1
|
Jarrah SA, Kmetiuk LB, Valleriani F, Bonfini B, Lorusso A, Vasinioti V, Decaro N, dos Santos MT, Spohr KAH, Pratelli A, Serroni A, Capista S, Sousa VRF, Biondo AW, Nakazato L, Dutra V. SARS-CoV-2 antibodies in dogs and cats in a highly infected area of Brazil during the pandemic. Front Vet Sci 2023; 10:1111728. [PMID: 36908526 PMCID: PMC9995883 DOI: 10.3389/fvets.2023.1111728] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
SARS-CoV-2 was a worldwide threat during the COVID-19 pandemic, and the state of Mato Grosso had the second highest mortality rate in Brazil, with 427. 4 deaths/100,000 inhabitants. However, no large-scale study among dogs and cats in such highly infected areas of Brazil has so far been conducted. Accordingly, the present study reports on a serosurvey among dogs and cats in Cuiabá, capital of Mato Grosso from November 2020 to July 2021, where the human mortality rate was 605/100,000 at that time. Overall, 33/762 dogs (4.3%) and 4/182 cats (2.2%) were found to be seropositive for SARS-CoV-2 through ELISA, and 3/762 dogs (0.4%) and 3/182 cats (1.6%) were seropositive through the serum neutralization test. Cats presented higher seroprevalence with higher titers of neutralizing antibodies. Although N-protein based ELISA may be a good screening test, cross-reactivity with other canine coronaviruses may impair its diagnostic use among dogs.
Collapse
Affiliation(s)
- Samar Afif Jarrah
- Laboratory of Molecular Biology, Federal University of Mato Grosso, Cuiabá, MT, Brazil
| | - Louise Bach Kmetiuk
- Department of Veterinary Medicine, Federal University of Paraná, Curitiba, PR, Brazil
| | - Fabrizia Valleriani
- Department of Virology, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, TE, Italy
| | - Barbara Bonfini
- Department of Virology, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, TE, Italy
| | - Alessio Lorusso
- Department of Virology, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, TE, Italy
| | - Violetta Vasinioti
- Department of Veterinary Medicine, University of Bari, Valenzano, BA, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano, BA, Italy
| | | | | | - Annamaria Pratelli
- Department of Veterinary Medicine, University of Bari, Valenzano, BA, Italy
| | - Anna Serroni
- Department of Virology, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, TE, Italy
| | - Sara Capista
- Department of Virology, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise “G. Caporale”, Teramo, TE, Italy
| | | | | | - Luciano Nakazato
- Laboratory of Molecular Biology, Federal University of Mato Grosso, Cuiabá, MT, Brazil
| | - Valéria Dutra
- Laboratory of Molecular Biology, Federal University of Mato Grosso, Cuiabá, MT, Brazil
| |
Collapse
|
2
|
SURVEILLANCE OF BATS IN THE UNITED STATES FOR SARS-COV-2 AND OTHER CORONAVIRUSES. J Zoo Wildl Med 2023; 53:811-816. [PMID: 36640084 DOI: 10.1638/2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 01/09/2023] Open
Abstract
Bat coronaviruses (CoVs) are extremely prevalent throughout the globe and exhibit a wide range of genetic diversity. Currently, little is known about the susceptibility of New World bats to severe acute respiratory syndrome-2 (SARS-CoV-2), the causative agent of COVID-19. Also, there is limited information about the genetic diversity of other CoVs in the New World bats. The determination of genetic diversity of bat CoVs through continuous surveillance is essential to predict and mitigate the emergence of new CoVs and their impacts on the health of both humans and animals. In this study, 491 guano specimens collected from New World bats and 37 specimens collected from Old World bats during July 2020 to July 2021 were tested for SARS-COV-2 and other CoVs using a real-time reverse transcriptase-polymerase chain reaction (RT-PCR) panel and pan-coronavirus PCR that target a highly conserved region of CoVs. No evidence of SARS-CoV-2 was found in the tested specimens. An alpha CoV was detected in a single specimen from a big brown bat (Eptesicus fuscus). This information was used by wildlife agencies and rehabilitation facilities to permit the release of bats during the pandemic while mitigating the risk of spreading SARS-CoV-2 among North American bats and other wild animal populations.
Collapse
|
3
|
Infección natural por SARS-CoV-2 en gatos y perros domésticos de personas con diagnóstico de COVID-19 en el Valle de Aburrá, Antioquia. BIOMÉDICA 2022; 42:48-58. [DOI: 10.7705/biomedica.6407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 11/07/2022]
Abstract
Introducción. El síndrome respiratorio agudo grave causado por el nuevo coronavirus SARSCoV-2 es causa de la emergencia sanitaria por la pandemia de COVID-19. Si bien el humano es el el principal huésped vulnerable, en estudios experimentales y reportes de infección natural, se han encontrado casos de zoonosis inversa de SARS-CoV-2 en animales.Objetivo. Evaluar la infección natural por SARS-CoV-2 en gatos y perros de propietarios con diagnóstico de COVID-19 en el Valle de Aburrá, Antioquia, Colombia.Materiales y métodos. La circulación del SARS-CoV-2 se evaluó por RT-qPCR y RT-PCR en muestras de frotis nasofaríngeos y orofaríngeos de gatos y perros cuyos propietarios se encontraban dentro del periodo de los 14 días de aislamiento. Los casos positivos se verificaron amplificando fragmentos de los genes RdRp, N y E; se secuenció el gen RdRp y se analizó filogenéticamente.Resultados. De 80 animales evaluados, seis gatos y tres perros fueron casos confirmados de infección natural por SARS-CoV-2. Los animales no presentaron signos clínicos y sus propietarios, que padecían la infección, reportaron únicamente signos leves de la enfermedad sin complicaciones clínicas. En el análisis de una de las secuencias, se encontró un polimorfismo de un solo nucleótido (SNP) con un cambio en la posición 647, con sustitución del aminoácido serina (S) por una isoleucina (I). Los casos se presentaron en los municipios de Caldas, Medellín y Envigado.Conclusiones. Se infiere que la infección natural en los gatos y perros se asocia al contacto directo con un paciente con COVID-19. No obstante, no es posible determinar la virulencia del virus en este huésped, ni su capacidad de transmisión zoonótica o entre especie.
