1
|
The SARS-CoV-2 Variants and their Impacts. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Since the first detection of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus remains a public health concern. Several public health measures have been implemented in an effort to curb the infections. However, the effectiveness of these strategies was threatened with the emergence of numerous SARS-CoV-2 variants in all parts of the globe, due to the persistent mutations as part of the viral evolution. Mutations that usually occur in its spike glycoprotein, allow SARS-CoV-2 to possess advantageous characteristics for its survivability and persistence. This has led to poor performance of diagnostic kits which have caused non-specific and insensitive detection of these variants, resulting in undetermined infection. The variants also have caused the increased severity of COVID-19, involving hospitalisation rates, ICU admissions, and deaths. Many have reported the vaccine-breakthrough infections and reduced effectiveness of vaccination, which is supposed to provide an effective degree of protection against COVID-19 infections. Due to these issues, this review summarises the impacts related to SARS-CoV-2 variants emergence towards the performance of diagnostic kits, transmissibility of the virus, severity of disease, and effectiveness of COVID-19 vaccines.
Collapse
|
2
|
Juul S, Spiegelhauer MR, Petersen MN, Flugt KK, Hansen NV, Larsen H, Jensen PB, Christensen UB, Petersen RK, Friis-Hansen L. Validation and advantages of using novel RT-qPCR melting curve analysis assays for the identification of SARS-CoV-2 variants. Sci Rep 2022; 12:13069. [PMID: 35906388 PMCID: PMC9338320 DOI: 10.1038/s41598-022-17339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Reverse transcription quantitative PCR (RT-qPCR) assays are gold standard in diagnosing SARS-CoV-2 infection and play a major role in viral subtyping for rapid detection and monitoring of important mutations, containing the spread of new virus variants. We wanted to compare RT-qPCR melting curve analysis assays to Sanger Sequencing for detection of variants within the SARS-CoV-2 spike glycoprotein and examined their sensitivity and specificity. Samples positive for SARS-CoV-2 (n = 663 + 82) were subtyped using both Sanger sequencing and five RT-qPCR melting curve analysis assays specific for the mutations N501Y, P681H, E484K, K417N/T, and N439K. The results of the two methods were compared. The training cohort and the clinical validation cohort showed equally, or significantly better sensitivity of the assays compared to the Sanger sequencing. The agreement of the Sanger sequencing and the assays ranged from 92.6 to 100% for the training cohort and 99.4-100% for the clinical validation. The sensitivity, specificity, and turn-around time of the RT-qPCR melting curve analysis assays are well-suited for clinical monitoring of VOCs, making the assays an important tool in contact tracing and risk stratification. Furthermore, the assays were able to indicate the presence of new mutations in the complementary sequence to the mutation-specific probes.
Collapse
Affiliation(s)
- Sebastian Juul
- Research & Development, Pentabase A/S, Petersmindevej 1A, 5000, Odense C, Denmark.
| | | | - Mette Neve Petersen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Bispebjerg, Denmark
| | | | | | - Helene Larsen
- Center for Diagnostics, DTU Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Per Bo Jensen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Bispebjerg, Denmark
| | - Ulf Bech Christensen
- Research & Development, Pentabase A/S, Petersmindevej 1A, 5000, Odense C, Denmark
| | | | - Lennart Friis-Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Bispebjerg, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Schäfer A, Martinez DR, Won JJ, Meganck RM, Moreira FR, Brown AJ, Gully KL, Zweigart MR, Conrad WS, May SR, Dong S, Kalla R, Chun K, Du Pont V, Babusis D, Tang J, Murakami E, Subramanian R, Barrett KT, Bleier BJ, Bannister R, Feng JY, Bilello JP, Cihlar T, Mackman RL, Montgomery SA, Baric RS, Sheahan TP. Therapeutic treatment with an oral prodrug of the remdesivir parental nucleoside is protective against SARS-CoV-2 pathogenesis in mice. Sci Transl Med 2022; 14:eabm3410. [PMID: 35315683 PMCID: PMC8995034 DOI: 10.1126/scitranslmed.abm3410] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/16/2022] [Indexed: 12/19/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic remains uncontrolled despite the rapid rollout of safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. In addition, the emergence of SARS-CoV-2 variants of concern, with their potential to escape neutralization by therapeutic monoclonal antibodies, emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parent nucleoside of remdesivir, which targets the highly conserved virus RNA-dependent RNA polymerase. GS-621763 exhibited antiviral activity against SARS-CoV-2 in lung cell lines and two different human primary lung cell culture systems. GS-621763 was also potently antiviral against a genetically unrelated emerging coronavirus, Middle East respiratory syndrome CoV (MERS-CoV). The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 administration reduced viral load and lung pathology; treatment also improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog antiviral that has recently received EUA approval, proved both drugs to be similarly efficacious in mice. These data support the exploration of GS-441524 oral prodrugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David R. Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John J. Won
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rita M. Meganck
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Fernando R. Moreira
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ariane J. Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kendra L. Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark R. Zweigart
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - William S. Conrad
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Samantha R. May
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rao Kalla
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | - Kwon Chun
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | | | | | | | | | | | | | | | | | - Joy Y. Feng
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | | | - Tomas Cihlar
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | | | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
4
|
Pack SM, Peters PJ. SARS-CoV-2-Specific Vaccine Candidates; the Contribution of Structural Vaccinology. Vaccines (Basel) 2022; 10:236. [PMID: 35214693 PMCID: PMC8877865 DOI: 10.3390/vaccines10020236] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2 vaccine production has taken us by storm. We aim to fill in the history of concepts and the work of pioneers and provide a framework of strategies employing structural vaccinology. Cryo-electron microscopy became crucial in providing three-dimensional (3D) structures and creating candidates eliciting T and B cell-mediated immunity. It also determined structural changes in the emerging mutants in order to design new constructs that can be easily, quickly and safely added to the vaccines. The full-length spike (S) protein, the S1 subunit and its receptor binding domain (RBD) of the virus are the best candidates. The vaccine development to cease this COVID-19 pandemic sets a milestone for the pan-coronavirus vaccine's designing and manufacturing. By employing structural vaccinology, we propose that the mRNA and the protein sequences of the currently approved vaccines should be modified rapidly to keep up with the more infectious new variants.
