1
|
Sakai M, Masuda Y, Tarumoto Y, Aihara N, Tsunoda Y, Iwata M, Kamiya Y, Komorizono R, Noda T, Yusa K, Tomonaga K, Makino A. Genome-scale CRISPR-Cas9 screen identifies host factors as potential therapeutic targets for SARS-CoV-2 infection. iScience 2024; 27:110475. [PMID: 39100693 PMCID: PMC11295705 DOI: 10.1016/j.isci.2024.110475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/01/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Although many host factors important for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been reported, the mechanisms by which the virus interacts with host cells remain elusive. Here, we identified tripartite motif containing (TRIM) 28, TRIM33, euchromatic histone lysine methyltransferase (EHMT) 1, and EHMT2 as proviral factors involved in SARS-CoV-2 infection by CRISPR-Cas9 screening. Our result suggested that TRIM28 may play a role in viral particle formation and that TRIM33, EHMT1, and EHMT2 may be involved in viral transcription and replication. UNC0642, a compound that specifically inhibits the methyltransferase activity of EHMT1/2, strikingly suppressed SARS-CoV-2 growth in cultured cells and reduced disease severity in a hamster infection model. This study suggests that EHMT1/2 may be a therapeutic target for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Madoka Sakai
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Yoshie Masuda
- Laboratory of Stem Cell Genetics, Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Yusuke Tarumoto
- Laboratory of Stem Cell Genetics, Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Naoyuki Aihara
- Laboratory of Veterinary Pathology, Azabu University, Kanagawa 2520206, Japan
| | - Yugo Tsunoda
- Laboratory of Ultrastructural Virology, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto 6068507, Japan
- CREST, Japan Science and Technology Agency, Saitama 1020076, Japan
| | - Michiko Iwata
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Yumiko Kamiya
- Laboratory of Veterinary Pathology, Azabu University, Kanagawa 2520206, Japan
| | - Ryo Komorizono
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto 6068507, Japan
- CREST, Japan Science and Technology Agency, Saitama 1020076, Japan
| | - Kosuke Yusa
- Laboratory of Stem Cell Genetics, Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 6068507, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
| | - Akiko Makino
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 6068507, Japan
| |
Collapse
|
2
|
Muneer A, Xie L, Xie X, Zhang F, Wrobel JA, Xiong Y, Yu X, Wang C, Gheorghe C, Wu P, Song J, Ming GL, Jin J, Song H, Shi PY, Chen X. Targeting G9a translational mechanism of SARS-CoV-2 pathogenesis for multifaceted therapeutics of COVID-19 and its sequalae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583415. [PMID: 38496599 PMCID: PMC10942352 DOI: 10.1101/2024.03.04.583415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
By largely unknown mechanism(s), SARS-CoV-2 hijacks the host translation apparatus to promote COVID-19 pathogenesis. We report that the histone methyltransferase G9a noncanonically regulates viral hijacking of the translation machinery to bring about COVID-19 symptoms of hyperinflammation, lymphopenia, and blood coagulation. Chemoproteomic analysis of COVID-19 patient peripheral mononuclear blood cells (PBMC) identified enhanced interactions between SARS-CoV-2-upregulated G9a and distinct translation regulators, particularly the N 6 -methyladenosine (m 6 A) RNA methylase METTL3. These interactions with translation regulators implicated G9a in translational regulation of COVID-19. Inhibition of G9a activity suppressed SARS-CoV-2 replication in human alveolar epithelial cells. Accordingly, multi-omics analysis of the same alveolar cells identified SARS-CoV-2-induced changes at the transcriptional, m 6 A-epitranscriptional, translational, and post-translational (phosphorylation or secretion) levels that were reversed by inhibitor treatment. As suggested by the aforesaid chemoproteomic analysis, these multi-omics-correlated changes revealed a G9a-regulated translational mechanism of COVID-19 pathogenesis in which G9a directs translation of viral and host proteins associated with SARS-CoV-2 replication and with dysregulation of host response. Comparison of proteomic analyses of G9a inhibitor-treated, SARS-CoV-2 infected cells, or ex vivo culture of patient PBMCs, with COVID-19 patient data revealed that G9a inhibition reversed the patient proteomic landscape that correlated with COVID-19 pathology/symptoms. These data also indicated that the G9a-regulated, inhibitor-reversed, translational mechanism outperformed G9a-transcriptional suppression to ultimately determine COVID-19 pathogenesis and to define the inhibitor action, from which biomarkers of serve symptom vulnerability were mechanistically derived. This cell line-to-patient conservation of G9a-translated, COVID-19 proteome suggests that G9a inhibitors can be used to treat patients with COVID-19, particularly patients with long-lasting COVID-19 sequelae.