Collapse
|
4
|
Li X, Liu H, Tong Y. Concerns on cross-species transmission of SARS-CoV-2 between pets and humans. Front Microbiol 2022; 13:985528. [PMID: 36212862 PMCID: PMC9532748 DOI: 10.3389/fmicb.2022.985528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Xingguang Li
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- *Correspondence: Xingguang Li
| | - Haizhou Liu
- National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Yigang Tong
| |
Collapse
|
5
|
Epifanio IDS, Rodrigues DDS, de Lima LB, Nogueira MADA, Felix LRDMP, de Almeida BF, Farias CKDS, de Carvalho OV, Maia RDCC, Ristow LE, Barbosa DS, Galhardo JA, Pettan-Brewer C, Kmetiuk LB, Agopian RG, Dutra V, de Morais HA, Dos Santos AP, Biondo AW, Brandespim DF. First report of severe acute respiratory syndrome coronavirus 2 detection in two asymptomatic cats in the state of Pernambuco, Northeastern Brazil. Vet World 2021; 14:2839-2842. [PMID: 34903947 PMCID: PMC8654769 DOI: 10.14202/vetworld.2021.2839-2842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022] Open
Abstract
Background and Aim Despite worldwide case reports, including Brazilian cases, no frequency study on infection of pets by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been conducted to date in Brazil. Accordingly, the present study was aimed to assess dogs and cats belonging to positive owners in Recife, Northeastern Brazil. Materials and Methods This was a longitudinal prospective study on dogs and cats in the city of Recife whose owners were in isolation at home due to a confirmed laboratory diagnosis of SARS-CoV-2 through reverse-transcriptase polymerase chain reaction (RT-qPCR). Oral and rectal swabs from the pets were tested for the presence of SARS-CoV-2-specific RNA by means of RT-qPCR. Results Among the pets tested, 0/16 dogs and 2/15 cats were positive for SARS-CoV-2. Interestingly, the two positive cats were owned by two unrelated asymptomatic veterinary students, which, therefore, post a warning to veterinarians worldwide. Conclusion The findings herein indicate that cats may act as sentinels for human cases, particularly sharing households with asymptomatic human cases. Although with small sampling and convenient recruiting, the presence of infected cats by SARS-CoV-2 was most likely due to close cat-human contact with positive owners, posting a human-animal health threat when pets share the same bed and interact with owners without protection, particularly during owner self-isolation. Thus, infected owners should follow the same human preventive guidelines with their pets to avoid spreading infection.
Collapse
Affiliation(s)
- Ivyson da Silva Epifanio
- Department of Veterinary Medicine, College of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Davi Dos Santos Rodrigues
- Department of Veterinary Medicine, College of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Leonardo Borges de Lima
- Department of Veterinary Medicine, College of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Maria Aurea de Azevedo Nogueira
- Department of Veterinary Medicine, College of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Barbara Ferreira de Almeida
- Department of Veterinary Medicine, College of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Claudia Kathariny da Silva Farias
- Department of Veterinary Medicine, College of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Rita de Cassia Carvalho Maia
- Department of Veterinary Medicine, College of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - David Soeiro Barbosa
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Arena Galhardo
- Department of Veterinary Medicine, College of Veterinary Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Christina Pettan-Brewer
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Louise Bach Kmetiuk
- Department of Veterinary Medicine, Federal University of Paran, Curitiba, Paran, Brazil
| | | | - Valeria Dutra
- Department of Veterinary Medicine, College of Veterinary Medicine, Federal University of Mato Grosso, Cuiab, Mato Grosso, Brazil
| | | | - Andrea Pires Dos Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | | | - Daniel Friguglietti Brandespim
- Department of Veterinary Medicine, College of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
6
|
Pramod RK, Nair AV, Tambare PK, Chauhan K, Kumar TV, Rajan RA, Mani BM, Asaf M, Pandey AK. Reverse zoonosis of coronavirus disease-19: Present status and the control by one health approach. Vet World 2021; 14:2817-2826. [PMID: 34903944 PMCID: PMC8654767 DOI: 10.14202/vetworld.2021.2817-2826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022] Open
Abstract
The recent coronavirus disease (COVID-19) outbreak is one of its kind in the history of public health that has created a major global threat. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a zoonotic source and hence, reverse zoonosis (disease transmission from humans to animals) increases the risk and rate of SARS-CoV-2 infection. Serological and molecular analyses and experimental infection studies have identified SARS-CoV-2 infection in several animal species in various countries. Different domestic and wild animals, including cats, dogs, tigers, lions, puma, snow leopard, minks, and pet ferrets, are infected naturally with SARS-CoV-2, mostly through suspected human to animal transmission. In addition, in vivo experimental inoculation studies have reported the susceptibility of cats, ferrets, hamsters, Egyptian fruit bats, and non-human primates to the virus. These experimentally infected species are found to be capable of virus transmission to co-housed animals of the same species. However, SARS-CoV-2 showed poor replication in livestock species such as pigs, chickens, and ducks with no detection of viral RNA after the animals were deliberately inoculated with the virus or exposed to the infected animals. As the pets/companion animals are more susceptible to COVID-19, the infection in animals needs an in-depth and careful study to avoid any future transmissions. The one health approach is the best inter-disciplinary method to understand the consequences of viral spread and prevention in novel host populations for the betterment of public health. Further in this review, we will explain in detail the different natural and experimentally induced cases of human to animal SARS-CoV-2 infection.
Collapse
Affiliation(s)
- R Kumar Pramod
- Small Animal Facility, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Asha V Nair
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Padmakar Kamalakar Tambare
- Small Animal Facility, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Kanchana Chauhan
- Small Animal Facility, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - T Vinay Kumar
- Small Animal Facility, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - R Anju Rajan
- Krishi Vigyan Kendra, Kottarakkara, Kollam, Kerala, India
| | - Blessy M Mani
- Inter University Centre for Biomedical Research and Super Speciality Hospital, Kottayam, Kerala, India
| | - Muhasin Asaf
- Department of Animal Breeding and Genetics, KVASU, Wayanad, Kerala, India
| | - Amit Kumar Pandey
- Small Animal Facility, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.,Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
7
|
de Carvalho OV, Ristow LE, Rodrigues DDS, Farias CKDS, Maia RDCC. Retrospective surveillance of severe acute respiratory syndrome coronavirus 2 in pets from Brazil. Vet World 2021; 14:2803-2808. [PMID: 34903942 PMCID: PMC8654753 DOI: 10.14202/vetworld.2021.2803-2808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
Background and Aim: The emerging concerns regarding the new Coronavirus’s ability to cause infection in pets has led to animal testing and worrisome findings reported all over the world in domesticated and wild animals. This study aimed to investigate severe acute respiratory syndrome coronavirus (SARS-CoV)-2 by quantitative reverse transcription-polymerase chain reaction in dog and cat samples with the clinical presentation for respiratory or gastrointestinal disease in Brazil. Materials and Methods: One hundred and twenty-five samples were collected from 12 states of Brazil that originated from the gastrointestinal, upper respiratory tract, and other sites, including some pools of samples from before the onset of the pandemic including blood and/or urine samples. They were tested for RT-PCR detection of respiratory or gastrointestinal pathogens through Respiratory or Diarrhea RT-PCR Panels in the TECSA (Tecnologia em Saninade Animal - Animal Health Technology) Veterinary Medicine Laboratory. This work was conducted in compliance with ethical standards. Results: Seven different microorganisms that can cause respiratory and/or gastrointestinal clinical signs were detected in cats (Feline Coronavirus [FCoV], Feline Parvovirus, Feline Leukemia Virus, Feline Calicivirus, Mycoplasma felis, Campylobacter spp., and Cryptosporidium spp.) and three in dogs (canine distemper virus, Cryptosporidium spp., and Babesia spp.). Conclusion: Although the samples corresponded to the beginning of coronavirus disease-19 spread in Brazil and clinically correlated with the expected viral replication sites, none of the animals tested positive for SARS-CoV-2; reassuringly, four cats tested positive or FCoV none of them were positive for SARS-CoV2. The epidemiological surveillance of SARS-CoV-2 in pets is considered a one health issue, important for monitoring the disease evolution, spread and minimizing the animal-human health impacts, and directing Public Health Policies.
