1
|
Di Nisio V, Daponte N, Messini C, Anifandis G, Antonouli S. Oncofertility and Fertility Preservation for Women with Gynecological Malignancies: Where Do We Stand Today? Biomolecules 2024; 14:943. [PMID: 39199331 PMCID: PMC11353009 DOI: 10.3390/biom14080943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Oncofertility is a growing medical and research field that includes two main areas: oncology and reproductive medicine. Nowadays, the percentage of patients surviving cancer has exponentially increased, leading to the need for intervention for fertility preservation in both men and women. Specifically, gynecological malignancies in women pose an additional layer of complexity due to the reproductive organs being affected. In the present review, we report fertility preservation options with a cancer- and stage-specific focus. We explore the drawbacks and the necessity for planning fertility preservation applications during emergency statuses (i.e., the COVID-19 pandemic) and comment on the importance of repro-counseling for multifaceted patients during their oncological and reproductive journey.
Collapse
Affiliation(s)
- Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, 14186 Stockholm, Sweden;
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, 14186 Stockholm, Sweden
| | - Nikoletta Daponte
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larisa, Greece; (N.D.); (C.M.); (G.A.)
| | - Christina Messini
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larisa, Greece; (N.D.); (C.M.); (G.A.)
| | - George Anifandis
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larisa, Greece; (N.D.); (C.M.); (G.A.)
| | - Sevastiani Antonouli
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larisa, Greece; (N.D.); (C.M.); (G.A.)
| |
Collapse
|
2
|
Muyayalo KP, Gong GS, Kiyonga Aimeé K, Liao AH. Impaired immune response against SARS-CoV-2 infection is the major factor indirectly altering reproductive function in COVID-19 patients: a narrative review. HUM FERTIL 2023; 26:778-796. [PMID: 37811836 DOI: 10.1080/14647273.2023.2262757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/25/2023] [Indexed: 10/10/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease affecting multiple systems and organs, including the reproductive system. SARS-CoV-2, the virus that causes COVID-19, can damage reproductive organs through direct (angiotensin converting enzyme-2, ACE-2) and indirect mechanisms. The immune system plays an essential role in the homeostasis and function of the male and female reproductive systems. Therefore, an altered immune response related to infectious and inflammatory diseases can affect reproductive function and fertility in both males and females. This narrative review discussed the dysregulation of innate and adaptive systems induced by SARS-CoV-2 infection. We reviewed the evidence showing that this altered immune response in COVID-19 patients is the major indirect mechanism leading to adverse reproduction outcomes in these patients. We summarized studies reporting the long-term effect of SARS-CoV-2 infection on women's reproductive function and proposed the chronic inflammation and chronic autoimmunity characterizing long COVID as potential underlying mechanisms. Further studies are needed to clarify the role of autoimmunity and chronic inflammation (long COVID) in altered female reproduction function in COVID-19.
Collapse
Affiliation(s)
- Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Department of Obstetrics and Gynecology, University of Kinshasa, Kinshasa, D. R. Congo
| | - Guang-Shun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Kahindo Kiyonga Aimeé
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, People's Republic of China
- Department of Tropical Medicine Infectious and Parasitic Diseases, University of Kinshasa, Kinshasa, D. R. Congo
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
3
|
Konje JC, Al Beloushi M, Ahmed B. Immunisation against COVID-19 in Pregnancy and of Women Planning Pregnancy. Viruses 2023; 15:v15030621. [PMID: 36992330 PMCID: PMC10059008 DOI: 10.3390/v15030621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Following reports of the first human SARS-CoV2 infection in December 2019 from Wuhan Province, China, there was such rapid spread that by March 2021, the World Health Organization (WHO) had declared a pandemic. Over 6.5 million people have died from this infection worldwide, although this is most likely an underestimate. Until vaccines became available, mortality and severe morbidity were costly in terms of life lost as well as the cost of supporting the severely and acutely ill. Vaccination changed the landscape, and following worldwide adoption, life has gradually been returning to normal. The speed of production of the vaccines was unprecedented and undoubtedly ushered in a new era in the science of fighting infections. The developed vaccines were on the already known platforms for vaccine delivery: inactivated virus, virus vector, virus-like particles (VLP) subunit, DNA and mRNA. The mRNA platform was used for the first time to deliver vaccines to humans. An understanding of these platforms and the pros and cons of each are important for clinicians who are often challenged by the recipients on the advantages and risks of these vaccines. These vaccines have so far and reassuringly been shown to be safe in reproduction (with no effect on gametes) and pregnancy (not associated with congenital malformations). However, safety remains paramount and continuing vigilance is critical, especially against rare fatal complications such as vaccine-induced thrombocytopenia and myocarditis. Finally, the waning immunity months after vaccination means repeated immunisation is likely to be ongoing, but just how often and how many such revaccinations should be recommended remains uncertain. Research into other vaccines and alternate delivery methods should continue as this infection is likely to be around for a long time.