Collapse
Affiliation(s)
| | - Peter J. Peters
- The Maastricht Multimodal Molecular Imaging Institute (M4i), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
5
|
Giraudon H, Djemai M, Auvray C, de Rougemont A, Belliot G, Bour JB, Manoha C. Local Emergence of A del HV69-70 SARS-CoV-2 Variant in Burgundy, France. Pathogens 2022; 11:pathogens11020124. [PMID: 35215068 PMCID: PMC8875006 DOI: 10.3390/pathogens11020124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
In the autumn of 2020, a short-lived epidemic of a spike del69-70 deletion variant of SARS-CoV-2 was identified, with most cases (n = 95) found in Montceau-les-Mines, France. This spike gene target failure (SGTF) variant spread quickly in nursing homes. The Alpha variant, which also harbors this deletion, appeared in Burgundy in January 2021 after the disappearance of the Montceau-les-Mines del69-70 variant. Our findings illustrate the risk of the fast spread of geographically isolated variants and reinforce the need for the continuous tracking of outbreaks. In some cases, these studies may reveal emerging variants that affect public health or vaccine development.
Collapse
Affiliation(s)
- Hélène Giraudon
- Department of Microbiology Virology Laboratory, Dijon Bourgogne University Hospital, 21070 Dijon, France; (H.G.); (C.A.); (A.d.R.); (G.B.); (J.-B.B.)
| | - Mohand Djemai
- Department of Biology, Montceau-les-Mines Hospital, 71300 Montceau-les-Mines, France;
| | - Christelle Auvray
- Department of Microbiology Virology Laboratory, Dijon Bourgogne University Hospital, 21070 Dijon, France; (H.G.); (C.A.); (A.d.R.); (G.B.); (J.-B.B.)
| | - Alexis de Rougemont
- Department of Microbiology Virology Laboratory, Dijon Bourgogne University Hospital, 21070 Dijon, France; (H.G.); (C.A.); (A.d.R.); (G.B.); (J.-B.B.)
| | - Gaël Belliot
- Department of Microbiology Virology Laboratory, Dijon Bourgogne University Hospital, 21070 Dijon, France; (H.G.); (C.A.); (A.d.R.); (G.B.); (J.-B.B.)
| | - Jean-Baptiste Bour
- Department of Microbiology Virology Laboratory, Dijon Bourgogne University Hospital, 21070 Dijon, France; (H.G.); (C.A.); (A.d.R.); (G.B.); (J.-B.B.)
| | - Catherine Manoha
- Department of Microbiology Virology Laboratory, Dijon Bourgogne University Hospital, 21070 Dijon, France; (H.G.); (C.A.); (A.d.R.); (G.B.); (J.-B.B.)
- Correspondence:
| |
Collapse
|
6
|
de Souza GAP, Le Bideau M, Boschi C, Ferreira L, Wurtz N, Devaux C, Colson P, La Scola B. Emerging SARS-CoV-2 Genotypes Show Different Replication Patterns in Human Pulmonary and Intestinal Epithelial Cells. Viruses 2021; 14:v14010023. [PMID: 35062227 PMCID: PMC8777977 DOI: 10.3390/v14010023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) quickly spread worldwide following its emergence in Wuhan, China, and hit pandemic levels. Its tremendous incidence favoured the emergence of viral variants. The current genome diversity of SARS-CoV-2 has a clear impact on epidemiology and clinical practice, especially regarding transmission rates and the effectiveness of vaccines. In this study, we evaluated the replication of different SARS-CoV-2 isolates representing different virus genotypes which have been isolated throughout the pandemic. We used three distinct cell lines, including Vero E6 cells originating from monkeys; Caco-2 cells, an intestinal epithelium cell line originating from humans; and Calu-3 cells, a pulmonary epithelium cell line also originating from humans. We used RT-qPCR to replicate different SARS-CoV-2 genotypes by quantifying the virus released in the culture supernatant of infected cells. We found that the different viral isolates replicate similarly in Caco-2 cells, but show very different replicative capacities in Calu-3 cells. This was especially highlighted for the lineages B.1.1.7, B.1.351 and P.1, which are considered to be variants of concern. These results underscore the importance of the evaluation and characterisation of each SARS-CoV-2 isolate in order to establish the replication patterns before performing tests, and of the consideration of the ideal SARS-CoV-2 genotype-cell type pair for each assay.
Collapse
Affiliation(s)
- Gabriel Augusto Pires de Souza
- Unité de Recherche Microbe Phylogeny and Evoluition (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique—Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13005 Marseille, France; (G.A.P.d.S.); (M.L.B.); (C.B.); (L.F.); (N.W.); (C.D.); (P.C.)
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Marion Le Bideau
- Unité de Recherche Microbe Phylogeny and Evoluition (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique—Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13005 Marseille, France; (G.A.P.d.S.); (M.L.B.); (C.B.); (L.F.); (N.W.); (C.D.); (P.C.)
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Celine Boschi
- Unité de Recherche Microbe Phylogeny and Evoluition (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique—Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13005 Marseille, France; (G.A.P.d.S.); (M.L.B.); (C.B.); (L.F.); (N.W.); (C.D.); (P.C.)
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Lorène Ferreira
- Unité de Recherche Microbe Phylogeny and Evoluition (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique—Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13005 Marseille, France; (G.A.P.d.S.); (M.L.B.); (C.B.); (L.F.); (N.W.); (C.D.); (P.C.)
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Nathalie Wurtz
- Unité de Recherche Microbe Phylogeny and Evoluition (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique—Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13005 Marseille, France; (G.A.P.d.S.); (M.L.B.); (C.B.); (L.F.); (N.W.); (C.D.); (P.C.)
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Christian Devaux
- Unité de Recherche Microbe Phylogeny and Evoluition (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique—Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13005 Marseille, France; (G.A.P.d.S.); (M.L.B.); (C.B.); (L.F.); (N.W.); (C.D.); (P.C.)
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Philippe Colson
- Unité de Recherche Microbe Phylogeny and Evoluition (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique—Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13005 Marseille, France; (G.A.P.d.S.); (M.L.B.); (C.B.); (L.F.); (N.W.); (C.D.); (P.C.)