Collapse
Affiliation(s)
| | - Luiz Eduardo Ristow
- TECSA Laboratories, Av. do Contorno, 6226 - Funcionários, Belo Horizonte - MG, 30110-042, Brazil
| | - Davi Dos Santos Rodrigues
- Department of Veterinary Medicine, LAVIAN, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Street, S/N, Recife-PE, 52171-900, Brazil
| | - Cláudia Kathariny da Silva Farias
- Department of Veterinary Medicine, LAVIAN, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Street, S/N, Recife-PE, 52171-900, Brazil
| | - Rita de Cássia Carvalho Maia
- Department of Veterinary Medicine, LAVIAN, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Street, S/N, Recife-PE, 52171-900, Brazil
| |
Collapse
|
8
|
Kim DY, Shinde SK, Lone S, Palem RR, Ghodake GS. COVID-19 Pandemic: Public Health Risk Assessment and Risk Mitigation Strategies. J Pers Med 2021; 11:1243. [PMID: 34945715 PMCID: PMC8707584 DOI: 10.3390/jpm11121243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
A newly emerged respiratory viral disease called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is also known as pandemic coronavirus disease (COVID-19). This pandemic has resulted an unprecedented global health crisis and devastating impact on several sectors of human lives and economies. Fortunately, the average case fatality ratio for SARS-CoV-2 is below 2%, much lower than that estimated for MERS (34%) and SARS (11%). However, COVID-19 has a much higher transmissibility rate, as evident from the constant increase in the count of infections worldwide. This article explores the reasons behind how COVID-19 was able to cause a global pandemic crisis. The current outbreak scenario and causes of rapid global spread are examined using recent developments in the literature, epidemiological features relevant to public health awareness, and critical perspective of risk assessment and mitigation strategies. Effective pandemic risk mitigation measures have been established and amended against COVID-19 diseases, but there is still much scope for upgrading execution and coordination among authorities in terms of organizational leadership's commitment and diverse range of safety measures, including administrative control measures, engineering control measures, and personal protective equipment (PPE). The significance of containment interventions against the COVID-19 pandemic is now well established; however, there is a need for its effective execution across the globe, and for the improvement of the performance of risk mitigation practices and suppression of future pandemic crises.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; (D.-Y.K.); (S.K.S.)
| | - Surendra Krushna Shinde
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; (D.-Y.K.); (S.K.S.)
| | - Saifullah Lone
- Interdisciplinary Division for Renewable Energy and Advanced Materials (iDREAM), National Institute of Technology (NIT), Srinagar 190006, India;
| | - Ramasubba Reddy Palem
- Department of Medical Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea;
| | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; (D.-Y.K.); (S.K.S.)
| |
Collapse
|
9
|
Hale VL, Dennis PM, McBride DS, Nolting JM, Madden C, Huey D, Ehrlich M, Grieser J, Winston J, Lombardi D, Gibson S, Saif L, Killian ML, Lantz K, Tell R, Torchetti M, Robbe-Austerman S, Nelson MI, Faith SA, Bowman AS. SARS-CoV-2 infection in free-ranging white-tailed deer ( Odocoileus virginianus ). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.11.04.467308. [PMID: 34790982 PMCID: PMC8597885 DOI: 10.1101/2021.11.04.467308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human-to-animal spillover of SARS-CoV-2 virus has occurred in a wide range of animals, but thus far, the establishment of a new natural animal reservoir has not been detected. Here, we detected SARS-CoV-2 virus using rRT-PCR in 129 out of 360 (35.8%) free-ranging white-tailed deer ( Odocoileus virginianus ) from northeast Ohio (USA) sampled between January-March 2021. Deer in 6 locations were infected with at least 3 lineages of SARS-CoV-2 (B.1.2, B.1.596, B.1.582). The B.1.2 viruses, dominant in Ohio at the time, spilled over multiple times into deer populations in different locations. Deer-to-deer transmission may have occurred in three locations. The establishment of a natural reservoir of SARS-CoV-2 in white-tailed deer could facilitate divergent evolutionary trajectories and future spillback to humans, further complicating long-term COVID-19 control strategies. ONE-SENTENCE SUMMARY A significant proportion of SARS-CoV-2 infection in free-ranging US white-tailed deer reveals a potential new reservoir.
