1
|
Naveed A, Umer R, Fatemah A, Naveed R. Nucleolin a Central Player in Host Virus Interactions and its Role in Viral Progeny Production. Mol Biotechnol 2025:10.1007/s12033-025-01372-1. [PMID: 39821823 DOI: 10.1007/s12033-025-01372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/04/2025] [Indexed: 01/19/2025]
Abstract
Nucleolin (NCL) is a prevalent and widely distributed nucleolar protein in cells. While primarily located in the nucleolus, NCL is also found within the nucleoplasm, cytoplasm, and even on the cell surface. NCL's unique nature arises from its multifaceted roles and extensive interactions with various proteins. The structural stability of NCL is reliant on protease inhibitors, particularly in proliferating cells, indicating its essential role in cellular maintenance. This review is centered on elucidating the structure of NCL, its significance in host-viral interactions, and its various contributions to viral progeny production. This work is to enhance the scientific community's understanding of NCL functionality and its implications for viral infection processes. NCL is highlighted as a crucial host protein that viruses frequently target, exploiting it to support their own life cycles and establish infections. Understanding these interactions is key to identifying NCL's role in viral pathogenesis and its potential as a therapeutic target. Our current knowledge, alongside extensive scientific literature, underscores the critical role of host proteins like NCL in both viral infections and other diseases. As a target for viral exploitation, NCL supports viral replication and survival, making it a promising candidate for therapeutic intervention. By delving deeper into the intricacies of NCL-viral protein interactions, researchers may uncover effective antiviral mechanisms. This review aspires to inspire further research into NCL's role in viral infections and promote advancements in antiviral therapeutic development.
Collapse
Affiliation(s)
- Ahsan Naveed
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, USA.
| | - Rumaisa Umer
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, USA
| | - Ayzal Fatemah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, USA
- Albert B Chandler Hospital, University of Kentucky, Lexington, Fayette, USA
| | - Rabia Naveed
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
2
|
Orbaum-Harel O, Sarid R. Comparative Review of the Conserved UL24 Protein Family in Herpesviruses. Int J Mol Sci 2024; 25:11268. [PMID: 39457049 PMCID: PMC11508437 DOI: 10.3390/ijms252011268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The UL24 protein family, conserved across all subfamilies of Orthoherpesviridae, plays diverse and significant roles in viral replication, host-virus interactions and pathogenesis. Understanding the molecular mechanisms and interactions of UL24 proteins is key to unraveling the complex interplay between herpesviruses and their hosts. This review provides a comparative and comprehensive overview of current knowledge on UL24 family members, including their conservation, expression patterns, cellular localization, and functional roles upon their expression and during viral infection, highlighting their significance in herpesvirus biology and their potential functions.
Collapse
Affiliation(s)
- Odelia Orbaum-Harel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel;
- Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel;
- Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
3
|
Zhang B, Li Y, Yang P, He S, Li W, Li M, Hu Q, Zhang M. Herpes Simplex Virus Type 2 Blocks IFN-β Production through the Viral UL24 N-Terminal Domain-Mediated Inhibition of IRF-3 Phosphorylation. Viruses 2024; 16:1601. [PMID: 39459934 PMCID: PMC11512255 DOI: 10.3390/v16101601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is a sexually transmitted virus, the cause of genital herpes, and its infection can increase the risk of HIV-1 infection. After initial infection, HSV-2 can establish lifelong latency within the nervous system, which is likely associated with the virus-mediated immune evasion. In this study, we found that HSV-2 UL24 significantly inhibited the activation of the IFN-β promoter and the production of IFN-β at both mRNA and protein levels. Of importance, the inhibitory effect of HSV-2 on IFN-β production was significantly impaired in the context of HSV-2 infection when UL24 was knocked down. Additional studies revealed that, although the full-length HSV-2 UL24 affected cell cycle and viability to some extent, its N-terminal 1-202AA domain showed no obvious cytotoxicity while its C-terminal 201-281 AA domain had a minimal impact on cell viability. Further studies showed that the N-terminal 1-202 AA domain of HSV-2 UL24 (HSV-2 UL24-N) was the main functional region responsible for the inhibition of IFN-β production mediated by HSV-2 UL24. This domain significantly suppressed the activity of RIG-IN, MAVS, TBK-1, IKK-ε, or the IRF-3/5D-activated IFN-β promoter. Mechanistically, HSV-2 UL24-N suppressed IRF-3 phosphorylation, resulting in the inhibition of IFN-β production. The findings of this study highlight the significance of HSV-2 UL24 in inhibiting IFN-β production, revealing two potential roles of UL24 during HSV-2 infection: facilitating immune evasion and inducing cell cycle arrest.
Collapse
Affiliation(s)
- Binman Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (B.Z.); (Y.L.); (P.Y.); (S.H.); (W.L.); (M.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuncheng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (B.Z.); (Y.L.); (P.Y.); (S.H.); (W.L.); (M.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (B.Z.); (Y.L.); (P.Y.); (S.H.); (W.L.); (M.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu He
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (B.Z.); (Y.L.); (P.Y.); (S.H.); (W.L.); (M.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (B.Z.); (Y.L.); (P.Y.); (S.H.); (W.L.); (M.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (B.Z.); (Y.L.); (P.Y.); (S.H.); (W.L.); (M.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (B.Z.); (Y.L.); (P.Y.); (S.H.); (W.L.); (M.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mudan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (B.Z.); (Y.L.); (P.Y.); (S.H.); (W.L.); (M.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Orbaum-Harel O, Sloutskin A, Kalt I, Sarid R. KSHV ORF20 Promotes Coordinated Lytic Reactivation for Increased Infectious Particle Production. Viruses 2024; 16:1418. [PMID: 39339894 PMCID: PMC11437498 DOI: 10.3390/v16091418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-causing virus that establishes life-long infection. KSHV is implicated in the etiology of Kaposi's sarcoma, and a number of rare hematopoietic malignancies. The present study focuses on the KSHV open reading frame 20 (ORF20), a member of the conserved herpesvirus UL24 protein family containing five conserved homology domains and a conserved PD-(D/E)XK putative endonuclease motif, whose nuclease function has not been established to date. ORF20 encodes three co-linear protein isoforms, full length, intermediate, and short, though their differential functions are unknown. In an effort to determine the role of ORF20 during KSHV infection, we generated a recombinant ORF20-Null KSHV genome, which fails to express all three ORF20 isoforms. This genome was reconstituted in iSLK cells to establish a latent infection, which resulted in an accelerated transcription of viral mRNAs, an earlier accumulation of viral lytic proteins, an increase in the quantity of viral DNA copies, and a significant decrease in viral yield upon lytic reactivation. This was accompanied by early cell death of cells infected with the ORF20-Null virus. Functional complementation of the ORF20-Null mutant with the short ORF20 isoform rescued KSHV production, whereas its endonuclease mutant form failed to enhance lytic reactivation. Complementation with the short isoform further revealed a decrease in cell death as compared with ORF20-Null virus. Finally, expression of IL6 and CXCL8, previously shown to be affected by the hCMV UL24 homolog, was relatively low upon reactivation of cells infected with the ORF20-Null virus. These findings suggest that ORF20 protein, with its putative endonuclease motif, promotes coordinated lytic reactivation for increased infectious particle production.
