1
|
Ahuja R, Kalia A, Sikka R, P C. Nano Modifications of Biochar to Enhance Heavy Metal Adsorption from Wastewaters: A Review. ACS OMEGA 2022; 7:45825-45836. [PMID: 36570198 PMCID: PMC9774412 DOI: 10.1021/acsomega.2c05117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Biochar (BC) is a carbon-rich material that can be obtained by thermal decomposition of agricultural solid waste under oxygen-limited conditions. It has received increasing attention as a cost-effective sorbent to treat metal-contaminated water due to attributes such as high porosity and the presence of various functional groups. The heavy metal (HM) sorption and removal capacity of BC can be enhanced by developing novel biochar nanohybrids (BNHs) that can be produced via surface modification of BC with nanomaterials. Loading of nanomaterials on the biochar surface can improve its physicochemical properties through alterations in the functional group profile, porosity, and availability of active sites on the BC surface which can enhance the HM adsorption ability. This manuscript provides information on preparation of nano-based biochar hybrids emanating from the type of modifying agent for the removal of different HM ions from wastewaters, and the underlying mechanisms have been discussed. Further, this compilation discusses published literature depicting the influence of different processes of preparation on the physicochemical properties and adsorption capacity of nanobiochar hybrids. The potential risks of BNHs have been reviewed to effectively avoid the possible harmful impacts on the environment, and future research directions have been proposed.
Collapse
Affiliation(s)
- Radha Ahuja
- Department
of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Anu Kalia
- Electron
Microscopy and Nanoscience Laboratory, Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Rajeev Sikka
- Electron
Microscopy and Nanoscience Laboratory, Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Chaitra P
- Electron
Microscopy and Nanoscience Laboratory, Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
2
|
Wu J, Tu W, Li C, He F. Binding characteristics of copper onto biochar-derived DOM using general, heterospectral and moving-window two-dimensional correlation analyses. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129021. [PMID: 35490630 DOI: 10.1016/j.jhazmat.2022.129021] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/01/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Dissolved organic matter released from biochar (biochar-derived DOM, BDOM) could dominate the environmental behavior and fate of trace metals by forming BDOM-metal complexes. Here general, heterospectral as well as moving-window (MW) two-dimensional correlation spectroscopy (2DCOS) analyses of synchronous fluorescence and Fourier transform infrared spectra were employed to explore the heterogeneous binding characteristics between sludge BDOM and Cu(II). The results revealed that Cu-BDOM binding first occurred in the fulvic-like (368-380 nm), then humic-like (428 nm) fluorescent fractions, followed by infrared groups of phenolic hydroxyl groups, carboxylate, COH of polysaccharide groups, CC of aromatic carbon, CH of aliphatics and COC of aliphatic ethers. The binding affinity of the hydrophilic groups was stronger than that of hydrophobic groups in BDOM towards Cu(II). Fluorescence components in BDOM played a decisive role in the binding of Cu(II) with trace concentration (1 μM), while infrared functional groups made a substantial contribution in the complexation of Cu(II) with higher concentration (10-100 μM). The concentration of final configuration transformation point (11.7 μmol/mg in this study) by MW2DCOS analysis was suggested as an actual binding threshold that was helpful for evaluating their environmental behaviors.
