1
|
Luong NDM, Guillier L, Martin-Latil S, Batejat C, Leclercq I, Druesne C, Sanaa M, Chaix E. Database of SARS-CoV-2 and coronaviruses kinetics relevant for assessing persistence in food processing plants. Sci Data 2022; 9:654. [PMID: 36289246 PMCID: PMC9606249 DOI: 10.1038/s41597-022-01763-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/10/2022] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2), a virus causing severe acute respiratory disease in humans, emerged in late 2019. This respiratory virus can spread via aerosols, fomites, contaminated hands or surfaces as for other coronaviruses. Studying their persistence under different environmental conditions represents a key step for better understanding the virus transmission. This work aimed to present a reproducible procedure for collecting data of stability and inactivation kinetics from the scientific literature. The aim was to identify data useful for characterizing the persistence of viruses in the food production plants. As a result, a large dataset related to persistence on matrices or in liquid media under different environmental conditions is presented. This procedure, combining bibliographic survey, data digitalization techniques and predictive microbiological modelling, identified 65 research articles providing 455 coronaviruses kinetics. A ranking step as well as a technical validation with a Gage Repeatability & Reproducibility process were performed to check the quality of the kinetics. All data were deposited in public repositories for future uses by other researchers.
Collapse
Affiliation(s)
| | | | - Sandra Martin-Latil
- Laboratory for Food Safety, ANSES, University of Paris-EST, Maisons-Alfort, France
| | - Christophe Batejat
- Institut Pasteur, Université Paris Cité, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats (CIBU), Paris, France
| | - India Leclercq
- Institut Pasteur, Université Paris Cité, Environment and Infectious Risks Unit, Laboratory for Urgent Response to Biological Threats (CIBU), Paris, France
| | - Christine Druesne
- Research fundings & scientific watch department, ANSES, Maisons-Alfort, France
| | - Moez Sanaa
- Risk Assessment Department, ANSES, Maisons-Alfort, France
| | - Estelle Chaix
- Risk Assessment Department, ANSES, Maisons-Alfort, France
| |
Collapse
|
2
|
Patrício Silva AL, Prata JC, Duarte AC, Barcelò D, Rocha-Santos T. An urgent call to think globally and act locally on landfill disposable plastics under and after covid-19 pandemic: Pollution prevention and technological (Bio) remediation solutions. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 426:131201. [PMID: 35791349 PMCID: PMC9248071 DOI: 10.1016/j.cej.2021.131201] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 05/05/2023]
Abstract
Landfilling and illegal waste disposal have risen to deal with the COVID-19 potentially infectious waste, particularly in developing countries, which aggravates plastic pollution and inherent environmental threats to human and animal health. It is estimated that 3.5 million metric tonnes of masks (equivalent to 601 TIR containers) have been landfilled worldwide in the first year, with the potential to increase global plastic municipal solid waste by 3.5%, alter biogas composition, and release 2.3 × 1021 microplastics to leachates or adjacent environments, in the coming years. This paper reviews the challenges raised in the pandemic scenario on landfills and discusses the potential environmental and health implications that might drive us apart from the 2030 U.N. sustainable goals. Also, it highlights some innovative technologies to improve waste management (from collection to disposal, waste reduction, sterilization) and mitigates plastic leakage (emission control approaches, application of biotechnological and monitoring/computational tools) that can pave the way to environmental recovery. COVID-19 will eventually subside, but if no action is taken in the short-term towards effective plastic policies, replacement of plastics for sustainable alternatives (e.g., biobased plastics), improvement of waste management streams (prioritising flexible and decentralized approaches), and a greater awareness and responsibility of the general public, stakeholders, industries; we will soon reach a tipping-point in natural environments worldwide.