Collapse
|
3
|
Roshanzamir S, Mohamadi Jahromi LS. Study of sympathetic skin response in patients with COVID-19 infection. Acta Neurol Belg 2023; 123:949-955. [PMID: 36273112 PMCID: PMC9589609 DOI: 10.1007/s13760-022-02120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/10/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVES Many articles hypothesized the potential role of autonomic nervous system in the pathogenesis and outcome of COVID-19 infection. Several studies reported both central and peripheral nervous system involvement in COVID-19 as well. Up to our knowledge, there is no study evaluating whether this virus could invade the autonomic nervous system affecting its function adversely. Sympathetic skin response (SSR) has long been used as a method of evaluating the autonomic nervous system. Regarding the importance of the autonomic nervous system in hemostasis and wide consequences of COVID-19 infection, we designed this study to evaluate the autonomic nervous system function in patients recovered from COVID-19 compared with normal population who are not yet infected by this virus by the means of SSR. METHODS This case-control study included 70 patients surviving COVID-19 who met the inclusion and exclusion criteria that went under SSR. The data gathered were compared with those without the history of any symptoms attributable to COVID-19 during the pandemic. RESULTS There was a correlation between COVID-19 infection and abnormal SSR (p value < 0.0001) with the most effect on the latency prolongation of the action potential recorded from the median nerve at palms (effect size: right: 3.90, left: 3.69). Moreover, the greater severity of the disease correlated with more abnormality of parameters recorded by SSR technique. CONCLUSIONS Abnormal SSR parameters could be a good indicator of autonomic nervous system involvement in patients with COVID-19 infection. It might be a predictor of disease severity, clinical outcomes and prognosis as well.
Collapse
Affiliation(s)
- Sharareh Roshanzamir
- Physical Medicine and Rehabilitation Department, Shiraz Medical School, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran
| | - Leila Sadat Mohamadi Jahromi
- Physical Medicine and Rehabilitation Department, Shiraz Medical School, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran
| |
Collapse
|
4
|
Pandey A, Madan R, Singh S. Immunology to Immunotherapeutics of SARS-CoV-2: Identification of Immunogenic Epitopes for Vaccine Development. Curr Microbiol 2022; 79:306. [PMID: 36064873 PMCID: PMC9444117 DOI: 10.1007/s00284-022-03003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/16/2022] [Indexed: 11/21/2022]
Abstract
The emergence of COVID19 pandemic caused by SARS-CoV-2 virus has created a global public health and socio-economic crisis. Immunoinformatics-based approaches to investigate the potential antigens is the fastest way to move towards a multiepitope-based vaccine development. This review encompasses the underlying mechanisms of pathogenesis, innate and adaptive immune signaling along with evasion pathways of SARS-CoV-2. Furthermore, it compiles the promiscuous peptides from in silico studies which are subjected to prediction of cytokine milieu using web-based servers. Out of the 434 peptides retrieved from all studies, we have identified 33 most promising T cell vaccine candidates. This review presents a list of the most potential epitopes from several proteins of the virus based on their immunogenicity, homology, conservancy and population coverage studies. These epitopes can form a basis of second generation of vaccine development as the first generation vaccines in various stages of trials mostly focus only on Spike protein. We therefore, propose them as most potential candidates which can be taken up immediately for confirmation by experimental studies.
