1
|
Ngoc LTN, Lee YC. Current Trends in RNA Virus Detection via Nucleic Acid Isothermal Amplification-Based Platforms. BIOSENSORS 2024; 14:97. [PMID: 38392016 PMCID: PMC10886876 DOI: 10.3390/bios14020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Ribonucleic acid (RNA) viruses are one of the major classes of pathogens that cause human diseases. The conventional method to detect RNA viruses is real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), but it has some limitations. It is expensive and time-consuming, with infrastructure and trained personnel requirements. Its high throughput requires sophisticated automation and large-scale infrastructure. Isothermal amplification methods have been explored as an alternative to address these challenges. These methods are rapid, user-friendly, low-cost, can be performed in less specialized settings, and are highly accurate for detecting RNA viruses. Microfluidic technology provides an ideal platform for performing virus diagnostic tests, including sample preparation, immunoassays, and nucleic acid-based assays. Among these techniques, nucleic acid isothermal amplification methods have been widely integrated with microfluidic platforms for RNA virus detection owing to their simplicity, sensitivity, selectivity, and short analysis time. This review summarizes some common isothermal amplification methods for RNA viruses. It also describes commercialized devices and kits that use isothermal amplification techniques for SARS-CoV-2 detection. Furthermore, the most recent applications of isothermal amplification-based microfluidic platforms for RNA virus detection are discussed in this article.
Collapse
Affiliation(s)
- Le Thi Nhu Ngoc
- Department of Nano Science and Technology Convergence, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Liu Y, Li Y, Hang Y, Wang L, Wang J, Bao N, Kim Y, Jang HW. Rapid assays of SARS-CoV-2 virus and noble biosensors by nanomaterials. NANO CONVERGENCE 2024; 11:2. [PMID: 38190075 PMCID: PMC10774473 DOI: 10.1186/s40580-023-00408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
The COVID-19 outbreak caused by SARS-CoV-2 in late 2019 has spread rapidly across the world to form a global epidemic of respiratory infectious diseases. Increased investigations on diagnostic tools are currently implemented to assist rapid identification of the virus because mass and rapid diagnosis might be the best way to prevent the outbreak of the virus. This critical review discusses the detection principles, fabrication techniques, and applications on the rapid detection of SARS-CoV-2 with three categories: rapid nuclear acid augmentation test, rapid immunoassay test and biosensors. Special efforts were put on enhancement of nanomaterials on biosensors for rapid, sensitive, and low-cost diagnostics of SARS-CoV-2 virus. Future developments are suggested regarding potential candidates in hospitals, clinics and laboratories for control and prevention of large-scale epidemic.
Collapse
Affiliation(s)
- Yang Liu
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yilong Li
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yuteng Hang
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Lei Wang
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Youngeun Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Zhang N, Li C, Dou X, Du Y, Tian F. Test Article for automation purposes. Crit Rev Anal Chem 2023; 53:1969-1989. [PMID: 37881955 DOI: 10.1080/10408347.2022.2042999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Digital recombinase polymerase amplification (dRPA) aims to quantify the initial amount of nucleic acid by dividing nucleic acid and all reagents required for the RPA reaction evenly into numerous individual reaction units, such as chambers or droplets. dRPA turns out to be a prominent technique for quantifying the absolute quantity of target nucleic acid because of its advantages including low equipment requirements, short time consumption, as well as high sensitivity and specificity. dRPA combined with microfluidics are recognized as simple, various, and high-throughput nucleic acid quantization systems. This paper classifies the microfluidic dRPA systems over the last decade. We analyze and summarize the vital technologies of various microfluidic dRPA systems (e.g., chip preparation process, segmentation principle, microfluidic control, and statistical analysis methods), and major efforts to address limitations (e.g., prevention of evaporation and contamination, accurate initiation, and reduction of manual operation). In addition, this paper summarizes key factors and potential constraints to the success of the microfluidic dRPA to help more researchers, and possible strategies to overcome the mentioned challenges. Lastly, actual suggestions and strategies are proposed for the subsequent development of microfluidic dRPA.