Collapse
Affiliation(s)
- Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana C Prata
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Damià Barcelò
- Catalan Institute for Water Research (ICRA - CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Tuñón-Molina A, Takayama K, Redwan EM, Uversky VN, Andrés J, Serrano-Aroca Á. Protective Face Masks: Current Status and Future Trends. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56725-56751. [PMID: 34797624 DOI: 10.1021/acsami.1c12227] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Management of the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has relied in part on the use of personal protective equipment (PPE). Face masks, as a representative example of PPE, have made a particularly significant contribution. However, most commonly used face masks are made of materials lacking inactivation properties against either SARS-CoV-2 or multidrug-resistant bacteria. Therefore, symptomatic and asymptomatic individuals wearing masks can still infect others due to viable microbial loads escaping from the masks. Moreover, microbial contact transmission can occur by touching the mask, and the discarded masks are an increasing source of contaminated biological waste and a serious environmental threat. For this reason, during the current pandemic, many researchers have worked to develop face masks made of advanced materials with intrinsic antimicrobial, self-cleaning, reusable, and/or biodegradable properties, thereby providing extra protection against pathogens in a sustainable manner. To overview this segment of the remarkable efforts against COVID-19, this review describes the different types of commercialized face masks, their main fabrication methods and treatments, and the progress achieved in face mask development.
Collapse
Affiliation(s)
- Alberto Tuñón-Molina
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Valencia, Spain
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Elrashdy M Redwan
- Faculty of Science, Department of Biological Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Juan Andrés
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon, Spain
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Valencia, Spain
| |
Collapse
|
4
|
Martinez JA, Miller RH, Martinez RA. Patient Questions Surrounding Mask Use for Prevention of COVID-19 and Physician Answers from an Evidence-Based Perspective: a Narrative Review. J Gen Intern Med 2021; 36:2739-2744. [PMID: 33145693 PMCID: PMC7609362 DOI: 10.1007/s11606-020-06324-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/15/2020] [Indexed: 12/23/2022]
Abstract
Recent mandates to wear masks in public places across the USA combined with conflicting messaging from the media and government agencies have generated a lot of patient questions surrounding the appropriate use and efficacy of cloth masks. Here, we have organized the evidence in the context of real patient questions and have provided example answers from a physician's perspective. The purpose of this review is to offer healthcare providers with examples of how to respond to patient questions about masks in a way that encourages responsible decision-making. We conclude, based on the evidence showing a benefit for cloth masks and the recent reports supporting a role for aerosols in the transmission of SARS-CoV-2, that cloth masks will be effective when used correctly. We further assert that stronger public messaging surrounding cloth masks in the community setting is needed, and should specify that 2-3 layer, fitted face masks be worn at all times in public as another layer of protection in addition to social distancing, not just when social distancing cannot be maintained.
Collapse
Affiliation(s)
- Jessica A Martinez
- The University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | | | | |
Collapse
|
5
|
Rowan NJ, Moral RA. Disposable face masks and reusable face coverings as non-pharmaceutical interventions (NPIs) to prevent transmission of SARS-CoV-2 variants that cause coronavirus disease (COVID-19): Role of new sustainable NPI design innovations and predictive mathematical modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145530. [PMID: 33581526 PMCID: PMC7848491 DOI: 10.1016/j.scitotenv.2021.145530] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 05/02/2023]
Abstract
Best-published evidence supports the combined use of vaccines with non-pharmaceutical interventions (NPIs), to reduce the relative risk of contracting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19; this will enable a safe transition to achieving herd immunity. Albeit complex, the strategic public health goal is to bundle NPIs to keep the basic reproduction number R0 below one. However, validation of these NPIs is conducted using random clinical trials, which is challenging in a swiftly moving pandemic given the need for recruiting large participant cohort over a longitudinal analysis period. This review highlights emerging innovations for potentially improving the design, functionality and improved waste management of disposable face masks such as filtering facepiece (FFPs) respirators, medical masks, and reusable face coverings to help prevent COVID-19. It describes use of different mathematical models under varying scenarios to inform efficacy of single and combined use of NPIs as important counter-measures to break the cycle of COVID-19 infection including new SARS-CoV-2 variants. Demand for face masks during COVID-19 pandemic keeps increasing, especially for FFPs worn by medical workers. Collaborative and well-conducted randomised controlled trials across borders are required to generate robust data to inform common and consistent policies for COVID-19 and future pandemic planning and management; however, current use of systematic reviews of best available evidence can be considered to guide interim policies.