Collapse
Affiliation(s)
- Jun Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang University of Technology Engineering Design Group Co., Ltd, Hangzhou, China
| | - Wenxin Tu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Zhejiang University of Technology Engineering Design Group Co., Ltd, Hangzhou, China
| | - Chunping Li
- Zhejiang University of Technology Engineering Design Group Co., Ltd, Hangzhou, China
| | - Feng He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
3
|
Barathi S, Aruljothi KN, Karthik C, Padikasan IA, Ashokkumar V. Biofilm mediated decolorization and degradation of reactive red 170 dye by the bacterial consortium isolated from the dyeing industry wastewater sediments. CHEMOSPHERE 2022; 286:131914. [PMID: 34418664 DOI: 10.1016/j.chemosphere.2021.131914] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Reactive dyes are extensively used in a plethora of industries, which in turn release toxic wastes into the environment. The textile dye waste remediation is crucial as it may contain several toxic elements. The utilization of bacterial consortium for bioremediation has acquired consideration, over the utilization of single strains. In this study, a microbial consortium containing three bacterial sp. (Bacillus subtilis, Brevibacillus borstelensis and Bacillus firmus) was tested for its degrading ability of the textile RR 170 dye. The bacterial consortium degraded the dye effectively at lower concentrations and the efficiency decreased as the dye concentration increased. SEM analysis revealed that, with dye treatment, the consortium appeared as tightly packed clumps with rough cell surface and were able to produce EPS and biofilms. EPS production was higher at 40 mg/l, 100 mg/l and 200 mg/l of the dye treatment conditions. Interestingly, the maximum biofilm formation was observed only at 40 μg/ml of the dye treatment, which indicates that RR 170 dye concentration affects the biofilm formation independent of EPS levels. The UV-vis spectroscopy, HPLC, FTIR and 2D-FTIR analyses confirmed the decolorization and biodegradation of RR 170 dye by the bacterial consortium. Toxicological studies performed with the dye and their degraded products in Allium cepa root cells revealed that, whereas the RR 170 dye induced genotoxic stress, the degraded dye products showed no significant genotoxic effects in root cells. Together, the investigated bacterial consortium decolorized and degraded the RR 170 dye resulting in metabolites that are non-toxic to the living cells.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China; Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India.
| | - K N Aruljothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - Chinnannan Karthik
- College of Agriculture and Biotechnology, Institute of Crop Science, Zhejiang University, China
| | - Indra Arulselvi Padikasan
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand; Department of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| |
Collapse
|
4
|
Chen B, Zhao M, Liu C, Feng M, Ma S, Liu R, Chen K. Comparison of copper binding properties of DOM derived from fresh and pyrolyzed biomaterials: Insights from multi-spectroscopic investigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137827. [PMID: 32172128 DOI: 10.1016/j.scitotenv.2020.137827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/24/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
The binding of dissolved organic matter (DOM) with metals affects the latter's biogeochemical processing in the environment. This study used multi-spectroscopic analyses to compare the heterogeneities of the Cu(II) binding properties of DOM derived from fresh and pyrolyzed biomaterials. The results showed that the DOM derived from fresh macrophyte (MDOM) and their corresponding biochar (BDOM) consisted mostly of protein-like and humic-like substances, respectively. The stability constant (log KM) of protein-like matter in the MDOM was 5.27, and the values of humic-like components in the BDOM were 4.32-5.15. Compared with the MDOM, the BDOM exhibited lower affinities and active binding sites for Cu(II). In addition, the BDOM contents decreased after pyrolysis. Therefore, the pyrolysis of fresh biomaterials into biochar is a promising method for reducing the potential migration risk posed by Cu(II) due to the MDOM being a positive carrier for Cu(II) contamination. Polysaccharide was the only functional group that participated in the binding of Cu(II) in both MDOM and BDOM. Aliphatic groups and amides associated with protein-like matter were responsible for the Cu(II) binding to MDOM, whereas phenolic and aromatic groups mainly participated in the complexation of BDOM-Cu(II). The CO group of amide I in the MDOM, and polysaccharide in the BDOM, showed the fastest response to Cu(II). This study was helpful for elucidating the effects of fresh and pyrolyzed biomaterials (biochars) on the environmental behavior of Cu(II) at the molecular level.