Collapse
Affiliation(s)
- Justin C. Konje
- Feto-Maternal Centre Al Markhiya, Doha P.O. Box 34181, Qatar
- Obstetrics and Gynecology Department, Weill Cornell Medicine Qatar, Doha P.O. Box 24144, Qatar
- Obstetrics and Gynaecology, Department of Health Sciences, University of Leicester, Leicester LE2 7LX, UK
- Correspondence: ; Tel.: +974-7777-8375
| | - Mariam Al Beloushi
- Women’s Wellness and Research Centre, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar
| | - Badreldeen Ahmed
- Feto-Maternal Centre Al Markhiya, Doha P.O. Box 34181, Qatar
- Obstetrics and Gynecology Department, Weill Cornell Medicine Qatar, Doha P.O. Box 24144, Qatar
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
4
|
Li X, Chen Z, Geng J, Mei Q, Li H, Mao C, Han M. COVID-19 and Male Reproduction: A Thorny Problem. Am J Mens Health 2022; 16:15579883221074816. [PMID: 35176914 PMCID: PMC8859685 DOI: 10.1177/15579883221074816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
With the global epidemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the increasing number of infections, little is known about how SARS-CoV-2 affects the male reproductive system during infection or after recovery. Based on the existing research data, we reviewed the effects of SARS-CoV-2 on the male reproductive system and discussed its possible mechanism of action. SARS-CoV-2 enters host cells through the angiotensin-converting enzyme 2 (ACE2)/transmembrane serine protease 2 (TMPRSS2) pathway, and males are more susceptible than females. After infection, immunopathological damage is noticed in the testicles, and the semen index is significantly reduced. Second, abnormalities of serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) levels were also observed, suggesting that there may be dysfunction of the hypothalamic–pituitary–gonadal (HPG) axis. Even after recovery, the effect of SARS-CoV-2 on the male reproductive system can last for at least a period. There are still many unresolved questions about the effect of SARS-CoV-2 infection on the male reproductive tract. Other receptors involved during the invasion of human cells by SARS-CoV-2 remain to be identified. Will the mutation of SARS-CoV-2 increase the diversity of receptors? How does SARS-CoV-2 affect the HPG axis? The long-term effects of SARS-CoV-2 on the male reproductive system remain to be evaluated. SARS-CoV-2 infection can affect male reproductive function. Standard treatment strategies should be developed in time to protect the fertility of infected patients. For recovered patients with fertility requirements, fertility assessments should be performed and professional fertility guidance should be provided at the same time.