Collapse
Affiliation(s)
- Neil J Rowan
- Department of Nursing and Healthcare, Athlone Institute of Technology, Ireland; Centre for Disinfection, Sterilization and Biosecurity, Athlone Institute of Technology, Ireland; Empower Eco Sustainability Hub, Lough Boora, Co. Offaly, Ireland; School of Medicine, National University of Ireland Galway, Ireland.
| | - Rafael A Moral
- Department of Mathematics and Statistics, Maynooth University, Ireland
| |
Collapse
|
6
|
Smullin SJ, Tarlow BD. Room Temperature Wait and Reuse for Bioburden Reduction of SARS-CoV-2 on N95 Filtering Facepiece Respirators. APPLIED BIOSAFETY 2021; 26:103-111. [PMID: 36034690 PMCID: PMC9134324 DOI: 10.1089/apb.20.0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Introduction: During a pandemic, when the supply of N95 filtering facepiece respirators (FFRs) is limited, health care workers may reuse N95 FFRs. Room temperature storage of N95 FFRs-waiting before reuse-could be a simple low-cost method to reduce severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) bioburden in such a situation. The U.S. Centers for Disease Control and Prevention specify this as a strategy for reducing self-contamination risk during a time of N95 FFR shortage. Objective: To review the literature on persistence of SARS-CoV-2 on surfaces to assess room temperature waiting times for bioburden reduction on N95 FFRs. Methods: The literature was searched for studies evaluating room temperature persistence of SARS-CoV-2. A 3-log decay time was extracted from published data for quantitative comparison between different studies. Studies using surgical masks and non-peer-reviewed studies that include N95 FFRs were used to draw conclusions. Key Findings: Experimental and analytical choices vary between studies and impact the estimated 3-log decay time. There is not a clear understanding of which material properties are significant. There are no peer-reviewed studies of virus persistence on an N95 FFR. Discussion and Conclusions: SARS-COV-2 inactivation occurs spontaneously at room temperature. The precise timing depends on factors including humidity, temperature, and surface material. In reviewed studies, a 7-day waiting period encompasses the 3-log reduction in infectious titer of SARS-COV-2 on specific N95 FFRs and surgical masks. Owing to variations between studies and among N95 FFR materials and room temperature conditions, it is impossible to extrapolate from these limited data to assign a precise 3-log decay time for all used N95 FFRs.
Collapse
Affiliation(s)
| | - Branden D. Tarlow
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
7
|
Patel M, Chaubey AK, Pittman CU, Mlsna T, Mohan D. Coronavirus (SARS-CoV-2) in the environment: Occurrence, persistence, analysis in aquatic systems and possible management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142698. [PMID: 33097261 PMCID: PMC7531938 DOI: 10.1016/j.scitotenv.2020.142698] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 04/14/2023]
Abstract
The year 2020 brought the news of the emergence of a new respiratory disease (COVID-19) from Wuhan, China. The disease is now a global pandemic and is caused by a virus named SARS-CoV-2 by international bodies. Important viral transmission sources include human contact, respiratory droplets and aerosols, and through contact with contaminated objects. However, viral shedding in feces and urine by COVID-19-afflicted patients raises concerns about SARS-CoV-2 entering aquatic systems. Recently, targeted SARS-CoV-2 genome fragments have been successfully detected in wastewater, sewage sludge and river waters around the world. Wastewater-based epidemiology (WBE) studies can provide early detection and assessment of COVID-19 transmission and the growth of active cases within given wastewater catchment areas. WBE surveillance's ability to detect the growth of cases was demonstrated. Was this science applied throughout the world as this pandemic spread throughout the globe? Wastewater treatment efficacy for SARS-CoV-2 removal and risk assessments associated with treated water are reported. Disinfection strategies using chemical disinfectants, heat and radiation for deactivating and destroying SARS-CoV-2 are explained. Analytical methods of SARS-CoV-2 detection are covered. This review provides a more complete overview of the present status of SARS-CoV-2 and its consequences in aquatic systems. So far, WBE programs have not yet served to provide the early alerts to authorities that they have the potential to achieve. This would be desirable in order to activate broad public health measures at earlier stages of local and regional stages of transmission.