Collapse
Affiliation(s)
- Ning Zhang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Chao Li
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Xuechen Dou
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Yaohua Du
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Feng Tian
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| |
Collapse
|
4
|
Li X, Wang J, Geng J, Xiao L, Wang H. Emerging Landscape of SARS-CoV-2 Variants and Detection Technologies. Mol Diagn Ther 2023; 27:159-177. [PMID: 36577887 PMCID: PMC9797111 DOI: 10.1007/s40291-022-00631-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 12/29/2022]
Abstract
In 2019, a new coronavirus was identified that has caused significant morbidity and mortality worldwide. Like all RNA viruses, severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) evolves over time through random mutation resulting in genetic variations in the population. Although the currently approved coronavirus disease 2019 vaccines can be given to those over 5 years of age and older in most countries, strikingly, the number of people diagnosed positive for SARS-Cov-2 is still increasing. Therefore, to prevent and control this epidemic, early diagnosis of infected individuals is of great importance. The current detection of SARS-Cov-2 coronavirus variants are mainly based on reverse transcription-polymerase chain reaction. Although the sensitivity of reverse transcription-polymerase chain reaction is high, it has some disadvantages, for example, multiple temperature changes, long detection time, complicated operation, expensive instruments, and the need for professional personnel, which brings considerable inconvenience to the early diagnosis of this virus. This review comprehensively summarizes the development and application of various current detection technologies for novel coronaviruses, including isothermal amplification, CRISPR-Cas detection, serological detection, biosensor, ensemble, and microfluidic technology, along with next-generation sequencing. Those findings offer us a great potential to replace or combine with reverse transcription-polymerase chain reaction detection to achieve the purpose of allowing predictive diagnostics and targeted prevention of SARS-Cov-2 in the future.
Collapse
Affiliation(s)
- Xianghui Li
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, 443002, China
| | - Jing Wang
- Institute of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jingping Geng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, 443002, China
| | - Liming Xiao
- Institute of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Hu Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, 443002, China.
- Institute of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Huang J, Yang X, Ren L, Jiang W, Huang Y, Liu Y, Liu C, Chen X, Li S. A novel, ultrafast, ultrasensitive diagnosis platform for the detection of SARS-COV-2 using restriction endonuclease-mediated reverse transcription multiple cross displacement amplification. J Med Virol 2023; 95:e28444. [PMID: 36579774 PMCID: PMC9880628 DOI: 10.1002/jmv.28444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). Though many methods have been used for detecting SARS-COV-2, development of an ultrafast and highly sensitive detection strategy to screen and/or diagnose suspected cases in the population, especially early-stage patients with low viral load, is significant for the prevention and treatment of COVID-19. In this study, a novel restriction endonuclease-mediated reverse transcription multiple cross displacement amplification (MCDA) combined with real-time fluorescence analysis (rRT-MCDA) was successfully established and performed to diagnose COVID-19 infection (COVID-19 rRT-MCDA). Two sets of specific SARS-COV-2 rRT-MCDA primers targeting opening reading frame 1a/b (ORF1ab) and nucleoprotein (NP) genes were designed and modified according to the reaction mechanism. The SARS-COV-2 rRT-MCDA test was optimized and evaluated using various pathogens and clinical samples. The optimal reaction condition of SARS-COV-2 rRT-MCDA assay was 65°C for 36 min. The SARS-COV-2 rRT-MCDA limit of detection (LoD) was 6.8 copies per reaction. Meanwhile, the specificity of SARS-COV-2 rRT-MCDA assay was 100%, and there was no cross-reaction with nucleic acids of other pathogens. In addition, the whole detection process of SARS-COV-2 rRT-MCDA, containing the RNA template processing (15 min) and real-time amplification (36 min), can be accomplished within 1 h. The SARS-COV-2 rRT-MCDA test established in the current report is a novel, ultrafast, ultrasensitive, and highly specific detection method, which can be performed as a valuable screening and/or diagnostic tool for COVID-19 in clinical application.
