009] [Indexed: 11/30/2022]
Abstract
The advent of reverse genetics technology has revolutionized the study of RNA viruses, making it possible to manipulate their genomes and evaluate the effects of these changes on their biology and pathogenesis. The fundamental insights gleaned from reverse genetics-based studies over the last several years provide a new momentum for the development of designed therapies for the control and prevention of these viral pathogens. This review summarizes the successes and stumbling blocks in the development of reverse genetics technologies for Rift Valley fever virus and their application to the further dissection of its pathogenesis and the design of new therapeutics and safe and effective vaccines.
Collapse
Affiliation(s)
- Michele Bouloy
- Institut Pasteur, Unité de Génétique Moléculaire des Bunyavirus, 25 rue du Dr Roux, 75724 Paris Cedex, France
| | - Ramon Flick
- BioProtection Systems Corporation, 2901 South Loop Drive, Suite 3360, Ames, IA 50010-8646, USA
| |
Collapse
|
44
|
Gabriel G, Klingel K, Planz O, Bier K, Herwig A, Sauter M, Klenk HD. Spread of infection and lymphocyte depletion in mice depends on polymerase of influenza virus. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1178-86. [PMID: 19700749 DOI: 10.2353/ajpath.2009.090339] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SC35M is a mouse-adapted variant of the highly pathogenic avian influenza virus SC35. We have previously shown that interspecies adaptation is mediated by mutations in the viral polymerase and that it is paralleled by the acquisition of high pathogenicity for mice. In the present study, we have compared virus spread and organ tropism of SC35 and SC35M in mice. We show that SC35 virus causes mild bronchiolitis in these animals, whereas infection with the mouse-adapted SC35M virus leads to severe hemorrhagic pneumonia with dissemination to other organs, including the brain. In SC35M-infected animals, viral RNA and viral antigen were detected in monocytes and macrophages, and SC35M, unlike SC35, replicated in lymphocyte and macrophage cultures in vitro. SC35M did not induce an adequate cytokine response but, unlike SC35, caused severe lymphopenia in mice. These observations suggest that the high efficiency of the SC35M polymerase is responsible for infection and depletion of lymphocytes and other white blood cells, which results in immune suppression and systemic virus spread.
Collapse
Affiliation(s)
- Gülsah Gabriel
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, an der Universität Hamburg, Martinistrasse 52, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Wasilenko JL, Sarmento L, Pantin-Jackwood MJ. A single substitution in amino acid 184 of the NP protein alters the replication and pathogenicity of H5N1 avian influenza viruses in chickens. Arch Virol 2009; 154:969-79. [PMID: 19475480 DOI: 10.1007/s00705-009-0399-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/04/2009] [Indexed: 11/29/2022]
Abstract
Changes in the NP gene of H5N1 highly pathogenic avian influenza (HPAI) viruses have previously been shown to affect viral replication, alter host gene expression levels and affect mean death times in infected chickens. Five amino acids at positions 22, 184, 400, 406, and 423 were different between the two recombinant viruses studied. In this study, we individually mutated the five amino acids that differed and determined that the difference in virus pathogenicity after NP gene exchange was a result of an alanine to lysine change at position 184 of the NP protein. Infection with viruses containing a lysine at NP 184 induced earlier mortality in chickens, increased virus titers and nitric oxide levels in tissues, and resulted in up-regulated host immune genes, such as alpha-interferon (IFN-alpha), gamma-interferon (IFN-gamma), orthomyxovirus resistance gene 1 (Mx1), and inducible nitric oxide synthase (iNOS). This study underlines the importance of the NP in avian influenza virus replication and pathogenicity.
Collapse
Affiliation(s)
- Jamie L Wasilenko
- Southeast Poultry Research Laboratory, USDA-Agricultural Research Service, 934 College Station Road, Athens, GA 30605, USA
| | | | | |
Collapse
|
46
|
Oligonucleotides derived from the packaging signal at the 5' end of the viral PB2 segment specifically inhibit influenza virus in vitro. Arch Virol 2009; 154:821-32. [PMID: 19370391 DOI: 10.1007/s00705-009-0380-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
Abstract
The development of new antiviral molecules to fight the possible emergence of influenza viruses with pandemic potential is needed. In this study, phosphorothioate oligonucleotides (S-ONs) derived from the packaging signals in the 3' and 5' ends of the viral PB2 RNA were associated with liposomes and tested against influenza virus in vitro. A 15-mer S-ON derived from the 5' end of the viral PB2 RNA, complementary to the 3' end of its coding region (nucleotides 2279-2293) and designated 5-15b, proved markedly inhibitory. The antiviral activity of 5-15b was dose- and time-dependent but was independent of the cell substrate and multiplicity of infection used. Importantly, inhibition of influenza A and B viruses required S-ONs reproducing the respective packaging signals. Furthermore, 5-15b and its antisense derivative S-ON activity did not affect intracellular accumulation of viral RNA. Confocal microscopy showed that 5-15b is clearly nucleophilic. These findings indicate that the packaging signal at the 5' end of the PB2 RNA is an interesting target for the design of new anti-influenza-virus compounds.