Collapse
Affiliation(s)
- Vanessa L. Hale
- Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine; Columbus, OH, 43210, USA
| | - Patricia M. Dennis
- Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine; Columbus, OH, 43210, USA
- Cleveland Metroparks Zoo; Cleveland, OH, 44109, USA
| | - Dillon S. McBride
- Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine; Columbus, OH, 43210, USA
| | - Jaqueline M. Nolting
- Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine; Columbus, OH, 43210, USA
| | - Christopher Madden
- Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine; Columbus, OH, 43210, USA
| | - Devra Huey
- Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine; Columbus, OH, 43210, USA
| | - Margot Ehrlich
- The Ohio State University College of Veterinary Medicine; Columbus, OH, 43210, USA
| | | | - Jenessa Winston
- Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine; Columbus, OH, 43210, USA
| | | | | | - Linda Saif
- Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine; Columbus, OH, 43210, USA
- Center for Food Animal Health, The Ohio State University College of Food, Agriculture, and Environmental Sciences; Wooster, OH, 44691, USA
| | - Mary L. Killian
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture; Ames, IA, 50010, USA
| | - Kristina Lantz
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture; Ames, IA, 50010, USA
| | - Rachel Tell
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture; Ames, IA, 50010, USA
| | - Mia Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture; Ames, IA, 50010, USA
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture; Ames, IA, 50010, USA
| | - Martha I. Nelson
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD, 20892, USA
| | - Seth A. Faith
- Infectious Diseases Institute, The Ohio State University; Columbus, OH, 43210, USA
| | - Andrew S. Bowman
- Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine; Columbus, OH, 43210, USA
| |
Collapse
|
10
|
Buonerba A, Corpuz MVA, Ballesteros F, Choo KH, Hasan SW, Korshin GV, Belgiorno V, Barceló D, Naddeo V. Coronavirus in water media: Analysis, fate, disinfection and epidemiological applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125580. [PMID: 33735767 PMCID: PMC7932854 DOI: 10.1016/j.jhazmat.2021.125580] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 05/03/2023]
Abstract
Considerable attention has been recently given to possible transmission of SARS-CoV-2 via water media. This review addresses this issue and examines the fate of coronaviruses (CoVs) in water systems, with particular attention to the recently available information on the novel SARS-CoV-2. The methods for the determination of viable virus particles and quantification of CoVs and, in particular, of SARS-CoV-2 in water and wastewater are discussed with particular regard to the methods of concentration and to the emerging methods of detection. The analysis of the environmental stability of CoVs, with particular regard of SARS-CoV-2, and the efficacy of the disinfection methods are extensively reviewed as well. This information provides a broad view of the state-of-the-art for researchers involved in the investigation of CoVs in aquatic systems, and poses the basis for further analyses and discussions on the risk associated to the presence of SARS-CoV-2 in water media. The examined data indicates that detection of the virus in wastewater and natural water bodies provides a potentially powerful tool for quantitative microbiological risk assessment (QMRA) and for wastewater-based epidemiology (WBE) for the evaluation of the level of circulation of the virus in a population. Assays of the viable virions in water media provide information on the integrity, capability of replication (in suitable host species) and on the potential infectivity. Challenges and critical issues relevant to the detection of coronaviruses in different water matrixes with both direct and surrogate methods as well as in the implementation of epidemiological tools are presented and critically discussed.
Collapse
Affiliation(s)
- Antonio Buonerba
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy; Inter-University Centre for Prediction and Prevention of Relevant Hazards (Centro Universitario per la Previsione e Prevenzione Grandi Rischi, C.U.G.RI.), Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Mary Vermi Aizza Corpuz
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Florencio Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University (KNU), 80 Daehak-ro, Bukgu, Daegu 41566, Republic of Korea
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98105-2700, United States
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Damià Barceló
- Catalan Institute for Water Research (ICR-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy.
| |
Collapse
|
11
|
Prevention of COVID-19: Preventive Strategies for General Population, Healthcare Setting, and Various Professions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:575-604. [PMID: 33973200 DOI: 10.1007/978-3-030-63761-3_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The disease 2019 (COVID-19) made a public health emergency in early 2020. Despite attempts for the development of therapeutic modalities, there is no effective treatment yet. Therefore, preventive measures in various settings could help reduce the burden of disease. In this chapter, the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19, non-pharmaceutical approaches at individual and population level, chemoprevention, immunoprevention, preventive measures in different healthcare settings and other professions, special considerations in high-risk groups, and the role of organizations to hamper the psychosocial effects will be discussed.
Collapse
|
12
|
Prince T, Smith SL, Radford AD, Solomon T, Hughes GL, Patterson EI. SARS-CoV-2 Infections in Animals: Reservoirs for Reverse Zoonosis and Models for Study. Viruses 2021; 13:494. [PMID: 33802857 PMCID: PMC8002747 DOI: 10.3390/v13030494] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
The recent SARS-CoV-2 pandemic has brought many questions over the origin of the virus, the threat it poses to animals both in the wild and captivity, and the risks of a permanent viral reservoir developing in animals. Animal experiments have shown that a variety of animals can become infected with the virus. While coronaviruses have been known to infect animals for decades, the true intermediate host of the virus has not been identified, with no cases of SARS-CoV-2 in wild animals. The screening of wild, farmed, and domesticated animals is necessary to help us understand the virus and its origins and prevent future outbreaks of both COVID-19 and other diseases. There is intriguing evidence that farmed mink infections (acquired from humans) have led to infection of other farm workers in turn, with a recent outbreak of a mink variant in humans in Denmark. A thorough examination of the current knowledge and evidence of the ability of SARS-CoV-2 to infect different animal species is therefore vital to evaluate the threat of animal to human transmission and reverse zoonosis.
Collapse
Affiliation(s)
- Tessa Prince
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7TX, UK; (T.S.); (G.L.H.)
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
| | - Shirley L. Smith
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
| | - Alan D. Radford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
| | - Tom Solomon
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7TX, UK; (T.S.); (G.L.H.)
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
- Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK
| | - Grant L. Hughes
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7TX, UK; (T.S.); (G.L.H.)
- Centre for Neglected Tropical Disease, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Edward I. Patterson
- Centre for Neglected Tropical Disease, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
13
|
Frutos R, Serra-Cobo J, Pinault L, Lopez Roig M, Devaux CA. Emergence of Bat-Related Betacoronaviruses: Hazard and Risks. Front Microbiol 2021; 12:591535. [PMID: 33790874 PMCID: PMC8005542 DOI: 10.3389/fmicb.2021.591535] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
The current Coronavirus Disease 2019 (COVID-19) pandemic, with more than 111 million reported cases and 2,500,000 deaths worldwide (mortality rate currently estimated at 2.2%), is a stark reminder that coronaviruses (CoV)-induced diseases remain a major threat to humanity. COVID-19 is only the latest case of betacoronavirus (β-CoV) epidemics/pandemics. In the last 20 years, two deadly CoV epidemics, Severe Acute Respiratory Syndrome (SARS; fatality rate 9.6%) and Middle East Respiratory Syndrome (MERS; fatality rate 34.7%), plus the emergence of HCoV-HKU1 which causes the winter common cold (fatality rate 0.5%), were already a source of public health concern. Betacoronaviruses can also be a threat for livestock, as evidenced by the Swine Acute Diarrhea Syndrome (SADS) epizootic in pigs. These repeated outbreaks of β-CoV-induced diseases raise the question of the dynamic of propagation of this group of viruses in wildlife and human ecosystems. SARS-CoV, SARS-CoV-2, and HCoV-HKU1 emerged in Asia, strongly suggesting the existence of a regional hot spot for emergence. However, there might be other regional hot spots, as seen with MERS-CoV, which emerged in the Arabian Peninsula. β-CoVs responsible for human respiratory infections are closely related to bat-borne viruses. Bats are present worldwide and their level of infection with CoVs is very high on all continents. However, there is as yet no evidence of direct bat-to-human coronavirus infection. Transmission of β-CoV to humans is considered to occur accidentally through contact with susceptible intermediate animal species. This zoonotic emergence is a complex process involving not only bats, wildlife and natural ecosystems, but also many anthropogenic and societal aspects. Here, we try to understand why only few hot spots of β-CoV emergence have been identified despite worldwide bats and bat-borne β-CoV distribution. In this work, we analyze and compare the natural and anthropogenic environments associated with the emergence of β-CoV and outline conserved features likely to create favorable conditions for a new epidemic. We suggest monitoring South and East Africa as well as South America as these regions bring together many of the conditions that could make them future hot spots.