Collapse
Affiliation(s)
- Odelia Orbaum-Harel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (O.O.-H.)
- Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (O.O.-H.)
| | - Inna Kalt
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (O.O.-H.)
- Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (O.O.-H.)
- Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
5
|
Döhner K, Serrero MC, Sodeik B. The role of nuclear pores and importins for herpes simplex virus infection. Curr Opin Virol 2023; 62:101361. [PMID: 37672874 DOI: 10.1016/j.coviro.2023.101361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
Microtubule transport and nuclear import are functionally connected, and the nuclear pore complex (NPC) can interact with microtubule motors. For several alphaherpesvirus proteins, nuclear localization signals (NLSs) and their interactions with specific importin-α proteins have been characterized. Here, we review recent insights on the roles of microtubule motors, capsid-associated NLSs, and importin-α proteins for capsid transport, capsid docking to NPCs, and genome release into the nucleoplasm, as well as the role of importins for nuclear viral transcription, replication, capsid assembly, genome packaging, and nuclear capsid egress. Moreover, importin-α proteins exert antiviral effects by promoting the nuclear import of transcription factors inducing the expression of interferons (IFN), cytokines, and IFN-stimulated genes, and the IFN-inducible MxB restricts capsid docking to NPCs.
Collapse
Affiliation(s)
- Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany; Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany.
| | - Manutea C Serrero
- Institute of Virology, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany; DZIF - German Centre for Infection Research, Braunschweig, Hannover, Germany.
| |
Collapse
|
6
|
Ruan P, Wang M, Cheng A, Zhao X, Yang Q, Wu Y, Zhang S, Tian B, Huang J, Ou X, Gao Q, Sun D, He Y, Wu Z, Zhu D, Jia R, Chen S, Liu M. Mechanism of herpesvirus UL24 protein regulating viral immune escape and virulence. Front Microbiol 2023; 14:1268429. [PMID: 37808279 PMCID: PMC10559885 DOI: 10.3389/fmicb.2023.1268429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Herpesviruses have evolved a series of abilities involved in the process of host infection that are conducive to virus survival and adaptation to the host, such as immune escape, latent infection, and induction of programmed cell death for sustainable infection. The herpesvirus gene UL24 encodes a highly conserved core protein that plays an important role in effective viral infection. The UL24 protein can inhibit the innate immune response of the host by acting on multiple immune signaling pathways during virus infection, and it also plays a key role in the proliferation and pathogenicity of the virus in the later stage of infection. This article reviews the mechanism by which the UL24 protein mediates herpesvirus immune escape and its effects on viral proliferation and virulence by influencing syncytial formation, DNA damage and the cell cycle. Reviewing these studies will enhance our understanding of the pathogenesis of herpesvirus infection and provide evidence for new strategies to combat against viral infection.
Collapse
Affiliation(s)
- Peilin Ruan
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Gonzalez CE, Ben Abdeljelil N, Pearson A. The Disruption of a Nuclear Export Signal in the C-Terminus of the Herpes Simplex Virus 1 Determinant of Pathogenicity UL24 Protein Leads to a Syncytial Plaque Phenotype. Viruses 2023; 15:1971. [PMID: 37766377 PMCID: PMC10535440 DOI: 10.3390/v15091971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
UL24 of herpes simplex virus 1 (HSV-1) has been shown to be a determinant of pathogenesis in mouse models of infection. The N-terminus of UL24 localizes to the nucleus and drives the redistribution of nucleolin and B23. In contrast, when expressed alone, the C-terminal domain of UL24 accumulates in the Golgi apparatus; its importance during infection is unknown. We generated a series of mammalian expression vectors encoding UL24 with nested deletions in the C-terminal domain. Interestingly, enhanced nuclear staining was observed for several UL24-deleted forms in transient transfection assays. The substitution of a threonine phosphorylation site had no effect on UL24 localization or viral titers in cell culture. In contrast, mutations targeting a predicted nuclear export signal (NES) significantly enhanced nuclear localization, indicating that UL24 is able to shuttle between the nucleus and the cytoplasm. Recombinant viruses that encode UL24-harboring substitutions in the NES led to the accumulation of UL24 in the nucleus. Treatment with the CRM-1-specific inhibitor leptomycin B blocked the nuclear export of UL24 in transfected cells but not in the context of infection. Viruses encoding UL24 with NES mutations resulted in a syncytial phenotype, but viral yield was unaffected. These results are consistent with a role for HSV-1 UL24 in late cytoplasmic events in HSV-1 replication.
Collapse
Affiliation(s)
| | | | - Angela Pearson
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
| |
Collapse
|
8
|
Lytic Reactivation of the Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) Is Accompanied by Major Nucleolar Alterations. Viruses 2022; 14:v14081720. [PMID: 36016343 PMCID: PMC9412354 DOI: 10.3390/v14081720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
The nucleolus is a subnuclear compartment whose primary function is the biogenesis of ribosomal subunits. Certain viral infections affect the morphology and composition of the nucleolar compartment and influence ribosomal RNA (rRNA) transcription and maturation. However, no description of nucleolar morphology and function during infection with Kaposi’s sarcoma-associated herpesvirus (KSHV) is available to date. Using immunofluorescence microscopy, we documented extensive destruction of the nuclear and nucleolar architecture during the lytic reactivation of KSHV. This was manifested by the redistribution of key nucleolar proteins, including the rRNA transcription factor UBF. Distinct delocalization patterns were evident; certain nucleolar proteins remained together whereas others dissociated, implying that nucleolar proteins undergo nonrandom programmed dispersion. Significantly, the redistribution of UBF was dependent on viral DNA replication or late viral gene expression. No significant changes in pre-rRNA levels and no accumulation of pre-rRNA intermediates were found by RT-qPCR and Northern blot analysis. Furthermore, fluorescent in situ hybridization (FISH), combined with immunofluorescence, revealed an overlap between Fibrillarin and internal transcribed spacer 1 (ITS1), which represents the primary product of the pre-rRNA, suggesting that the processing of rRNA proceeds during lytic reactivation. Finally, small changes in the levels of pseudouridylation (Ψ) and 2′-O-methylation (Nm) were documented across the rRNA; however, none were localized to the functional domain. Taken together, our results suggest that despite dramatic changes in the nucleolar organization, rRNA transcription and processing persist during lytic reactivation of KSHV. Whether the observed nucleolar alterations favor productive infection or signify cellular anti-viral responses remains to be determined.