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Bernard La Scola
- Unité de Recherche Microbe Phylogeny and Evoluition (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique—Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, 27 Boulevard Jean Moulin, 13005 Marseille, France; (G.A.P.d.S.); (M.L.B.); (C.B.); (L.F.); (N.W.); (C.D.); (P.C.)
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Correspondence: ; Tel.: +33-0413-732-401
| |
Collapse
|
7
|
Tian Y, Parsons LM, Jankowska E, Cipollo JF. Site-Specific Glycosylation Patterns of the SARS-CoV-2 Spike Protein Derived From Recombinant Protein and Viral WA1 and D614G Strains. Front Chem 2021; 9:767448. [PMID: 34869209 PMCID: PMC8640487 DOI: 10.3389/fchem.2021.767448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/14/2021] [Indexed: 01/03/2023] Open
Abstract
The SARS-CoV-2 spike protein is heavily glycosylated, having 22 predicted N-glycosylation sites per monomer. It is also O-glycosylated, although the number of O-glycosites is less defined. Recent studies show that spike protein glycans play critical roles in viral entry and infection. The spike monomer has two subdomains, S1 and S2, and a receptor-binding domain (RBD) within the S1 domain. In this study, we have characterized the site-specific glycosylation patterns of the HEK293 recombinant spike RBD and S1 domains as well as the intact spike derived from the whole virus produced in Vero cells. The Vero cell-derived spike from the WA1 strain and a D614G variant was analyzed. All spike proteins, S1, and RBDs were analyzed using hydrophilic interaction chromatography (HILIC) and LC-MS/MS on an Orbitrap Eclipse Tribrid mass spectrometer. N-glycans identified in HEK293-derived S1 were structurally diverse. Those found in the HEK293-derived RBD were highly similar to those in HEK293 S1 where N-glycosites were shared. Comparison of the whole cell-derived WA1 and D614G spike proteins revealed that N-glycosites local to the mutation site appeared to be more readily detected, hinting that these sites are more exposed to glycosylation machinery. Moreover, recombinant HEK293-derived S1 was occupied almost completely with complex glycan, while both WA1 and D614G derived from the Vero E6 cell whole virus were predominantly high-mannose glycans. This stands in stark contrast to glycosylation patterns seen in both CHO- and HEK cell-derived recombinant S1, S2, and the whole spike previously reported. Concerning O-glycosylation, our analyses revealed that HEK293 recombinant proteins possessed a range of O-glycosites with compositions consistent with Core type 1 and 2 glycans. The O-glycosites shared between the S1 and RBD constructs, sites T323 and T523, were occupied by a similar range of Core 1 and 2 type O-glycans. Overall, this study reveals that the sample nature and cell substrate used for production of these proteins can have a dramatic impact on the glycosylation profile. SARS-CoV-2 spike glycans are associated with host ACE2 receptor interaction efficiency. Therefore, understanding such differences will serve to better understand these host–pathogen interactions and inform the choice of cell substrates to suite downstream investigations.
Collapse
Affiliation(s)
- Yuan Tian
- Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Silver Spring, MD, United States
| | - Lisa M Parsons
- Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Silver Spring, MD, United States
| | - Ewa Jankowska
- Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Silver Spring, MD, United States
| | - John F Cipollo
- Food and Drug Administration, Center for Biologics Evaluation and Research, Division of Bacterial, Parasitic and Allergenic Products, Silver Spring, MD, United States
| |
Collapse
|
8
|
Rijsbergen LC, van Dijk LLA, Engel MFM, de Vries RD, de Swart RL. In Vitro Modelling of Respiratory Virus Infections in Human Airway Epithelial Cells - A Systematic Review. Front Immunol 2021; 12:683002. [PMID: 34489934 PMCID: PMC8418200 DOI: 10.3389/fimmu.2021.683002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Respiratory tract infections (RTI) are a major cause of morbidity and mortality in humans. A large number of RTIs is caused by viruses, often resulting in more severe disease in infants, elderly and the immunocompromised. Upon viral infection, most individuals experience common cold-like symptoms associated with an upper RTI. However, in some cases a severe and sometimes life-threatening lower RTI may develop. Reproducible and scalable in vitro culture models that accurately reflect the human respiratory tract are needed to study interactions between respiratory viruses and the host, and to test novel therapeutic interventions. Multiple in vitro respiratory cell culture systems have been described, but the majority of these are based on immortalized cell lines. Although useful for studying certain aspects of viral infections, such monomorphic, unicellular systems fall short in creating an understanding of the processes that occur at an integrated tissue level. Novel in vitro models involving primary human airway epithelial cells and, more recently, human airway organoids, are now in use. In this review, we describe the evolution of in vitro cell culture systems and their characteristics in the context of viral RTIs, starting from advances after immortalized cell cultures to more recently developed organoid systems. Furthermore, we describe how these models are used in studying virus-host interactions, e.g. tropism and receptor studies as well as interactions with the innate immune system. Finally, we provide an outlook for future developments in this field, including co-factors that mimic the microenvironment in the respiratory tract.