Collapse
Affiliation(s)
- Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
8
|
An Emerging Innovative UV Disinfection Technology (Part II): Virucide Activity on SARS-CoV-2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18083873. [PMID: 33917088 PMCID: PMC8067697 DOI: 10.3390/ijerph18083873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/07/2023]
Abstract
The coronavirus SARS-CoV-2 pandemic has become a global health burden. Surface sanitation is one of the key points to reduce the risk of transmission both in healthcare and other public spaces. UVC light is already used in hospital and laboratory infection control, and some recent studies have shown its effectiveness on SARS-CoV-2. An innovative UV chip technology, described in Part I of this study, has recently appeared able to overcome the limits of old lamps and is proposed as a valid alternative to LEDs. This study was designed to test the virucidal activity on SARS-CoV-2 of a device based on the new UV chip technology. Via an initial concentration of virus suspension of 107.2 TCID50/mL, the tests revealed a viral charge reduction of more than 99.9% after 3 min; the maximum detectable attenuation value of Log10 = 5.7 was measured at 10 min of UV exposure.
Collapse
|
9
|
Komiyama M. Molecular-level Anatomy of SARS-CoV-2 for the Battle against COVID-19 Pandemic. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Maragoni-Santos C, Serrano Pinheiro de Souza T, Matheus JRV, de Brito Nogueira TB, Xavier-Santos D, Miyahira RF, Costa Antunes AE, Fai AEC. COVID-19 pandemic sheds light on the importance of food safety practices: risks, global recommendations, and perspectives. Crit Rev Food Sci Nutr 2021; 62:5569-5581. [PMID: 33591233 DOI: 10.1080/10408398.2021.1887078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The outbreak of the coronavirus disease (COVID-19) is global health and humanitarian emergency. To respond effectively to this pandemic, it is mandatory to reaffirm science in its different fields of study, including the food safety area. Presently, we review food safety in times of COVID-19, exploring whether the virus can be transmitted by food or water; recommendations from regulatory agencies; perceptions of food hygiene practices during the pandemic; and post-pandemic perspectives. The review was based on papers published in Web of Science, Scopus, Pubmed, and covered recommendations of public health protection and regulatory agencies around the world. The transmission of the severe acute respiratory syndrome (SARS-CoV-2) by food was not confirmed until the present time. In any case, the protocols already established for food safety were reinforced, emphasizing the proper hygiene of hands after shopping, handling food packages, or before manipulating or eating food, adequate social distance, the use of individual protection equipment, the health of employees, and the proper preparation of food. It is hoped, in the post-pandemic scenario, to reach a better understanding of the particularities that led to greater care with food hygiene. Moreover, it is expected that the food system will creatively adapt the way meals are served.