Collapse
Affiliation(s)
- Roger Frutos
- Centre de coopération Internationale en Recherche Agronomique pour le Développement, UMR 17, Intertryp, Montpellier, France.,Institut d'Électronique et des Systèmes, UMR 5214, Université de Montpellier-CNRS, Montpellier, France
| | - Jordi Serra-Cobo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Biodiversity Research Institute, Barcelona, Spain
| | - Lucile Pinault
- Aix Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Marc Lopez Roig
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Biodiversity Research Institute, Barcelona, Spain
| | - Christian A Devaux
- Aix Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France.,Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
14
|
Turlewicz-Podbielska H, Pomorska-Mól M. Porcine Coronaviruses: Overview of the State of the Art. Virol Sin 2021; 36:833-851. [PMID: 33723809 PMCID: PMC7959302 DOI: 10.1007/s12250-021-00364-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Like RNA viruses in general, coronaviruses (CoV) exhibit high mutation rates which, in combination with their strong tendency to recombine, enable them to overcome the host species barrier and adapt to new hosts. It is currently known that six CoV are able to infect pigs. Four of them belong to the genus Alphacoronavirus [transmissible gastroenteritis coronavirus (TEGV), porcine respiratory coronavirus (PRCV), porcine epidemic diarrhea virus (PEDV), swine acute diarrhea syndrome coronavirus (SADS-CoV)], one of them to the genus Betacoronavirus [porcine hemagglutinating encephalomyelitis virus (PHEV)] and the last one to the genus Deltacoronavirus (PDCoV). PHEV was one of the first identified swine CoV and is still widespread, causing subclinical infections in pigs in several countries. PRCV, a spike deletion mutant of TGEV associated with respiratory tract infection, appeared in the 1980s. PRCV is considered non-pathogenic since its infection course is mild or subclinical. Since its appearance, pig populations have become immune to both PRCV and TGEV, leading to a significant reduction in the clinical and economic importance of TGEV. TGEV, PEDV and PDCoV are enteropathogenic CoV and cause clinically indistinguishable acute gastroenteritis in all age groups of pigs. PDCoV and SADS-CoV have emerged in 2014 (US) and in 2017 (China), respectively. Rapid diagnosis is crucial for controlling CoV infections and preventing them from spreading. Since vaccines are available only for some porcine CoV, prevention should focus mainly on a high level of biosecurity. In view of the diversity of CoV and the potential risk factors associated with zoonotic emergence, updating the knowledge concerning this area is essential.
Collapse
Affiliation(s)
- Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, ul. Wołyńska 35, 60-637, Poznan, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, ul. Wołyńska 35, 60-637, Poznan, Poland.
| |
Collapse
|
15
|
Warwick C, Steedman C. Wildlife-pet markets in a one-health context. INTERNATIONAL JOURNAL OF ONE HEALTH 2021. [DOI: 10.14202/ijoh.2021.42-64] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background and Aim: Wildlife markets are centers of trade involving live animals and their derivatives from wild-caught and captive-bred non-domesticated animals, including for the culinary, fashion, traditional medicine, curio, and pet sectors. These markets occur in Southeast Asia, India, North America, Latin America, Europe, Africa, and elsewhere. This study aims to address a diversity of related issues that have a one-health bearing while focusing on wildlife markets in relation to the pet trade. Across relevant regions and countries, all major animal classes are traded at wildlife-pet markets. Wildlife markets, in general, are considered distinct from so-called "wet markets" at which domesticated animals, fish, and other "seafood" are offered only for consumption. Several aspects of wildlife markets have attracted scientific and popular scrutiny, including animal welfare concerns, species conservation threats, legality, ecological alteration, introduction of invasive alien species, presence of undescribed species, and public and agricultural animal health issues.
Materials and Methods: Onsite inspections were conducted for markets in the United States, Spain, Germany, The Netherlands, and the UK, as well as observational research of visual imagery of market conditions, and we compared these conditions with evidence-based standards for animal welfare and public health management.
Results: Wildlife markets globally shared common similar structures and practices including the presence of sick, injured, or stressed animals; mixing of animals of uncertain origin and health state; and no specific or any hygiene protocols, with issues of animal welfare, public health and safety, agricultural animal health, and other one-health concerns being inherently involved.
Conclusion: We conclude that wildlife markets are incompatible with responsible standards and practices, and we recommend that such events are banned globally to ameliorate inherent major problems.
Collapse
|
16
|
Subedi S, Koirala S, Chai L. COVID-19 in Farm Animals: Host Susceptibility and Prevention Strategies. Animals (Basel) 2021; 11:640. [PMID: 33670889 PMCID: PMC7997237 DOI: 10.3390/ani11030640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
COVID-19 is caused by the virus SARS-CoV-2 that belongings to the family of Coronaviridae, which has affected multiple species and demonstrated zoonotic potential. The COVID-19 infections have been reported on farm animals (e.g., minks) and pets, which were discussed and summarized in this study. Although the damage of COVID-19 has not been reported as serious as highly pathogenic avian influenza (HPAI) for poultry and African Swine Fever (ASF) for pigs on commercial farms so far, the transmission mechanism of COVID-19 among group animals/farms and its long-term impacts are still not clear. Prior to the marketing of efficient vaccines for livestock and animals, on-farm biosecurity measures (e.g., conventional disinfection strategies and innovated technologies) need to be considered or innovated in preventing the direct contact spread or the airborne transmission of COVID-19.