Collapse
Affiliation(s)
- Apoorva Pandey
- Indian Council of Medical Research, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box No. 4911, New Delhi, 110029 India
| | - Riya Madan
- Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Sahibzada Ajit Singh Nagar, Punjab 140306 India
| | - Swati Singh
- Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
5
|
The function of myeloid-derived suppressor cells in COVID-19 lymphopenia. Int Immunopharmacol 2022; 112:109277. [PMID: 36206651 PMCID: PMC9513342 DOI: 10.1016/j.intimp.2022.109277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has caused a global pandemic and presents a significant danger to public health. Lymphopenia is considered to be the defining characteristic of severe COVID-19, especially in elderly people. Lymphopenia has been suggested as a pivotal factor in disease severity. To minimize mortality in COVID-19 patients, it is essential to have a deeper understanding of the processes behind lymphocytopenia. Recently, myeloid-derived suppressor cells (MDSCs) have been confirmed as a key mediator of lymphopenia. MDSCs are characterized by their powerful capacity to suppress T cells and eventually contribute to the course of illness. Targeting these cells may improve the disease prognosis. In this article, we analyze the available research on MDSCs in lymphopenia and discuss their immunopathologic changes and prospective therapeutic targets in patients with COVID-19 lymphocytopenia.
Collapse
|
6
|
Abstract
Human genetics can inform the biology and epidemiology of coronavirus disease 2019 (COVID-19) by pinpointing causal mechanisms that explain why some individuals become more severely affected by the disease upon infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Large-scale genetic association studies, encompassing both rare and common genetic variants, have used different study designs and multiple disease phenotype definitions to identify several genomic regions associated with COVID-19. Along with a multitude of follow-up studies, these findings have increased our understanding of disease aetiology and provided routes for management of COVID-19. Important emergent opportunities include the clinical translatability of genetic risk prediction, the repurposing of existing drugs, exploration of variable host effects of different viral strains, study of inter-individual variability in vaccination response and understanding the long-term consequences of SARS-CoV-2 infection. Beyond the current pandemic, these transferrable opportunities are likely to affect the study of many infectious diseases.
Collapse
Affiliation(s)
- Mari E K Niemi
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Broad Institute, Cambridge, MA, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
- Broad Institute, Cambridge, MA, USA.
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
AbdelHamid SG, Refaat AA, Benjamin AM, Elmawardy LA, Elgendy LA, Manolly MM, Elmaksoud NA, Sherif N, Hamdy NM. Deciphering epigenetic(s) role in modulating susceptibility to and severity of COVID-19 infection and/or outcome: a systematic rapid review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54209-54221. [PMID: 34383213 PMCID: PMC8359636 DOI: 10.1007/s11356-021-15588-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/19/2021] [Indexed: 05/14/2023]
Abstract
COVID-19 pandemic waves hitting worldwide result in drastic postinfection complications with interindividual variations, which raised the question for the cause of these observed variations. This urged to think "the impact of environment-affected genes"? In an attempt to unravel the impact of environment-affected genes, a systematic rapid review was conducted to study "the impact of host or viral epigenetic modulation on COVID-19 infection susceptibility and/or outcome." Electronic databases including Web of Science, SCOPUS, Cochrane Central Register of Controlled Trials, PubMed, and Google Scholar, and other databases were searched. The search strings included "COVID-19" OR "SARS-CoV-2" AND (Epigenetics'). Articles with randomized clinical trials (RCTs) and observational study designs, conducted on humans and available in the English language, were selected, with respect to "The interplay between the SARS-CoV-2 virus and Epigenetics" published from 2020 to February 2021 (but not limited to 2020, being expanded to 2015). Database search yielded 1330 articles; after screening, exclusion, and further filtrations, 51 articles were included. Susceptibility to COVID-19 infection is related to the viral-microRNAs (miRNAs) which alter virulence of the transmitted SARS-CoV-2 strains and impact host-miRNA-related innate immunity. Host-DNA methylation and/or chromatin remodeling may be implicated in severe cytokine storm that can ultimately results in fatal outcome.
Collapse
Affiliation(s)
- Sherihan G AbdelHamid
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Aya A Refaat
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Anthony M Benjamin
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Laila A Elmawardy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Lougine A Elgendy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Mark M Manolly
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Nada Abd Elmaksoud
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Nourhan Sherif
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt.