Collapse
Affiliation(s)
- Junfei Huang
- Guizhou Provincial Center for Disease Control and PreventionGuiyangGuizhouChina
| | - Xinggui Yang
- Guizhou Provincial Center for Disease Control and PreventionGuiyangGuizhouChina,Public Health SchoolGuizhou Medical UniversityGuiyangGuizhouChina
| | - Lijuan Ren
- Guizhou Provincial Center for Disease Control and PreventionGuiyangGuizhouChina
| | - Weijia Jiang
- Guizhou Provincial Center for Disease Control and PreventionGuiyangGuizhouChina
| | - Yan Huang
- Guizhou Provincial Center for Disease Control and PreventionGuiyangGuizhouChina
| | - Ying Liu
- Guizhou Provincial Center for Disease Control and PreventionGuiyangGuizhouChina
| | - Chunting Liu
- Guizhou Provincial Center for Disease Control and PreventionGuiyangGuizhouChina
| | - Xu Chen
- The Second Affiliated HospitalGuizhou University of Traditional Chinese MedicineGuiyangGuizhouChina
| | - Shijun Li
- Guizhou Provincial Center for Disease Control and PreventionGuiyangGuizhouChina,Public Health SchoolGuizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
6
|
Zingg JM, Yang YP, Seely S, Joshi P, Roshid MHO, Iribarren Latasa F, O'Connor G, Alfaro J, Riquelme E, Bernales S, Dikici E, Deo S, Daunert S. Rapid isothermal point-of-care test for screening of SARS-CoV-2 (COVID-19). ASPECTS OF MOLECULAR MEDICINE 2023; 1:100002. [PMID: 37519861 PMCID: PMC9890548 DOI: 10.1016/j.amolm.2023.100002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
Rapid on-site diagnosis of emerging pathogens is key for early identification of infected individuals and for prevention of further spreading in a population. Currently available molecular diagnostic tests are instrument-based whereas rapid antibody and antigen tests are often not sufficiently sensitive for detection in pre-symptomatic subjects. There is a need for rapid point of care molecular screening tests that can be easily adapted to emerging pathogens and are selective, sensitive, reliable in different settings around the world. We have developed a simple, rapid (<30 min), and inexpensive test for SARS-CoV-2 that is based on combination of isothermal reverse transcription recombinase polymerase amplification (RT-RPA) using modified primers and visual detection with paper-based microfluidics. Our test (CoRapID) is specific for SARS-CoV-2 (alpha to omicron variants) and does not detect other coronaviruses and pathogens by in silico and in vitro analysis. A two-step test protocol was developed with stable lyophilized reagents that reduces handling by using portable and disposable components (droppers, microapplicators/swabs, paper-strips). After optimization of assay components and conditions, we have achieved a limit of detection (LoD) of 1 copy/reaction by adding a blocking primer to the lateral flow assay. Using a set of 138 clinical samples, a sensitivity of 88.1% (P < 0.05, CI: 78.2-93.8%) and specificity of 93.9% (P < 0.05, CI: 85.4-97.6%) was determined. The lack of need for instrumentation for our CoRapID makes it an ideal on-site primary screening tool for local hospitals, doctors' offices, senior homes, workplaces, and in remote settings around the world that often do not have access to clinical laboratories.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136-6129, USA
| | - Yu-Ping Yang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136-6129, USA
| | - Spencer Seely
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136-6129, USA
| | - Pratibha Joshi
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136-6129, USA
| | - Md Harun Or Roshid
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136-6129, USA
- Department of Chemistry, University of Miami, Miami, FL, 33146, USA
| | - Fabiola Iribarren Latasa
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136-6129, USA
- Universidad Francisco de Vitoria, Madrid, Spain
| | - Gregory O'Connor
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136-6129, USA
| | | | | | - Sebastian Bernales
- Merken Biotech SpA, Zañartu, 1482, Santiago, Chile
- Centro Ciencia & Vida, Zañartu, 1482, Santiago, Chile
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136-6129, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136-6129, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136-6129, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136-6129, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136-6129, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136-6129, USA
- University of Miami Clinical and Translational Science Institute, University of Miami, Miami, FL, 33136-6129, USA
| |
Collapse
|
7
|
Islam MM, Koirala D. Toward a next-generation diagnostic tool: A review on emerging isothermal nucleic acid amplification techniques for the detection of SARS-CoV-2 and other infectious viruses. Anal Chim Acta 2022; 1209:339338. [PMID: 35569864 PMCID: PMC8633689 DOI: 10.1016/j.aca.2021.339338] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 01/09/2023]
Abstract
As the COVID-19 pandemic continues to affect human health across the globe rapid, simple, point-of-care (POC) diagnosis of infectious viruses such as SARS-CoV-2 remains challenging. Polymerase chain reaction (PCR)-based diagnosis has risen to meet these demands and despite its high-throughput and accuracy, it has failed to gain traction in the rapid, low-cost, point-of-test settings. In contrast, different emerging isothermal amplification-based detection methods show promise in the rapid point-of-test market. In this comprehensive study of the literature, several promising isothermal amplification methods for the detection of SARS-CoV-2 are critically reviewed that can also be applied to other infectious viruses detection. Starting with a brief discussion on the SARS-CoV-2 structure, its genomic features, and the epidemiology of the current pandemic, this review focuses on different emerging isothermal methods and their advancement. The potential of isothermal amplification combined with the revolutionary CRISPR/Cas system for a more powerful detection tool is also critically reviewed. Additionally, the commercial success of several isothermal methods in the pandemic are highlighted. Different variants of SARS-CoV-2 and their implication on isothermal amplifications are also discussed. Furthermore, three most crucial aspects in achieving a simple, fast, and multiplexable platform are addressed.