Collapse
Affiliation(s)
- Sachin Subedi
- Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture & Forestry University, Chitwan 44200, Nepal; (S.S.); (S.K.)
| | - Sulove Koirala
- Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture & Forestry University, Chitwan 44200, Nepal; (S.S.); (S.K.)
| | - Lilong Chai
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
17
|
Mohapatra RK, Pintilie L, Kandi V, Sarangi AK, Das D, Sahu R, Perekhoda L. The recent challenges of highly contagious COVID-19, causing respiratory infections: Symptoms, diagnosis, transmission, possible vaccines, animal models, and immunotherapy. Chem Biol Drug Des 2020. [PMID: 32654267 DOI: 10.1111/cbdd.v96.510.1111/cbdd.13761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
COVID-19 is highly contagious pathogenic viral infection initiated from Wuhan seafood wholesale market of China on December 2019 and spread rapidly around the whole world due to onward transmission. This recent outbreak of novel coronavirus (CoV) was believed to be originated from bats and causing respiratory infections such as common cold, dry cough, fever, headache, dyspnea, pneumonia, and finally Severe Acute Respiratory Syndrome (SARS) in humans. For this widespread zoonotic virus, human-to-human transmission has resulted in nearly 83 lakh cases in 213 countries and territories with 4,50,686 deaths as on 19 June 2020. This review presents a report on the origin, transmission, symptoms, diagnosis, possible vaccines, animal models, and immunotherapy for this novel virus and will provide ample references for the researchers toward the ongoing development of therapeutic agents and vaccines and also preventing the spread of this disease.
Collapse
Affiliation(s)
- Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Lucia Pintilie
- Department of Synthesis of Bioactive Substances and Pharmaceutical Technologies, National Institute for Chemical and Pharmaceutical Research and Development, Bucharest, Romania
| | - Venkataramana Kandi
- Department of Microbiology, Pratima Institute of Medical Sciences, Karimnagar, Hyderabad, India
| | - Ashish K Sarangi
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Debadutta Das
- Department of Chemistry, Sukanti Degree College, Subarnapur, Odisha, India
| | - Raghaba Sahu
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Lina Perekhoda
- Department of medicinal chemistry, National University of Pharmacy, Kharkiv, Ukraine
| |
Collapse
|
18
|
Luo H, Zhao M, Tan D, Liu C, Yang L, Qiu L, Gao Y, Yu H. Anti-COVID-19 drug screening: Frontier concepts and core technologies. Chin Med 2020; 15:115. [PMID: 33133232 PMCID: PMC7592451 DOI: 10.1186/s13020-020-00393-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023] Open
Abstract
The outbreak of COVID-19 has recently evolved into a global pandemic. Up to July 2020, almost every country has confirmed COVID-19 cases reported worldwide. Many leading experts have predicted that the epidemic will persist for relatively a long period of time. Thus far, there have been no remedies proven effective against the disease. As the nation where COVID-19 broke out first, China has adopted a combination of traditional Chinese medicine and western medicine to fight against the disease, and has achieved significant clinical result. Up to now, the COVID-19 pandemic has been effectively controlled in China. However, the rest of the world (except for a limited number of countries and regions) is still in deep water. This paper thoroughly summarizes interdisciplinary notions and techniques, including disease model, biochip, network pharmacology, and molecular docking technology, etc., providing a reference for researchers in the screening of drugs for COVID-19 prevention and treatment. These methodologies may facilitate researchers to screen out more potential drugs for treating COVID-19 pneumonia and to tackle this global crisis.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Room 8008, Building N22, Avenida da Universidade, Taipa, Macao SAR China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Room 8008, Building N22, Avenida da Universidade, Taipa, Macao SAR China
| | - Dechao Tan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Room 8008, Building N22, Avenida da Universidade, Taipa, Macao SAR China
| | - Chang Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Room 8008, Building N22, Avenida da Universidade, Taipa, Macao SAR China
| | - Lin Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Room 8008, Building N22, Avenida da Universidade, Taipa, Macao SAR China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Room 8008, Building N22, Avenida da Universidade, Taipa, Macao SAR China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Room 8008, Building N22, Avenida da Universidade, Taipa, Macao SAR China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Room 8008, Building N22, Avenida da Universidade, Taipa, Macao SAR China
| |
Collapse
|
19
|
Shen M, Liu C, Xu R, Ruan Z, Zhao S, Zhang H, Wang W, Huang X, Yang L, Tang Y, Yang T, Jia X. Predicting the Animal Susceptibility and Therapeutic Drugs to SARS-CoV-2 Based on Spike Glycoprotein Combined With ACE2. Front Genet 2020; 11:575012. [PMID: 33193684 PMCID: PMC7645152 DOI: 10.3389/fgene.2020.575012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/30/2020] [Indexed: 12/29/2022] Open
Abstract
Recently, a few animals have been frequently reported to have been diagnosed with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Whether they are SARS-CoV-2 intermediate hosts is worthy of great attention. The interaction of SARS-CoV-2 spike protein and its acceptor protein ACE2 is an important issue in determining viral host range and cross-species infection, while the binding capacity of Spike protein to ACE2 of different species is unknown. Here, we used the atomic structure model of SARS-CoV-2 and human ACE2 to assess the receptor utilization capacity of ACE2s from 10 kinds of animals. Results show that chimpanzees, domestic cats and cattles are more susceptible to infection by SARS-CoV-2. Cats in particular, such as pet cats and stray cats, interact very closely with humans, implying the necessity to carefully evaluate the risk of cats during the current COVID-19 pandemic. Furthermore, based on ACE2(cats)-SARS-CoV-2-RBD model, through high-throughput screening methods using a pool of 30,000 small molecules, eight compounds were selected for binding free energy calculations. All the eight compounds can effectively interfere with the binding of ACE2 and Spike protein, especially Nelfinavir, providing drug candidates for the treatment and prevention of SARS-CoV-2, suggesting further assessment of the anti-SARS-CoV-2 activity of these compounds in cell culture. Although we only reported the results of the simulation, and more laboratory and epidemiological investigation are required. Like cats are a risk factor, we can further detect SARS-CoV-2 according to the susceptibility of different animals, find the potential host of infection, and completely cut off the living space of the virus. Especially, cats could be a choice of animal model for screening antiviral drugs or vaccine candidates against SARS-CoV-2.