Collapse
Affiliation(s)
- Carollyne Maragoni-Santos
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | | | - Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | | | - Douglas Xavier-Santos
- School of Applied Sciences, State University of Campinas (FCA/UNICAMP), Limeira, SP, Brazil
| | - Roberta Fontanive Miyahira
- School of Applied Sciences, State University of Campinas (FCA/UNICAMP), Limeira, SP, Brazil.,Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | | | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.,Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Rowan NJ, Laffey JG. Unlocking the surge in demand for personal and protective equipment (PPE) and improvised face coverings arising from coronavirus disease (COVID-19) pandemic - Implications for efficacy, re-use and sustainable waste management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142259. [PMID: 33207488 PMCID: PMC7481258 DOI: 10.1016/j.scitotenv.2020.142259] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 05/17/2023]
Abstract
Currently, there is no effective vaccine for tackling the ongoing COVID-19 pandemic caused by SARS-CoV-2 with the occurrence of repeat waves of infection frequently stretching hospital resources beyond capacity. Disease countermeasures rely upon preventing person-to-person transmission of SARS-CoV2 so as to protect front-line healthcare workers (HCWs). COVID-19 brings enormous challenges in terms of sustaining the supply chain for single-use-plastic personal and protective equipment (PPE). Post-COVID-19, the changes in medical practice will drive high demand for PPE. Important countermeasures for preventing COVID-19 transmission include mitigating potential high risk aerosol transmission in healthcare setting using medical PPE (such as filtering facepiece respirators (FFRs)) and the appropriate use of face coverings by the general public that carries a lower transmission risk. PPE reuse is a potential short term solution during COVID-19 pandemic where there is increased evidence for effective deployment of reprocessing methods such as vaporized hydrogen peroxide (30 to 35% VH2O2) used alone or combined with ozone, ultraviolet light at 254 nm (2000 mJ/cm2) and moist heat (60 °C at high humidity for 60 min). Barriers to PPE reuse include potentially trust and acceptance by HCWs. Efficacy of face coverings are influenced by the appropriate wearing to cover the nose and mouth, type of material used, number of layers, duration of wearing, and potentially superior use of ties over ear loops. Insertion of a nose clip into cloth coverings may help with maintaining fit. Use of 60 °C for 60 min (such as, use of domestic washing machine and spin dryer) has been advocated for face covering decontamination. Risk of virus infiltration in improvised face coverings is potentially increased by duration of wearing due to humidity, liquid diffusion and virus retention. Future sustained use of PPE will be influenced by the availability of recyclable PPE and by innovative biomedical waste management.
Collapse
Affiliation(s)
- Neil J Rowan
- Department of Nursing and Healthcare, Athlone Institute of Technology, Ireland; Centre for Disinfection, Sterilization and Biosecurity, Athlone Institute of Technology, Ireland; Empower Eco Sustainability Hub, Lough Boora, Co. Offaly, Ireland.
| | - John G Laffey
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland; Anaesthesia and Intensive Care Medicine, University Hospital Galway, Galway, Ireland
| |
Collapse
|
12
|
Biryukov J, Boydston JA, Dunning RA, Yeager JJ, Wood S, Ferris A, Miller D, Weaver W, Zeitouni NE, Freeburger D, Dabisch P, Wahl V, Hevey MC, Altamura LA. SARS-CoV-2 is rapidly inactivated at high temperature. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:1773-1777. [PMID: 33551702 PMCID: PMC7856623 DOI: 10.1007/s10311-021-01187-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/15/2021] [Indexed: 05/22/2023]
Abstract
In the absence of a vaccine, preventing the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the primary means to reduce the impact of the 2019 coronavirus disease (COVID-19). Multiple studies have reported the presence of SARS-CoV-2 genetic material on surfaces suggesting that fomite transmission of SARS-CoV-2 is feasible. High temperature inactivation of virus has been previously suggested, but not shown. In the present study, we investigated the environmental stability of SARS-CoV-2 in a clinically relevant matrix dried onto stainless steel at a high temperature. The results show that at 54.5 °C, the virus half-life was 10.8 ± 3.0 min and the time for a 90% decrease in infectivity was 35.4 ± 9.0 min. These findings suggest that in instances where the environment can reach temperatures of at least 54.5 °C, such as in vehicle interior cabins when parked in warmer ambient air, that the potential for exposure to infectious virus on surfaces could be decreased substantially in under an hour.