Collapse
|
8
|
Huang Q, Shan X, Cao R, Jin X, Lin X, He Q, Zhu Y, Fu R, Du W, Lv W, Xia Y, Huang G. Microfluidic Chip with Two-Stage Isothermal Amplification Method for Highly Sensitive Parallel Detection of SARS-CoV-2 and Measles Virus. MICROMACHINES 2021; 12:mi12121582. [PMID: 34945432 PMCID: PMC8705924 DOI: 10.3390/mi12121582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023]
Abstract
A two-stage isothermal amplification method, which consists of a first-stage basic recombinase polymerase amplification (RPA) and a second-stage fluorescence loop-mediated isothermal amplification (LAMP), as well as a microfluidic-chip-based portable system, were developed in this study; these enabled parallel detection of multiplex targets in real time in around one hour, with high sensitivity and specificity, without cross-contamination. The consumption of the sample and the reagent was 2.1 μL and 10.6 μL per reaction for RPA and LAMP, respectively. The lowest detection limit (LOD) was about 10 copies. The clinical amplification of about 40 nasopharyngeal swab samples, containing 17 SARS-CoV-2 (severe acute respiratory syndrome coronavirus) and 23 measles viruses (MV), were parallel tested by using the microfluidic chip. Both clinical specificity and sensitivity were 100% for MV, and the clinical specificity and sensitivity were 94.12% and 95.83% for SARS-CoV-2, respectively. This two-stage isothermal amplification method based on the microfluidic chip format offers a convenient, clinically parallel molecular diagnostic method, which can identify different nucleic acid samples simultaneously and in a timely manner, and with a low cost of the reaction reagent. It is especially suitable for resource-limited areas and point-of-care testing (POCT).
Collapse
Affiliation(s)
- Qin Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Q.H.); (X.S.); (X.J.); (X.L.); (R.F.); (W.D.); (W.L.)
| | - Xiaohui Shan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Q.H.); (X.S.); (X.J.); (X.L.); (R.F.); (W.D.); (W.L.)
| | - Ranran Cao
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China;
| | - Xiangyu Jin
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Q.H.); (X.S.); (X.J.); (X.L.); (R.F.); (W.D.); (W.L.)
| | - Xue Lin
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Q.H.); (X.S.); (X.J.); (X.L.); (R.F.); (W.D.); (W.L.)
| | - Qiurong He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.Z.)
| | - Yulei Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.Z.)
| | - Rongxin Fu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Q.H.); (X.S.); (X.J.); (X.L.); (R.F.); (W.D.); (W.L.)
| | - Wenli Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Q.H.); (X.S.); (X.J.); (X.L.); (R.F.); (W.D.); (W.L.)
| | - Wenqi Lv
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Q.H.); (X.S.); (X.J.); (X.L.); (R.F.); (W.D.); (W.L.)
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.Z.)