Collapse
Affiliation(s)
- Laurine C. Rijsbergen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Laura L. A. van Dijk
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Maarten F. M. Engel
- Medical Library, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rik L. de Swart
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
9
|
Martínez-Flores D, Zepeda-Cervantes J, Cruz-Reséndiz A, Aguirre-Sampieri S, Sampieri A, Vaca L. SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants. Front Immunol 2021; 12:701501. [PMID: 34322129 PMCID: PMC8311925 DOI: 10.3389/fimmu.2021.701501] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus 19 Disease (COVID-19) originating in the province of Wuhan, China in 2019, is caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), whose infection in humans causes mild or severe clinical manifestations that mainly affect the respiratory system. So far, the COVID-19 has caused more than 2 million deaths worldwide. SARS-CoV-2 contains the Spike (S) glycoprotein on its surface, which is the main target for current vaccine development because antibodies directed against this protein can neutralize the infection. Companies and academic institutions have developed vaccines based on the S glycoprotein, as well as its antigenic domains and epitopes, which have been proven effective in generating neutralizing antibodies. However, the emergence of new SARS-CoV-2 variants could affect the effectiveness of vaccines. Here, we review the different types of vaccines designed and developed against SARS-CoV-2, placing emphasis on whether they are based on the complete S glycoprotein, its antigenic domains such as the receptor-binding domain (RBD) or short epitopes within the S glycoprotein. We also review and discuss the possible effectiveness of these vaccines against emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Daniel Martínez-Flores
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Zepeda-Cervantes
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adolfo Cruz-Reséndiz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio Aguirre-Sampieri
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alicia Sampieri
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
10
|
Shi AC, Xie X. Making sense of spike D614G in SARS-CoV-2 transmission. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1062-1067. [PMID: 33587268 PMCID: PMC7882856 DOI: 10.1007/s11427-020-1893-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 11/26/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of the current coronavirus disease 2019 (COVID-19) pandemic, has evolved to adapt to human host and transmission over the past 12 months. One prominent adaptive mutation is the asparagine-to-glycine substitution at amino acid position 614 in the viral spike protein (D614G), which has become dominant in the currently circulating virus strains. Since spike protein determines host ranges, tissue tropism, and pathogenesis through binding to the cellular receptor of angiotensin converting enzyme 2 (ACE2), the D614G mutation is hypothesized to enhance viral fitness in human host, leading to increased transmission during the global pandemic. Here we summarize the recent progress on the role of the D614G mutation in viral replication, pathogenesis, transmission, and vaccine and therapeutic antibody development. These findings underscore the importance in closely monitoring viral evolution and defining their functions to ensure countermeasure efficacy against newly emerging variants.
Collapse
Affiliation(s)
- Aria C Shi
- School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77550, USA.
| |
Collapse
|
11
|
Garrido C, Curtis AD, Dennis M, Pathak SH, Gao H, Montefiori D, Tomai M, Fox CB, Kozlowski PA, Scobey T, Munt JE, Mallory ML, Saha PT, Hudgens MG, Lindesmith LC, Baric RS, Abiona OM, Graham B, Corbett KS, Edwards D, Carfi A, Fouda G, Van Rompay KKA, De Paris K, Permar SR. SARS-CoV-2 vaccines elicit durable immune responses in infant rhesus macaques. Sci Immunol 2021; 6:6/60/eabj3684. [PMID: 34131024 PMCID: PMC8774290 DOI: 10.1126/sciimmunol.abj3684] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022]
Abstract
The inclusion of infants in the SARS-CoV-2 vaccine roll-out is important to prevent severe complications of pediatric SARS-CoV-2 infections and to limit transmission and could possibly be implemented via the global pediatric vaccine schedule. However, age-dependent differences in immune function require careful evaluation of novel vaccines in the pediatric population. Toward this goal, we assessed the safety and immunogenicity of two SARS-CoV-2 vaccines. Two groups of 8 infant rhesus macaques (RMs) were immunized intramuscularly at weeks 0 and 4 with stabilized prefusion SARS-CoV-2 S-2P spike (S) protein encoded by mRNA encapsulated in lipid nanoparticles (mRNA-LNP) or the purified S protein mixed with 3M-052, a synthetic TLR7/8 agonist in a squalene emulsion (Protein+3M-052-SE). Neither vaccine induced adverse effects. Both vaccines elicited high magnitude IgG binding to RBD, N terminus domain, S1, and S2, ACE2 blocking activity, and high neutralizing antibody titers, all peaking at week 6. S-specific memory B cells were detected by week 4 and S-specific T cell responses were dominated by the production of IL-17, IFN-γ, or TNF-α. Antibody and cellular responses were stable through week 22. The immune responses for the mRNA-LNP vaccine were of a similar magnitude to those elicited by the Moderna mRNA-1273 vaccine in adults. The S-2P mRNA-LNP and Protein-3M-052-SE vaccines were well-tolerated and highly immunogenic in infant RMs, providing proof-of concept for a pediatric SARS-CoV-2 vaccine with the potential for durable immunity that might decrease the transmission of SARS-CoV-2 and mitigate the ongoing health and socioeconomic impacts of COVID-19.
Collapse
Affiliation(s)
- Carolina Garrido
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, USA
| | - Alan D Curtis
- Department of Microbiology and Immunology, Center for AIDS Research, and Children's Research Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maria Dennis
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, USA
| | - Sachi H Pathak
- Department of Microbiology and Immunology, Center for AIDS Research, and Children's Research Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongmei Gao
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, USA
| | - David Montefiori
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, USA
| | - Mark Tomai
- 3M Corporate Research Materials Laboratory, Saint Paul, MN, USA
| | | | - Pamela A Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Trevor Scobey
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer E Munt
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael L Mallory
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pooja T Saha
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael G Hudgens
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lisa C Lindesmith
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Olubukola M Abiona
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Barney Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | | | | | - Genevieve Fouda
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, Center for AIDS Research, and Children's Research Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
12
|
Rey F. Structure-function relations of the SARS-CoV-2 spike protein and impact of mutations in the variants of concern. C R Biol 2021; 344:77-110. [PMID: 34213849 DOI: 10.5802/crbiol.53] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review covers the main features of the severe acquired respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, its interaction with the main entry receptor, the human angiotensin converting enzyme 2 (ACE2), and the subsequent membrane fusion step. The focus is on the structural organization of these proteins and mechanistic aspects of their interactions that lead to cytoplasmic release of the viral genome. The most potently neutralizing antibodies against SARS-CoV-2 were shown to interfere with the spike/ACE2 interaction. I thus also review the location and the potential impact of mutations in the spike protein observed in the variants of concern that emerged concomitantly with acquired immunity in the population after one year of virus circulation. Understanding how these interactions affect the spike/ACE2 interactions and the subsequent spike-protein-induced membrane fusion reaction is important to stay one step ahead of the virus evolution and develop efficient countermeasures.