Collapse
Affiliation(s)
- Min Shen
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Chao Liu
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Run Xu
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Zijing Ruan
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shiying Zhao
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Huidong Zhang
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Wen Wang
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Xinhe Huang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Li Yang
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Yong Tang
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Tai Yang
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| |
Collapse
|
20
|
Chowdhury R, Boorla VS, Maranas CD. Computational biophysical characterization of the SARS-CoV-2 spike protein binding with the ACE2 receptor and implications for infectivity. Comput Struct Biotechnol J 2020; 18:2573-2582. [PMID: 32983400 PMCID: PMC7500280 DOI: 10.1016/j.csbj.2020.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 is a novel highly virulent pathogen which gains entry to human cells by binding with the cell surface receptor - angiotensin converting enzyme (ACE2). We computationally contrasted the binding interactions between human ACE2 and coronavirus spike protein receptor binding domain (RBD) of the 2002 epidemic-causing SARS-CoV-1, SARS-CoV-2, and bat coronavirus RaTG13 using the Rosetta energy function. We find that the RBD of the spike protein of SARS-CoV-2 is highly optimized to achieve very strong binding with human ACE2 (hACE2) which is consistent with its enhanced infectivity. SARS-CoV-2 forms the most stable complex with hACE2 compared to SARS-CoV-1 (23% less stable) or RaTG13 (11% less stable). Notably, we calculate that the SARS-CoV-2 RBD lowers the binding strength of angiotensin 2 receptor type I (ATR1) which is the native binding partner of ACE2 by 44.2%. Strong binding is mediated through strong electrostatic attachments with every fourth residue on the N-terminus alpha-helix (starting from Ser19 to Asn53) as the turn of the helix makes these residues solvent accessible. By contrasting the spike protein SARS-CoV-2 Rosetta binding energy with ACE2 of different livestock and pet species we find strongest binding with bat ACE2 followed by human, feline, equine, canine and finally chicken. This is consistent with the hypothesis that bats are the viral origin and reservoir species. These results offer a computational explanation for the increased infection susceptibility by SARS-CoV-2 and allude to therapeutic modalities by identifying and rank-ordering the ACE2 residues involved in binding with the virus.
Collapse
Affiliation(s)
- Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Veda Sheersh Boorla
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
21
|
Tiwari SK, Dicks LMT, Popov IV, Karaseva A, Ermakov AM, Suvorov A, Tagg JR, Weeks R, Chikindas ML. Probiotics at War Against Viruses: What Is Missing From the Picture? Front Microbiol 2020; 11:1877. [PMID: 32973697 PMCID: PMC7468459 DOI: 10.3389/fmicb.2020.01877] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 01/07/2023] Open
Abstract
Our world is now facing a multitude of novel infectious diseases. Bacterial infections are treated with antibiotics, albeit with increasing difficulty as many of the more common causes of infection have now developed broad spectrum antimicrobial resistance. However, there is now an even greater challenge from both old and new viruses capable of causing respiratory, enteric, and urogenital infections. Reports of viruses resistant to frontline therapeutic drugs are steadily increasing and there is an urgent need to develop novel antiviral agents. Although this all makes sense, it seems rather strange that relatively little attention has been given to the antiviral capabilities of probiotics. Over the years, beneficial strains of lactic acid bacteria (LAB) have been successfully used to treat gastrointestinal, oral, and vaginal infections, and some can also effect a reduction in serum cholesterol levels. Some probiotics prevent gastrointestinal dysbiosis and, by doing so, reduce the risk of developing secondary infections. Other probiotics exhibit anti-tumor and immunomodulating properties, and in some studies, antiviral activities have been reported for probiotic bacteria and/or their metabolites. Unfortunately, the mechanistic basis of the observed beneficial effects of probiotics in countering viral infections is sometimes unclear. Interestingly, in COVID-19 patients, a clear decrease has been observed in cell numbers of Lactobacillus and Bifidobacterium spp., both of which are common sources of intestinal probiotics. The present review, specifically motivated by the need to implement effective new counters to SARS-CoV-2, focusses attention on viruses capable of co-infecting humans and other animals and specifically explores the potential of probiotic bacteria and their metabolites to intervene with the process of virus infection. The goal is to help to provide a more informed background for the planning of future probiotic-based antiviral research.
Collapse
Affiliation(s)
- Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, India,*Correspondence: Santosh Kumar Tiwari,
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Igor V. Popov
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia
| | - Alena Karaseva
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexey M. Ermakov
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia
| | - Alexander Suvorov
- Institute of Experimental Medicine, Saint Petersburg, Russia,Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Brunswick, NJ, United States
| | - Michael L. Chikindas
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Brunswick, NJ, United States
| |
Collapse
|
22
|
ACE2 enhance viral infection or viral infection aggravate the underlying diseases. Comput Struct Biotechnol J 2020; 18:2100-2106. [PMID: 32832038 PMCID: PMC7409731 DOI: 10.1016/j.csbj.2020.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
ACE2 plays a critical role in SARS-CoV-2 infection to cause COVID-19 and SARS-CoV-2 spike protein binds to ACE2 and probably functionally inhibits ACE2 to aggravate the underlying diseases of COVID-19. The important factors that affect the severity and fatality of COVID-19 include patients' underlying diseases and ages. Therefore, particular care to the patients with underlying diseases is needed during the treatment of COVID-19 patients.
Collapse
Key Words
- ACE2, Angiotensin converting enzyme 2
- ACEI, ACE inhibitor
- Angiotensin converting enzyme 2
- COVID-19, Coronavirus Infectious Disease-19
- CVD, cardiovascular disease
- Coronavirus Infectious Disease-19
- Health disparity
- PAH, pulmonary artery hypertension
- R0, Reproductive number
- RAS, Renin-angiotensin system
- RBD, Receptor binding domain
- S, Spike: TMPRSS2, Transmembrane protease, serine 2
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus −2 SARS-CoV-2, Middle East Respiratory Syndrome 2: MERS-2
- SNP, Single Nucleotide Polymorphism
- Severe Acute Respiratory Syndrome Coronavirus −2
- Single Nucleotide Polymorphism
- Underlying diseases
Collapse
|
23
|
|
24
|
Ainsworth S, Menzies S, Pleass RJ. Animal derived antibodies should be considered alongside convalescent human plasma to deliver treatments for COVID-19. Wellcome Open Res 2020. [DOI: 10.12688/wellcomeopenres.15990.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Published data on the first 5,000 coronavirus patients to receive plasma shows promise in the United States. However, delivering convalescent plasma therapies in low- and even middle-income countries is both difficult and costly. Here we discuss the advantages and disadvantages of antisera raised in animals that may allow poorer countries to control the devastating effects of COVID-19.