- Correspondence: (Y.X.); (G.H.); Tel.: +86-(010)-62797213 (G.H.)
| | - Guoliang Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Q.H.); (X.S.); (X.J.); (X.L.); (R.F.); (W.D.); (W.L.)
- Correspondence: (Y.X.); (G.H.); Tel.: +86-(010)-62797213 (G.H.)
| |
Collapse
|
9
|
Iliescu FS, Ionescu AM, Gogianu L, Simion M, Dediu V, Chifiriuc MC, Pircalabioru GG, Iliescu C. Point-of-Care Testing-The Key in the Battle against SARS-CoV-2 Pandemic. MICROMACHINES 2021; 12:1464. [PMID: 34945314 PMCID: PMC8708595 DOI: 10.3390/mi12121464] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022]
Abstract
The deleterious effects of the coronavirus disease 2019 (COVID-19) pandemic urged the development of diagnostic tools to manage the spread of disease. Currently, the "gold standard" involves the use of quantitative real-time polymerase chain reaction (qRT-PCR) for SARS-CoV-2 detection. Even though it is sensitive, specific and applicable for large batches of samples, qRT-PCR is labour-intensive, time-consuming, requires trained personnel and is not available in remote settings. This review summarizes and compares the available strategies for COVID-19: serological testing, Point-of-Care Testing, nanotechnology-based approaches and biosensors. Last but not least, we address the advantages and limitations of these methods as well as perspectives in COVID-19 diagnostics. The effort is constantly focused on understanding the quickly changing landscape of available diagnostic testing of COVID-19 at the clinical levels and introducing reliable and rapid screening point of care testing. The last approach is key to aid the clinical decision-making process for infection control, enhancing an appropriate treatment strategy and prompt isolation of asymptomatic/mild cases. As a viable alternative, Point-of-Care Testing (POCT) is typically low-cost and user-friendly, hence harbouring tremendous potential for rapid COVID-19 diagnosis.
Collapse
Affiliation(s)
- Florina Silvia Iliescu
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 077190 Bucharest, Romania; (F.S.I.); (A.M.I.); (L.G.); (M.S.); (V.D.)
| | - Ana Maria Ionescu
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 077190 Bucharest, Romania; (F.S.I.); (A.M.I.); (L.G.); (M.S.); (V.D.)
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London WC1E 6BT, UK
| | - Larisa Gogianu
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 077190 Bucharest, Romania; (F.S.I.); (A.M.I.); (L.G.); (M.S.); (V.D.)
| | - Monica Simion
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 077190 Bucharest, Romania; (F.S.I.); (A.M.I.); (L.G.); (M.S.); (V.D.)
| | - Violeta Dediu
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 077190 Bucharest, Romania; (F.S.I.); (A.M.I.); (L.G.); (M.S.); (V.D.)
| | - Mariana Carmen Chifiriuc
- Research Institute of University of Bucharest, University of Bucharest, 050095 Bucharest, Romania;
- The Romanian Academy, 25, Calea Victoriei, Sector 1, 010071 Bucharest, Romania
| | | | - Ciprian Iliescu
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 077190 Bucharest, Romania; (F.S.I.); (A.M.I.); (L.G.); (M.S.); (V.D.)
- Academy of Romanian Scientists, 010071 Bucharest, Romania
- Faculty of Applied Chemistry and Material Science, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|
10
|
Safiabadi Tali SH, LeBlanc JJ, Sadiq Z, Oyewunmi OD, Camargo C, Nikpour B, Armanfard N, Sagan SM, Jahanshahi-Anbuhi S. Tools and Techniques for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)/COVID-19 Detection. Clin Microbiol Rev 2021; 34:e00228-20. [PMID: 33980687 PMCID: PMC8142517 DOI: 10.1128/cmr.00228-20] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory disease coronavirus 2 (SARS-CoV-2), has led to millions of confirmed cases and deaths worldwide. Efficient diagnostic tools are in high demand, as rapid and large-scale testing plays a pivotal role in patient management and decelerating disease spread. This paper reviews current technologies used to detect SARS-CoV-2 in clinical laboratories as well as advances made for molecular, antigen-based, and immunological point-of-care testing, including recent developments in sensor and biosensor devices. The importance of the timing and type of specimen collection is discussed, along with factors such as disease prevalence, setting, and methods. Details of the mechanisms of action of the various methodologies are presented, along with their application span and known performance characteristics. Diagnostic imaging techniques and biomarkers are also covered, with an emphasis on their use for assessing COVID-19 or monitoring disease severity or complications. While the SARS-CoV-2 literature is rapidly evolving, this review highlights topics of interest that have occurred during the pandemic and the lessons learned throughout. Exploring a broad armamentarium of techniques for detecting SARS-CoV-2 will ensure continued diagnostic support for clinicians, public health, and infection prevention and control for this pandemic and provide advice for future pandemic preparedness.