Collapse
Affiliation(s)
- Félix Rey
- Unité de Virologie Structurale, CNRS UMR 3569, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
13
|
Dao TL, Hoang VT, Colson P, Lagier JC, Million M, Raoult D, Levasseur A, Gautret P. SARS-CoV-2 Infectivity and Severity of COVID-19 According to SARS-CoV-2 Variants: Current Evidence. J Clin Med 2021; 10:2635. [PMID: 34203844 PMCID: PMC8232800 DOI: 10.3390/jcm10122635] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We conducted this review to summarize the relation between viral mutation and infectivity of SARS-CoV-2 and also the severity of COVID-19 in vivo and in vitro. METHOD Articles were identified through a literature search until 31 May 2021, in PubMed, Web of Science and Google Scholar. RESULTS Sixty-three studies were included. To date, most studies showed that the viral mutations, especially the D614G variant, correlate with a higher infectivity than the wild-type virus. However, the evidence of the association between viral mutation and severity of the disease is scant. A SARS-CoV-2 variant with a 382-nucleotide deletion was associated with less severe infection in patients. The 11,083G > U mutation was significantly associated with asymptomatic patients. By contrast, ORF1ab 4715L and S protein 614G variants were significantly more frequent in patients from countries where high fatality rates were also reported. The current evidence showed that variants of concern have led to increased infectivity and deteriorating epidemiological situations. However, the relation between this variant and severity of COVID-19 infection was contradictory. CONCLUSION The COVID-19 pandemic continues to spread worldwide. It is necessary to anticipate large clinical cohorts to evaluate the virulence and transmissibility of SARS-CoV-2 mutants.
Collapse
Affiliation(s)
- Thi Loi Dao
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France; (T.L.D.); (V.T.H.)
- IHU—Méditerranée Infection, Aix Marseille University, 13005 Marseille, France; (P.C.); (J.C.L.); (M.M.); (D.R.); (A.L.)
- Thai Binh University of Medicine and Pharmacy, Thai Binh 410000, Vietnam
| | - Van Thuan Hoang
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France; (T.L.D.); (V.T.H.)
- IHU—Méditerranée Infection, Aix Marseille University, 13005 Marseille, France; (P.C.); (J.C.L.); (M.M.); (D.R.); (A.L.)
- Thai Binh University of Medicine and Pharmacy, Thai Binh 410000, Vietnam
| | - Philippe Colson
- IHU—Méditerranée Infection, Aix Marseille University, 13005 Marseille, France; (P.C.); (J.C.L.); (M.M.); (D.R.); (A.L.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| | - Jean Christophe Lagier
- IHU—Méditerranée Infection, Aix Marseille University, 13005 Marseille, France; (P.C.); (J.C.L.); (M.M.); (D.R.); (A.L.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| | - Matthieu Million
- IHU—Méditerranée Infection, Aix Marseille University, 13005 Marseille, France; (P.C.); (J.C.L.); (M.M.); (D.R.); (A.L.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| | - Didier Raoult
- IHU—Méditerranée Infection, Aix Marseille University, 13005 Marseille, France; (P.C.); (J.C.L.); (M.M.); (D.R.); (A.L.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| | - Anthony Levasseur
- IHU—Méditerranée Infection, Aix Marseille University, 13005 Marseille, France; (P.C.); (J.C.L.); (M.M.); (D.R.); (A.L.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| | - Philippe Gautret
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France; (T.L.D.); (V.T.H.)
- IHU—Méditerranée Infection, Aix Marseille University, 13005 Marseille, France; (P.C.); (J.C.L.); (M.M.); (D.R.); (A.L.)
| |
Collapse
|
14
|
Smyth B. Estimating Exposure Risk to Guide Behaviour During the SARS-COV2 Pandemic. Front Digit Health 2021; 3:655745. [PMID: 34713129 PMCID: PMC8521974 DOI: 10.3389/fdgth.2021.655745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/28/2021] [Indexed: 12/23/2022] Open
Abstract
The end of 2020 and the beginning of 2021 was a challenging time for many countries in Europe, as the combination of colder weather, holiday celebrations, and the emergence of more transmissible virus variants conspired to create a perfect storm for virus transmission across the continent. At the same time lockdowns appeared to be less effective than they were earlier in the pandemic. In this paper we argue that one contributing factor is that existing ways of communicating risk-case numbers, test positivity rates, hospitalisations etc.-are difficult for individuals to translate into a level of personal risk, thereby limiting the ability of individuals to properly calibrate their own behaviour. We propose an new more direct measure of personal risk, exposure risk, to estimate the likelihood that an individual will come into contact with an infected person, and we argue that it can play an important role, alongside more conventional statistics, to help translate complex epidemiological data into a simple measure to guide pandemic behaviour. We describe how exposure risk can be calculated using existing data and infection prediction models, and use it to evaluate and compare the exposure risk associated with 39 European countries.
Collapse
Affiliation(s)
- Barry Smyth
- Insight SFI Research Centre for Data Analytics, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Socher E, Conrad M, Heger L, Paulsen F, Sticht H, Zunke F, Arnold P. Mutations in the B.1.1.7 SARS-CoV-2 Spike Protein Reduce Receptor-Binding Affinity and Induce a Flexible Link to the Fusion Peptide. Biomedicines 2021; 9:525. [PMID: 34066729 PMCID: PMC8151884 DOI: 10.3390/biomedicines9050525] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023] Open
Abstract
The B.1.1.7 variant of the SARS-CoV-2 virus shows enhanced infectiousness over the wild type virus, leading to increasing patient numbers in affected areas. Amino acid exchanges within the SARS-CoV-2 spike protein variant of B.1.1.7 affect inter-monomeric contact sites within the trimer (A570D and D614G) as well as the ACE2-receptor interface region (N501Y), which comprises the receptor-binding domain (RBD) of the spike protein. However, the molecular consequences of mutations within B.1.1.7 on spike protein dynamics and stability or ACE2 binding are largely unknown. Here, molecular dynamics simulations comparing SARS-CoV-2 wild type with the B.1.1.7 variant revealed inter-trimeric contact rearrangements, altering the structural flexibility within the spike protein trimer. Furthermore, we found increased flexibility in direct spatial proximity of the fusion peptide due to salt bridge rearrangements induced by the D614G mutation in B.1.1.7. This study also implies a reduced binding affinity for B.1.1.7 with ACE2, as the N501Y mutation restructures the RBD-ACE2 interface, significantly decreasing the linear interaction energy between the RBD and ACE2. Our results demonstrate how mutations found within B.1.1.7 enlarge the flexibility around the fusion peptide and change the RBD-ACE2 interface. We anticipate our findings to be starting points for in depth biochemical and cell biological analyses of B.1.1.7.