Collapse
|
47
|
Krähling V, Stein DA, Spiegel M, Weber F, Mühlberger E. Severe acute respiratory syndrome coronavirus triggers apoptosis via protein kinase R but is resistant to its antiviral activity. J Virol 2009; 83:2298-309. [PMID: 19109397 PMCID: PMC2643707 DOI: 10.1128/jvi.01245-08] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 12/15/2008] [Indexed: 01/09/2023] Open
Abstract
In this study, infection of 293/ACE2 cells with severe acute respiratory syndrome coronavirus (SARS-CoV) activated several apoptosis-associated events, namely, cleavage of caspase-3, caspase-8, and poly(ADP-ribose) polymerase 1 (PARP), and chromatin condensation and the phosphorylation and hence inactivation of the eukaryotic translation initiation factor 2alpha (eIF2alpha). In addition, two of the three cellular eIF2alpha kinases known to be virus induced, protein kinase R (PKR) and PKR-like endoplasmic reticulum kinase (PERK), were activated by SARS-CoV. The third kinase, general control nonderepressible-2 kinase (GCN2), was not activated, but late in infection the level of GCN2 protein was significantly reduced. Reverse transcription-PCR analyses revealed that the reduction of GCN2 protein was not due to decreased transcription or stability of GCN2 mRNA. The specific reduction of PKR protein expression by antisense peptide-conjugated phosphorodiamidate morpholino oligomers strongly reduced cleavage of PARP in infected cells. Surprisingly, the knockdown of PKR neither enhanced SARS-CoV replication nor abrogated SARS-CoV-induced eIF2alpha phosphorylation. Pretreatment of cells with beta interferon prior to SARS-CoV infection led to a significant decrease in PERK activation, eIF2alpha phosphorylation, and SARS-CoV replication. The various effects of beta interferon treatment were found to function independently on the expression of PKR. Our results show that SARS-CoV infection activates PKR and PERK, leading to sustained eIF2alpha phosphorylation. However, virus replication was not impaired by these events, suggesting that SARS-CoV possesses a mechanism to overcome the inhibitory effects of phosphorylated eIF2alpha on viral mRNA translation. Furthermore, our data suggest that viral activation of PKR can lead to apoptosis via a pathway that is independent of eIF2alpha phosphorylation.
Collapse
Affiliation(s)
- Verena Krähling
- Department of Virology, Philipps University Marburg, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
48
|
Sleeman K, Stein DA, Tamin A, Reddish M, Iversen PL, Rota PA. Inhibition of measles virus infections in cell cultures by peptide-conjugated morpholino oligomers. Virus Res 2009; 140:49-56. [PMID: 19059443 DOI: 10.1016/j.virusres.2008.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/29/2008] [Accepted: 10/31/2008] [Indexed: 01/15/2023]
Abstract
Measles virus (MeV) is a highly contagious human pathogen. Despite the success of measles vaccination programs, measles is still responsible for an estimated 245,000 deaths each year. There are currently no antiviral compounds available for the treatment of measles. Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMO) are antisense compounds that enter cells readily and can interfere with mRNA function by steric blocking. A panel of PPMO was designed to target various sequences of MeV RNA that are known to be important for viral replication. Five PPMO, targeting MeV genomic RNA or mRNA, inhibited the replication of MeV, in a dose-responsive and sequence-specific manner in cultured cells. One of the highly active PPMO (PPMO 454), targeting a conserved sequence in the translation start site of the mRNA coding for the nucleocapsid protein, inhibited multiple genotypes of MeV. This report provides evidence that PPMO treatment represents a promising approach for developing antiviral agents against measles and other paramyxoviruses.
Collapse
Affiliation(s)
- Katrina Sleeman
- Measles, Mumps, Rubella, and Herpesviruses Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
49
|
Stein DA, Huang CYH, Silengo S, Amantana A, Crumley S, Blouch RE, Iversen PL, Kinney RM. Treatment of AG129 mice with antisense morpholino oligomers increases survival time following challenge with dengue 2 virus. J Antimicrob Chemother 2008; 62:555-65. [PMID: 18567576 PMCID: PMC7109848 DOI: 10.1093/jac/dkn221] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objectives To determine the antiviral activity of phosphorodiamidate morpholino oligomers (PMO) and peptide-conjugated PMO (PPMO) in AG129 mice infected with dengue 2 virus (DENV-2). Methods Antisense PMO and PPMO were designed against the 5′ terminal region (5′SL) or the 3′-cyclization sequence region (3′CS) of DENV genomic RNA and administered to AG129 mice before and/or after infection with DENV-2. In addition, cell culture evaluations designed to determine optimum PPMO length, and pharmacokinetic and toxicity analysis of PPMO were also carried out. Results Mock-treated AG129 mice lived for 9–17 days following intraperitoneal (ip) infection with 104–106pfu of DENV-2 (strain New Guinea C). Intraperitoneal administration of 5′SL or 3′CS PPMO before and after DENV infection produced an increase in the average survival time of up to 8 days. Animals receiving only post-infection PPMO treatment did not benefit significantly. Cell culture studies showed that PPMO of 22–24 bases long produced substantially higher DENV titre reductions than did PPMO that were either shorter or longer. Pharmacokinetic and toxicology analysis with non-infected animals showed that nine consecutive once‐daily ip treatments of 10 mg/kg PPMO resulted in high concentrations of PPMO in the liver and caused little impact on overall health. Conclusions The data indicate that PPMO had considerable antiviral efficacy against DENV-2 in the AG129 mouse model and that PPMO treatment early in the course of an infection was critical to extending the survival times of DENV-2-infected mice in the AG129 model system.
Collapse
Affiliation(s)
- David A Stein
- AVI BioPharma Inc., 4575 SW Research Way, Corvallis, OR 97333, USA.
| | | | | | | | | | | | | | | |
Collapse
|