Collapse
Affiliation(s)
- Xiaoping Li
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhiqiang Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jinke Geng
- Department of Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Qian Mei
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hong Li
- Department of Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Caiping Mao
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mutian Han
- Department of Immunology, Anhui Medical University, Hefei, Anhui, China.,Center for Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Siregar MFG, Siregar EKH. The Effect of Coronavirus Disease 2019 on Reproduction System and Fertility. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
As of October 9, 2020, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was recorded to have infected more than 235 countries and 36,361,054 people globally, and 1,056,186 people died from coronavirus disease 2019 (COVID-19). In early October 2020, it was reported that the rate of increase in new cases reached 300,000 cases per day. A scientific reference source about COVID-19 in pregnancy and fertility system based on the results of previous research. By conducting a literature search that was carried out until October 12, 2020, through the PubMed and Google Scholar databases using the keyword COVID-19 and pregnancy, 20 articles were used as a reference source. Human SARS-CoV appeared in China, causing a deadly epidemic 18 years ago. Novel coronavirus-2019 infects target cells by binding to angiotensin-converting enzyme 2 (ACE2) through its surface spike protein. nCoV-2 modulates ACE2 expression and causes serious injury, similar to SARS-CoV. There is the possibility that the SARS-CoV-2 mechanism can affect fertility on female, namely, SARS-CoV-2 can harm ovarian tissue and granulosa cells, and reduce ovarian function and quality of oocytes, and can make infertility or miscarriage; also damage the endometrial epithelium and affect early embryo implantation. COVID-19 is caused by SARS-CoV-2 which is an acute infectious disease that mostly affects the respiratory system, but can also attack the reproductive system.
Collapse
|
6
|
Aguilar-Pineda JA, Albaghdadi M, Jiang W, Vera-Lopez KJ, Nieto-Montesinos R, Alvarez KLF, Davila Del-Carpio G, Gómez B, Lindsay ME, Malhotra R, Lino Cardenas CL. Structural and Functional Analysis of Female Sex Hormones against SARS-CoV-2 Cell Entry. Int J Mol Sci 2021; 22:11508. [PMID: 34768939 PMCID: PMC8584232 DOI: 10.3390/ijms222111508] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence suggests that males are more susceptible to severe infection by the SARS-CoV-2 virus than females. A variety of mechanisms may underlie the observed gender-related disparities including differences in sex hormones. However, the precise mechanisms by which female sex hormones may provide protection against SARS-CoV-2 infectivity remains unknown. Here we report new insights into the molecular basis of the interactions between the SARS-CoV-2 spike (S) protein and the human ACE2 receptor. We further report that glycosylation of the ACE2 receptor enhances SARS-CoV-2 infectivity. Importantly, estrogens can disrupt glycan-glycan interactions and glycan-protein interactions between the human ACE2 and the SARS-CoV-2 thereby blocking its entry into cells. In a mouse model of COVID-19, estrogens reduced ACE2 glycosylation and thereby alveolar uptake of the SARS-CoV-2 spike protein. These results shed light on a putative mechanism whereby female sex hormones may provide protection from developing severe infection and could inform the development of future therapies against COVID-19.
Collapse
Affiliation(s)
- Jorge Alberto Aguilar-Pineda
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04001, Peru; (J.A.A.-P.); (K.J.V.-L.); (R.N.-M.); (K.L.F.A.); (G.D.D.-C.); (B.G.)
| | - Mazen Albaghdadi
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (M.A.); (W.J.); (M.E.L.)
| | - Wanlin Jiang
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (M.A.); (W.J.); (M.E.L.)
| | - Karin J. Vera-Lopez
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04001, Peru; (J.A.A.-P.); (K.J.V.-L.); (R.N.-M.); (K.L.F.A.); (G.D.D.-C.); (B.G.)
| | - Rita Nieto-Montesinos
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04001, Peru; (J.A.A.-P.); (K.J.V.-L.); (R.N.-M.); (K.L.F.A.); (G.D.D.-C.); (B.G.)
| | - Karla Lucia F. Alvarez
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04001, Peru; (J.A.A.-P.); (K.J.V.-L.); (R.N.-M.); (K.L.F.A.); (G.D.D.-C.); (B.G.)
| | - Gonzalo Davila Del-Carpio
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04001, Peru; (J.A.A.-P.); (K.J.V.-L.); (R.N.-M.); (K.L.F.A.); (G.D.D.-C.); (B.G.)
| | - Badhin Gómez
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04001, Peru; (J.A.A.-P.); (K.J.V.-L.); (R.N.-M.); (K.L.F.A.); (G.D.D.-C.); (B.G.)
| | - Mark E. Lindsay
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (M.A.); (W.J.); (M.E.L.)