Collapse
Affiliation(s)
- Eileen Socher
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, 91054 Erlangen, Germany
| | - Marcus Conrad
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.C.); (H.S.)
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, 91052 Erlangen, Germany;
| | - Friedrich Paulsen
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
- Department of Operative Surgery and Topographic Anatomy, Sechenov University, 119992 Moscow, Russia
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.C.); (H.S.)
- Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Philipp Arnold
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| |
Collapse
|
16
|
Garrido C, Curtis AD, Dennis M, Pathak SH, Gao H, Montefiori D, Tomai M, Fox CB, Kozlowski PA, Scobey T, Munt JE, Mallroy ML, Saha PT, Hudgens MG, Lindesmith LC, Baric RS, Abiona OM, Graham B, Corbett KS, Edwards D, Carfi A, Fouda G, Van Rompay KKA, De Paris K, Permar SR. SARS-CoV-2 Vaccines Elicit Durable Immune Responses in Infant Rhesus Macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33851156 DOI: 10.1101/2021.04.05.438479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Early life SARS-CoV-2 vaccination has the potential to provide lifelong protection and achieve herd immunity. To evaluate SARS-CoV-2 infant vaccination, we immunized two groups of 8 infant rhesus macaques (RMs) at weeks 0 and 4 with stabilized prefusion SARS-CoV-2 S-2P spike (S) protein, either encoded by mRNA encapsulated in lipid nanoparticles (mRNA-LNP) or mixed with 3M-052-SE, a TLR7/8 agonist in a squalene emulsion (Protein+3M-052-SE). Neither vaccine induced adverse effects. High magnitude S-binding IgG and neutralizing infectious dose 50 (ID 50 ) >10 3 were elicited by both vaccines. S-specific T cell responses were dominated by IL-17, IFN- γ , or TNF- α . Antibody and cellular responses were stable through week 22. The S-2P mRNA-LNP and Protein-3M-052-SE vaccines are promising pediatric SARS-CoV-2 vaccine candidates to achieve durable protective immunity. One-Sentence Summary SARS-CoV-2 vaccines are well-tolerated and highly immunogenic in infant rhesus macaques.
Collapse
|
17
|
Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, Zhang X, Muruato AE, Zou J, Fontes-Garfias CR, Mirchandani D, Scharton D, Bilello JP, Ku Z, An Z, Kalveram B, Freiberg AN, Menachery VD, Xie X, Plante KS, Weaver SC, Shi PY. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 2021; 592:116-121. [PMID: 33106671 PMCID: PMC8158177 DOI: 10.1038/s41586-020-2895-3] [Citation(s) in RCA: 1102] [Impact Index Per Article: 367.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/20/2020] [Indexed: 11/09/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein substitution D614G became dominant during the coronavirus disease 2019 (COVID-19) pandemic1,2. However, the effect of this variant on viral spread and vaccine efficacy remains to be defined. Here we engineered the spike D614G substitution in the USA-WA1/2020 SARS-CoV-2 strain, and found that it enhances viral replication in human lung epithelial cells and primary human airway tissues by increasing the infectivity and stability of virions. Hamsters infected with SARS-CoV-2 expressing spike(D614G) (G614 virus) produced higher infectious titres in nasal washes and the trachea, but not in the lungs, supporting clinical evidence showing that the mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increase transmission. Sera from hamsters infected with D614 virus exhibit modestly higher neutralization titres against G614 virus than against D614 virus, suggesting that the mutation is unlikely to reduce the ability of vaccines in clinical trials to protect against COVID-19, and that therapeutic antibodies should be tested against the circulating G614 virus. Together with clinical findings, our work underscores the importance of this variant in viral spread and its implications for vaccine efficacy and antibody therapy.
Collapse
Affiliation(s)
- Jessica A Plante
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jianying Liu
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bryan A Johnson
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Kumari G Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xianwen Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonio E Muruato
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Camila R Fontes-Garfias
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Divya Mirchandani
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Dionna Scharton
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Birte Kalveram
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alexander N Freiberg
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Vineet D Menachery
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Kenneth S Plante
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Pei-Yong Shi
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
18
|
Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nat Med 2021; 27:620-621. [PMID: 33558724 DOI: 10.1038/s41591-021-01270-4] [Citation(s) in RCA: 426] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/28/2021] [Indexed: 01/05/2023]
Abstract
We engineered three severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses containing key spike mutations from the newly emerged United Kingdom (UK) and South African (SA) variants: N501Y from UK and SA; 69/70-deletion + N501Y + D614G from UK; and E484K + N501Y + D614G from SA. Neutralization geometric mean titers (GMTs) of 20 BTN162b2 vaccine-elicited human sera against the three mutant viruses were 0.81- to 1.46-fold of the GMTs against parental virus, indicating small effects of these mutations on neutralization by sera elicited by two BNT162b2 doses.