Collapse
|
9
|
A Mutation in the UL24 Gene Abolishes Expression of the Newly Identified UL24.5 Protein of Herpes Simplex Virus 1 and Leads to an Increase in Pathogenicity in Mice. J Virol 2018; 92:JVI.00671-18. [PMID: 30068651 DOI: 10.1128/jvi.00671-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects the host via epithelia and establishes latency in sensory neurons. The UL24 gene is conserved throughout the Herpesviridae family, and the UL24 protein is important for efficient viral replication and pathogenesis. Multiple transcripts are expressed from the UL24 gene. The presence of a transcription initiation site inside the open reading frame of UL24 and an ATG start codon in the same open reading frame led us to suspect that another protein was expressed from the UL24 locus. To test our hypothesis, we constructed a recombinant virus that expresses a hemagglutinin tag at the C terminus of UL24. Western blot analysis revealed the expression of an 18-kDa protein that is not a degradation product of the full-length UL24, which we refer to as UL24.5. Ectopically expressed UL24.5 did not induce the dispersal of nucleolar proteins, as seen for UL24. In order to characterize the role of UL24.5, we constructed a mutant virus encoding a substitution of the predicted initiation methionine to a valine. This substitution eliminated the expression of the 18-kDa polypeptide. Unlike the UL24-null mutant (UL24X), which exhibits reduced viral yields, the UL24.5-null mutant exhibited the same replication phenotype in cell culture as the parental strain. However, in a murine ocular infection model, we observed an increase in the incidence of neurological disorders with the UL24.5 mutant. Alignment of amino acid sequences for various herpesviruses revealed that the initiation site of UL24.5 is conserved among HSV-1 strains and is present in many herpesviruses.IMPORTANCE We discovered a new HSV-1 protein, UL24.5, which corresponds to the C-terminal portion of UL24. In contrast to the replication defects observed with HSV-1 strains that do not express full-length UL24, the absence of UL24.5 did not affect viral replication in cell culture. Moreover, in mice, the absence of UL24.5 did not affect viral titers in epithelia or trigeminal ganglia during acute infection; however, it was associated with a prolonged persistence of signs of inflammation. Strikingly, the absence of UL24.5 also led to an increase in the incidence of severe neurological impairment compared to results for wild-type control viruses. This increase in pathogenicity is in stark contrast to the reduction in clinical signs associated with the absence of full-length UL24. Bioinformatic analyses suggest that UL24.5 is conserved among all human alphaherpesviruses and in some nonhuman alphaherpesviruses. Thus, we have identified UL24.5 as a new HSV-1 determinant of pathogenesis.
Collapse
|
10
|
Fernández-Ponce C, Durán-Ruiz MC, Narbona-Sánchez I, Muñoz-Miranda JP, Arbulo-Echevarria MM, Serna-Sanz A, Baumann C, Litrán R, Aguado E, Bloch W, García-Cozar F. Ultrastructural Localization and Molecular Associations of HCV Capsid Protein in Jurkat T Cells. Front Microbiol 2018; 8:2595. [PMID: 29354102 PMCID: PMC5758585 DOI: 10.3389/fmicb.2017.02595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus core protein is a highly basic viral protein that multimerizes with itself to form the viral capsid. When expressed in CD4+ T lymphocytes, it can induce modifications in several essential cellular and biological networks. To shed light on the mechanisms underlying the alterations caused by the viral protein, we have analyzed HCV-core subcellular localization and its associations with host proteins in Jurkat T cells. In order to investigate the intracellular localization of Hepatitis C virus core protein, we have used a lentiviral system to transduce Jurkat T cells and subsequently localize the protein using immunoelectron microscopy techniques. We found that in Jurkat T cells, Hepatitis C virus core protein mostly localizes in the nucleus and specifically in the nucleolus. In addition, we performed pull-down assays combined with Mass Spectrometry Analysis, to identify proteins that associate with Hepatitis C virus core in Jurkat T cells. We found proteins such as NOLC1, PP1γ, ILF3, and C1QBP implicated in localization and/or traffic to the nucleolus. HCV-core associated proteins are implicated in RNA processing and RNA virus infection as well as in functions previously shown to be altered in Hepatitis C virus core expressing CD4+ T cells, such as cell cycle delay, decreased proliferation, and induction of a regulatory phenotype. Thus, in the current work, we show the ultrastructural localization of Hepatitis C virus core and the first profile of HCV core associated proteins in T cells, and we discuss the functions and interconnections of these proteins in molecular networks where relevant biological modifications have been described upon the expression of Hepatitis C virus core protein. Thereby, the current work constitutes a necessary step toward understanding the mechanisms underlying HCV core mediated alterations that had been described in relevant biological processes in CD4+ T cells.
Collapse
Affiliation(s)
- Cecilia Fernández-Ponce
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Maria C Durán-Ruiz
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Isaac Narbona-Sánchez
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Juan P Muñoz-Miranda
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Mikel M Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | | | | | - Rocío Litrán
- Department of Condensed Matter Physics, University of Cádiz, Puerto Real, Spain
| | - Enrique Aguado
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Francisco García-Cozar
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| |
Collapse
|
11
|
Gao X, Jia R, Wang M, Yang Q, Chen S, Liu M, Yin Z, Cheng A. Duck enteritis virus (DEV) UL54 protein, a novel partner, interacts with DEV UL24 protein. Virol J 2017; 14:166. [PMID: 28851454 PMCID: PMC5575879 DOI: 10.1186/s12985-017-0830-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/14/2017] [Indexed: 11/10/2022] Open
Abstract
Background UL24 is a multifunctional protein that is conserved among alphaherpesviruses and is believed to play an important role in viral infection and replication. Results In this paper, to investigate putative UL24-binding proteins and to explore the functional mechanisms of DEV UL24, yeast two-hybrid (Y2H) was carried out, and further verified the interaction between UL24 and partners by co-immunoprecipitation and fluorescence microscopy experiments. Interaction partners of UL24 protein were screened by yeast two-hybrid (Y2H) with the cDNA library of DEV-CHv strain post-infection DEF cells. A novel partner, DEV UL54 protein, was discovered by Y2H screening and bioinformatic. Co-immunoprecipitation experiments suggested that DEV UL24 interacted with UL54 proteins. And distribution of a part of UL54 protein was changed from nucleus to cytoplasm in DF-1 cells of co-subcellular localization experiments which also showed that DEV UL24 interacted with UL54 proteins. Conclusions The interaction between the DEV UL24 and UL54 proteins was discovered for the first time. Thus, DEV UL54 protein as a novel partner interacted with DEV UL24 protein. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0830-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinghong Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Infectious Disease & Bio-safety, Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, People's Republic of China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
12
|
Sanabria-Solano C, Gonzalez CE, Richerioux N, Bertrand L, Dridi S, Griffiths A, Langelier Y, Pearson A. Regulation of viral gene expression by the herpes simplex virus 1UL24 protein (HSV-1UL24 inhibits accumulation of viral transcripts). Virology 2016; 495:148-60. [PMID: 27214229 DOI: 10.1016/j.virol.2016.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
UL24 is conserved among all Herpesviridae. In herpes simplex virus 1 (HSV-1), UL24 mutations lead to reduced viral titers both in cell culture and in vivo, and reduced pathogenicity. The human cytomegalovirus ortholog of UL24 has a gene regulatory function; however, it is not known whether other UL24 orthologs also affect gene expression. We discovered that in co-transfection experiments, expression of UL24 correlated with a reduction in the expression of several viral proteins and transcripts. Substitution mutations targeting conserved residues in UL24 impaired this function. Reduced transcript levels did not appear attributable to changes in mRNA stability. The UL24 ortholog of Herpes B virus exhibited a similar activity. An HSV-1 mutant that does not express UL24 produced more viral R1 and R2 transcripts than the wild type or rescue virus relative to the amount of viral DNA. These results reveal a new role for HSV-1UL24 in regulating viral mRNA accumulation.