Collapse
|
25
|
McNamara T, Richt JA, Glickman L. A Critical Needs Assessment for Research in Companion Animals and Livestock Following the Pandemic of COVID-19 in Humans. Vector Borne Zoonotic Dis 2020; 20:393-405. [PMID: 32374208 PMCID: PMC7249469 DOI: 10.1089/vbz.2020.2650] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Problem: The emergence of novel coronavirus (SARS-CoV-2) in Wuhan, China, in November 2019 and a growing body of information compel inquiry regarding the transmissibility of infection between humans and certain animal species. Although there are a number of issues to be considered, the following points are most urgent: The potential for domesticated (companion) animals to serve as a reservoir of infection contributing to continued human-to-human disease, infectivity, and community spread. The ramifications to food security, economy, and trade issues should coronavirus establish itself within livestock and poultry. The disruption to national security if SARS-CoV-2 and its fairly well-established effects on smell (hyposmia/anosmia) to critical military service animals including explosive detector dog, narcotics detector dog, specialized search dog, combat tracker dog, mine detection dog, tactical explosive detector dog, improvised explosive device detector dog, patrol explosive detector dog, and patrol narcotics detector dog, as well as multipurpose canines used by special operations such as used by the U.S. customs and border protection agency (e.g., Beagle Brigade). This article presents in chronological order data that both individually (as received independently from multiple countries) and collectively urge studies that elucidate the following questions. 1.What animal species can be infected with SARS-CoV-2, the likely sources of infection, the period of infectivity, and transmissibility between these animals and to other animal species and humans? 2.What are the best diagnostic tests currently available for companion animals and livestock? 3.What expressions of illness in companion and other animal species can serve as disease markers? Although it is recognized that robust funding and methodology need to be identified to apply the best scientific investigation into these issues, there may be easily identifiable opportunities to capture information that can guide decision and study. First, it may be possible to quickly initiate a data collection strategy using in-place animal gatekeepers, such as zookeepers, veterinarians, kennel owners, feed lots, and military animal handlers. If provided a simple surveillance form, their detection of symptoms (lethargy, hyposmia, anosmia, and others) might be quickly reported to a central data collection site if one were created. Second, although current human COVID-19 disease is aligning around areas of population density and cluster events, it might be possible to overlay animal species density or veterinary reports that could signal some disease association in animals with COVID-19 patients. Unfortunately, although companion animals and zoo species have repeatedly served as sentinels for emerging infectious diseases, they do not currently fall under the jurisdiction of any federal agency and are not under surveillance.
Collapse
Affiliation(s)
- Tracey McNamara
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Juergen A. Richt
- Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Larry Glickman
- Veterinary Pathobiology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
26
|
SARS-CoV-2 (COVID-19): Zoonotic Origin and Susceptibility of Domestic and Wild Animals. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.spl1.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Coronaviruses (CoVs) are responsible for causing economically significant diseases both in animals and humans. The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), causing Coronavirus Diseases (COVID-19), outbreak has become the first pandemic of the 21st century and is the deadliest pandemic after the 1918 Spanish Flu. Except, the two previous epidemics, SARS-CoV (2002 epidemic, China) and MERS-CoV (2012 epidemic, Middle Eastern region), CoVs are known the world over as the mild pathogens of humans and animals. Despite several measures to control the COVID-19 pandemic, it has affected more than 210 countries and regional territories distressing more than 5.3 million people and claiming nearly 0.34 million lives globally. Several findings point towards the appearance of the SARS-CoV-2 virus in the humans through animals, especially the wild animals of the Chinese live seafood wet market. The ongoing COVID-19 pandemic is another example of diseases originating from the human-animal interface and spreading through international borders causing global health emergencies. Most of the countries around the globe are stumbling due to the COVID-19 pandemic with severe threats and panic among the mass population. World Health Organization (WHO), international and national health authorities are working with excessive efforts for effective and impactful interventions to contain the virus. It is significant to comprehend the inclination of these viruses to jump between different species, and the establishment of infection in the entirely new host, identification of significant reservoirs of coronaviruses. Several animal species such as cats, dogs, tiger, and minks have been confirmed to get SARS-CoV-2 infections from COVID-19 infected person. Laboratory investigations point out those cats are the most susceptible species for SARS-CoV-2, and it can evidence with clinical disease. The studies carried out on animal’s susceptibility to SARS-CoV-2 further support the human-to-animal spread of the virus. In this review, we focus on addressing COVID-19 infections in domestic and wild animals.
Collapse
|
27
|
Joly E. Confronting Covid-19 by exploring the possibility of vaccinating with live SARS-CoV-2 virus itself, via a route that would reduce the incidence of pulmonary complications. F1000Res 2020; 9:309. [PMID: 34035902 PMCID: PMC8108705 DOI: 10.12688/f1000research.23480.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
This article proposes that one should explore whether the pulmonary complications of Covid-19 can be reduced or avoided by bypassing the airway entry of the SARS-CoV-2 virus. This could possibly be achieved by injecting live SARS-CoV-2 virus intradermal (ID), subcutaneous, intra-muscular (IM) or intra-peritoneal (IP), or by targeting the virus to the digestive tract. The effectiveness and innocuity of using those various routes could be tested very rapidly in animal models, such as Macaques, Hamsters, Ferrets or Cats. The hope is that these experiments will reveal a route of inoculation that can reliably lead to bona-fide infections, resulting in strong immune responses, with both cellular and serological components, but with much less viral replication in the lungs. This would not only hopefully reduce the incidence of pulmonary complications in the infected subjects, but would also probably reduce the amount of virus released by them via aerosols, and thus reduce the vector of contagiosity that is hardest to control, and that probably leads most effectively to viral replication in the lungs. If those experiments in animal models reveal that one or several routes can be used effectively to reduce pulmonary pathology, a clinical trial could be conducted in human volunteers with very low risk profiles. The ID route should probably be considered as a priority, since it could double-up as a skin test to reveal the immune status of the recipients towards the SARS-CoV-2 virus. The course of action proposed here may possibly provide a way of taking a step ahead of the virus, and if it works as hoped, could help to end the need for confinement within a matter of months, if not weeks.
Collapse
Affiliation(s)
- Etienne Joly
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, 31000, France
| |
Collapse
|
28
|
Frank HK, Enard D, Boyd SD. Exceptional diversity and selection pressure on SARS-CoV and SARS-CoV-2 host receptor in bats compared to other mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511410 DOI: 10.1101/2020.04.20.051656] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pandemics originating from pathogen transmission between animals and humans highlight the broader need to understand how natural hosts have evolved in response to emerging human pathogens and which groups may be susceptible to infection. Here, we investigate angiotensin-converting enzyme 2 (ACE2), the host protein bound by SARS-CoV and SARS-CoV-2. We find that the ACE2 gene is under strong selection pressure in bats, the group in which the progenitors of SARS-CoV and SARS-CoV-2 are hypothesized to have evolved, particularly in residues that contact SARS-CoV and SARS-CoV-2. We detect positive selection in non-bat mammals in ACE2 but in a smaller proportion of branches than in bats, without enrichment of selection in residues that contact SARS-CoV or SARS-CoV-2. Additionally, we evaluate similarity between humans and other species in residues that contact SARS-CoV or SARS-CoV-2, revealing potential susceptible species but also highlighting the difficulties of predicting spillover events. This work increases our understanding of the relationship between mammals, particularly bats, and coronaviruses, and provides data that can be used in functional studies of how host proteins are bound by SARS-CoV and SARS-CoV-2 strains.
Collapse
|
29
|
|