Collapse
Affiliation(s)
- Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
- Department of Mechanical, Industrial, and Aerospace Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| | - Jason J LeBlanc
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine (Infectious Diseases), Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| | - Oyejide Damilola Oyewunmi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| | - Carolina Camargo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Bahareh Nikpour
- Department of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada
| | - Narges Armanfard
- Department of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada
- Mila-Quebec AI Institute, Montréal, Québec, Canada
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
11
|
Yao Z, Zhang Q, Zhu W, Galluzzi M, Zhou W, Li J, Zayats AV, Yu XF. Rapid detection of SARS-CoV-2 viral nucleic acids based on surface enhanced infrared absorption spectroscopy. NANOSCALE 2021; 13:10133-10142. [PMID: 34060584 DOI: 10.1039/d1nr01652k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Efficient point-of-care diagnosis of severe acute respiratory syndrome-corovavirus-2 (SARS-CoV-2) is crucial for the early control of novel coronavirus infections. At present, polymerase chain reaction (PCR) is primarily used to detect SARS-CoV-2. Despite the high sensitivity, the PCR process is time-consuming and complex which limits its applicability for rapid testing of large-scale outbreaks. Here, we propose a rapid and easy-to-implement approach for SARS-CoV-2 detection based on surface enhanced infrared absorption (SEIRA) spectroscopy. The evaporated gold nano-island films are used as SEIRA substrates which are functionalized with the single-stranded DNA probes for specific binding to selected SARS-CoV-2 genomic sequences. The infrared absorption spectra are analyzed using the principal component analysis method to identify the key characteristic differences between infected and control samples. The SEIRA-based biosensor demonstrates rapid detection of SARS-CoV-2, completing the detection of 1 μM viral nucleic acids within less than 5 min without any amplification. When combined with the recombinase polymerase amplification treatment, the detection capability of 2.98 copies per μL (5 aM) can be completed within 30 min. This approach provides a simple and economical alternative for COVID-19 diagnosis, which can be potentially useful in monitoring and controlling future pandemics in a timely manner.
Collapse
Affiliation(s)
- Zhiqi Yao
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chaibun T, Puenpa J, Ngamdee T, Boonapatcharoen N, Athamanolap P, O'Mullane AP, Vongpunsawad S, Poovorawan Y, Lee SY, Lertanantawong B. Rapid electrochemical detection of coronavirus SARS-CoV-2. Nat Commun 2021; 12:802. [PMID: 33547323 PMCID: PMC7864991 DOI: 10.1038/s41467-021-21121-7] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnosis of COVID-19 depends on quantitative reverse transcription PCR (qRT-PCR), which is time-consuming and requires expensive instrumentation. Here, we report an ultrasensitive electrochemical biosensor based on isothermal rolling circle amplification (RCA) for rapid detection of SARS-CoV-2. The assay involves the hybridization of the RCA amplicons with probes that were functionalized with redox active labels that are detectable by an electrochemical biosensor. The one-step sandwich hybridization assay could detect as low as 1 copy/μL of N and S genes, in less than 2 h. Sensor evaluation with 106 clinical samples, including 41 SARS-CoV-2 positive and 9 samples positive for other respiratory viruses, gave a 100% concordance result with qRT-PCR, with complete correlation between the biosensor current signals and quantitation cycle (Cq) values. In summary, this biosensor could be used as an on-site, real-time diagnostic test for COVID-19.