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (M.A.); (W.J.); (M.E.L.)
| | - Christian L. Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (M.A.); (W.J.); (M.E.L.)
| |
Collapse
|
7
|
Piticchio T, Le Moli R, Tumino D, Frasca F. Relationship between betacoronaviruses and the endocrine system: a new key to understand the COVID-19 pandemic-A comprehensive review. J Endocrinol Invest 2021; 44:1553-1570. [PMID: 33583003 PMCID: PMC7882054 DOI: 10.1007/s40618-020-01486-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND A new harmful respiratory disease, called COVID-19 emerged in China in December 2019 due to the infection of a novel coronavirus, called SARS-Coronavirus 2 (SARS-CoV-2), which belongs to the betacoronavirus genus, including SARS-CoV-1 and MERS-CoV. SARS-CoV-2 shares almost 80% of the genome with SARS-CoV-1 and 50% with MERS-CoV. Moreover, SARS-CoV-2 proteins share a high degree of homology (approximately 95%) with SARS-CoV-1 proteins. Hence, the mechanisms of SARS-Cov-1 and SARS-Cov-2 infection are similar and occur via binding to ACE2 protein, which is widely distributed in the human body, with a predominant expression in endocrine tissues including testis, thyroid, adrenal and pituitary. PURPOSE On the basis of expression pattern of the ACE2 protein among different tissues, similarity between SARS-Cov-1 and SARS-Cov-2 and the pathophysiology of COVID-19 disease, we aimed at discussing, after almost one-year pandemic, about the relationships between COVID-19 infection and the endocrine system. First, we discussed the potential effect of hormones on the susceptibility to COVID-19 infection; second, we examined the evidences regarding the effect of COVID-19 on the endocrine system. When data were available, a comparative discussion between SARS and COVID-19 effects was also performed. METHODS A comprehensive literature search within Pubmed was performed. This review has been conducted according to the PRISMA statements. RESULTS Among 450, 100 articles were selected. Tissue and vascular damages have been shown on thyroid, adrenal, testis and pituitary glands, with multiple alterations of endocrine function. CONCLUSION Hormones may affect patient susceptibility to COVID-19 infection but evidences regarding therapeutic implication of these findings are still missing. SARS and COVID-19 may affect endocrine glands and their dense vascularization, impairing endocrine system function. A possible damage of endocrine system in COVID-19 patients should be investigated in both COVID-19 acute phase and recovery to identify both early and late endocrine complications that may be important for patient's prognosis and well-being after COVID-19 infection.
Collapse
Affiliation(s)
- T Piticchio
- Endocrinology Section, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy
| | - R Le Moli
- Endocrinology Section, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy
| | - D Tumino
- Endocrinology Section, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy
| | - F Frasca
- Endocrinology Section, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Via Palermo 636, 95122, Catania, Italy.
| |
Collapse
|
8
|
El-Sayed A, Aleya L, Kamel M. COVID-19: a new emerging respiratory disease from the neurological perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40445-40459. [PMID: 33590398 PMCID: PMC7884096 DOI: 10.1007/s11356-021-12969-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/10/2021] [Indexed: 04/15/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has become a challenging public health catastrophe worldwide. The newly emerged disease spread in almost all countries and infected 100 million persons worldwide. The infection is not limited to the respiratory system but involves various body systems and may lead to multiple organ failure. Tissue degenerative changes result from direct viral invasion, indirect consequences, or through an uncontrolled immune response. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads to the brain via hematogenous and neural routes accompanied with dysfunction of the blood-brain barrier. The involvement of the central nervous system is now suspected to be among the main causes of death. The present review discusses the historical background of coronaviruses, their role in previous and ongoing pandemics, the way they escape the immune system, why they are able to spread despite all undertaken measures, in addition to the neurological manifestations, long-term consequences of the disease, and various routes of viral introduction to the CNS.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