Collapse
Affiliation(s)
- Jennifer Biryukov
- National Biodefense Analysis and Countermeasures Center (NBACC), Operated By Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security Science and Technology Directorate, Fort Detrick, MD 21702 USA
| | - Jeremy A. Boydston
- National Biodefense Analysis and Countermeasures Center (NBACC), Operated By Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security Science and Technology Directorate, Fort Detrick, MD 21702 USA
| | - Rebecca A. Dunning
- National Biodefense Analysis and Countermeasures Center (NBACC), Operated By Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security Science and Technology Directorate, Fort Detrick, MD 21702 USA
| | - John J. Yeager
- National Biodefense Analysis and Countermeasures Center (NBACC), Operated By Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security Science and Technology Directorate, Fort Detrick, MD 21702 USA
| | - Stewart Wood
- National Biodefense Analysis and Countermeasures Center (NBACC), Operated By Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security Science and Technology Directorate, Fort Detrick, MD 21702 USA
| | - Allison Ferris
- National Biodefense Analysis and Countermeasures Center (NBACC), Operated By Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security Science and Technology Directorate, Fort Detrick, MD 21702 USA
| | - David Miller
- National Biodefense Analysis and Countermeasures Center (NBACC), Operated By Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security Science and Technology Directorate, Fort Detrick, MD 21702 USA
| | - Wade Weaver
- National Biodefense Analysis and Countermeasures Center (NBACC), Operated By Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security Science and Technology Directorate, Fort Detrick, MD 21702 USA
| | - Nathalie E. Zeitouni
- National Biodefense Analysis and Countermeasures Center (NBACC), Operated By Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security Science and Technology Directorate, Fort Detrick, MD 21702 USA
| | - Denise Freeburger
- National Biodefense Analysis and Countermeasures Center (NBACC), Operated By Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security Science and Technology Directorate, Fort Detrick, MD 21702 USA
| | - Paul Dabisch
- National Biodefense Analysis and Countermeasures Center (NBACC), Operated By Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security Science and Technology Directorate, Fort Detrick, MD 21702 USA
| | - Victoria Wahl
- National Biodefense Analysis and Countermeasures Center (NBACC), Operated By Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security Science and Technology Directorate, Fort Detrick, MD 21702 USA
| | - Michael C. Hevey
- National Biodefense Analysis and Countermeasures Center (NBACC), Operated By Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security Science and Technology Directorate, Fort Detrick, MD 21702 USA
| | - Louis A. Altamura
- National Biodefense Analysis and Countermeasures Center (NBACC), Operated By Battelle National Biodefense Institute (BNBI) for the U.S. Department of Homeland Security Science and Technology Directorate, Fort Detrick, MD 21702 USA
| |
Collapse
|
13
|
Xue X, Ball JK, Alexander C, Alexander MR. All Surfaces Are Not Equal in Contact Transmission of SARS-CoV-2. MATTER 2020; 3:1433-1441. [PMID: 33043292 PMCID: PMC7538118 DOI: 10.1016/j.matt.2020.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The world faces a severe and acute public health emergency due to the ongoing coronavirus disease 2019 (COVID-19) global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Healthcare workers are in the front line of the COVID-19 outbreak response and are exposed to the risk of SARS-CoV-2 infection daily. Personal protective equipment (PPE) is their main defense against viral contamination; gloves, visors, face masks, and gown materials are designed to eliminate viral transfer from infected patients. Here, we review research investigating the stability of SARS-CoV-2 and similar viruses on surfaces and highlight opportunities for materials that can actively reduce SARS-CoV-2 surface contamination and associated transmission and improve PPE.
Collapse
Affiliation(s)
- Xuan Xue
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jonathan K Ball
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
- Nottingham Biomedical Research Centre, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
- Centre for Research on Global Virus Infections, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Morgan R Alexander
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
14
|
Riddell S, Goldie S, Hill A, Eagles D, Drew TW. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol J 2020; 17:145. [PMID: 33028356 PMCID: PMC7538848 DOI: 10.1186/s12985-020-01418-7] [Citation(s) in RCA: 340] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The rate at which COVID-19 has spread throughout the globe has been alarming. While the role of fomite transmission is not yet fully understood, precise data on the environmental stability of SARS-CoV-2 is required to determine the risks of fomite transmission from contaminated surfaces. METHODS This study measured the survival rates of infectious SARS-CoV-2, suspended in a standard ASTM E2197 matrix, on several common surface types. All experiments were carried out in the dark, to negate any effects of UV light. Inoculated surfaces were incubated at 20 °C, 30 °C and 40 °C and sampled at various time points. RESULTS Survival rates of SARS-CoV-2 were determined at different temperatures and D-values, Z-values and half-life were calculated. We obtained half lives of between 1.7 and 2.7 days at 20 °C, reducing to a few hours when temperature was elevated to 40 °C. With initial viral loads broadly equivalent to the highest titres excreted by infectious patients, viable virus was isolated for up to 28 days at 20 °C from common surfaces such as glass, stainless steel and both paper and polymer banknotes. Conversely, infectious virus survived less than 24 h at 40 °C on some surfaces. CONCLUSION These findings demonstrate SARS-CoV-2 can remain infectious for significantly longer time periods than generally considered possible. These results could be used to inform improved risk mitigation procedures to prevent the fomite spread of COVID-19.