Collapse
Affiliation(s)
- Bingfa Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Muhua Feng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shuzhan Ma
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rundong Liu
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Kaining Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
5
|
Boukria O, El Hadrami EM, Sultanova S, Safarov J, Leriche F, Aït-Kaddour A. 2D-Cross Correlation Spectroscopy Coupled with Molecular Fluorescence Spectroscopy for Analysis of Molecular Structure Modification of Camel Milk and Cow Milk Mixtures during Coagulation. Foods 2020; 9:E724. [PMID: 32498410 PMCID: PMC7353533 DOI: 10.3390/foods9060724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 02/03/2023] Open
Abstract
Synchronous fluorescence spectroscopy (SFS) coupled with two-dimensional correlation spectroscopy (2DCOS) was employed to monitor, at the molecular level, the coagulation of five mixture ratios of camel's milk (CaM) and cow's milk (CM) (100% CaM, 75% CaM:25% CM, 50% CaM:50% CM, 25% CaM:75% CM and 100% CM). The dissimilarities among the different formulations are highlighted on the synchronous 2DCOS-SFS. In addition, according to the cross-peak symbols in synchronous and asynchronous spectra, the rate of response modification in riboflavin, protein and vitamin A matched with common coagulation phenomena usually reported during chymosin coagulation (hydrolysis of κ-casein, destabilization of casein micelles and aggregation). This study demonstrated that 2DCOS-SFS is a successful strategy to discriminate milk mixtures and to monitor molecular structure modifications during coagulation process.
Collapse
Affiliation(s)
- Oumayma Boukria
- Applied Organic Chemistry Laboratory, Sciences and Techniques Faculty, Sidi Mohamed Ben Abedallah University, Route d’Immouzer, Fès BP 2202, Morocco; (O.B.); (E.M.E.H.)
| | - El Mestafa El Hadrami
- Applied Organic Chemistry Laboratory, Sciences and Techniques Faculty, Sidi Mohamed Ben Abedallah University, Route d’Immouzer, Fès BP 2202, Morocco; (O.B.); (E.M.E.H.)
| | - Shaxnoza Sultanova
- Department of Food Engineering, Faculty of Mechanical Building, Tashkent State Technical University Named after Islam Karimov, University str. 2, Tashkent 100095, Uzbekistan; (S.S.); (J.S.)
| | - Jasur Safarov
- Department of Food Engineering, Faculty of Mechanical Building, Tashkent State Technical University Named after Islam Karimov, University str. 2, Tashkent 100095, Uzbekistan; (S.S.); (J.S.)
| | - Françoise Leriche
- Université Clermont-Auvergne, INRAE, VetAgro Sup, 63370 Lempdes, France;
| | | |
Collapse
|
6
|
Li T, Song F, Zhang J, Tian S, Huang N, Xing B, Bai Y. Experimental and modeling study of proton and copper binding properties onto fulvic acid fractions using spectroscopic techniques combined with two-dimensional correlation analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113465. [PMID: 31679870 DOI: 10.1016/j.envpol.2019.113465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Fulvic acid (FA) significantly influences the bioavailability and fate of heavy metals in environments, while its acid-base characters and metal binding processes are still unclear. Here, spectroscopic techniques combined with multiple models (e.g., NICA-Donnan model) and two-dimensional correlation spectroscopy (2D COS) were applied to explore the proton and copper binding properties of FA sub-fractions (FA3-FA13). The charge densities, average contents of carboxylic and phenolic groups, average dissociation constants pKa1 and pKa2 of sub-fractions ranged 0-16 meq∙g∙C-1, 5.03-9.58 meq∙g∙C-1, 2.52-4.67 meq∙g∙C-1, 4.15-4.33 and 8.52-9.72, respectively. FA sub-fractions had a relatively narrow distribution of carboxyl group and a broad distribution of phenolic group. FA sub-fractions also exhibited roughly two phenolic hydroxyl groups per every 1-3 phenyl rings. Differential absorbance spectra (DAS) derived Gaussian bands were associated to the inter-chromophore interactions, the changes of molecular conformations and functional groups with copper addition. Differential spectra slopes (DSlope275-295&325-375) were more significant with higher copper concentration and copper amounts bonded to carboxylic groups. UV-Vis and fluorescence spectra with 2D heterospectral COS revealed the copper binding heterogeneities and sequential orders of chromophores and fluorophores, quantitatively confirming by the order of conditional stability constants (log KCu: 4.64-5.56). Salicylic-/polyhydroxyphenolic, hydroxyl and amino groups were strongly associated to the basic units for fluorophores. Sequential changes followed the order of humic-like→fulvic-like materials for FA3/FA5, humic-like→fulvic-like→tryptophan-like materials for FA7, and humic-like→tryptophan-like→fulvic-like→tyrosine-like materials for FA9/FA13. Spectroscopic techniques combined with various models (especially for 2D COS) are beneficial to elucidate the binding heterogeneity and sensitivity for metal-organic matters at the functional group level.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jin Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Shijie Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Nannan Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, China.