9
|
Raghav PK, Kalyanaraman K, Kumar D. Human cell receptors: potential drug targets to combat COVID-19. Amino Acids 2021; 53:813-842. [PMID: 33950300 PMCID: PMC8097256 DOI: 10.1007/s00726-021-02991-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 04/21/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19). The World Health Organization (WHO) has announced that COVID-19 is a pandemic having a higher spread rate rather than the mortality. Identification of a potential approach or therapy against COVID-19 is still under consideration. Therefore, it is essential to have an insight into SARS-CoV-2, its interacting partner, and domains for an effective treatment. The present study is divided into three main categories, including SARS-CoV-2 prominent receptor and its expression levels, other interacting partners, and their binding domains. The first section focuses primarily on coronaviruses' general aspects (SARS-CoV-2, SARS-CoV, and the Middle East Respiratory Syndrome Coronaviruses (MERS-CoV)) their structures, similarities, and mode of infections. The second section discusses the host receptors which includes the human targets of coronaviruses like dipeptidyl peptidase 4 (DPP4), CD147, CD209L, Angiotensin-Converting Enzyme 2 (ACE2), and other miscellaneous targets (type-II transmembrane serine proteases (TTSPs), furin, trypsin, cathepsins, thermolysin, elastase, phosphatidylinositol 3-phosphate 5-kinase, two-pore segment channel, and epithelium sodium channel C-α subunit). The human cell receptor, ACE2 plays an essential role in the Renin-Angiotensin system (RAS) pathway and COVID-19. Thus, this section also discusses the ACE2 expression and risk of COVID-19 infectivity in various organs and tissues such as the liver, lungs, intestine, heart, and reproductive system in the human body. Absence of ACE2 protein expression in immune cells could be used for limiting the SARS-CoV-2 infection. The third section covers the current available approaches for COVID-19 treatment. Overall, this review focuses on the critical role of human cell receptors involved in coronavirus pathogenesis, which would likely be used in designing target-specific drugs to combat COVID-19.
Collapse
Affiliation(s)
| | - Keerthana Kalyanaraman
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh, India
| | - Dinesh Kumar
- ICMR-National Institute of Cancer Prevention & Research, Noida, 201301, India.
| |
Collapse
|
10
|
Evans N, Martinez E, Petrosillo N, Nichols J, Islam E, Pruitt K, Almodovar S. SARS-CoV-2 and Human Immunodeficiency Virus: Pathogen Pincer Attack. HIV AIDS (Auckl) 2021; 13:361-375. [PMID: 33833585 PMCID: PMC8020331 DOI: 10.2147/hiv.s300055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Paramount efforts worldwide are seeking to increase understanding of the basic virology of SARS-CoV-2, characterize the spectrum of complications associated with COVID-19, and develop vaccines that can protect from new and recurrent infections with SARS-CoV-2. While we continue learning about this new virus, it is clear that 1) the virus is spread via the respiratory route, primarily by droplets and contact with contaminated surfaces and fomites, as well as by aerosol formation during invasive respiratory procedures; 2) the airborne route is still controversial; and 3) that those infected can spread the virus without necessarily developing COVID-19 (ie, asymptomatic). With the number of SARS-CoV-2 infections increasing globally, the possibility of co-infections and/or co-morbidities is becoming more concerning. Co-infection with Human Immunodeficiency Virus (HIV) is one such example of polyparasitism of interest. This military-themed comparative review of SARS-CoV-2 and HIV details their virology and describes them figuratively as separate enemy armies. HIV, an old enemy dug into trenches in individuals already infected, and SARS-CoV-2 the new army, attempting to attack and capture territories, tissues and organs, in order to provide resources for their expansion. This analogy serves to aid in discussion of three main areas of focus and draw attention to how these viruses may cooperate to gain the upper hand in securing a host. Here we compare their target, the key receptors found on those tissues, viral lifecycles and tactics for immune response surveillance. The last focus is on the immune response to infection, addressing similarities in cytokines released. While the majority of HIV cases can be successfully managed with antiretroviral therapy nowadays, treatments for SARS-CoV-2 are still undergoing research given the novelty of this army.