Collapse
|
19
|
Klasse PJ, Nixon DF, Moore JP. Immunogenicity of clinically relevant SARS-CoV-2 vaccines in nonhuman primates and humans. SCIENCE ADVANCES 2021; 7:eabe8065. [PMID: 33608249 PMCID: PMC7978427 DOI: 10.1126/sciadv.abe8065] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/22/2021] [Indexed: 05/17/2023]
Abstract
Multiple preventive vaccines are being developed to counter the coronavirus disease 2019 pandemic. The leading candidates have now been evaluated in nonhuman primates (NHPs) and human phase 1 and/or phase 2 clinical trials. Several vaccines have already advanced into phase 3 efficacy trials, while others will do so before the end of 2020. Here, we summarize what is known of the antibody and T cell immunogenicity of these vaccines in NHPs and humans. To the extent possible, we compare how the vaccines have performed, taking into account the use of different assays to assess immunogenicity and inconsistencies in how the resulting data are presented. We also review the outcome of challenge experiments with severe acute respiratory syndrome coronavirus 2 in immunized macaques, while noting variations in the protocols used, including but not limited to the virus challenge doses. Press releases on the outcomes of vaccine efficacy trials are also summarized.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
20
|
Letarov AV, Babenko VV, Kulikov EE. Free SARS-CoV-2 Spike Protein S1 Particles May Play a Role in the Pathogenesis of COVID-19 Infection. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:257-261. [PMID: 33838638 PMCID: PMC7772528 DOI: 10.1134/s0006297921030032] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 01/06/2023]
Abstract
The imbalance of the renin-angiotensin system is currently considered as a potentially important factor of the pathogenesis of COVID-19 disease. It has been shown previously in the murine model, that the expression of angiotensin-converting enzyme 2 (ACE2) on the cell surface is downregulated in response to the infection by SARS-CoV virus or recombinant spike protein (S protein) alone. In the case of natural infection, circulation of the S protein in a soluble form is unlikely. However, in SARS-CoV-2, a large fraction of S protein trimers is pre-processed during virion morphogenesis due to the presence of furin protease cleavage site between the S1 and S2 subunits. Therefore, S protein transition into the fusion conformation may be accompanied by the separation of the S1 subunits carrying the receptor-binding domains from the membrane-bound S2 subunits. The fate of the S1 particles shed due to the spontaneous "firing" of some S protein trimers exposed on the virions and on the surface of infected cells has been never investigated. We hypothesize that the soluble S1 subunits of the SARS-CoV-2 S protein shed from the infected cells and from the virions in vivo may bind to the ACE2 and downregulate cell surface expression of this protein. The decrease in the ACE2 activity on the background of constant or increased ACE activity in the lungs may lead to the prevalence of angiotensin II effects over those of angiotensin (1-7), thus promoting thrombosis, inflammation, and pulmonary damage. This hypothesis also suggests the association between less pronounced shedding of the S1 particles reported for the S protein carrying the D614G mutation (vs. the wild type D614 protein), and lack of increased severity of the COVID-19 infection caused by the mutant (D614G) SARS-CoV-2 strain, despite its higher infectivity and higher in vivo viral load.
Collapse
Affiliation(s)
- Andrey V Letarov
- Winogradsky Institute of Microbiology, Biotechnology Research Center, Russian Academy of Sciences, Moscow, 117312, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladislav V Babenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Eugene E Kulikov
- Winogradsky Institute of Microbiology, Biotechnology Research Center, Russian Academy of Sciences, Moscow, 117312, Russia
| |
Collapse
|
21
|
V'kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 2021; 19:155-170. [PMID: 33116300 PMCID: PMC7592455 DOI: 10.1038/s41579-020-00468-6] [Citation(s) in RCA: 1767] [Impact Index Per Article: 589.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
The SARS-CoV-2 pandemic and its unprecedented global societal and economic disruptive impact has marked the third zoonotic introduction of a highly pathogenic coronavirus into the human population. Although the previous coronavirus SARS-CoV and MERS-CoV epidemics raised awareness of the need for clinically available therapeutic or preventive interventions, to date, no treatments with proven efficacy are available. The development of effective intervention strategies relies on the knowledge of molecular and cellular mechanisms of coronavirus infections, which highlights the significance of studying virus-host interactions at the molecular level to identify targets for antiviral intervention and to elucidate critical viral and host determinants that are decisive for the development of severe disease. In this Review, we summarize the first discoveries that shape our current understanding of SARS-CoV-2 infection throughout the intracellular viral life cycle and relate that to our knowledge of coronavirus biology. The elucidation of similarities and differences between SARS-CoV-2 and other coronaviruses will support future preparedness and strategies to combat coronavirus infections.
Collapse
Affiliation(s)
- Philip V'kovski
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Annika Kratzel
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Silvio Steiner
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
22
|
Jackson CB, Zhang L, Farzan M, Choe H. Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochem Biophys Res Commun 2021; 538:108-115. [PMID: 33220921 PMCID: PMC7664360 DOI: 10.1016/j.bbrc.2020.11.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped virus which binds its cellular receptor angiotensin-converting enzyme 2 (ACE2) and enters hosts cells through the action of its spike (S) glycoprotein displayed on the surface of the virion. Compared to the reference strain of SARS-CoV-2, the majority of currently circulating isolates possess an S protein variant characterized by an aspartic acid-to-glycine substitution at amino acid position 614 (D614G). Residue 614 lies outside the receptor binding domain (RBD) and the mutation does not alter the affinity of monomeric S protein for ACE2. However, S(G614), compared to S(D614), mediates more efficient ACE2-mediated transduction of cells by S-pseudotyped vectors and more efficient infection of cells and animals by live SARS-CoV-2. This review summarizes and synthesizes the epidemiological and functional observations of the D614G spike mutation, with focus on the biochemical and cell-biological impact of this mutation and its consequences for S protein function. We further discuss the significance of these recent findings in the context of the current global pandemic.
Collapse
Affiliation(s)
- Cody B Jackson
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| | - Lizhou Zhang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Hyeryun Choe
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
23
|
Xie X, Liu Y, Liu J, Zhang X, Zou J, Fontes-Garfias CR, Xia H, Swanson KA, Cutler M, Cooper D, Menachery VD, Weaver S, Dormitzer PR, Shi PY. Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K, and N501Y variants by BNT162b2 vaccine-elicited sera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.27.427998. [PMID: 33532771 PMCID: PMC7852264 DOI: 10.1101/2021.01.27.427998] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We engineered three SARS-CoV-2 viruses containing key spike mutations from the newly emerged United Kingdom (UK) and South African (SA) variants: N501Y from UK and SA; 69/70-deletion+N501Y+D614G from UK; and E484K+N501Y+D614G from SA. Neutralization geometric mean titers (GMTs) of twenty BTN162b2 vaccine-elicited human sera against the three mutant viruses were 0.81- to 1.46-fold of the GMTs against parental virus, indicating small effects of these mutations on neutralization by sera elicited by two BNT162b2 doses.