Collapse
Affiliation(s)
- Thanyarat Chaibun
- Biosensors Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tatchanun Ngamdee
- Department of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Nimaradee Boonapatcharoen
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pornpat Athamanolap
- Biosensors Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Anthony Peter O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Su Yin Lee
- Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong, Kedah, Malaysia
| | - Benchaporn Lertanantawong
- Biosensors Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
13
|
Koteswara Rao V. Point of Care Diagnostic Devices for Rapid Detection of Novel Coronavirus (SARS-nCoV19) Pandemic: A Review. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2020.593619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Coronaviruses are recognized as causative agents of human diseases worldwide. In Wuhan, China, an outbreak of Severe acute respiratory syndrome novel Coronavirus (SARS-nCoV-2) was reported at the end of December 2019, causing 63 million COVID cases and 1.3 million deaths globally by 2 December, 2020. The transmission risk forecasts and the SARS-nCoV-2 epidemic pattern are progressive. Unfortunately, there is no specific FDA approved drugs or vaccines available currently to treat SARS-nCoV-2. In response to nCoV-2 spread, the rapid detection is crucial for estimating the severity of the disease and treatment of patients. Currently, there are several RT-PCR based diagnostic kits available for SARS-nCoV-2 detection, which are time-consuming, expensive, need advanced equipment facilities and trained personnel. The cost of diagnosis and the unavailability of sufficient test kits may prevent to check community transmission. Furthermore, expanding the testing facilities in asymptomatic cases in hotspots require more Point of Care (PoC) devices. Therefore, fast, inexpensive, and reliable methods of detection of SARS-nCoV-2 virus infection in humans is urgently required. The rapid and easy-to-use devices will facilitate onsite testing. In this review, nucleic acid assays, serological assays, multiplex assays, and PoC devices are discussed to understand various diagnostic approaches to reduce the spread and mortality rate in the future. Aptamer based detection is most specific, inexpensive and rapid detection of SARS-nCoV-2 without laboratory tools. To the best of our knowledge more than 900 SARS-nCoV-2 test kits are in pipeline, among 395 test kits are molecular bested test kits and only few test kits are developed using Aptamer technology https://www.finddx.org/covid-19/pipeline/.
Collapse
|
14
|
Subsoontorn P, Lohitnavy M, Kongkaew C. The diagnostic accuracy of isothermal nucleic acid point-of-care tests for human coronaviruses: A systematic review and meta-analysis. Sci Rep 2020; 10:22349. [PMID: 33339871 PMCID: PMC7749114 DOI: 10.1038/s41598-020-79237-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/04/2020] [Indexed: 02/01/2023] Open
Abstract
Many recent studies reported coronavirus point-of-care tests (POCTs) based on isothermal amplification. However, the performances of these tests have not been systematically evaluated. Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy was used as a guideline for conducting this systematic review. We searched peer-reviewed and preprint articles in PubMed, BioRxiv and MedRxiv up to 28 September 2020 to identify studies that provide data to calculate sensitivity, specificity and diagnostic odds ratio (DOR). Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was applied for assessing quality of included studies and Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA) was followed for reporting. We included 81 studies from 65 research articles on POCTs of SARS, MERS and COVID-19. Most studies had high risk of patient selection and index test bias but low risk in other domains. Diagnostic specificities were high (> 0.95) for included studies while sensitivities varied depending on type of assays and sample used. Most studies (n = 51) used reverse transcription loop-mediated isothermal amplification (RT-LAMP) to diagnose coronaviruses. RT-LAMP of RNA purified from COVID-19 patient samples had pooled sensitivity at 0.94 (95% CI: 0.90-0.96). RT-LAMP of crude samples had substantially lower sensitivity at 0.78 (95% CI: 0.65-0.87). Abbott ID Now performance was similar to RT-LAMP of crude samples. Diagnostic performances by CRISPR and RT-LAMP on purified RNA were similar. Other diagnostic platforms including RT- recombinase assisted amplification (RT-RAA) and SAMBA-II also offered high sensitivity (> 0.95). Future studies should focus on the use of un-bias patient cohorts, double-blinded index test and detection assays that do not require RNA extraction.
Collapse
Affiliation(s)
- Pakpoom Subsoontorn
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Manupat Lohitnavy
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chuenjid Kongkaew
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Research Centre for Safety and Quality in Health, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Research Department of Practice and Policy, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| |
Collapse
|