| |
Collapse
|
8
|
Zan X, Yao X, Xu P, Chen Z, Xie L, Li S, Liu W. A Hierarchical Error Correction Strategy for Text DNA Storage. Interdiscip Sci 2021; 14:141-150. [PMID: 34463928 DOI: 10.1007/s12539-021-00476-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/28/2022]
Abstract
DNA storage has been a thriving interdisciplinary research area because of its high density, low maintenance cost, and long durability for information storage. However, the complexity of errors in DNA sequences including substitutions, insertions and deletions hinders its application for massive data storage. Motivated by the divide-and-conquer algorithm, we propose a hierarchical error correction strategy for text DNA storage. The basic idea is to design robust codes for common characters which have one-base error correction ability including insertion and/or deletion. The errors are gradually corrected by the codes in DNA reads, multiple alignment of character lines, and finally word spelling. On one hand, the proposed encoding method provides a systematic way to design storage friendly codes, such as 50% GC content, no more than 2-base homopolymers, and robustness against secondary structures. On the other hand, the proposed error correction method not only corrects single insertion or deletion, but also deals with multiple insertions or deletions. Simulation results demonstrate that the proposed method can correct more than 98% errors when error rate is less than or equal to 0.05. Thus, it is more powerful and adaptable to the complicated DNA storage applications.
Collapse
Affiliation(s)
- Xiangzhen Zan
- Institution of Computational Science and Technology, Guangzhou University, Guangzhou, 510006, China
| | - Xiangyu Yao
- Institution of Computational Science and Technology, Guangzhou University, Guangzhou, 510006, China
| | - Peng Xu
- Institution of Computational Science and Technology, Guangzhou University, Guangzhou, 510006, China
| | - Zhihua Chen
- Institution of Computational Science and Technology, Guangzhou University, Guangzhou, 510006, China
| | - Lian Xie
- Institution of Huangpu Research, Guangzhou University, Guangzhou, 510006, China
| | - Shudong Li
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006, China
| | - Wenbin Liu
- Institution of Computational Science and Technology, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Sfera A, Osorio C, Zapata Martín del Campo CM, Pereida S, Maurer S, Maldonado JC, Kozlakidis Z. Endothelial Senescence and Chronic Fatigue Syndrome, a COVID-19 Based Hypothesis. Front Cell Neurosci 2021; 15:673217. [PMID: 34248502 PMCID: PMC8267916 DOI: 10.3389/fncel.2021.673217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome is a serious illness of unknown etiology, characterized by debilitating exhaustion, memory impairment, pain and sleep abnormalities. Viral infections are believed to initiate the pathogenesis of this syndrome although the definite proof remains elusive. With the unfolding of COVID-19 pandemic, the interest in this condition has resurfaced as excessive tiredness, a major complaint of patients infected with the SARS-CoV-2 virus, often lingers for a long time, resulting in disability, and poor life quality. In a previous article, we hypothesized that COVID-19-upregulated angiotensin II triggered premature endothelial cell senescence, disrupting the intestinal and blood brain barriers. Here, we hypothesize further that post-viral sequelae, including myalgic encephalomyelitis/chronic fatigue syndrome, are promoted by the gut microbes or toxin translocation from the gastrointestinal tract into other tissues, including the brain. This model is supported by the SARS-CoV-2 interaction with host proteins and bacterial lipopolysaccharide. Conversely, targeting microbial translocation and cellular senescence may ameliorate the symptoms of this disabling illness.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | | | | | | | - Steve Maurer
- Patton State Hospital, San Bernardino, CA, United States
| | - Jose Campo Maldonado
- Department of Internal Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
10
|
Delshad M, Tavakolinia N, Pourbagheri-Sigaroodi A, Safaroghli-Azar A, Bagheri N, Bashash D. The contributory role of lymphocyte subsets, pathophysiology of lymphopenia and its implication as prognostic and therapeutic opportunity in COVID-19. Int Immunopharmacol 2021; 95:107586. [PMID: 33765611 PMCID: PMC7969831 DOI: 10.1016/j.intimp.2021.107586] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