Collapse
Affiliation(s)
- Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston TX, U.S.A
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston TX, U.S.A
| | - Jianying Liu
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, U.S.A
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, U.S.A
| | - Xianwen Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston TX, U.S.A
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston TX, U.S.A
| | - Camila R. Fontes-Garfias
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston TX, U.S.A
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston TX, U.S.A
| | | | - Mark Cutler
- Pfizer, 401 N Middletown Rd., Pearl River, NY 10960, U.S.A
| | - David Cooper
- Pfizer, 401 N Middletown Rd., Pearl River, NY 10960, U.S.A
| | - Vineet D. Menachery
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, U.S.A
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, U.S.A
| | - Scott Weaver
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, U.S.A
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, U.S.A
| | | | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston TX, U.S.A
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, U.S.A
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, U.S.A
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, U.S.A
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, U.S.A
| |
Collapse
|
24
|
Chen S, Ren LZ, Ouyang HS, Liu S, Zhang LY. Necessary problems in re-emergence of COVID-19. World J Clin Cases 2021; 9:1-7. [PMID: 33511167 PMCID: PMC7809654 DOI: 10.12998/wjcc.v9.i1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/05/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 poses a great threat to human beings. Although numerous patients have recovered, re-positive cases have been reported in several countries. Till now, we still know very little about the disease and its pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, more attention should be paid to the following aspects, such as post-discharge surveillance, asymptomatic infection, re-evaluation of influenza-like symptoms, and dynamic monitoring of genomic mutation of SARS-CoV-2.
Collapse
Affiliation(s)
- Si Chen
- College of Animal Sciences, Jilin University, Changchun 130062, Jilin Province, China
| | - Lin-Zhu Ren
- College of Animal Sciences, Jilin University, Changchun 130062, Jilin Province, China
| | - Hong-Sheng Ouyang
- College of Animal Sciences, Jilin University, Changchun 130062, Jilin Province, China
| | - Shen Liu
- Department of Pharmacy, Jilin Cancer Hospital, Changchun 130000, Jilin Province, China
| | - Li-Ying Zhang
- College of Animal Sciences, Jilin University, Changchun 130062, Jilin Province, China
| |
Collapse
|
25
|
Port JR, Yinda CK, Owusu IO, Holbrook M, Fischer R, Bushmaker T, Avanzato VA, Schulz JE, van Doremalen N, Clancy CS, Munster VJ. SARS-CoV-2 disease severity and transmission efficiency is increased for airborne but not fomite exposure in Syrian hamsters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.28.424565. [PMID: 33398267 PMCID: PMC7781302 DOI: 10.1101/2020.12.28.424565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure. Different routes of exposure presented with distinct disease manifestations. Intranasal and aerosol inoculation caused more severe respiratory pathology, higher virus loads and increased weight loss. Fomite exposure led to milder disease manifestation characterized by an anti-inflammatory immune state and delayed shedding pattern. Whereas the overall magnitude of respiratory virus shedding was not linked to disease severity, the onset of shedding was. Early shedding was linked to an increase in disease severity. Airborne transmission was more efficient than fomite transmission and dependent on the direction of the airflow. Carefully characterized of SARS-CoV-2 transmission models will be crucial to assess potential changes in transmission and pathogenic potential in the light of the ongoing SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Julia R. Port
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA
| | - Irene Offei Owusu
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA
| | - Myndi Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA
| | - Robert Fischer
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA
- Montana State University, Bozeman, Montana, USA
| | - Victoria A. Avanzato
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E. Schulz
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA
| | - Chad S. Clancy
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
26
|
Soliman MS, AbdelFattah M, Aman SMN, Ibrahim LM, Aziz RK. A Gapless, Unambiguous RNA Metagenome-Assembled Genome Sequence of a Unique SARS-CoV-2 Variant Encoding Spike S813I and ORF1a A859V Substitutions. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 25:123-128. [PMID: 33253058 DOI: 10.1089/omi.2020.0194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The novel severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is causing an unprecedented pandemic, threatening planetary health, society, and economy. Genomic surveillance continues to be a critical effort toward tracking the virus and containing its spread, and more genomes from diverse geographical areas and different time points are needed to provide an appropriate representation of the virus evolution. In this study, we report the successful assembly of one single gapless, unambiguous contiguous sequence representing the complete viral genome from a nasopharyngeal swab of an infected health care worker in Cairo, Egypt. The sequence has all typical features of SARS-CoV-2 genomes, with no protein-disrupting mutations. However, three mutations are worth highlighting and future tracking: a synonymous mutation causing a rare spike S813I variation and two less frequent ones leading to an A41V variation in NSP3, encoded by ORF1a (ORF1a A895V), and a Q677H variation in the spike protein. Both affected proteins, S and NSP3, are relevant to vaccine and drug development. Although the genome, named CU_S3, belongs to the prevalent global genotype, marked by the D614G spike variation, the combined variations in the spike proteins and ORF1a do not co-occur in any of the 197,000 genomes reported to date. Future studies will assess the biological, pathogenic, and epidemiological implications of this set of genetic variations. This line of research is needed to inform vaccine and therapeutic innovation to stem the COVID-19 pandemic.
Collapse
Affiliation(s)
- May S Soliman
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - May AbdelFattah
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.,Cairo University Pediatric Hospital, Cairo, Egypt
| | - Soad M N Aman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lamyaa M Ibrahim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| |
Collapse
|
27
|
Zhang YN, Li XD, Zhang ZR, Zhang HQ, Li N, Liu J, Li JQ, Zhang HJ, Wang ZJ, Shen S, Shi ZL, Wei HP, Yuan ZM, Ye HQ, Zhang B. A mouse model for SARS-CoV-2 infection by exogenous delivery of hACE2 using alphavirus replicon particles. Cell Res 2020; 30:1046-1048. [PMID: 32843719 PMCID: PMC7445228 DOI: 10.1038/s41422-020-00405-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Xiao-Dan Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Hunan Normal University, School of Medicine, Changsha, Hunan, 410081, China
| | - Zhe-Rui Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Hong-Qing Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Na Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Jing Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Jia-Qi Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Hua-Jun Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Ze-Jun Wang
- Wuhan Institute of Biological Products Co. Ltd., No. 1 Huangjin Industrial Park Road, Jiangxia District, Wuhan, Hubei, 420115, China
| | - Shuo Shen
- Wuhan Institute of Biological Products Co. Ltd., No. 1 Huangjin Industrial Park Road, Jiangxia District, Wuhan, Hubei, 420115, China
| | - Zheng-Li Shi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Hong-Ping Wei
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Zhi-Ming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Han-Qing Ye
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| |
Collapse
|