Collapse
Affiliation(s)
- Shane Riddell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, VIC, Australia.
| | - Sarah Goldie
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Andrew Hill
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Debbie Eagles
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Trevor W Drew
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| |
Collapse
|
15
|
Ijaz MK, Sattar SA, Rubino JR, Nims RW, Gerba CP. Combating SARS-CoV-2: leveraging microbicidal experiences with other emerging/re-emerging viruses. PeerJ 2020; 8:e9914. [PMID: 33194365 PMCID: PMC7485481 DOI: 10.7717/peerj.9914] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan City, China, late in December 2019 is an example of an emerging zoonotic virus that threatens public health and international travel and commerce. When such a virus emerges, there is often insufficient specific information available on mechanisms of virus dissemination from animal-to-human or from person-to-person, on the level or route of infection transmissibility or of viral release in body secretions/excretions, and on the survival of virus in aerosols or on surfaces. The effectiveness of available virucidal agents and hygiene practices as interventions for disrupting the spread of infection and the associated diseases may not be clear for the emerging virus. In the present review, we suggest that approaches for infection prevention and control (IPAC) for SARS-CoV-2 and future emerging/re-emerging viruses can be invoked based on pre-existing data on microbicidal and hygiene effectiveness for related and unrelated enveloped viruses.
Collapse
Affiliation(s)
- M. Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, USA
- Department of Biology, Medgar Evers College of the City University of New York (CUNY), Brooklyn, NY, USA
| | - Syed A. Sattar
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Joseph R. Rubino
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, USA
| | | | - Charles P. Gerba
- Water & Energy Sustainable Technology Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
16
|
Derraik JGB, Anderson WA, Connelly EA, Anderson YC. Rapid Review of SARS-CoV-1 and SARS-CoV-2 Viability, Susceptibility to Treatment, and the Disinfection and Reuse of PPE, Particularly Filtering Facepiece Respirators. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6117. [PMID: 32842655 PMCID: PMC7504573 DOI: 10.3390/ijerph17176117] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 01/22/2023]
Abstract
In the COVID-19 pandemic caused by SARS-CoV-2, hospitals are often stretched beyond capacity. There are widespread reports of dwindling supplies of personal protective equipment (PPE), particularly N95-type filtering facepiece respirators (FFRs), which are paramount to protect frontline medical/nursing staff, and to minimize further spread of the virus. We carried out a rapid review to summarize the existing literature on the viability of SARS-CoV-2, the efficacy of key potential disinfection procedures against the virus (specifically ultraviolet light and heat), and the impact of these procedures on FFR performance, material integrity, and/or fit. In light of the recent discovery of SARS-CoV-2 and limited associated research, our review also focused on the closely related SARS-CoV-1. We propose a possible whole-of-PPE disinfection solution for potential reuse that could be rapidly instituted in many health care settings, without significant investments in equipment.
Collapse
Affiliation(s)
- José G. B. Derraik
- Liggins Institute, University of Auckland, Auckland 1023, New Zealand
- Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland 1023, New Zealand;
- Tamariki Pakari Child Health and Wellbeing Trust, New Plymouth, Taranaki 4310, New Zealand
- Department of Women’s and Children’s Health, Uppsala University, 751 85 Uppsala, Sweden
| | - William A. Anderson
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Elizabeth A. Connelly
- Dermatology, Department of Medicine, Taranaki District Health Board, New Plymouth 4310, New Zealand;
| | - Yvonne C. Anderson
- Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland 1023, New Zealand;
- Tamariki Pakari Child Health and Wellbeing Trust, New Plymouth, Taranaki 4310, New Zealand
- Department of Paediatrics, Taranaki District Health Board, New Plymouth 4310, New Zealand
| |
Collapse
|