Collapse
Affiliation(s)
| | - Carmen Elena Gonzalez
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7
| | - Nicolas Richerioux
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7
| | - Luc Bertrand
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7
| | - Slimane Dridi
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7
| | - Anthony Griffiths
- Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227-5301, United States
| | - Yves Langelier
- CRCHUM (Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Pavillon R, 900 Saint-Denis, Montréal, Canada H2X 0A9
| | - Angela Pearson
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7.
| |
Collapse
|
13
|
Zhang W, Yao Y, Chen J, Wang M. Unconserved C terminal of human cytomegalovirus tegument protein pUL76 elicits nuclear aggresome formation and induces DNA damage in transfected cells. J Biomed Sci 2015; 22:95. [PMID: 26494186 PMCID: PMC4618751 DOI: 10.1186/s12929-015-0205-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 10/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The HCMV UL76 gene is a member of UL24 family in herpes virus and encodes a highly conserved herpes virus protein. Inherited from common ancestor, members of Herpes_UL24 family encode proteins with a conserved N terminal and varied in C terminal region. To define which region (conserved N terminal or unconserved C terminal) of UL76 was responsible for its ability to induce DNA damage and aggresome formation, the wild-type UL76 gene and two deletion mutants were transfected to cells and analyzed by immunofluorescent staining, Western blotting and comet assay. RESULTS We report that the EGFP-fusion proteins present as globular aggresomes and colocalize with γ-H2AX in cells transfected with either pEGFP-UL76 or pEGFP-UL76C. The relative expression level of γ-H2AX and percentage of cells with comet tails were elevated in pEGFP-UL76 or pEGFP-UL76C transfection groups compared to the control. CONCLUSION Our findings suggest that the unconserved C terminal (not the conserved N terminal) of pUL76 was sufficient to induce DNA damage and aggresome formation in transfected cells.
Collapse
Affiliation(s)
- Wenchang Zhang
- Department of Microbiology, Anhui Medical University, 81st Meishan Road, Hefei, 230032, Anhui, China.
| | - Yao Yao
- Department of Microbiology, Anhui Medical University, 81st Meishan Road, Hefei, 230032, Anhui, China.
| | - Jingxian Chen
- Department of Pathology & Cell Biology, Columbia University, New York, 10032, USA.
| | - Mingli Wang
- Department of Microbiology, Anhui Medical University, 81st Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
14
|
Guo TW, Vimalesvaran D, Thompson JR, Perry KL, Krenz B. Subcellular localization of grapevine red blotch-associated virus ORFs V2 and V3. Virus Genes 2015; 51:156-8. [DOI: 10.1007/s11262-015-1205-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/27/2015] [Indexed: 10/25/2022]
|
15
|
Rochette PA, Bourget A, Sanabria-Solano C, Lahmidi S, Lavallée GO, Pearson A. Mutation of UL24 impedes the dissemination of acute herpes simplex virus 1 infection from the cornea to neurons of trigeminal ganglia. J Gen Virol 2015; 96:2794-2805. [PMID: 25986633 DOI: 10.1099/vir.0.000189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus 1 (human herpesvirus 1) initially infects epithelial cells of the mucosa and then goes on to infect sensory neurons leading ultimately to a latent infection in trigeminal ganglia (TG). UL24 is a core herpesvirus gene that has been identified as a determinant of pathogenesis in several Alphaherpesvirinae, although the underlying mechanisms are unknown. In a mouse model of ocular infection, a UL24-deficient virus exhibited a reduction in viral titres in tear films of 1 log10, whilst titres in TG are often below the level of detection. Moreover, the efficiency of reactivation from latency was also severely reduced. Herein, we investigated how UL24 contributed to acute infection of TG. Our results comparing the impact of UL24 on viral titres in eye tissue versus in tear films did not reveal a general defect in virus release from the cornea. We also found that the impairment of replication seen in mouse primary embryonic neurons with a UL24-deficient virus was not more severe than that observed in an epithelial cell line. Rather, in situ histological analyses revealed that infection with a UL24-deficient virus led to a significant reduction in the number of acutely infected neurons at 3 days post-infection (p.i.). Moreover, there was a significant reduction in the number of neurons positive for viral DNA at 2 days p.i. for the UL24-deficient virus as compared with that observed for WT or a rescue virus. Our results supported a model whereby UL24 functions in the dissemination of acute infection from the cornea to neurons in TG.