The incidence of the novel coronavirus disease (COVID-19) outbreak caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has brought daunting complications for people as well as physicians around the world. An ever-increasing number of studies investigating the characteristics of the disease, day by day, is shedding light on a new feature of the virus with the hope that eventually these efforts lead to the proper treatment. SARS-CoV-2 activates antiviral immune responses, but in addition may overproduce pro-inflammatory cytokines, causing uncontrolled inflammatory responses in patients with severe COVID-19. This condition may lead to lymphopenia and lymphocyte dysfunction, which in turn, predispose patients to further infections, septic shock, and severe multiple organ dysfunction. Therefore, accurate knowledge in this issue is important to guide clinical management of the disease and the development of new therapeutic strategies in patients with COVID-19. In this review, we provide a piece of valuable information about the alteration of each subtype of lymphocytes and important prognostic factors associated with these cells. Moreover, through discussing the lymphopenia pathophysiology and debating some of the most recent lymphocyte- or lymphopenia-related treatment strategies in COVID-19 patients, we tried to brightening the foreseeable future for COVID-19 patients, especially those with severe disease.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Naeimeh Tavakolinia
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Peripheral Blood Biomarkers CXCL12 and TNFRSF13C Associate with Cerebrospinal Fluid Biomarkers and Infiltrating Immune Cells in Alzheimer Disease. J Mol Neurosci 2021; 71:1485-1494. [PMID: 33687622 DOI: 10.1007/s12031-021-01809-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Neuroinflammation-induced neurodegeneration and immune cell infiltration are two features of Alzheimer disease (AD). This study aimed to identify potential peripheral biomarkers that interact with cerebrospinal fluid (CSF) and infiltrating immune cells in AD. Blood and CSF data were downloaded from the Alzheimer's disease Neuroimaging Initiative database. We identified differentially expressed genes (DEGs) in AD and assessed infiltrating immune cells using the Immune Cell Abundance Identifier (ImmuCellAI) algorithm. Blood-brain barrier (BBB) and immune-related genes were identified from medical databases, and common genes were used to construct a protein-protein interaction network (PPI). Potential biomarkers reflecting the clinical features of AD were screened using Pearson correlations and logistic regression analysis. We identified 210 DEGs in the AD group. ImmuCellAI indicated that blood samples from patients with AD had a higher abundance of exhausted T (Tex; 0.196 vs. 0.132) and induced regulatory T (iTreg; 0.180 vs. 0.137) cells than controls. Thirty-two genes overlapped between the BBB and immune-related genes, and 27 genes in the PPI network were associated with eight pathways, including the cytokine-cytokine receptor interaction pathway (hsa04060) and the chemokine signaling pathway (hsa04062). Pearson correlations showed that five genes were associated with the CSF biomarkers, Aβ, total, and phosphorylated tau. Logistics analysis showed that the B cell-associated genes, CXCL12 and TNFRSF13C, were independent risk factors for AD diagnosis. Peripheral CXCL12 and TNFRSF13C genes that correlated with immune cell infiltration in AD might serve as easily accessible biomarkers for the early diagnosis of AD.
Collapse
|
12
|
Abstract
Die gesundheitlichen Auswirkungen der Coronavirus-Krankheit 2019 (COVID-19) durch die Infektion von SARS-CoV‑2 (Schweres-Akutes-Respiratorisches–Syndrom-Coronavirus 2) werden mit der Ausbreitung der Pandemie immer deutlicher. Neben der Lunge sind auch andere Organe betroffen, welche die Morbidität und Mortalität deutlich beeinflussen können. Insbesondere neurologische Symptome unter Beteiligung des zentralen und peripheren Nervensystems können akute Symptome oder Langzeitfolgen auslösen. Die Mechanismen dieser Neuropathogenese der SARS-CoV-2-Infektion und ihr Zusammenhang mit akuten und chronischen neurologischen Symptomen sind Gegenstand aktueller Studien, die sich mit der Untersuchung einer potenziellen direkten und indirekten Virusinfektion des Nervensystems beschäftigen. In der folgenden Übersichtsarbeit wird der aktuelle Stand über die neuropathologischen Manifestationen, die molekulare Pathogenese, die möglichen Infektionswege im Nervensystem und die systemischen Wirkungen zusammengefasst. Zusätzlich wird ein Überblick über das bundesweite Register CNS-COVID19 und Kooperationen gegeben, die zu einem besseren Verständnis der neurologischen Symptome von COVID-19 beitragen sollen.
Collapse
|
13
|
Abstract
Vaccines are urgently needed to control the coronavirus disease 2019 (COVID-19) pandemic and to help the return to pre-pandemic normalcy. A great many vaccine candidates are being developed, several of which have completed late-stage clinical trials and are reporting positive results. In this Progress article, we discuss which viral elements are used in COVID-19 vaccine candidates, why they might act as good targets for the immune system and the implications for protective immunity.
Collapse
Affiliation(s)
- Lianpan Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|