| |
Collapse
|
7
|
Antidiarrhoeal mechanism study of fulvic acids based on molecular weight fractionation. Fitoterapia 2019; 137:104270. [DOI: 10.1016/j.fitote.2019.104270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 11/18/2022]
|
8
|
Song F, Wu F, Xing B, Li T, Feng W, Giesy JP, Guo W, Wang H, Liu S, Bai Y. Protonation-dependent heterogeneity in fluorescent binding sites in sub-fractions of fulvic acid using principle component analysis and two-dimensional correlation spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1279-1287. [PMID: 29066205 DOI: 10.1016/j.scitotenv.2017.10.190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
Heterogeneous distributions of proton binding sites within sub-fractions of fulvic acid (FA3-FA13) were investigated by use of synchronous fluorescence spectra (SFS), combined with principle component analysis (PCA) and two-dimensional correlation spectroscopy (2D-COS). Tryptophan-like, fulvic-like and humic-like materials were observed in SFS. Tyrosine-like materials were identified by use of SFS-PCA analysis. Combined information from synchronous-asynchronous maps and dissociation constants (pKa) was used to describe heterogeneity of binding sites for protons within each sub-fraction. Heterogeneous distributions of proton binding sites were observed in fulvic-like, humic-like, tryptophan-like, and tyrosine-like materials of five sub-fractions and even in the single fulvic-like materials in FA3 and tryptophan-like materials in FA9 and FA13. Values of pKa of sub-fractions ranged from 2.20 to 5.29, depending on associated wavelengths in synchronous-asynchronous maps and use of the modified Stern-Volmer equation. The larger values of pKa (4.17-5.29) were established for protein-like materials (including tryptophan-like and tyrosine-like materials) in comparison to those (2.20-3.38) for humic-like and fulvic-like materials in sub-fractions. Sequential variations of 274nm (pKa 4.15-5.29)→360-460nm (pKa 2.78-2.39) for FA5-FA13 revealed that binding of protons to tryptophan-like materials appeared prior to humic-like/fulvic-like materials. In FA9, protons were preferentially binding to tryptophan-like materials than tyrosine-like materials. In FA3, protons were preferentially binding to humic-like materials than fulvic-like materials. Relative differences of values of pKa for fluorescent materials within each sub-fraction were consistent with sequential orders derived from asynchronous maps. Such an integrated approach, SFS-PCA/2D-COS, has superior potential for further applications in exploring complex interactions between dissolved organic matter and contaminants in engineered and natural environments.
Collapse
Affiliation(s)
- Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Tingting Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - Weiying Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - John P Giesy
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China; Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Wenjing Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - Hao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - Shasha Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China.
| |
Collapse
|
9
|
Zhu LJ, Zhao Y, Chen YN, Cui HY, Wei YQ, Liu HL, Chen XM, Wei ZM. Characterization of atrazine binding to dissolved organic matter of soil under different types of land use. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:1065-1072. [PMID: 28867554 DOI: 10.1016/j.ecoenv.2016.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/12/2016] [Accepted: 11/12/2016] [Indexed: 06/07/2023]
Abstract
Atrazine is widely used in agriculture. In this study, dissolved organic matter (DOM) from soils under four types of land use (forest (F), meadow (M), cropland (C) and wetland (W)) was used to investigate the binding characteristics of atrazine. Fluorescence excitation-emission matrix-parallel factor (EEM-PARAFAC) analysis, two-dimensional correlation spectroscopy (2D-COS) and Stern-Volmer model were combined to explore the complexation between DOM and atrazine. The EEM-PARAFAC indicated that DOM from different sources had different structures, and humic-like components had more obvious quenching effects than protein-like components. The Stern-Volmer model combined with correlation analysis showed that log K values of PARAFAC components had a significant correlation with the humification of DOM, especially for C3 component, and they were all in the same order as follows: meadow soil (5.68)>wetland soil (5.44)>cropland soil (5.35)>forest soil (5.04). The 2D-COS further confirmed that humic-like components firstly combined with atrazine followed by protein-like components. These findings suggest that DOM components can significantly influence the bioavailability, mobility and migration of atrazine in different land uses.