Collapse
Affiliation(s)
- Pierre-Alexandre Rochette
- Université INRS, INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Amélie Bourget
- Université INRS, INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Carolina Sanabria-Solano
- Université INRS, INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Soumia Lahmidi
- Université INRS, INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Gabriel Ouellet Lavallée
- Université INRS, INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Angela Pearson
- Université INRS, INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| |
Collapse
|
16
|
Ben Abdeljelil N, Rochette PA, Pearson A. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion. Virology 2013; 444:263-73. [DOI: 10.1016/j.virol.2013.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/07/2013] [Accepted: 06/24/2013] [Indexed: 11/29/2022]
|
17
|
NC-mediated nucleolar localization of retroviral gag proteins. Virus Res 2012; 171:304-18. [PMID: 23036987 DOI: 10.1016/j.virusres.2012.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/13/2012] [Accepted: 09/22/2012] [Indexed: 11/21/2022]
Abstract
The assembly and release of retrovirus particles from the cell membrane is directed by the Gag polyprotein. The Gag protein of Rous sarcoma virus (RSV) traffics through the nucleus prior to plasma membrane localization. We previously reported that nuclear localization of RSV Gag is linked to efficient packaging of viral genomic RNA, however the intranuclear activities of RSV Gag are not well understood. To gain insight into the properties of the RSV Gag protein within the nucleus, we examined the subnuclear localization and dynamic trafficking of RSV Gag. Restriction of RSV Gag to the nucleus by mutating its nuclear export signal (NES) in the p10 domain or interfering with CRM1-mediated nuclear export of Gag by leptomycin B (LMB) treatment led to the accumulation of Gag in nucleoli and discrete nucleoplasmic foci. Retention of RSV Gag in nucleoli was reduced with cis-expression of the 5' untranslated RU5 region of the viral RNA genome, suggesting the psi (Ψ) packaging signal may alter the subnuclear localization of Gag. Fluorescence recovery after photobleaching (FRAP) demonstrated that the nucleolar fraction of Gag was highly mobile, indicating that there was rapid exchange with Gag proteins in the nucleoplasm. RSV Gag is targeted to nucleoli by a nucleolar localization signal (NoLS) in the NC domain, and similarly, the human immunodeficiency virus type 1 (HIV-1) NC protein also contains an NoLS consisting of basic residues. Interestingly, co-expression of HIV-1 NC or Rev with HIV-1 Gag resulted in accumulation of Gag in nucleoli. Moreover, a subpopulation of HIV-1 Gag was detected in the nucleoli of HeLa cells stably expressing the entire HIV-1 genome in a Rev-dependent fashion. These findings suggest that the RSV and HIV-1 Gag proteins undergo nucleolar trafficking in the setting of viral infection.
Collapse
|
18
|
Nascimento R, Costa H, Parkhouse RME. Virus manipulation of cell cycle. PROTOPLASMA 2012; 249:519-528. [PMID: 21986922 DOI: 10.1007/s00709-011-0327-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/28/2011] [Indexed: 05/31/2023]
Abstract
Viruses depend on host cell resources for replication and access to those resources may be limited to a particular phase of the cell cycle. Thus manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment. For example, viruses capable of infecting nondividing cells induce S phase in order to activate the host DNA replication machinery and provide the nucleotide triphosphates necessary for viral DNA replication (Flemington in J Virol 75:4475-4481, 2001; Sullivan and Pipas in Microbiol Mol Biol Rev 66:179-202, 2002). Viruses have developed several strategies to subvert the cell cycle by association with cyclin and cyclin-dependent kinase complexes and molecules that regulate their activity. Viruses tend to act on cellular proteins involved in a network of interactions in a way that minimal protein-protein interactions lead to a major effect. The complex and interactive nature of intracellular signaling pathways controlling cell division affords many opportunities for virus manipulation strategies. Taking the maxim "Set a thief to catch a thief" as a counter strategy, however, provides us with the very same virus evasion strategies as "ready-made tools" for the development of novel antivirus therapeutics. The most obvious are attenuated virus vaccines with critical evasion genes deleted. Similarly, vaccines against viruses causing cancer are now being successfully developed. Finally, as viruses have been playing chess with our cell biology and immune responses for millions of years, the study of their evasion strategies will also undoubtedly reveal new control mechanisms and their corresponding cellular intracellular signaling pathways.
Collapse
Affiliation(s)
- R Nascimento
- Instituto Gulbenkian de Ciencia, Oeiras, Portugal.
| | | | | |
Collapse
|
19
|
Xing Y, Shi Z. Nucleocapsid protein VP15 of White spot syndrome virus colocalizes with the nucleolar proteins nucleolin and fibrillarin. Can J Microbiol 2011; 57:759-64. [PMID: 21861764 DOI: 10.1139/w11-061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The core nucleocapsid protein VP15 of White spot syndrome virus (WSSV) was shown to interact with DNA and predicted to be involved in the packaging of the WSSV genome. In the present study, we explored the colocalization of VP15 with several nuclear proteins in insect cells. The results showed that the VP15 completely colocalized with nucleolin and fibrillarin, suggesting that VP15 is a nucleolar localization protein and plays an important role in the life cycle of WSSV in host cells.
Collapse
Affiliation(s)
- Yuna Xing
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, People's Republic of China
| | | |
Collapse
|
20
|
Affiliation(s)
- Mark O. J. Olson
- Dept. Biochemistry, University of Mississippi Medical Center, North State St. 2500, Jackson, 39216 Mississippi USA
| |
Collapse
|
21
|
The ribonucleotide reductase R1 subunits of herpes simplex virus 1 and 2 protect cells against poly(I · C)-induced apoptosis. J Virol 2011; 85:8689-701. [PMID: 21697465 DOI: 10.1128/jvi.00362-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We recently provided evidence that the ribonucleotide reductase R1 subunits of herpes simplex virus types 1 and 2 (HSV-1 and -2) protect cells against tumor necrosis factor alpha- and Fas ligand-induced apoptosis by interacting with caspase 8. Double-stranded RNA (dsRNA) is a viral intermediate known to initiate innate antiviral responses. Poly(I · C), a synthetic analogue of viral dsRNA, rapidly triggers caspase 8 activation and apoptosis in HeLa cells. Here, we report that HeLa cells after HSV-1 and HSV-2 infection were quickly protected from apoptosis caused by either extracellular poly(I · C) combined with cycloheximide or transfected poly(I · C). Cells infected with the HSV-1 R1 deletion mutant ICP6Δ were killed by poly(I · C), indicating that HSV-1 R1 plays a key role in antiapoptotic responses to poly(I · C). Individually expressed HSV R1s counteracted caspase 8 activation by poly(I · C). In addition to their binding to caspase 8, HSV R1s also interacted constitutively with receptor-interacting protein 1 (RIP1) when expressed either individually or with other viral proteins during HSV infection. R1(1-834)-green fluorescent protein (GFP), an HSV-2 R1 deletion mutant protein devoid of antiapoptotic activity, did not interact with caspase 8 and RIP1, suggesting that these interactions are required for protection against poly(I · C). HSV-2 R1 inhibited the interaction between the Toll/interleukin-1 receptor domain-containing adaptor-inducing beta interferon (IFN-β) (TRIF) and RIP1, an interaction that is essential for apoptosis triggered by extracellular poly(I · C) plus cycloheximide or TRIF overexpression. TRIF silencing reduced poly(I · C)-triggered caspase 8 activation in mock- and ICP6Δ-infected cells, confirming that TRIF is involved in poly(I · C)-induced apoptosis. Thus, by interacting with caspase 8 and RIP1, HSV R1s impair the apoptotic host defense mechanism prompted by dsRNA.