Collapse
Affiliation(s)
- Nicholas Evans
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| | - Edgar Martinez
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| | - Nicola Petrosillo
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | - Jacob Nichols
- Texas Tech University Health Sciences Center, Department of Internal Medicine, Lubbock, TX, USA
| | - Ebtesam Islam
- Texas Tech University Health Sciences Center, Department of Internal Medicine, Lubbock, TX, USA
| | - Kevin Pruitt
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| | - Sharilyn Almodovar
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| |
Collapse
|
11
|
Synowiec A, Szczepański A, Barreto-Duran E, Lie LK, Pyrc K. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): a Systemic Infection. Clin Microbiol Rev 2021; 34:e00133-20. [PMID: 33441314 PMCID: PMC7849242 DOI: 10.1128/cmr.00133-20] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
To date, seven identified coronaviruses (CoVs) have been found to infect humans; of these, three highly pathogenic variants have emerged in the 21st century. The newest member of this group, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first detected at the end of 2019 in Hubei province, China. Since then, this novel coronavirus has spread worldwide, causing a pandemic; the respiratory disease caused by the virus is called coronavirus disease 2019 (COVID-19). The clinical presentation ranges from asymptomatic to mild respiratory tract infections and influenza-like illness to severe disease with accompanying lung injury, multiorgan failure, and death. Although the lungs are believed to be the site at which SARS-CoV-2 replicates, infected patients often report other symptoms, suggesting the involvement of the gastrointestinal tract, heart, cardiovascular system, kidneys, and other organs; therefore, the following question arises: is COVID-19 a respiratory or systemic disease? This review aims to summarize existing data on the replication of SARS-CoV-2 in different tissues in both patients and ex vivo models.
Collapse
Affiliation(s)
- Aleksandra Synowiec
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Artur Szczepański
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Emilia Barreto-Duran
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Laurensius Kevin Lie
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
12
|
Aguilar-Pineda JA, Albaghdadi M, Jiang W, Lopez KJV, Del-Carpio GD, Valdez BG, Lindsay ME, Malhotra R, Lino Cardenas CL. Structural and functional analysis of female sex hormones against SARS-Cov2 cell entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32766583 DOI: 10.1101/2020.07.29.227249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Emerging evidence suggests that males are more susceptible to severe infection by the SARS-CoV-2 virus than females. A variety of mechanisms may underlie the observed gender-related disparities including differences in sex hormones. However, the precise mechanisms by which female sex hormones may provide protection against SARS-CoV-2 infectivity remains unknown. Here we report new insights into the molecular basis of the interactions between the SARS-CoV-2 spike (S) protein and the human ACE2 receptor. We further observed that glycosylation of the ACE2 receptor enhances SARS-CoV-2 infectivity. Importantly estrogens can disrupt glycan-glycan interactions and glycan-protein interactions between the human ACE2 and the SARS-CoV2 thereby blocking its entry into cells. In a mouse model, estrogens reduced ACE2 glycosylation and thereby alveolar uptake of the SARS-CoV-2 spike protein. These results shed light on a putative mechanism whereby female sex hormones may provide protection from developing severe infection and could inform the development of future therapies against COVID-19.
Collapse
|
13
|
Chu H, Li J, Yan J, Bai T, Schnabl B, Zou L, Yang L, Hou X. Persistent SARS-CoV-2 RNA Positive in Feces but Negative in Breastmilk: A Case Report of COVID-19 in a Breastfeeding Patient. Front Med (Lausanne) 2020; 7:562700. [PMID: 33344466 PMCID: PMC7738631 DOI: 10.3389/fmed.2020.562700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
COVID-19 is a pandemic infectious disease. Whether SARS-CoV-2 was transmitted through breast milk is unknown. Here, we report a breastfeeding woman with COVID-19 presenting with gastrointestinal symptoms and persistent SARS-CoV-2 RNA positivity in both her oropharyngeal swabs and feces, but negativity in her breastmilk. After appearance of serum SARS-CoV-2-IgG, she began to bottle feed her baby with breastmilk without transmission. This report facilitates the understanding of breastfeeding-related risks in COVID-19.
Collapse
Affiliation(s)
- Huikuan Chu
- Division of Gastroenterology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- Division of Gastroenterology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Yan
- Division of Gastroenterology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Tai Bai
- Division of Gastroenterology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Li Zou
- Department of Obstetrics & Gynecology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Yang
- Division of Gastroenterology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Ling Yang
| | - Xiaohua Hou
- Division of Gastroenterology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Xiaohua Hou
| |
Collapse
|