Collapse
Affiliation(s)
- Long-Ji Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan-Ni Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hong-Yang Cui
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu-Quan Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hai-Long Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiao-Meng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zi-Min Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Lee YK, Hur J. Using two-dimensional correlation size exclusion chromatography (2D-CoSEC) to explore the size-dependent heterogeneity of humic substances for copper binding. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:490-497. [PMID: 28494401 DOI: 10.1016/j.envpol.2017.04.099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Knowledge of the heterogeneous distribution of humic substances (HS) reactivities along a continuum of molecular weight (MW) is crucial for the systems where the HS MW is subject to change. In this study, two dimensional correlation spectroscopy combined with size exclusion chromatography (2D-CoSEC) was first utilized to obtain a continuous and heterogeneous presence of copper binding characteristics within bulk HS with respect to MW. HS solutions with varying copper concentrations were directly injected into a size exclusion chromatography (SEC) system with Tris-HCl buffer as a mobile phase. Several validation tests confirmed neither structural disruption of HS nor competition effect of the mobile phase used. Similar to batch systems, fluorescence quenching was observed in the chromatograms over a wide range of HS MW. 2D-CoSEC maps of a soil-derived HS (Elliot soil humic acid) showed the greater fluorescence quenching degrees with respect to the apparent MW on the order of 12500 Da > 10600 Da > 7000 Da > 15800 Da. The binding constants calculated based on modified Stern-Volmer equation were consistent with the 2D-CoSEC results. More heterogeneity of copper binding affinities within bulk HS was found for the soil-derived HS versus an aquatic HS. The traditional fluorescence quenching titration method using ultrafiltered HS size fractions failed to delineate detailed distribution of the copper binding characteristics, exhibiting a much shorter range of the binding constants than those obtained from the 2D-CoSEC. Our proposed technique demonstrated a great potential to describe metal binding characteristics of HS at high MW resolution, providing a clear picture of the size-dependent metal-HS interactions.
Collapse
Affiliation(s)
- Yun-Kyung Lee
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
11
|
Chen TC, Hseu ZY, Jean JS, Chou ML. Association between arsenic and different-sized dissolved organic matter in the groundwater of black-foot disease area, Taiwan. CHEMOSPHERE 2016; 159:214-220. [PMID: 27295437 DOI: 10.1016/j.chemosphere.2016.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/19/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
The formation of an arsenic (As)-dissolved organic matter (DOM) complex is important in driving the release of arsenic in groundwater. This study collected groundwater samples from a 20 m deep well throughout 2014 and separated each into three subsamples by ultrafiltration: high molecular weight-DOM (HDOM, 0.45 μm-10 kDa), medium molecular weight-DOM (MDOM, 10-1 kDa), and low molecular weight-DOM (LDOM, <1 kDa) solutions. The fractional DOM was measured with a three-dimensional excitation-emission matrix (EEM) via fluorescence spectroscopy. A fluorescence quenching method was used to calculate the apparent stability constant (Ks) between arsenic and the fractional DOM. Based on the EEM records, three fluorescence indicators were further calculated to characterize the DOM sources, including the fluorescence index (FI), the biological index (BI), and the humification index (HI). The experimental results indicated that arsenic in the groundwater was mainly partitioned into the MDOM and LDOM fractions. All fractional DOMs contained humic acid-like substances and were considered as microbial sources. LDOM had the highest humification degree and aromaticity, followed by MDOM and HDOM. The As and DOM association could be formed by a Fe-bridge, which was demonstrated by the Ks values and fourier transform infrared (FTIR) spectra of the DOM. The formation of AsFe-DOM complex was only significant in the MDOM and LDOM.