Collapse
|
22
|
Lymberopoulos MH, Bourget A, Ben Abdeljelil N, Pearson A. Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress. Virology 2011; 412:341-8. [PMID: 21316727 DOI: 10.1016/j.virol.2011.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/10/2010] [Accepted: 01/17/2011] [Indexed: 10/18/2022]
Abstract
UL24 of herpes simplex virus 1 (HSV-1) is widely conserved within the Herpesviridae family. Herein, we tested the hypothesis that UL24, which we have previously shown to induce the redistribution of nucleolin, also affects the localization of the nucleolar protein B23. We found that HSV-1-induced dispersal of B23 was dependent on UL24. The conserved N-terminal portion of UL24 was sufficient to induce the redistribution of B23 in transient transfection assays. Mutational analysis revealed that the endonuclease motif of UL24 was important for B23 dispersal in both transfected and infected cells. Nucleolar protein relocalization during HSV-1 infection was also observed in non-immortalized cells. Analysis of infected cells by electron microscopy revealed a decrease in the ratio of cytoplasmic versus nuclear viral particles in cells infected with a UL24-deficient strain compared to KOS-infected cells. Our results suggest that UL24 promotes nuclear egress of nucleocapsids during HSV-1 infection, possibly though effects on nucleoli.
Collapse
Affiliation(s)
- Maria H Lymberopoulos
- INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | | | | | | |
Collapse
|
23
|
Nascimento R, Costa H, Dias JD, Parkhouse RME. MHV-68 Open Reading Frame 20 is a nonessential gene delaying lung viral clearance. Arch Virol 2010; 156:375-86. [PMID: 21104281 DOI: 10.1007/s00705-010-0862-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 11/08/2010] [Indexed: 11/24/2022]
Abstract
Recently, it has been demonstrated that the MHV-68 ORF20-encoded gene product induces cell-cycle arrest at the G2/M phase, followed by apoptosis. To study the role of this conserved gene in vivo, two independent ORF20-deficient MHV-68 viruses and their revertants were constructed. As the replication in vitro of both mutants followed similar kinetics to that of the wild-type and revertant viruses, ORF20 is therefore a nonessential virus gene. No cell cycle arrest could be observed upon infection of cells with wild type MHV-68 or mutant viruses. In addition, no major differences were detected between mock- and virus-infected cells when protein and inactivation levels of the mitotic promoter factor cdc2/cyclinB were analyzed. Following intranasal infection, the recovery of mutant, revertant and wild-type viruses in the lungs was similar. With the ORF20-deficient viruses, however, there was a significant delay of four days in clearance of virus from the lungs. Surprisingly, the magnitude and cell population distribution in the exudates of the lung was essentially similar to mice infected with wild-type, revertant or ORF20-deleted viruses. Subsequent establishment of latency was normal for both mutants, demonstrating that ORF20 does not play a critical role in establishment of a persistent infection. These results indicate that while expression of ORF20 may impact on the pathogenicity of the infection, the observed induction of G2/M arrest in ORF20-expressing cells may not be the primary function of ORF20 in the context of viral infection.
Collapse
Affiliation(s)
- R Nascimento
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande nº6, Apartado 14, 2779-558 Oeiras, Portugal
| | | | | | | |
Collapse
|
24
|
Relocalization of upstream binding factor to viral replication compartments is UL24 independent and follows the onset of herpes simplex virus 1 DNA synthesis. J Virol 2010; 84:4810-5. [PMID: 20147409 DOI: 10.1128/jvi.02437-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) induces relocalization of several nucleolar proteins. We have found that, as for fibrillarin, the HSV-1-induced redistribution of two RNA polymerase I components, upstream binding factor (UBF) and RPA194, was independent of the viral protein UL24, which affects nucleolin localization. Nevertheless, the kinetics and sites of redistribution for fibrillarin and UBF differed. Interestingly, UBF remained associated with RPA194 during infection. Although UBF is redistributed to viral replication compartments during infection, we did not detect foci of UBF at early sites of viral DNA synthesis, suggesting that it may not be directly involved in this process at early times.
Collapse
|
25
|
Strang BL, Boulant S, Coen DM. Nucleolin associates with the human cytomegalovirus DNA polymerase accessory subunit UL44 and is necessary for efficient viral replication. J Virol 2010; 84:1771-84. [PMID: 20007282 PMCID: PMC2812382 DOI: 10.1128/jvi.01510-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/23/2009] [Indexed: 01/04/2023] Open
Abstract
In the eukaryotic cell, DNA replication entails the interaction of multiple proteins with the DNA polymerase processivity factor PCNA. As the structure of the presumptive human cytomegalovirus (HCMV) DNA polymerase processivity factor UL44 is highly homologous to that of PCNA, we hypothesized that UL44 also interacts with numerous proteins. To investigate this possibility, recombinant HCMV expressing FLAG-tagged UL44 was generated and used to immunoprecipitate UL44 and associated proteins from infected cell lysates. Unexpectedly, nucleolin, a major protein component of the nucleolus, was identified among these proteins by mass spectrometry and Western blotting. The association of nucleolin and UL44 in infected cell lysate was confirmed by reciprocal coimmunoprecipitation in the presence and absence of nuclease. Western blotting and immunofluorescence assays demonstrated that the level of nucleolin increases during infection and that nucleolin becomes distributed throughout the nucleus. Furthermore, the colocalization of nucleolin and UL44 in infected cell nuclei was observed by immunofluorescence assays. Assays of HCMV-infected cells treated with small interfering RNA (siRNA) targeting nucleolin mRNA indicated that nucleolin was required for efficient virus production, viral DNA synthesis, and the expression of a late viral protein, with a correlation between the efficacy of knockdown and the effect on virus replication. In contrast, the level of neither global protein synthesis nor the replication of an unrelated virus (reovirus) was reduced in siRNA-treated cells. Taken together, our results indicate an association of nucleolin and UL44 in HCMV-infected cells and a role for nucleolin in viral DNA synthesis.
Collapse
Affiliation(s)
- Blair L. Strang
- Department of Biological Chemistry and Molecular Pharmacology, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Steeve Boulant
- Department of Biological Chemistry and Molecular Pharmacology, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
26
|
Leiva-Torres GA, Rochette PA, Pearson A. Differential importance of highly conserved residues in UL24 for herpes simplex virus 1 replication in vivo and reactivation. J Gen Virol 2010; 91:1109-16. [PMID: 20071482 DOI: 10.1099/vir.0.017921-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The UL24 gene of herpes simplex virus 1 (HSV-1) is widely conserved among all subfamilies of the Herpesviridae. It is one of only four HSV-1 genes for which mutations have been mapped that confer a syncytial plaque phenotype. In a mouse model of infection, UL24-deficient viruses exhibit reduced titres, particularly in neurons, and an apparent defect in reactivation from latency. There are several highly conserved residues in UL24; however, their importance in the role of UL24 in vivo is unknown. In this study, we compared virus strains with substitution mutations corresponding to the PD-(D/E)XK endonuclease motif of UL24 (vUL24-E99A/K101A) or a substitution of another highly conserved residue (vUL24-G121A). Both mutant viruses cause the formation of syncytial plaques at 39 degrees C; however, we found that the viruses differed dramatically when tested in a mouse model of infection. vUL24-E99A/K101A exhibited titres in the eye that were 10-fold lower than those of the wild-type virus KOS, and titres in trigeminal ganglia (TG) that were more than 2 log10 lower. Clinical signs were barely detectable with vUL24-E99A/K101A. Furthermore, the percentage of TG from which virus reactivated was also significantly lower for this mutant than for KOS. In contrast, vUL24-G121A behaved similarly to the wild-type virus in mice. These results are consistent with the endonuclease motif being important for the role of UL24 in vivo and also imply that the UL24 temperature-dependent syncytial plaque phenotype can be separated genetically from several in vivo phenotypes.
Collapse
|
27
|
Jiang Y, Li Z, Nagy PD. Nucleolin/Nsr1p binds to the 3' noncoding region of the tombusvirus RNA and inhibits replication. Virology 2010; 396:10-20. [PMID: 19861225 PMCID: PMC2788044 DOI: 10.1016/j.virol.2009.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 06/13/2009] [Accepted: 10/03/2009] [Indexed: 01/11/2023]
Abstract
Previous genome-wide screens identified >100 host genes affecting tombusvirus replication using yeast model host. One of those factors was Nsr1p (nucleolin), which is an abundant RNA-binding shuttle protein involved in rRNA maturation and ribosome assembly. We find that overexpression of Nsr1p in yeast or in Nicotiana benthamiana inhibited the accumulation of tombusvirus RNA by approximately 10-fold. Regulated overexpression of Nsr1p revealed that Nsr1p should be present at the beginning of viral replication for efficient inhibition, suggesting that Nsr1p inhibits an early step in the replication process. In vitro experiments revealed that Nsr1p binds preferably to the 3' UTR in the viral RNA. The purified recombinant Nsr1p inhibited the in vitro replication of the viral RNA in a yeast cell-free assay when preincubated with the viral RNA before the assay. These data support the model that Nsr1p/nucleolin inhibits tombusvirus replication by interfering with the recruitment of the viral RNA for replication.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Zhenghe Li
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
28
|
Bertrand L, Leiva-Torres GA, Hyjazie H, Pearson A. Conserved residues in the UL24 protein of herpes simplex virus 1 are important for dispersal of the nucleolar protein nucleolin. J Virol 2010; 84:109-18. [PMID: 19864385 PMCID: PMC2798432 DOI: 10.1128/jvi.01428-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 10/20/2009] [Indexed: 12/13/2022] Open
Abstract
The UL24 family of proteins is widely conserved among herpesviruses. We demonstrated previously that UL24 of herpes simplex virus 1 (HSV-1) is important for the dispersal of nucleolin from nucleolar foci throughout the nuclei of infected cells. Furthermore, the N-terminal portion of UL24 localizes to nuclei and can disperse nucleolin in the absence of any other viral proteins. In this study, we tested the hypothesis that highly conserved residues in UL24 are important for the ability of the protein to modify the nuclear distribution of nucleolin. We constructed a panel of substitution mutations in UL24 and tested their effects on nucleolin staining patterns. We found that modified UL24 proteins exhibited a range of subcellular distributions. Mutations associated with a wild-type localization pattern for UL24 correlated with high levels of nucleolin dispersal. Interestingly, mutations targeting two regions, namely, within the first homology domain and overlapping or near the previously identified PD-(D/E)XK endonuclease motif, caused the most altered UL24 localization pattern and the most drastic reduction in its ability to disperse nucleolin. Viral mutants corresponding to the substitutions G121A and E99A/K101A both exhibited a syncytial plaque phenotype at 39 degrees C. vUL24-E99A/K101A replicated to lower titers than did vUL24-G121A or KOS. Furthermore, the E99A/K101A mutation caused the greatest impairment of HSV-1-induced dispersal of nucleolin. Our results identified residues in UL24 that are critical for the ability of UL24 to alter nucleoli and further support the notion that the endonuclease motif is important for the function of UL24 during infection.
Collapse
Affiliation(s)
- Luc Bertrand
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | | | - Huda Hyjazie
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Angela Pearson
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| |
Collapse
|
29
|
The bovine immunodeficiency virus rev protein: identification of a novel lentiviral bipartite nuclear localization signal harboring an atypical spacer sequence. J Virol 2009; 83:12842-53. [PMID: 19828621 DOI: 10.1128/jvi.01613-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bovine immunodeficiency virus (BIV) Rev protein (186 amino acids [aa] in length) is involved in the nuclear exportation of partially spliced and unspliced viral RNAs. Previous studies have shown that BIV Rev localizes in the nucleus and nucleolus of infected cells. Here we report the characterization of the nuclear/nucleolar localization signals (NLS/NoLS) of this protein. Through transfection of a series of deletion mutants of BIV Rev fused to enhanced green fluorescent protein and fluorescence microscopy analyses, we were able to map the NLS region between aa 71 and 110 of the protein. Remarkably, by conducting alanine substitution of basic residues within the aa 71 to 110 sequence, we demonstrated that the BIV Rev NLS is bipartite, maps to aa 71 to 74 and 95 to 101, and is predominantly composed of arginine residues. This is the first report of a bipartite Rev (or Rev-like) NLS in a lentivirus/retrovirus. Moreover, this NLS is atypical, as the length of the sequence between the motifs composing the bipartite NLS, e.g., the spacer sequence, is 20 aa. Further mutagenesis experiments also identified the NoLS region of BIV Rev. It localizes mainly within the NLS spacer sequence. In addition, the BIV Rev NoLS sequence differs from the consensus sequence reported for other viral and cellular nucleolar proteins. In summary, we conclude that the nucleolar and nuclear localizations of BIV Rev are mediated via novel NLS and NoLS motifs.