Collapse
Affiliation(s)
- Ting-Chien Chen
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 92101, Taiwan
| | - Zeng-Yei Hseu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Jiin-Shuh Jean
- Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Mon-Lin Chou
- Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
12
|
Lee BM, Hur J. Adsorption Behavior of Extracellular Polymeric Substances on Graphene Materials Explored by Fluorescence Spectroscopy and Two-Dimensional Fourier Transform Infrared Correlation Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7364-7372. [PMID: 27348186 DOI: 10.1021/acs.est.6b01286] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Adsorption isotherms of extracellular polymeric substances (EPS) on graphene oxide (GO) and reduced GO (rGO) were studied using fluorescence excitation-emission matrix-parallel factor analysis (EEM-PARAFAC) and two-dimensional correlation spectroscopy (2D-COS) combined with Fourier transform infrared spectroscopy (FTIR). Chemical reduction of GO resulted in a greater extent of carbon adsorption with a higher degree of isotherm nonlinearity, suggesting that heterogeneous adsorption sites were additionally created by GO reduction. Two protein-like and two humic-like components were identified from EPS by EEM-PARAFAC. Adsorption of protein-like components was greater than that of humic-like components, and the preferential adsorption was more pronounced for GO versus rGO. Adsorption of protein-like components was more governed by site-limiting mechanisms than humic-like components as shown by the higher isotherm nonlinearity. 2D-COS provided further information on the adsorption of secondary protein structures. Adsorption of the EPS structures related to amide I and aromatic C-C bands was greater for rGO versus GO. Protein structures of EPS were more favorable for adsorption in the order of α-helix → amide II → β-sheet structures with increasing site limitation. Our results revealed successful applicability of EEM-PARAFAC and 2D-COS in examining the adsorption behavior of heterogeneous biological materials on graphene materials.
Collapse
Affiliation(s)
- Bo-Mi Lee
- Department of Environment and Energy, Sejong University , Seoul, 143-747, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University , Seoul, 143-747, South Korea
| |
Collapse
|
13
|
Two-dimension fluorescence correlation spectroscopy to characterize the binding of organic ligands with zinc in eutrophic lake. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2014.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Xu H, Zhong J, Yu G, Wu J, Jiang H, Yang L. Further insights into metal-DOM interaction: consideration of both fluorescent and non-fluorescent substances. PLoS One 2014; 9:e112272. [PMID: 25380246 PMCID: PMC4224434 DOI: 10.1371/journal.pone.0112272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 10/06/2014] [Indexed: 11/18/2022] Open
Abstract
Information on metal binding with fluorescent substances has been widely studied. By contrast, information on metal binding with non-fluorescent substances remains lacking despite the dominance of these substances in aquatic systems. In this study, the metal binding properties of both fluorescent and non-fluorescent substances were investigated by using metal titration combined with two-dimensional correlation spectroscopy (2D–COS) analysis. The organic matters in the eutrophic algae-rich lake, including natural organic matters (NOM) and algae-induced extracellular polymeric substances (EPS), both contained fluorescent and non-fluorescent substances. The peaks in the one-dimensional spectra strongly overlapped, while 2D–COS can decompose the overlapped peaks and thus enhanced the spectral resolution. Moreover, 2D FTIR COS demonstrated that the binding susceptibility of organic ligands in both NOM and algal EPS matrices followed the order: 3400>1380>1650 cm−1, indicative the significant contribution of non-fluorescent ligands in metal binding. The modified Stern-Volmer equation also revealed a substantial metal binding potential for the non-fluorescent substances (logKM: 3.57∼4.92). As for the effects of organic ligands on metal binding, EPS was characterized with higher binding ability than NOM for both fluorescent and non-fluorescent ligands. Algae-induced EPS and the non-fluorescent substances in eutrophic algae-rich lakes should not be overlooked because of their high metal binding potential.
Collapse
Affiliation(s)
- Huacheng Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Xianlin Campus, Nanjing University, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- * E-mail: (HCX); (LYY)
| | - Jicheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Guanghui Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jun Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Xianlin Campus, Nanjing University, Nanjing, China
- * E-mail: (HCX); (LYY)
| |
Collapse
|
15
|
Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.01.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|