Collapse
|
30
|
Abstract
Viruses are intracellular pathogens that have to usurp some of the cellular machineries to provide an optimal environment for their own replication. An increasing number of reports reveal that many viruses induce modifications of nuclear substructures including nucleoli, whether they replicate or not in the nucleus of infected cells. Indeed, during infection of cells with various types of human viruses, nucleoli undergo important morphological modifications. A large number of viral components traffic to and from the nucleolus where they interact with different cellular and/or viral factors, numerous host nucleolar proteins are redistributed in other cell compartments or are modified and some cellular proteins are delocalised in the nucleolus of infected cells. Well‐documented studies have established that several of these nucleolar modifications play a role in some steps of the viral cycle, and also in fundamental cellular pathways. The nucleolus itself is the place where several essential steps of the viral cycle take place. In other cases, viruses divert host nucleolar proteins from their known functions in order to exert new unexpected role(s). Copyright © 2009 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anna Greco
- Université de Lyon, Lyon F-69003, France.
| |
Collapse
|
31
|
The conserved UL24 family of human alpha, beta and gamma herpesviruses induces cell cycle arrest and inactivation of the cyclinB/cdc2 complex. Arch Virol 2009; 154:1143-9. [DOI: 10.1007/s00705-009-0420-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 06/01/2009] [Indexed: 11/27/2022]
|
32
|
Johnson JS, Samulski RJ. Enhancement of adeno-associated virus infection by mobilizing capsids into and out of the nucleolus. J Virol 2009; 83:2632-44. [PMID: 19109385 PMCID: PMC2648275 DOI: 10.1128/jvi.02309-08] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 12/18/2008] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus (AAV) serotypes are being tailored for numerous therapeutic applications, but the parameters governing the subcellular fate of even the most highly characterized serotype, AAV2, remain unclear. To understand how cellular conditions control capsid trafficking, we have tracked the subcellular fate of recombinant AAV2 (rAAV2) vectors using confocal immunofluorescence, three-dimensional infection analysis, and subcellular fractionation. Here we report that a population of rAAV2 virions enters the nucleus and accumulates in the nucleolus after infection, whereas empty capsids are excluded from nuclear entry. Remarkably, after subcellular fractionation, virions accumulating in nucleoli were found to retain infectivity in secondary infections. Proteasome inhibitors known to enhance transduction were found to potentiate nucleolar accumulation. In contrast, hydroxyurea, which also increases transduction, mobilized virions into the nucleoplasm, suggesting that two separate pathways influence vector delivery in the nucleus. Using a small interfering RNA (siRNA) approach, we then evaluated whether nucleolar proteins B23/nucleophosmin and nucleolin, previously shown to interact with AAV2 capsids, affect trafficking and transduction efficiency. Similar to effects observed with proteasome inhibition, siRNA-mediated knockdown of nucleophosmin potentiated nucleolar accumulation and increased transduction 5- to 15-fold. Parallel to effects from hydroxyurea, knockdown of nucleolin mobilized capsids to the nucleoplasm and increased transduction 10- to 30-fold. Moreover, affecting both pathways simultaneously using drug and siRNA combinations was synergistic and increased transduction over 50-fold. Taken together, these results support the hypothesis that rAAV2 virions enter the nucleus intact and can be sequestered in the nucleolus in stable form. Mobilization from the nucleolus to nucleoplasmic sites likely permits uncoating and subsequent gene expression or genome degradation. In summary, with these studies we have refined our understanding of AAV2 trafficking dynamics and have identified cellular parameters that mobilize virions in the nucleus and significantly influence AAV infection.
Collapse
Affiliation(s)
- Jarrod S Johnson
- Gene Therapy Center and Department of Pharmacology, The University of North Carolina at Chapel Hill, 7119 Thurston Bowles, CB 7352, Chapel Hill, North Carolina 27599-7352, USA
| | | |
Collapse
|
33
|
Emmott E, Hiscox JA. Nucleolar targeting: the hub of the matter. EMBO Rep 2009; 10:231-8. [PMID: 19229283 DOI: 10.1038/embor.2009.14] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 01/26/2009] [Indexed: 11/09/2022] Open
Abstract
The nucleolus is a dynamic structure that has roles in various processes, from ribosome biogenesis to regulation of the cell cycle and the cellular stress response. Such functions are frequently mediated by the sequestration or release of nucleolar proteins. Our understanding of protein targeting to the nucleolus is much less complete than our knowledge of membrane-spanning translocation systems--such as those involved in nuclear targeting--and the experimental evidence reveals that few parallels exist with these better-characterized systems. Here, we discuss the current understanding of nucleolar targeting, explore the types of sequence that control the localization of a protein to the nucleolus, and speculate that certain subsets of nucleolar proteins might act as hub proteins that are able to bind to multiple protein targets. In parallel to other subnuclear structures, such as PML bodies, the proteins that are involved in the formation and maintenance of the nucleolus are inexorably linked to nucleolar trafficking.
Collapse
Affiliation(s)
- Edward Emmott
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, Leeds LS2 9JT, England, UK
| | | |
Collapse
|
34
|
Stow ND, Evans VC, Matthews DA. Upstream-binding factor is sequestered into herpes simplex virus type 1 replication compartments. J Gen Virol 2009; 90:69-73. [PMID: 19088274 PMCID: PMC2885023 DOI: 10.1099/vir.0.006353-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Previous reports have shown that adenovirus recruits nucleolar protein upstream-binding factor (UBF) into adenovirus DNA replication centres. Here, we report that despite having a different mode of viral DNA replication, herpes simplex virus type 1 (HSV-1) also recruits UBF into viral DNA replication centres. Moreover, as with adenovirus, enhanced green fluorescent protein-tagged fusion proteins of UBF inhibit viral DNA replication. We propose that UBF is recruited to the replication compartments to aid replication of HSV-1 DNA. In addition, this is a further example of the role of nucleolar components in viral life cycles.
Collapse
Affiliation(s)
- Nigel D Stow
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | | | | |
Collapse
|
35
|
Emmott E, Dove BK, Howell G, Chappell LA, Reed ML, Boyne JR, You JH, Brooks G, Whitehouse A, Hiscox JA. Viral nucleolar localisation signals determine dynamic trafficking within the nucleolus. Virology 2008; 380:191-202. [PMID: 18775548 PMCID: PMC7103397 DOI: 10.1016/j.virol.2008.05.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/22/2008] [Accepted: 05/30/2008] [Indexed: 02/08/2023]
Abstract
Localisation of both viral and cellular proteins to the nucleolus is determined by a variety of factors including nucleolar localisation signals (NoLSs), but how these signals operate is not clearly understood. The nucleolar trafficking of wild type viral proteins and chimeric proteins, which contain altered NoLSs, were compared to investigate the role of NoLSs in dynamic nucleolar trafficking. Three viral proteins from diverse viruses were selected which localised to the nucleolus; the coronavirus infectious bronchitis virus nucleocapsid (N) protein, the herpesvirus saimiri ORF57 protein and the HIV-1 Rev protein. The chimeric proteins were N protein and ORF57 protein which had their own NoLS replaced with those from ORF57 and Rev proteins, respectively. By analysing the sub-cellular localisation and trafficking of these viral proteins and their chimeras within and between nucleoli using confocal microscopy and photo-bleaching we show that NoLSs are responsible for different nucleolar localisations and trafficking rates.
Collapse
Affiliation(s)
- Edward Emmott
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - Brian K. Dove
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - Gareth Howell
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - Lucy A. Chappell
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - Mark L. Reed
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - James R. Boyne
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - Jae-Hwan You
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
| | - Gavin Brooks
- School of Pharmacy, University of Reading, Reading, UK
| | - Adrian Whitehouse
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Julian A. Hiscox
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, University of Leeds, LS2 9JT, Leeds, England, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|